file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
LowStar.Vector.fst
LowStar.Vector.modifies_as_seq
val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)]
val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)]
let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 232, "start_col": 0, "start_line": 231 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> dloc: LowStar.Monotonic.Buffer.loc -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Vector.live h0 vec /\ LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Vector.loc_vector vec) dloc /\ LowStar.Monotonic.Buffer.modifies dloc h0 h1) (ensures LowStar.Vector.live h1 vec /\ LowStar.Vector.as_seq h0 vec == LowStar.Vector.as_seq h1 vec) [ SMTPat (LowStar.Vector.live h0 vec); SMTPat (LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Vector.loc_vector vec) dloc); SMTPat (LowStar.Monotonic.Buffer.modifies dloc h0 h1) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Vector.vector", "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.modifies_buffer_elim", "LowStar.Buffer.trivial_preorder", "LowStar.Vector.__proj__Vec__item__vs", "Prims.unit" ]
[]
true
false
true
false
false
let modifies_as_seq #a vec dloc h0 h1 =
B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1
false
LowStar.Vector.fst
LowStar.Vector.loc_vector_within
val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i)))
val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i)))
let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 115, "start_col": 0, "start_line": 112 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j: LowStar.Vector.uint32_t{i <= j && j <= LowStar.Vector.size_of vec} -> Prims.GTot LowStar.Monotonic.Buffer.loc
Prims.GTot
[ "sometrivial", "" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "Prims.op_Equality", "LowStar.Monotonic.Buffer.loc_none", "Prims.bool", "LowStar.Monotonic.Buffer.loc_union", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.trivial_preorder", "LowStar.Buffer.gsub", "LowStar.Vector.__proj__Vec__item__vs", "FStar.UInt32.__uint_to_t", "LowStar.Vector.loc_vector_within", "FStar.Integers.op_Plus", "LowStar.Monotonic.Buffer.loc" ]
[ "recursion" ]
false
false
false
false
false
let rec loc_vector_within #a vec i j =
if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j)
false
LowStar.Vector.fst
LowStar.Vector.alloc_empty
val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul})
val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul})
let alloc_empty a = Vec 0ul 0ul B.null
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 265, "start_col": 22, "start_line": 264 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty:
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> vec: LowStar.Vector.vector a {LowStar.Vector.size_of vec = 0ul}
Prims.Tot
[ "total" ]
[]
[ "LowStar.Vector.Vec", "FStar.UInt32.__uint_to_t", "LowStar.Buffer.null", "LowStar.Vector.vector", "Prims.b2t", "Prims.op_Equality", "FStar.UInt32.t", "LowStar.Vector.size_of" ]
[]
false
false
false
false
false
let alloc_empty a =
Vec 0ul 0ul B.null
false
Vale.Transformers.Locations.fst
Vale.Transformers.Locations.aux_print_reg_from_location
val aux_print_reg_from_location (a: location{ALocReg? a}) : string
val aux_print_reg_from_location (a: location{ALocReg? a}) : string
let aux_print_reg_from_location (a:location{ALocReg? a}) : string = let ALocReg (Reg file id) = a in match file with | 0 -> print_reg_name id | 1 -> print_xmm id gcc
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.Locations.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 28, "start_col": 0, "start_line": 24 }
module Vale.Transformers.Locations open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad module L = FStar.List.Tot (* See fsti *) type location : eqtype = | ALocMem : location | ALocStack: location | ALocReg : reg -> location | ALocCf : location | ALocOf : location
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.Transformers.Locations.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Vale.Transformers.Locations.location{ALocReg? a} -> Prims.string
Prims.Tot
[ "total" ]
[]
[ "Vale.Transformers.Locations.location", "Prims.b2t", "Vale.Transformers.Locations.uu___is_ALocReg", "Vale.X64.Machine_s.reg_file_id", "Vale.X64.Machine_s.reg_id", "Vale.X64.Print_s.print_reg_name", "Vale.X64.Print_s.print_xmm", "Vale.X64.Print_s.gcc", "Prims.string" ]
[]
false
false
false
false
false
let aux_print_reg_from_location (a: location{ALocReg? a}) : string =
let ALocReg (Reg file id) = a in match file with | 0 -> print_reg_name id | 1 -> print_xmm id gcc
false
Vale.Transformers.Locations.fst
Vale.Transformers.Locations.location_val_eqt
val location_val_eqt : location -> eqtype
val location_val_eqt : location -> eqtype
let location_val_eqt a = match a with | ALocMem -> unit | ALocStack -> unit | ALocReg r -> t_reg r | ALocCf -> flag_val_t | ALocOf -> flag_val_t
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.Locations.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 65, "start_col": 0, "start_line": 59 }
module Vale.Transformers.Locations open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad module L = FStar.List.Tot (* See fsti *) type location : eqtype = | ALocMem : location | ALocStack: location | ALocReg : reg -> location | ALocCf : location | ALocOf : location let aux_print_reg_from_location (a:location{ALocReg? a}) : string = let ALocReg (Reg file id) = a in match file with | 0 -> print_reg_name id | 1 -> print_xmm id gcc (* See fsti *) let disjoint_location a1 a2 = match a1, a2 with | ALocCf, ALocCf -> ffalse "carry flag not disjoint from itself" | ALocOf, ALocOf -> ffalse "overflow flag not disjoint from itself" | ALocCf, _ | ALocOf, _ | _, ALocCf | _, ALocOf -> ttrue | ALocMem, ALocMem -> ffalse "memory not disjoint from itself" | ALocStack, ALocStack -> ffalse "stack not disjoint from itself" | ALocMem, ALocStack | ALocStack, ALocMem -> ttrue | ALocReg r1, ALocReg r2 -> (r1 <> r2) /- ("register " ^ aux_print_reg_from_location a1 ^ " not disjoint from itself") | ALocReg _, _ | _, ALocReg _ -> ttrue (* See fsti *) let auto_lemma_disjoint_location a1 a2 = () (* See fsti *) let downgrade_val_raise_val_u0_u1 #a x = FStar.Universe.downgrade_val_raise_val #a x (* See fsti *) let location_val_t a = match a with | ALocMem -> heap_impl | ALocStack -> FStar.Universe.raise_t (machine_stack & memTaint_t) | ALocReg r -> FStar.Universe.raise_t (t_reg r) | ALocCf -> FStar.Universe.raise_t flag_val_t | ALocOf -> FStar.Universe.raise_t flag_val_t
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.Transformers.Locations.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Vale.Transformers.Locations.location -> Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "Vale.Transformers.Locations.location", "Prims.unit", "Vale.X64.Machine_s.reg", "Vale.X64.Machine_s.t_reg", "Vale.X64.Machine_Semantics_s.flag_val_t", "Prims.eqtype" ]
[]
false
false
false
true
false
let location_val_eqt a =
match a with | ALocMem -> unit | ALocStack -> unit | ALocReg r -> t_reg r | ALocCf -> flag_val_t | ALocOf -> flag_val_t
false
LowStar.Vector.fst
LowStar.Vector.index
val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v))
val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v))
let index #a vec i = B.index (Vec?.vs vec) i
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 367, "start_col": 0, "start_line": 366 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> FStar.HyperStack.ST.ST a
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "LowStar.Monotonic.Buffer.index", "LowStar.Buffer.trivial_preorder", "LowStar.Vector.__proj__Vec__item__vs" ]
[]
false
true
false
false
false
let index #a vec i =
B.index (Vec?.vs vec) i
false
Vale.Transformers.Locations.fst
Vale.Transformers.Locations.lemma_locations_complete
val lemma_locations_complete : s1:machine_state -> s2:machine_state -> flags:flags_t -> ok:bool -> trace:list observation -> Lemma (requires ( (forall a. eval_location a s1 == eval_location a s2))) (ensures ( filter_state s1 flags ok trace == filter_state s2 flags ok trace))
val lemma_locations_complete : s1:machine_state -> s2:machine_state -> flags:flags_t -> ok:bool -> trace:list observation -> Lemma (requires ( (forall a. eval_location a s1 == eval_location a s2))) (ensures ( filter_state s1 flags ok trace == filter_state s2 flags ok trace))
let lemma_locations_complete s1 s2 flags ok trace = let s1, s2 = filter_state s1 flags ok trace, filter_state s2 flags ok trace in assert (s1.ms_ok == s2.ms_ok); FStar.Classical.forall_intro ( (fun r -> assert (eval_location (ALocReg r) s1 == eval_location (ALocReg r) s2) (* OBSERVE *) ) <: (r:_ -> Lemma (eval_reg r s1 == eval_reg r s2)) ); assert (FStar.FunctionalExtensionality.feq s1.ms_regs s2.ms_regs); assert (s1.ms_regs == s2.ms_regs); assert (overflow s1.ms_flags == overflow s2.ms_flags); assert (cf s1.ms_flags == cf s2.ms_flags); assert (FStar.FunctionalExtensionality.feq s1.ms_flags s2.ms_flags); assert (s1.ms_heap == s2.ms_heap); assert (s1.ms_stack == s2.ms_stack); assert (s1.ms_stackTaint == s2.ms_stackTaint); assert (s1.ms_trace == s2.ms_trace)
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.Locations.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 117, "start_col": 0, "start_line": 99 }
module Vale.Transformers.Locations open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad module L = FStar.List.Tot (* See fsti *) type location : eqtype = | ALocMem : location | ALocStack: location | ALocReg : reg -> location | ALocCf : location | ALocOf : location let aux_print_reg_from_location (a:location{ALocReg? a}) : string = let ALocReg (Reg file id) = a in match file with | 0 -> print_reg_name id | 1 -> print_xmm id gcc (* See fsti *) let disjoint_location a1 a2 = match a1, a2 with | ALocCf, ALocCf -> ffalse "carry flag not disjoint from itself" | ALocOf, ALocOf -> ffalse "overflow flag not disjoint from itself" | ALocCf, _ | ALocOf, _ | _, ALocCf | _, ALocOf -> ttrue | ALocMem, ALocMem -> ffalse "memory not disjoint from itself" | ALocStack, ALocStack -> ffalse "stack not disjoint from itself" | ALocMem, ALocStack | ALocStack, ALocMem -> ttrue | ALocReg r1, ALocReg r2 -> (r1 <> r2) /- ("register " ^ aux_print_reg_from_location a1 ^ " not disjoint from itself") | ALocReg _, _ | _, ALocReg _ -> ttrue (* See fsti *) let auto_lemma_disjoint_location a1 a2 = () (* See fsti *) let downgrade_val_raise_val_u0_u1 #a x = FStar.Universe.downgrade_val_raise_val #a x (* See fsti *) let location_val_t a = match a with | ALocMem -> heap_impl | ALocStack -> FStar.Universe.raise_t (machine_stack & memTaint_t) | ALocReg r -> FStar.Universe.raise_t (t_reg r) | ALocCf -> FStar.Universe.raise_t flag_val_t | ALocOf -> FStar.Universe.raise_t flag_val_t (* See fsti *) let location_val_eqt a = match a with | ALocMem -> unit | ALocStack -> unit | ALocReg r -> t_reg r | ALocCf -> flag_val_t | ALocOf -> flag_val_t (* See fsti *) let eval_location a s = match a with | ALocMem -> s.ms_heap | ALocStack -> FStar.Universe.raise_val (s.ms_stack, s.ms_stackTaint) | ALocReg r -> FStar.Universe.raise_val (eval_reg r s) | ALocCf -> FStar.Universe.raise_val (cf s.ms_flags) | ALocOf -> FStar.Universe.raise_val (overflow s.ms_flags) (* See fsti *) let update_location a v s = match a with | ALocMem -> let v = coerce v in { s with ms_heap = v } | ALocStack -> let v = FStar.Universe.downgrade_val (coerce v) in { s with ms_stack = fst v ; ms_stackTaint = snd v } | ALocReg r -> let v = FStar.Universe.downgrade_val v in update_reg' r v s | ALocCf -> let v = FStar.Universe.downgrade_val v in { s with ms_flags = FStar.FunctionalExtensionality.on_dom flag (fun f -> if f = fCarry then v else s.ms_flags f) } | ALocOf -> let v = FStar.Universe.downgrade_val v in { s with ms_flags = FStar.FunctionalExtensionality.on_dom flag (fun f -> if f = fOverflow then v else s.ms_flags f) } (* See fsti *) let lemma_locations_truly_disjoint a a_change v s = ()
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.Transformers.Locations.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> flags: Vale.X64.Machine_Semantics_s.flags_t -> ok: Prims.bool -> trace: Prims.list Vale.X64.Machine_s.observation -> FStar.Pervasives.Lemma (requires forall (a: Vale.Transformers.Locations.location). Vale.Transformers.Locations.eval_location a s1 == Vale.Transformers.Locations.eval_location a s2) (ensures Vale.Transformers.Locations.filter_state s1 flags ok trace == Vale.Transformers.Locations.filter_state s2 flags ok trace)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.flags_t", "Prims.bool", "Prims.list", "Vale.X64.Machine_s.observation", "Prims._assert", "Prims.eq2", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_trace", "Prims.unit", "Vale.Arch.HeapTypes_s.memTaint_t", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stackTaint", "Vale.X64.Machine_Semantics_s.machine_stack", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack", "Vale.Arch.Heap.heap_impl", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "FStar.FunctionalExtensionality.feq", "Vale.X64.Machine_s.flag", "Vale.X64.Machine_Semantics_s.flag_val_t", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags", "Vale.X64.Machine_Semantics_s.cf", "Vale.X64.Machine_Semantics_s.overflow", "Vale.X64.Machine_Semantics_s.regs_t", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_regs", "Vale.X64.Machine_s.reg", "Vale.X64.Machine_s.t_reg", "FStar.Classical.forall_intro", "Vale.X64.Machine_Semantics_s.eval_reg", "Vale.Transformers.Locations.location_val_t", "Vale.Transformers.Locations.ALocReg", "Vale.Transformers.Locations.eval_location", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Vale.Transformers.Locations.filter_state" ]
[]
false
false
true
false
false
let lemma_locations_complete s1 s2 flags ok trace =
let s1, s2 = filter_state s1 flags ok trace, filter_state s2 flags ok trace in assert (s1.ms_ok == s2.ms_ok); FStar.Classical.forall_intro ((fun r -> assert (eval_location (ALocReg r) s1 == eval_location (ALocReg r) s2)) <: (r: _ -> Lemma (eval_reg r s1 == eval_reg r s2))); assert (FStar.FunctionalExtensionality.feq s1.ms_regs s2.ms_regs); assert (s1.ms_regs == s2.ms_regs); assert (overflow s1.ms_flags == overflow s2.ms_flags); assert (cf s1.ms_flags == cf s2.ms_flags); assert (FStar.FunctionalExtensionality.feq s1.ms_flags s2.ms_flags); assert (s1.ms_heap == s2.ms_heap); assert (s1.ms_stack == s2.ms_stack); assert (s1.ms_stackTaint == s2.ms_stackTaint); assert (s1.ms_trace == s2.ms_trace)
false
Hacl.Test.HMAC_DRBG.fst
Hacl.Test.HMAC_DRBG.vec8
val vec8 : Type0
let vec8 = L.lbuffer UInt8.t
{ "file_name": "code/tests/Hacl.Test.HMAC_DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 31, "start_col": 0, "start_line": 31 }
module Hacl.Test.HMAC_DRBG open FStar.HyperStack.ST open Test.Lowstarize open Lib.IntTypes open Hacl.HMAC_DRBG open Spec.HMAC_DRBG.Test.Vectors module D = Spec.Hash.Definitions module L = Test.Lowstarize module B = LowStar.Buffer #set-options "--fuel 0 --ifuel 0 --z3rlimit 100" (* FStar.Reflection only supports up to 8-tuples *) noextract let vectors_tmp = List.Tot.map (fun x -> x.a, h x.entropy_input, h x.nonce, h x.personalization_string, h x.entropy_input_reseed, h x.additional_input_reseed, (h x.additional_input_1, h x.additional_input_2), h x.returned_bits) test_vectors %splice[vectors_low] (lowstarize_toplevel "vectors_tmp" "vectors_low") // Cheap alternative to friend Lib.IntTypes needed because Test.Lowstarize uses UInt8.t assume val declassify_uint8: squash (uint8 == UInt8.t)
{ "checked_file": "/", "dependencies": [ "Test.Lowstarize.fst.checked", "Spec.HMAC_DRBG.Test.Vectors.fst.checked", "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.Printf.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Hacl.HMAC_DRBG.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "C.String.fsti.checked", "C.Loops.fst.checked", "C.fst.checked" ], "interface_file": false, "source_file": "Hacl.Test.HMAC_DRBG.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "Test.Lowstarize", "short_module": "L" }, { "abbrev": true, "full_module": "Spec.Hash.Definitions", "short_module": "D" }, { "abbrev": false, "full_module": "Spec.HMAC_DRBG.Test.Vectors", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Test.Lowstarize", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Test", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Test.Lowstarize.lbuffer", "FStar.UInt8.t" ]
[]
false
false
false
true
true
let vec8 =
L.lbuffer UInt8.t
false
LowStar.Vector.fst
LowStar.Vector.free
val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1))
val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1))
let free #a vec = B.free (Vec?.vs vec)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 350, "start_col": 0, "start_line": 349 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.vector", "LowStar.Monotonic.Buffer.free", "LowStar.Buffer.trivial_preorder", "LowStar.Vector.__proj__Vec__item__vs", "Prims.unit" ]
[]
false
true
false
false
false
let free #a vec =
B.free (Vec?.vs vec)
false
LowStar.Vector.fst
LowStar.Vector.clear
val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul})
val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul})
let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 393, "start_col": 0, "start_line": 392 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> cvec: LowStar.Vector.vector a {LowStar.Vector.size_of cvec = 0ul}
Prims.Tot
[ "total" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.Vec", "FStar.UInt32.__uint_to_t", "LowStar.Vector.__proj__Vec__item__cap", "LowStar.Vector.__proj__Vec__item__vs", "Prims.b2t", "Prims.op_Equality", "FStar.UInt32.t", "LowStar.Vector.size_of" ]
[]
false
false
false
false
false
let clear #a vec =
Vec 0ul (Vec?.cap vec) (Vec?.vs vec)
false
LowStar.Vector.fst
LowStar.Vector.loc_vector_within_included
val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i)))
val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i)))
let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 166, "start_col": 0, "start_line": 164 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j: LowStar.Vector.uint32_t{i <= j && j <= LowStar.Vector.size_of vec} -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Vector.loc_vector vec) (LowStar.Vector.loc_vector_within vec i j)) (decreases FStar.UInt32.v (j - i))
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "Prims.op_Equality", "Prims.bool", "LowStar.Vector.loc_vector_within_included", "FStar.Integers.op_Plus", "FStar.UInt32.__uint_to_t", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec loc_vector_within_included #a vec i j =
if i = j then () else loc_vector_within_included vec (i + 1ul) j
false
LowStar.Vector.fst
LowStar.Vector.loc_vector_within_includes_
val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i)))
val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i)))
let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 137, "start_col": 0, "start_line": 126 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j1: LowStar.Vector.uint32_t{i <= j1 && j1 <= LowStar.Vector.size_of vec} -> j2: LowStar.Vector.uint32_t{i <= j2 && j2 <= j1} -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Vector.loc_vector_within vec i j1) (LowStar.Vector.loc_vector_within vec i j2)) (decreases FStar.UInt32.v (j1 - i))
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "Prims.op_Equality", "Prims.bool", "LowStar.Monotonic.Buffer.loc_includes_union_r", "LowStar.Vector.loc_vector_within", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.trivial_preorder", "LowStar.Buffer.gsub", "LowStar.Vector.__proj__Vec__item__vs", "FStar.UInt32.__uint_to_t", "FStar.Integers.op_Plus", "Prims.unit", "LowStar.Monotonic.Buffer.loc_includes_union_l", "LowStar.Vector.loc_vector_within_includes_" ]
[ "recursion" ]
false
false
true
false
false
let rec loc_vector_within_includes_ #a vec i j1 j2 =
if i = j1 then () else if i = j2 then () else (loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2))
false
LowStar.Vector.fst
LowStar.Vector.alloc_reserve
val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty))
val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty))
let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 324, "start_col": 0, "start_line": 323 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: LowStar.Vector.uint32_t{len > 0ul} -> ia: a -> rid: FStar.Monotonic.HyperHeap.rid{FStar.HyperStack.ST.is_eternal_region rid} -> FStar.HyperStack.ST.ST (LowStar.Vector.vector a)
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Greater", "FStar.Integers.Unsigned", "FStar.Integers.W32", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperHeap.rid", "FStar.HyperStack.ST.is_eternal_region", "LowStar.Vector.Vec", "LowStar.Vector.vector", "LowStar.Buffer.buffer", "Prims.op_Equality", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.len", "LowStar.Buffer.trivial_preorder", "LowStar.Buffer.malloc", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.freeable" ]
[]
false
true
false
false
false
let alloc_reserve #a len ia rid =
Vec 0ul len (B.malloc rid ia len)
false
LowStar.Vector.fst
LowStar.Vector.front
val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v))
val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v))
let front #a vec = B.index (Vec?.vs vec) 0ul
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 376, "start_col": 0, "start_line": 375 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a {LowStar.Vector.size_of vec > 0ul} -> FStar.HyperStack.ST.ST a
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.vector", "Prims.b2t", "FStar.Integers.op_Greater", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.index", "LowStar.Buffer.trivial_preorder", "LowStar.Vector.__proj__Vec__item__vs" ]
[]
false
true
false
false
false
let front #a vec =
B.index (Vec?.vs vec) 0ul
false
Vale.Transformers.Locations.fst
Vale.Transformers.Locations.eval_location
val eval_location : a:location -> machine_state -> location_val_t a
val eval_location : a:location -> machine_state -> location_val_t a
let eval_location a s = match a with | ALocMem -> s.ms_heap | ALocStack -> FStar.Universe.raise_val (s.ms_stack, s.ms_stackTaint) | ALocReg r -> FStar.Universe.raise_val (eval_reg r s) | ALocCf -> FStar.Universe.raise_val (cf s.ms_flags) | ALocOf -> FStar.Universe.raise_val (overflow s.ms_flags)
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.Locations.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 74, "start_col": 0, "start_line": 68 }
module Vale.Transformers.Locations open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad module L = FStar.List.Tot (* See fsti *) type location : eqtype = | ALocMem : location | ALocStack: location | ALocReg : reg -> location | ALocCf : location | ALocOf : location let aux_print_reg_from_location (a:location{ALocReg? a}) : string = let ALocReg (Reg file id) = a in match file with | 0 -> print_reg_name id | 1 -> print_xmm id gcc (* See fsti *) let disjoint_location a1 a2 = match a1, a2 with | ALocCf, ALocCf -> ffalse "carry flag not disjoint from itself" | ALocOf, ALocOf -> ffalse "overflow flag not disjoint from itself" | ALocCf, _ | ALocOf, _ | _, ALocCf | _, ALocOf -> ttrue | ALocMem, ALocMem -> ffalse "memory not disjoint from itself" | ALocStack, ALocStack -> ffalse "stack not disjoint from itself" | ALocMem, ALocStack | ALocStack, ALocMem -> ttrue | ALocReg r1, ALocReg r2 -> (r1 <> r2) /- ("register " ^ aux_print_reg_from_location a1 ^ " not disjoint from itself") | ALocReg _, _ | _, ALocReg _ -> ttrue (* See fsti *) let auto_lemma_disjoint_location a1 a2 = () (* See fsti *) let downgrade_val_raise_val_u0_u1 #a x = FStar.Universe.downgrade_val_raise_val #a x (* See fsti *) let location_val_t a = match a with | ALocMem -> heap_impl | ALocStack -> FStar.Universe.raise_t (machine_stack & memTaint_t) | ALocReg r -> FStar.Universe.raise_t (t_reg r) | ALocCf -> FStar.Universe.raise_t flag_val_t | ALocOf -> FStar.Universe.raise_t flag_val_t (* See fsti *) let location_val_eqt a = match a with | ALocMem -> unit | ALocStack -> unit | ALocReg r -> t_reg r | ALocCf -> flag_val_t | ALocOf -> flag_val_t
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.Transformers.Locations.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Vale.Transformers.Locations.location -> s: Vale.X64.Machine_Semantics_s.machine_state -> Vale.Transformers.Locations.location_val_t a
Prims.Tot
[ "total" ]
[]
[ "Vale.Transformers.Locations.location", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "FStar.Universe.raise_val", "FStar.Pervasives.Native.tuple2", "Vale.X64.Machine_Semantics_s.machine_stack", "Vale.Arch.HeapTypes_s.memTaint_t", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stackTaint", "Vale.X64.Machine_s.reg", "Vale.X64.Machine_s.t_reg", "Vale.X64.Machine_Semantics_s.eval_reg", "Vale.X64.Machine_Semantics_s.flag_val_t", "Vale.X64.Machine_Semantics_s.cf", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags", "Vale.X64.Machine_Semantics_s.overflow", "Vale.Transformers.Locations.location_val_t" ]
[]
false
false
false
false
false
let eval_location a s =
match a with | ALocMem -> s.ms_heap | ALocStack -> FStar.Universe.raise_val (s.ms_stack, s.ms_stackTaint) | ALocReg r -> FStar.Universe.raise_val (eval_reg r s) | ALocCf -> FStar.Universe.raise_val (cf s.ms_flags) | ALocOf -> FStar.Universe.raise_val (overflow s.ms_flags)
false
LowStar.Vector.fst
LowStar.Vector.get
val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a
val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a
let get #a h vec i = S.index (as_seq h vec) (U32.v i)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 358, "start_col": 0, "start_line": 357 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t{i < LowStar.Vector.size_of vec} -> Prims.GTot a
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Less", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "FStar.Seq.Base.index", "LowStar.Vector.as_seq", "FStar.UInt32.v" ]
[]
false
false
false
false
false
let get #a h vec i =
S.index (as_seq h vec) (U32.v i)
false
LowStar.Vector.fst
LowStar.Vector.loc_vector_within_disjoint_
val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2)))
val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2)))
let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 179, "start_col": 0, "start_line": 177 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i1: LowStar.Vector.uint32_t -> i2: LowStar.Vector.uint32_t{i1 < i2} -> j2: LowStar.Vector.uint32_t{i2 <= j2 && j2 <= LowStar.Vector.size_of vec} -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer (LowStar.Buffer.gsub (Vec?.vs vec) i1 1ul)) (LowStar.Vector.loc_vector_within vec i2 j2)) (decreases FStar.UInt32.v (j2 - i2))
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Less", "FStar.Integers.Unsigned", "FStar.Integers.W32", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "LowStar.Vector.size_of", "Prims.op_Equality", "Prims.l_or", "Prims.bool", "LowStar.Vector.loc_vector_within_disjoint_", "FStar.Integers.op_Plus", "FStar.UInt32.__uint_to_t", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 =
if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2
false
LowStar.Vector.fst
LowStar.Vector.forall_buffer
val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0
val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0
let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 562, "start_col": 0, "start_line": 561 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> buf: LowStar.Buffer.buffer a -> i: FStar.Integers.nat -> j: FStar.Integers.nat{i <= j && j <= LowStar.Monotonic.Buffer.length buf} -> p: (_: a -> Prims.GTot Type0) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.Buffer.buffer", "FStar.Integers.nat", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "LowStar.Vector.forall_seq", "LowStar.Monotonic.Buffer.as_seq" ]
[]
false
false
false
false
true
let forall_buffer #a h buf i j p =
forall_seq (B.as_seq h buf) i j p
false
LowStar.Vector.fst
LowStar.Vector.alloc_by_buffer
val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf)))
val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf)))
let alloc_by_buffer #a len buf = Vec len len buf
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 340, "start_col": 0, "start_line": 339 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: LowStar.Vector.uint32_t{len > 0ul} -> buf: LowStar.Buffer.buffer a {LowStar.Monotonic.Buffer.len buf = len} -> FStar.HyperStack.ST.ST (LowStar.Vector.vector a)
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Greater", "FStar.Integers.Unsigned", "FStar.Integers.W32", "FStar.UInt32.__uint_to_t", "LowStar.Buffer.buffer", "Prims.op_Equality", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.len", "LowStar.Buffer.trivial_preorder", "LowStar.Vector.Vec", "LowStar.Vector.vector" ]
[]
false
true
false
false
false
let alloc_by_buffer #a len buf =
Vec len len buf
false
LowStar.Vector.fst
LowStar.Vector.shrink
val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a)
val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a)
let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 510, "start_col": 0, "start_line": 509 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> new_size: LowStar.Vector.uint32_t{new_size <= LowStar.Vector.size_of vec} -> LowStar.Vector.vector a
Prims.Tot
[ "total" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "LowStar.Vector.Vec", "LowStar.Vector.__proj__Vec__item__cap", "LowStar.Vector.__proj__Vec__item__vs" ]
[]
false
false
false
false
false
let shrink #a vec new_size =
Vec new_size (Vec?.cap vec) (Vec?.vs vec)
false
LowStar.Vector.fst
LowStar.Vector.alloc
val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1))
val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1))
let alloc #a len v = alloc_rid len v HS.root
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 306, "start_col": 0, "start_line": 305 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: LowStar.Vector.uint32_t{len > 0ul} -> v: a -> FStar.HyperStack.ST.ST (LowStar.Vector.vector a)
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Greater", "FStar.Integers.Unsigned", "FStar.Integers.W32", "FStar.UInt32.__uint_to_t", "LowStar.Vector.alloc_rid", "FStar.Monotonic.HyperHeap.root", "LowStar.Vector.vector" ]
[]
false
true
false
false
false
let alloc #a len v =
alloc_rid len v HS.root
false
LowStar.Vector.fst
LowStar.Vector.loc_vector_within_disjoint
val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1)))
val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1)))
let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 192, "start_col": 0, "start_line": 189 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i1: LowStar.Vector.uint32_t -> j1: LowStar.Vector.uint32_t{i1 <= j1 && j1 <= LowStar.Vector.size_of vec} -> i2: LowStar.Vector.uint32_t{j1 <= i2} -> j2: LowStar.Vector.uint32_t{i2 <= j2 && j2 <= LowStar.Vector.size_of vec} -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Vector.loc_vector_within vec i1 j1) (LowStar.Vector.loc_vector_within vec i2 j2)) (decreases FStar.UInt32.v (j1 - i1))
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "Prims.op_Equality", "Prims.bool", "LowStar.Vector.loc_vector_within_disjoint", "FStar.Integers.op_Plus", "FStar.UInt32.__uint_to_t", "Prims.unit", "LowStar.Vector.loc_vector_within_disjoint_" ]
[ "recursion" ]
false
false
true
false
false
let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 =
if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2)
false
LowStar.Vector.fst
LowStar.Vector.fold_left_seq
val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq))
val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq))
let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq))
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 521, "start_col": 0, "start_line": 519 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
seq: FStar.Seq.Base.seq a -> f: (_: b -> _: a -> Prims.GTot b) -> ib: b -> Prims.GTot b
Prims.GTot
[ "sometrivial", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "LowStar.Vector.fold_left_seq", "FStar.Seq.Properties.tail", "FStar.Seq.Properties.head" ]
[ "recursion" ]
false
false
false
false
false
let rec fold_left_seq #a #b seq f ib =
if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq))
false
LowStar.Vector.fst
LowStar.Vector.forall_all
val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0
val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0
let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 575, "start_col": 0, "start_line": 574 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> vec: LowStar.Vector.vector a -> p: (_: a -> Type0) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.Vector.vector", "LowStar.Vector.forall_", "FStar.UInt32.__uint_to_t", "LowStar.Vector.size_of" ]
[]
false
false
false
false
true
let forall_all #a h vec p =
forall_ h vec 0ul (size_of vec) p
false
LowStar.Vector.fst
LowStar.Vector.new_capacity
val new_capacity: cap:uint32_t -> Tot uint32_t
val new_capacity: cap:uint32_t -> Tot uint32_t
let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 444, "start_col": 8, "start_line": 441 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cap: LowStar.Vector.uint32_t -> LowStar.Vector.uint32_t
Prims.Tot
[ "total" ]
[]
[ "LowStar.Vector.uint32_t", "FStar.Integers.op_Greater_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "FStar.Integers.op_Slash", "LowStar.Vector.max_uint32", "LowStar.Vector.resize_ratio", "Prims.bool", "Prims.op_Equality", "FStar.UInt32.t", "FStar.UInt32.__uint_to_t", "FStar.Integers.op_Star" ]
[]
false
false
false
true
false
let new_capacity cap =
if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio
false
LowStar.Vector.fst
LowStar.Vector.forall2_buffer
val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> a -> GTot Type0) -> GTot Type0
val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> a -> GTot Type0) -> GTot Type0
let forall2_buffer #a h buf i j p = forall2_seq (B.as_seq h buf) i j p
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 590, "start_col": 0, "start_line": 589 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0 let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_seq #a seq i j p = forall (k:nat{i <= k && k < j}) (l:nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l) val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> buf: LowStar.Buffer.buffer a -> i: FStar.Integers.nat -> j: FStar.Integers.nat{i <= j && j <= LowStar.Monotonic.Buffer.length buf} -> p: (_: a -> _: a -> Prims.GTot Type0) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.Buffer.buffer", "FStar.Integers.nat", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "LowStar.Vector.forall2_seq", "LowStar.Monotonic.Buffer.as_seq" ]
[]
false
false
false
false
true
let forall2_buffer #a h buf i j p =
forall2_seq (B.as_seq h buf) i j p
false
LowStar.Vector.fst
LowStar.Vector.fold_left
val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib))
val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib))
let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 77, "end_line": 547, "start_col": 0, "start_line": 546 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> f: (_: b -> _: a -> b) -> ib: b -> FStar.HyperStack.ST.ST b
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.fold_left_buffer", "LowStar.Vector.__proj__Vec__item__sz", "LowStar.Buffer.buffer", "Prims.b2t", "Prims.op_Equality", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.len", "LowStar.Buffer.trivial_preorder", "LowStar.Buffer.sub", "LowStar.Vector.__proj__Vec__item__vs", "FStar.UInt32.__uint_to_t", "FStar.Ghost.hide", "LowStar.Monotonic.Buffer.mbuffer" ]
[]
false
true
false
false
false
let fold_left #a #b vec f ib =
fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib
false
LowStar.Vector.fst
LowStar.Vector.back
val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v))
val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v))
let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 385, "start_col": 0, "start_line": 384 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a {LowStar.Vector.size_of vec > 0ul} -> FStar.HyperStack.ST.ST a
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.vector", "Prims.b2t", "FStar.Integers.op_Greater", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.index", "LowStar.Buffer.trivial_preorder", "LowStar.Vector.__proj__Vec__item__vs", "FStar.Integers.op_Subtraction" ]
[]
false
true
false
false
false
let back #a vec =
B.index (Vec?.vs vec) (size_of vec - 1ul)
false
Hacl.Test.HMAC_DRBG.fst
Hacl.Test.HMAC_DRBG.vector
val vector : Type0
let vector = D.hash_alg & vec8 & vec8 & vec8 & vec8 & vec8 & (vec8 & vec8) & vec8
{ "file_name": "code/tests/Hacl.Test.HMAC_DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 81, "end_line": 33, "start_col": 0, "start_line": 33 }
module Hacl.Test.HMAC_DRBG open FStar.HyperStack.ST open Test.Lowstarize open Lib.IntTypes open Hacl.HMAC_DRBG open Spec.HMAC_DRBG.Test.Vectors module D = Spec.Hash.Definitions module L = Test.Lowstarize module B = LowStar.Buffer #set-options "--fuel 0 --ifuel 0 --z3rlimit 100" (* FStar.Reflection only supports up to 8-tuples *) noextract let vectors_tmp = List.Tot.map (fun x -> x.a, h x.entropy_input, h x.nonce, h x.personalization_string, h x.entropy_input_reseed, h x.additional_input_reseed, (h x.additional_input_1, h x.additional_input_2), h x.returned_bits) test_vectors %splice[vectors_low] (lowstarize_toplevel "vectors_tmp" "vectors_low") // Cheap alternative to friend Lib.IntTypes needed because Test.Lowstarize uses UInt8.t assume val declassify_uint8: squash (uint8 == UInt8.t) let vec8 = L.lbuffer UInt8.t
{ "checked_file": "/", "dependencies": [ "Test.Lowstarize.fst.checked", "Spec.HMAC_DRBG.Test.Vectors.fst.checked", "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.Printf.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Hacl.HMAC_DRBG.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "C.String.fsti.checked", "C.Loops.fst.checked", "C.fst.checked" ], "interface_file": false, "source_file": "Hacl.Test.HMAC_DRBG.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "Test.Lowstarize", "short_module": "L" }, { "abbrev": true, "full_module": "Spec.Hash.Definitions", "short_module": "D" }, { "abbrev": false, "full_module": "Spec.HMAC_DRBG.Test.Vectors", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Test.Lowstarize", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Test", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple8", "Spec.Hash.Definitions.hash_alg", "Hacl.Test.HMAC_DRBG.vec8", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
true
true
let vector =
D.hash_alg & vec8 & vec8 & vec8 & vec8 & vec8 & (vec8 & vec8) & vec8
false
LowStar.Vector.fst
LowStar.Vector.forall_seq
val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0
val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0
let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 555, "start_col": 0, "start_line": 553 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
seq: FStar.Seq.Base.seq a -> i: FStar.Integers.nat -> j: FStar.Integers.nat{i <= j && j <= FStar.Seq.Base.length seq} -> p: (_: a -> Prims.GTot Type0) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Integers.nat", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.Seq.Base.length", "Prims.l_Forall", "FStar.Integers.op_Less", "FStar.Seq.Base.index" ]
[]
false
false
false
false
true
let forall_seq #a seq i j p =
forall (idx: nat{i <= idx && idx < j}). p (S.index seq idx)
false
LowStar.Vector.fst
LowStar.Vector.forall_
val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0
val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0
let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 569, "start_col": 0, "start_line": 568 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j: LowStar.Vector.uint32_t{i <= j && j <= LowStar.Vector.size_of vec} -> p: (_: a -> Type0) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "LowStar.Vector.forall_seq", "LowStar.Vector.as_seq", "FStar.UInt32.v" ]
[]
false
false
false
false
true
let forall_ #a h vec i j p =
forall_seq (as_seq h vec) (U32.v i) (U32.v j) p
false
Vale.Transformers.Locations.fst
Vale.Transformers.Locations.update_location
val update_location : a:location -> v:location_val_t a -> machine_state -> s:machine_state{eval_location a s == v}
val update_location : a:location -> v:location_val_t a -> machine_state -> s:machine_state{eval_location a s == v}
let update_location a v s = match a with | ALocMem -> let v = coerce v in { s with ms_heap = v } | ALocStack -> let v = FStar.Universe.downgrade_val (coerce v) in { s with ms_stack = fst v ; ms_stackTaint = snd v } | ALocReg r -> let v = FStar.Universe.downgrade_val v in update_reg' r v s | ALocCf -> let v = FStar.Universe.downgrade_val v in { s with ms_flags = FStar.FunctionalExtensionality.on_dom flag (fun f -> if f = fCarry then v else s.ms_flags f) } | ALocOf -> let v = FStar.Universe.downgrade_val v in { s with ms_flags = FStar.FunctionalExtensionality.on_dom flag (fun f -> if f = fOverflow then v else s.ms_flags f) }
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.Locations.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 121, "end_line": 93, "start_col": 0, "start_line": 77 }
module Vale.Transformers.Locations open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad module L = FStar.List.Tot (* See fsti *) type location : eqtype = | ALocMem : location | ALocStack: location | ALocReg : reg -> location | ALocCf : location | ALocOf : location let aux_print_reg_from_location (a:location{ALocReg? a}) : string = let ALocReg (Reg file id) = a in match file with | 0 -> print_reg_name id | 1 -> print_xmm id gcc (* See fsti *) let disjoint_location a1 a2 = match a1, a2 with | ALocCf, ALocCf -> ffalse "carry flag not disjoint from itself" | ALocOf, ALocOf -> ffalse "overflow flag not disjoint from itself" | ALocCf, _ | ALocOf, _ | _, ALocCf | _, ALocOf -> ttrue | ALocMem, ALocMem -> ffalse "memory not disjoint from itself" | ALocStack, ALocStack -> ffalse "stack not disjoint from itself" | ALocMem, ALocStack | ALocStack, ALocMem -> ttrue | ALocReg r1, ALocReg r2 -> (r1 <> r2) /- ("register " ^ aux_print_reg_from_location a1 ^ " not disjoint from itself") | ALocReg _, _ | _, ALocReg _ -> ttrue (* See fsti *) let auto_lemma_disjoint_location a1 a2 = () (* See fsti *) let downgrade_val_raise_val_u0_u1 #a x = FStar.Universe.downgrade_val_raise_val #a x (* See fsti *) let location_val_t a = match a with | ALocMem -> heap_impl | ALocStack -> FStar.Universe.raise_t (machine_stack & memTaint_t) | ALocReg r -> FStar.Universe.raise_t (t_reg r) | ALocCf -> FStar.Universe.raise_t flag_val_t | ALocOf -> FStar.Universe.raise_t flag_val_t (* See fsti *) let location_val_eqt a = match a with | ALocMem -> unit | ALocStack -> unit | ALocReg r -> t_reg r | ALocCf -> flag_val_t | ALocOf -> flag_val_t (* See fsti *) let eval_location a s = match a with | ALocMem -> s.ms_heap | ALocStack -> FStar.Universe.raise_val (s.ms_stack, s.ms_stackTaint) | ALocReg r -> FStar.Universe.raise_val (eval_reg r s) | ALocCf -> FStar.Universe.raise_val (cf s.ms_flags) | ALocOf -> FStar.Universe.raise_val (overflow s.ms_flags)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.Transformers.Locations.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Vale.Transformers.Locations.location -> v: Vale.Transformers.Locations.location_val_t a -> s: Vale.X64.Machine_Semantics_s.machine_state -> s: Vale.X64.Machine_Semantics_s.machine_state{Vale.Transformers.Locations.eval_location a s == v}
Prims.Tot
[ "total" ]
[]
[ "Vale.Transformers.Locations.location", "Vale.Transformers.Locations.location_val_t", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.Mkmachine_state", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_regs", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stackTaint", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_trace", "Vale.Arch.Heap.heap_impl", "Vale.X64.Instruction_s.coerce", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "FStar.Pervasives.Native.fst", "Vale.X64.Machine_Semantics_s.machine_stack", "Vale.Arch.HeapTypes_s.memTaint_t", "FStar.Pervasives.Native.snd", "FStar.Pervasives.Native.tuple2", "FStar.Universe.downgrade_val", "FStar.Universe.raise_t", "Vale.X64.Machine_s.reg", "Vale.X64.Machine_Semantics_s.update_reg'", "Vale.X64.Machine_s.t_reg", "FStar.FunctionalExtensionality.on_dom", "Vale.X64.Machine_s.flag", "Vale.X64.Machine_Semantics_s.flag_val_t", "Prims.op_Equality", "Vale.X64.Machine_s.fCarry", "Prims.bool", "FStar.Pervasives.Native.option", "Vale.X64.Machine_s.fOverflow", "Prims.eq2", "Vale.Transformers.Locations.eval_location" ]
[]
false
false
false
false
false
let update_location a v s =
match a with | ALocMem -> let v = coerce v in { s with ms_heap = v } | ALocStack -> let v = FStar.Universe.downgrade_val (coerce v) in { s with ms_stack = fst v; ms_stackTaint = snd v } | ALocReg r -> let v = FStar.Universe.downgrade_val v in update_reg' r v s | ALocCf -> let v = FStar.Universe.downgrade_val v in { s with ms_flags = FStar.FunctionalExtensionality.on_dom flag (fun f -> if f = fCarry then v else s.ms_flags f) } | ALocOf -> let v = FStar.Universe.downgrade_val v in { s with ms_flags = FStar.FunctionalExtensionality.on_dom flag (fun f -> if f = fOverflow then v else s.ms_flags f) }
false
LowStar.Vector.fst
LowStar.Vector.loc_vector_within_includes
val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1)))
val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1)))
let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 155, "start_col": 0, "start_line": 147 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i1: LowStar.Vector.uint32_t -> j1: LowStar.Vector.uint32_t{i1 <= j1 && j1 <= LowStar.Vector.size_of vec} -> i2: LowStar.Vector.uint32_t{i1 <= i2} -> j2: LowStar.Vector.uint32_t{i2 <= j2 && j2 <= j1} -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Vector.loc_vector_within vec i1 j1) (LowStar.Vector.loc_vector_within vec i2 j2)) (decreases FStar.UInt32.v (j1 - i1))
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "Prims.op_Equality", "Prims.bool", "LowStar.Vector.loc_vector_within_includes_", "LowStar.Monotonic.Buffer.loc_includes_union_l", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.trivial_preorder", "LowStar.Buffer.gsub", "LowStar.Vector.__proj__Vec__item__vs", "FStar.UInt32.__uint_to_t", "LowStar.Vector.loc_vector_within", "FStar.Integers.op_Plus", "Prims.unit", "LowStar.Vector.loc_vector_within_includes" ]
[ "recursion" ]
false
false
true
false
false
let rec loc_vector_within_includes #a vec i1 j1 i2 j2 =
if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else (loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2))
false
LowStar.Vector.fst
LowStar.Vector.forall2
val forall2: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> a -> GTot Type0) -> GTot Type0
val forall2: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> a -> GTot Type0) -> GTot Type0
let forall2 #a h vec i j p = forall2_seq (as_seq h vec) (U32.v i) (U32.v j) p
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 597, "start_col": 0, "start_line": 596 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0 let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_seq #a seq i j p = forall (k:nat{i <= k && k < j}) (l:nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l) val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_buffer #a h buf i j p = forall2_seq (B.as_seq h buf) i j p val forall2: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j: LowStar.Vector.uint32_t{i <= j && j <= LowStar.Vector.size_of vec} -> p: (_: a -> _: a -> Prims.GTot Type0) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "LowStar.Vector.forall2_seq", "LowStar.Vector.as_seq", "FStar.UInt32.v" ]
[]
false
false
false
false
true
let forall2 #a h vec i j p =
forall2_seq (as_seq h vec) (U32.v i) (U32.v j) p
false
LowStar.Vector.fst
LowStar.Vector.loc_vector_within_union_rev
val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i)))
val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i)))
let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 209, "start_col": 0, "start_line": 202 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j: LowStar.Vector.uint32_t{i < j && j <= LowStar.Vector.size_of vec} -> FStar.Pervasives.Lemma (ensures LowStar.Vector.loc_vector_within vec i j == LowStar.Monotonic.Buffer.loc_union (LowStar.Vector.loc_vector_within vec i (j - 1ul)) (LowStar.Vector.loc_vector_within vec (j - 1ul) j)) (decreases FStar.UInt32.v (j - i))
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less", "FStar.Integers.Unsigned", "FStar.Integers.W32", "FStar.Integers.op_Less_Equals", "LowStar.Vector.size_of", "Prims.op_Equality", "FStar.UInt32.t", "FStar.Integers.op_Subtraction", "FStar.UInt32.__uint_to_t", "Prims.bool", "LowStar.Monotonic.Buffer.loc_union_assoc", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.trivial_preorder", "LowStar.Buffer.gsub", "LowStar.Vector.__proj__Vec__item__vs", "LowStar.Vector.loc_vector_within", "FStar.Integers.op_Plus", "Prims.unit", "LowStar.Vector.loc_vector_within_union_rev" ]
[ "recursion" ]
false
false
true
false
false
let rec loc_vector_within_union_rev #a vec i j =
if i = j - 1ul then () else (loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j))
false
LowStar.Vector.fst
LowStar.Vector.forall2_seq
val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0
val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0
let forall2_seq #a seq i j p = forall (k:nat{i <= k && k < j}) (l:nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 583, "start_col": 0, "start_line": 581 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0 let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
seq: FStar.Seq.Base.seq a -> i: FStar.Integers.nat -> j: FStar.Integers.nat{i <= j && j <= FStar.Seq.Base.length seq} -> p: (_: a -> _: a -> Prims.GTot Type0) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Integers.nat", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.Seq.Base.length", "Prims.l_Forall", "FStar.Integers.op_Less", "Prims.op_disEquality", "FStar.Seq.Base.index" ]
[]
false
false
false
false
true
let forall2_seq #a seq i j p =
forall (k: nat{i <= k && k < j}) (l: nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l)
false
CalcTest.fst
CalcTest.calc0
val calc0 (a: pos) : Lemma (a + a > a)
val calc0 (a: pos) : Lemma (a + a > a)
let calc0 (a : pos) : Lemma (a + a > a) = calc (>) { a + a; == {} 2 * a; > { lem1 a } a; }
{ "file_name": "examples/calc/CalcTest.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 15, "start_col": 0, "start_line": 8 }
module CalcTest open FStar.Mul open FStar.Calc let lem1 (a : pos) : Lemma (2 * a > a) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "CalcTest.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.pos -> FStar.Pervasives.Lemma (ensures a + a > a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "CalcTest.lem1", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let calc0 (a: pos) : Lemma (a + a > a) =
calc ( > ) { a + a; ( == ) { () } 2 * a; ( > ) { lem1 a } a; }
false
CalcTest.fst
CalcTest.test_erase
val test_erase : _: Prims.unit -> Prims.int
let test_erase () = let x = 1 in calc (>=) { 10; >= {} 9; >= {} 8; == {} 4+4; >= {} 0; }; let y = 41 in x + y
{ "file_name": "examples/calc/CalcTest.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 75, "start_col": 0, "start_line": 61 }
module CalcTest open FStar.Mul open FStar.Calc let lem1 (a : pos) : Lemma (2 * a > a) = () let calc0 (a : pos) : Lemma (a + a > a) = calc (>) { a + a; == {} 2 * a; > { lem1 a } a; } (* The lemma above, desugared. F* eta-expands and ascribes <: Type in * order to treat boolean operators such as (>) as `relation`s. *) let calc0_desugared (a : pos) : Lemma (a + a > a) = calc_finish (fun x y -> (>) x y <: Type) (fun () -> calc_step (fun x y -> (>) x y <: Type) a (fun () -> calc_step (fun x y -> (==) x y <: Type) (2 * a) (fun () -> calc_init (a + a) ) (fun () -> ()) ) (fun () -> lem1 a) ) let calc1 (a b c d e : int) (h1 : unit -> Lemma (a * (c + 1) = 24)) (h2 : unit -> Lemma (b + d == 25)) : Lemma (a + b + a * c + d - (e - e) > 30) = calc (>) { a + b + a * c + d - (e - e); == { (* reorder, e-e = 0 *) } a + a * c + b + d; == { (* distributivity *) } a * (c + 1) + b + d; == { h1 () } 24 + b + d; == { h2 () } 24 + 25; == { } 49; > { } 30; } let test_ge () = calc (>=) { 10; >= {} 9; >= {} 8; == {} 4+4; >= {} 0; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "CalcTest.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Prims.op_Addition", "Prims.int", "FStar.Calc.calc_finish", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash" ]
[]
false
false
false
true
false
let test_erase () =
let x = 1 in calc ( >= ) { 10; ( >= ) { () } 9; ( >= ) { () } 8; ( == ) { () } 4 + 4; ( >= ) { () } 0; }; let y = 41 in x + y
false
LowStar.Vector.fst
LowStar.Vector.fold_left_buffer
val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf))
val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf))
let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul)))
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 536, "start_col": 0, "start_line": 533 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: LowStar.Vector.uint32_t -> buf: LowStar.Buffer.buffer a {LowStar.Monotonic.Buffer.len buf = len} -> f: (_: b -> _: a -> b) -> ib: b -> FStar.HyperStack.ST.ST b
FStar.HyperStack.ST.ST
[ "" ]
[]
[ "LowStar.Vector.uint32_t", "LowStar.Buffer.buffer", "Prims.b2t", "Prims.op_Equality", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.len", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.__uint_to_t", "Prims.bool", "LowStar.Vector.fold_left_buffer", "FStar.Integers.op_Subtraction", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Monotonic.Buffer.index", "FStar.UInt32.sub", "FStar.UInt32.uint_to_t", "LowStar.Buffer.sub", "FStar.Ghost.hide", "LowStar.Monotonic.Buffer.mbuffer" ]
[ "recursion" ]
false
true
false
false
false
let rec fold_left_buffer #a #b len buf f ib =
if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul)))
false
CalcTest.fst
CalcTest.calc0_desugared
val calc0_desugared (a: pos) : Lemma (a + a > a)
val calc0_desugared (a: pos) : Lemma (a + a > a)
let calc0_desugared (a : pos) : Lemma (a + a > a) = calc_finish (fun x y -> (>) x y <: Type) (fun () -> calc_step (fun x y -> (>) x y <: Type) a (fun () -> calc_step (fun x y -> (==) x y <: Type) (2 * a) (fun () -> calc_init (a + a) ) (fun () -> ()) ) (fun () -> lem1 a) )
{ "file_name": "examples/calc/CalcTest.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 26, "start_col": 0, "start_line": 19 }
module CalcTest open FStar.Mul open FStar.Calc let lem1 (a : pos) : Lemma (2 * a > a) = () let calc0 (a : pos) : Lemma (a + a > a) = calc (>) { a + a; == {} 2 * a; > { lem1 a } a; } (* The lemma above, desugared. F* eta-expands and ascribes <: Type in
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "CalcTest.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.pos -> FStar.Pervasives.Lemma (ensures a + a > a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "CalcTest.lem1", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let calc0_desugared (a: pos) : Lemma (a + a > a) =
calc_finish (fun x y -> ( > ) x y <: Type) (fun () -> calc_step (fun x y -> ( > ) x y <: Type) a (fun () -> calc_step (fun x y -> ( == ) x y <: Type) (2 * a) (fun () -> calc_init (a + a)) (fun () -> ())) (fun () -> lem1 a))
false
CalcTest.fst
CalcTest.test_ge
val test_ge : _: Prims.unit -> Prims.unit
let test_ge () = calc (>=) { 10; >= {} 9; >= {} 8; == {} 4+4; >= {} 0; }
{ "file_name": "examples/calc/CalcTest.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 59, "start_col": 0, "start_line": 48 }
module CalcTest open FStar.Mul open FStar.Calc let lem1 (a : pos) : Lemma (2 * a > a) = () let calc0 (a : pos) : Lemma (a + a > a) = calc (>) { a + a; == {} 2 * a; > { lem1 a } a; } (* The lemma above, desugared. F* eta-expands and ascribes <: Type in * order to treat boolean operators such as (>) as `relation`s. *) let calc0_desugared (a : pos) : Lemma (a + a > a) = calc_finish (fun x y -> (>) x y <: Type) (fun () -> calc_step (fun x y -> (>) x y <: Type) a (fun () -> calc_step (fun x y -> (==) x y <: Type) (2 * a) (fun () -> calc_init (a + a) ) (fun () -> ()) ) (fun () -> lem1 a) ) let calc1 (a b c d e : int) (h1 : unit -> Lemma (a * (c + 1) = 24)) (h2 : unit -> Lemma (b + d == 25)) : Lemma (a + b + a * c + d - (e - e) > 30) = calc (>) { a + b + a * c + d - (e - e); == { (* reorder, e-e = 0 *) } a + a * c + b + d; == { (* distributivity *) } a * (c + 1) + b + d; == { h1 () } 24 + b + d; == { h2 () } 24 + 25; == { } 49; > { } 30; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "CalcTest.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash" ]
[]
false
false
false
true
false
let test_ge () =
calc ( >= ) { 10; ( >= ) { () } 9; ( >= ) { () } 8; ( == ) { () } 4 + 4; ( >= ) { () } 0; }
false
CalcTest.fst
CalcTest.test_gt
val test_gt : _: Prims.unit -> Prims.unit
let test_gt () = calc (>) { 10; >= {} 9; > { () } 8; == {} 4+4; >= {} 0; }
{ "file_name": "examples/calc/CalcTest.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 88, "start_col": 0, "start_line": 77 }
module CalcTest open FStar.Mul open FStar.Calc let lem1 (a : pos) : Lemma (2 * a > a) = () let calc0 (a : pos) : Lemma (a + a > a) = calc (>) { a + a; == {} 2 * a; > { lem1 a } a; } (* The lemma above, desugared. F* eta-expands and ascribes <: Type in * order to treat boolean operators such as (>) as `relation`s. *) let calc0_desugared (a : pos) : Lemma (a + a > a) = calc_finish (fun x y -> (>) x y <: Type) (fun () -> calc_step (fun x y -> (>) x y <: Type) a (fun () -> calc_step (fun x y -> (==) x y <: Type) (2 * a) (fun () -> calc_init (a + a) ) (fun () -> ()) ) (fun () -> lem1 a) ) let calc1 (a b c d e : int) (h1 : unit -> Lemma (a * (c + 1) = 24)) (h2 : unit -> Lemma (b + d == 25)) : Lemma (a + b + a * c + d - (e - e) > 30) = calc (>) { a + b + a * c + d - (e - e); == { (* reorder, e-e = 0 *) } a + a * c + b + d; == { (* distributivity *) } a * (c + 1) + b + d; == { h1 () } 24 + b + d; == { h2 () } 24 + 25; == { } 49; > { } 30; } let test_ge () = calc (>=) { 10; >= {} 9; >= {} 8; == {} 4+4; >= {} 0; } let test_erase () = let x = 1 in calc (>=) { 10; >= {} 9; >= {} 8; == {} 4+4; >= {} 0; }; let y = 41 in x + y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "CalcTest.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_GreaterThan", "Prims.Cons", "FStar.Preorder.relation", "Prims.op_GreaterThanOrEqual", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash" ]
[]
false
false
false
true
false
let test_gt () =
calc ( > ) { 10; ( >= ) { () } 9; ( > ) { () } 8; ( == ) { () } 4 + 4; ( >= ) { () } 0; }
false
CalcTest.fst
CalcTest.calc1
val calc1 (a b c d e: int) (h1: (unit -> Lemma (a * (c + 1) = 24))) (h2: (unit -> Lemma (b + d == 25))) : Lemma (a + b + a * c + d - (e - e) > 30)
val calc1 (a b c d e: int) (h1: (unit -> Lemma (a * (c + 1) = 24))) (h2: (unit -> Lemma (b + d == 25))) : Lemma (a + b + a * c + d - (e - e) > 30)
let calc1 (a b c d e : int) (h1 : unit -> Lemma (a * (c + 1) = 24)) (h2 : unit -> Lemma (b + d == 25)) : Lemma (a + b + a * c + d - (e - e) > 30) = calc (>) { a + b + a * c + d - (e - e); == { (* reorder, e-e = 0 *) } a + a * c + b + d; == { (* distributivity *) } a * (c + 1) + b + d; == { h1 () } 24 + b + d; == { h2 () } 24 + 25; == { } 49; > { } 30; }
{ "file_name": "examples/calc/CalcTest.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 46, "start_col": 0, "start_line": 28 }
module CalcTest open FStar.Mul open FStar.Calc let lem1 (a : pos) : Lemma (2 * a > a) = () let calc0 (a : pos) : Lemma (a + a > a) = calc (>) { a + a; == {} 2 * a; > { lem1 a } a; } (* The lemma above, desugared. F* eta-expands and ascribes <: Type in * order to treat boolean operators such as (>) as `relation`s. *) let calc0_desugared (a : pos) : Lemma (a + a > a) = calc_finish (fun x y -> (>) x y <: Type) (fun () -> calc_step (fun x y -> (>) x y <: Type) a (fun () -> calc_step (fun x y -> (==) x y <: Type) (2 * a) (fun () -> calc_init (a + a) ) (fun () -> ()) ) (fun () -> lem1 a) )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "CalcTest.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> c: Prims.int -> d: Prims.int -> e: Prims.int -> h1: (_: Prims.unit -> FStar.Pervasives.Lemma (ensures a * (c + 1) = 24)) -> h2: (_: Prims.unit -> FStar.Pervasives.Lemma (ensures b + d == 25)) -> FStar.Pervasives.Lemma (ensures a + b + a * c + d - (e - e) > 30)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.b2t", "Prims.op_Equality", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.eq2", "FStar.Calc.calc_finish", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack" ]
[]
false
false
true
false
false
let calc1 (a b c d e: int) (h1: (unit -> Lemma (a * (c + 1) = 24))) (h2: (unit -> Lemma (b + d == 25))) : Lemma (a + b + a * c + d - (e - e) > 30) =
calc ( > ) { a + b + a * c + d - (e - e); ( == ) { () } a + a * c + b + d; ( == ) { () } a * (c + 1) + b + d; ( == ) { h1 () } 24 + b + d; ( == ) { h2 () } 24 + 25; ( == ) { () } 49; ( > ) { () } 30; }
false
LowStar.Vector.fst
LowStar.Vector.forall2_all
val forall2_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> a -> GTot Type0) -> GTot Type0
val forall2_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> a -> GTot Type0) -> GTot Type0
let forall2_all #a h vec p = forall2 h vec 0ul (size_of vec) p
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 603, "start_col": 0, "start_line": 602 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0 let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_seq #a seq i j p = forall (k:nat{i <= k && k < j}) (l:nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l) val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_buffer #a h buf i j p = forall2_seq (B.as_seq h buf) i j p val forall2: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2 #a h vec i j p = forall2_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall2_all: #a:Type -> h:HS.mem -> vec:vector a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> vec: LowStar.Vector.vector a -> p: (_: a -> _: a -> Prims.GTot Type0) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.Vector.vector", "LowStar.Vector.forall2", "FStar.UInt32.__uint_to_t", "LowStar.Vector.size_of" ]
[]
false
false
false
false
true
let forall2_all #a h vec p =
forall2 h vec 0ul (size_of vec) p
false
LowStar.Vector.fst
LowStar.Vector.get_preserved_within
val get_preserved_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> k:uint32_t{(k < i || j <= k) && k < size_of vec} -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ modifies (loc_vector_within vec i j) h0 h1)) (ensures (get h0 vec k == get h1 vec k)) [SMTPat (live h0 vec); SMTPat (modifies (loc_vector_within vec i j) h0 h1); SMTPat (get h0 vec k)]
val get_preserved_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> k:uint32_t{(k < i || j <= k) && k < size_of vec} -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ modifies (loc_vector_within vec i j) h0 h1)) (ensures (get h0 vec k == get h1 vec k)) [SMTPat (live h0 vec); SMTPat (modifies (loc_vector_within vec i j) h0 h1); SMTPat (get h0 vec k)]
let get_preserved_within #a vec i j k h0 h1 = if k < i then begin loc_vector_within_disjoint vec k (k + 1ul) i j; get_preserved vec k (loc_vector_within vec i j) h0 h1 end else begin loc_vector_within_disjoint vec i j k (k + 1ul); get_preserved vec k (loc_vector_within vec i j) h0 h1 end
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 643, "start_col": 0, "start_line": 635 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0 let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_seq #a seq i j p = forall (k:nat{i <= k && k < j}) (l:nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l) val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_buffer #a h buf i j p = forall2_seq (B.as_seq h buf) i j p val forall2: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2 #a h vec i j p = forall2_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall2_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_all #a h vec p = forall2 h vec 0ul (size_of vec) p /// Facts val get_as_seq_index: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:uint32_t{i < B.len buf} -> Lemma (B.get h buf (U32.v i) == S.index (B.as_seq h (B.gsub buf i 1ul)) 0) let get_as_seq_index #a h buf i = () val get_preserved: #a:Type -> vec:vector a -> i:uint32_t{i < size_of vec} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint p (loc_vector_within vec i (i + 1ul)) /\ modifies p h0 h1)) (ensures (get h0 vec i == get h1 vec i)) let get_preserved #a vec i p h0 h1 = get_as_seq_index h0 (Vec?.vs vec) i; get_as_seq_index h1 (Vec?.vs vec) i private val get_preserved_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> k:uint32_t{(k < i || j <= k) && k < size_of vec} -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ modifies (loc_vector_within vec i j) h0 h1)) (ensures (get h0 vec k == get h1 vec k)) [SMTPat (live h0 vec); SMTPat (modifies (loc_vector_within vec i j) h0 h1);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j: LowStar.Vector.uint32_t{i <= j && j <= LowStar.Vector.size_of vec} -> k: LowStar.Vector.uint32_t{(k < i || j <= k) && k < LowStar.Vector.size_of vec} -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Vector.live h0 vec /\ LowStar.Monotonic.Buffer.modifies (LowStar.Vector.loc_vector_within vec i j) h0 h1) (ensures LowStar.Vector.get h0 vec k == LowStar.Vector.get h1 vec k) [ SMTPat (LowStar.Vector.live h0 vec); SMTPat (LowStar.Monotonic.Buffer.modifies (LowStar.Vector.loc_vector_within vec i j) h0 h1); SMTPat (LowStar.Vector.get h0 vec k) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "Prims.op_BarBar", "FStar.Integers.op_Less", "FStar.Monotonic.HyperStack.mem", "LowStar.Vector.get_preserved", "LowStar.Vector.loc_vector_within", "Prims.unit", "LowStar.Vector.loc_vector_within_disjoint", "FStar.Integers.op_Plus", "FStar.UInt32.__uint_to_t", "Prims.bool" ]
[]
false
false
true
false
false
let get_preserved_within #a vec i j k h0 h1 =
if k < i then (loc_vector_within_disjoint vec k (k + 1ul) i j; get_preserved vec k (loc_vector_within vec i j) h0 h1) else (loc_vector_within_disjoint vec i j k (k + 1ul); get_preserved vec k (loc_vector_within vec i j) h0 h1)
false
LowStar.Vector.fst
LowStar.Vector.modifies_as_seq_within
val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)]
val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)]
let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 258, "start_col": 0, "start_line": 247 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j: LowStar.Vector.uint32_t{i <= j && j <= LowStar.Vector.size_of vec} -> dloc: LowStar.Monotonic.Buffer.loc -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Vector.live h0 vec /\ LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Vector.loc_vector_within vec i j) dloc /\ LowStar.Monotonic.Buffer.modifies dloc h0 h1) (ensures FStar.Seq.Base.slice (LowStar.Vector.as_seq h0 vec) (FStar.UInt32.v i) (FStar.UInt32.v j) == FStar.Seq.Base.slice (LowStar.Vector.as_seq h1 vec) (FStar.UInt32.v i) (FStar.UInt32.v j)) (decreases FStar.UInt32.v (j - i)) [ SMTPat (LowStar.Vector.live h0 vec); SMTPat (LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Vector.loc_vector_within vec i j) dloc); SMTPat (LowStar.Monotonic.Buffer.modifies dloc h0 h1) ]
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "Prims.op_Equality", "Prims.bool", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "LowStar.Vector.as_seq", "FStar.UInt32.v", "FStar.Seq.Base.append", "FStar.Integers.op_Plus", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "Prims.unit", "LowStar.Vector.modifies_as_seq_within", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.modifies_buffer_elim", "LowStar.Buffer.trivial_preorder", "LowStar.Buffer.gsub", "LowStar.Vector.__proj__Vec__item__vs" ]
[ "recursion" ]
false
false
true
false
false
let rec modifies_as_seq_within #a vec i j dloc h0 h1 =
if i = j then () else (B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))))
false
Ast.fst
Ast.string_of_pos
val string_of_pos : p: Ast.pos -> Prims.string
let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 53, "end_line": 77, "start_col": 0, "start_line": 76 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Ast.pos -> Prims.string
Prims.Tot
[ "total" ]
[]
[ "Ast.pos", "FStar.Printf.sprintf", "Ast.__proj__Mkpos__item__filename", "Ast.__proj__Mkpos__item__line", "Ast.__proj__Mkpos__item__col", "Prims.string" ]
[]
false
false
false
true
false
let string_of_pos p =
Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col
false
Ast.fst
Ast.string_of_range
val string_of_range : r: (Ast.pos * Ast.pos) -> Prims.string
let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q)
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 31, "end_line": 92, "start_col": 0, "start_line": 85 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: (Ast.pos * Ast.pos) -> Prims.string
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "Ast.pos", "Prims.op_Equality", "Prims.string", "Ast.__proj__Mkpos__item__filename", "FStar.Printf.sprintf", "Ast.__proj__Mkpos__item__line", "Ast.__proj__Mkpos__item__col", "Prims.bool", "Ast.string_of_pos" ]
[]
false
false
false
true
false
let string_of_range r =
let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q)
false
Ast.fst
Ast.range
val range : Type0
let range = pos * pos
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 21, "end_line": 80, "start_col": 0, "start_line": 80 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "Ast.pos" ]
[]
false
false
false
true
true
let range =
pos * pos
false
LowStar.Vector.fst
LowStar.Vector.get_preserved
val get_preserved: #a:Type -> vec:vector a -> i:uint32_t{i < size_of vec} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint p (loc_vector_within vec i (i + 1ul)) /\ modifies p h0 h1)) (ensures (get h0 vec i == get h1 vec i))
val get_preserved: #a:Type -> vec:vector a -> i:uint32_t{i < size_of vec} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint p (loc_vector_within vec i (i + 1ul)) /\ modifies p h0 h1)) (ensures (get h0 vec i == get h1 vec i))
let get_preserved #a vec i p h0 h1 = get_as_seq_index h0 (Vec?.vs vec) i; get_as_seq_index h1 (Vec?.vs vec) i
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 622, "start_col": 0, "start_line": 620 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0 let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_seq #a seq i j p = forall (k:nat{i <= k && k < j}) (l:nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l) val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_buffer #a h buf i j p = forall2_seq (B.as_seq h buf) i j p val forall2: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2 #a h vec i j p = forall2_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall2_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_all #a h vec p = forall2 h vec 0ul (size_of vec) p /// Facts val get_as_seq_index: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:uint32_t{i < B.len buf} -> Lemma (B.get h buf (U32.v i) == S.index (B.as_seq h (B.gsub buf i 1ul)) 0) let get_as_seq_index #a h buf i = () val get_preserved: #a:Type -> vec:vector a -> i:uint32_t{i < size_of vec} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint p (loc_vector_within vec i (i + 1ul)) /\ modifies p h0 h1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t{i < LowStar.Vector.size_of vec} -> p: LowStar.Monotonic.Buffer.loc -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Vector.live h0 vec /\ LowStar.Monotonic.Buffer.loc_disjoint p (LowStar.Vector.loc_vector_within vec i (i + 1ul)) /\ LowStar.Monotonic.Buffer.modifies p h0 h1) (ensures LowStar.Vector.get h0 vec i == LowStar.Vector.get h1 vec i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Less", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "LowStar.Vector.get_as_seq_index", "LowStar.Vector.__proj__Vec__item__vs", "Prims.unit" ]
[]
true
false
true
false
false
let get_preserved #a vec i p h0 h1 =
get_as_seq_index h0 (Vec?.vs vec) i; get_as_seq_index h1 (Vec?.vs vec) i
false
Ast.fst
Ast.reserved_prefix
val reserved_prefix : Prims.string
let reserved_prefix = "___"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 27, "end_line": 21, "start_col": 0, "start_line": 21 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.string
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let reserved_prefix =
"___"
false
Ast.fst
Ast.with_range
val with_range (x: 'a) (r: range) : with_meta_t 'a
val with_range (x: 'a) (r: range) : with_meta_t 'a
let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r []
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 81, "end_line": 119, "start_col": 0, "start_line": 119 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: 'a -> r: Ast.range -> Ast.with_meta_t 'a
Prims.Tot
[ "total" ]
[]
[ "Ast.range", "Ast.with_range_and_comments", "Prims.Nil", "Prims.string", "Ast.with_meta_t" ]
[]
false
false
false
true
false
let with_range (x: 'a) (r: range) : with_meta_t 'a =
with_range_and_comments x r []
false
Ast.fst
Ast.with_meta_t_of_yojson
val with_meta_t_of_yojson (#a #b #c: Type) (f: (a -> b)) (x: a) : ML c
val with_meta_t_of_yojson (#a #b #c: Type) (f: (a -> b)) (x: a) : ML c
let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 110, "start_col": 0, "start_line": 108 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> b) -> x: a -> FStar.All.ML c
FStar.All.ML
[ "ml" ]
[]
[ "FStar.All.failwith" ]
[]
false
true
false
false
false
let with_meta_t_of_yojson (#a #b #c: Type) (f: (a -> b)) (x: a) : ML c =
failwith "No reading yojson"
false
Ast.fst
Ast.comments
val comments : Type0
let comments = list string
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 26, "end_line": 83, "start_col": 0, "start_line": 83 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.string" ]
[]
false
false
false
true
true
let comments =
list string
false
Ast.fst
Ast.dummy_pos
val dummy_pos : Ast.pos
let dummy_pos = { filename=""; line=0; col=0; }
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 1, "end_line": 98, "start_col": 0, "start_line": 94 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.pos
Prims.Tot
[ "total" ]
[]
[ "Ast.Mkpos" ]
[]
false
false
false
true
false
let dummy_pos =
{ filename = ""; line = 0; col = 0 }
false
Ast.fst
Ast.with_meta_t_to_yojson
val with_meta_t_to_yojson (f: ('a -> 'b)) (x: with_meta_t 'a) : 'b
val with_meta_t_to_yojson (f: ('a -> 'b)) (x: with_meta_t 'a) : 'b
let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 9, "end_line": 113, "start_col": 0, "start_line": 111 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> 'b) -> x: Ast.with_meta_t 'a -> 'b
Prims.Tot
[ "total" ]
[]
[ "Ast.with_meta_t", "Ast.__proj__Mkwith_meta_t__item__v" ]
[]
false
false
false
true
false
let with_meta_t_to_yojson (f: ('a -> 'b)) (x: with_meta_t 'a) : 'b =
f x.v
false
Ast.fst
Ast.ident_name
val ident_name : i: Ast.with_meta_t Ast.ident' -> Prims.string
let ident_name i = i.v.name
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 27, "end_line": 135, "start_col": 0, "start_line": 135 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Ast.with_meta_t Ast.ident' -> Prims.string
Prims.Tot
[ "total" ]
[]
[ "Ast.with_meta_t", "Ast.ident'", "Ast.__proj__Mkident'__item__name", "Ast.__proj__Mkwith_meta_t__item__v", "Prims.string" ]
[]
false
false
false
true
false
let ident_name i =
i.v.name
false
LowStar.Vector.fst
LowStar.Vector.flush
val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec)))))
val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec)))))
let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 503, "start_col": 0, "start_line": 496 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> ia: a -> i: LowStar.Vector.uint32_t{i <= LowStar.Vector.size_of vec} -> FStar.HyperStack.ST.ST (LowStar.Vector.vector a)
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "LowStar.Vector.Vec", "Prims.unit", "LowStar.Monotonic.Buffer.free", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.blit", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.freeable", "LowStar.Buffer.malloc", "LowStar.Buffer.buffer", "Prims.op_Equality", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.len", "LowStar.Vector.__proj__Vec__item__cap", "LowStar.Vector.__proj__Vec__item__vs", "FStar.UInt32.gte", "LowStar.Vector.__proj__Vec__item__sz", "Prims.bool", "FStar.Integers.op_Greater_Equals", "FStar.Integers.int_t", "FStar.Integers.op_Subtraction" ]
[]
false
true
false
false
false
let flush #a vec ia i =
let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs
false
Ast.fst
Ast.ident
val ident : Type0
let ident = with_meta_t ident'
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 30, "end_line": 127, "start_col": 0, "start_line": 127 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Ast.with_meta_t", "Ast.ident'" ]
[]
false
false
false
true
true
let ident =
with_meta_t ident'
false
LowStar.Vector.fst
LowStar.Vector.forall_preserved
val forall_preserved: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ forall_ h0 vec i j p /\ modifies dloc h0 h1)) (ensures (forall_ h1 vec i j p))
val forall_preserved: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ forall_ h0 vec i j p /\ modifies dloc h0 h1)) (ensures (forall_ h1 vec i j p))
let forall_preserved #a vec i j p dloc h0 h1 = modifies_as_seq_within vec i j dloc h0 h1; assert (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 690, "start_col": 0, "start_line": 687 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0 let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_seq #a seq i j p = forall (k:nat{i <= k && k < j}) (l:nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l) val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_buffer #a h buf i j p = forall2_seq (B.as_seq h buf) i j p val forall2: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2 #a h vec i j p = forall2_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall2_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_all #a h vec p = forall2 h vec 0ul (size_of vec) p /// Facts val get_as_seq_index: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:uint32_t{i < B.len buf} -> Lemma (B.get h buf (U32.v i) == S.index (B.as_seq h (B.gsub buf i 1ul)) 0) let get_as_seq_index #a h buf i = () val get_preserved: #a:Type -> vec:vector a -> i:uint32_t{i < size_of vec} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint p (loc_vector_within vec i (i + 1ul)) /\ modifies p h0 h1)) (ensures (get h0 vec i == get h1 vec i)) let get_preserved #a vec i p h0 h1 = get_as_seq_index h0 (Vec?.vs vec) i; get_as_seq_index h1 (Vec?.vs vec) i private val get_preserved_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> k:uint32_t{(k < i || j <= k) && k < size_of vec} -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ modifies (loc_vector_within vec i j) h0 h1)) (ensures (get h0 vec k == get h1 vec k)) [SMTPat (live h0 vec); SMTPat (modifies (loc_vector_within vec i j) h0 h1); SMTPat (get h0 vec k)] let get_preserved_within #a vec i j k h0 h1 = if k < i then begin loc_vector_within_disjoint vec k (k + 1ul) i j; get_preserved vec k (loc_vector_within vec i j) h0 h1 end else begin loc_vector_within_disjoint vec i j k (k + 1ul); get_preserved vec k (loc_vector_within vec i j) h0 h1 end val forall_seq_ok: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> k:nat{i <= k && k < j} -> p:(a -> GTot Type0) -> Lemma (requires (forall_seq seq i j p)) (ensures (p (S.index seq k))) let forall_seq_ok #a seq i j k p = () val forall2_seq_ok: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> k:nat{i <= k && k < j} -> l:nat{i <= l && l < j && k <> l} -> p:(a -> a -> GTot Type0) -> Lemma (requires (forall2_seq seq i j p)) (ensures (p (S.index seq k) (S.index seq l))) let forall2_seq_ok #a seq i j k l p = () val forall_as_seq: #a:Type -> s0:S.seq a -> s1:S.seq a{S.length s0 = S.length s1} -> i:nat -> j:nat{i <= j && j <= S.length s0} -> k:nat{i <= k && k < j} -> p:(a -> Tot Type0) -> Lemma (requires (p (S.index s0 k) /\ S.slice s0 i j == S.slice s1 i j)) (ensures (p (S.index s1 k))) [SMTPat (p (S.index s0 k)); SMTPat (S.slice s0 i j); SMTPat (S.slice s1 i j)] let forall_as_seq #a s0 s1 i j k p = assert (S.index (S.slice s0 i j) (k - i) == S.index (S.slice s1 i j) (k - i)) val forall_preserved: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ forall_ h0 vec i j p /\ modifies dloc h0 h1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> j: LowStar.Vector.uint32_t{i <= j && j <= LowStar.Vector.size_of vec} -> p: (_: a -> Type0) -> dloc: LowStar.Monotonic.Buffer.loc -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Vector.live h0 vec /\ LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Vector.loc_vector_within vec i j) dloc /\ LowStar.Vector.forall_ h0 vec i j p /\ LowStar.Monotonic.Buffer.modifies dloc h0 h1) (ensures LowStar.Vector.forall_ h1 vec i j p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "Prims.b2t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Vector.size_of", "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "LowStar.Vector.as_seq", "FStar.UInt32.v", "Prims.unit", "LowStar.Vector.modifies_as_seq_within" ]
[]
true
false
true
false
false
let forall_preserved #a vec i j p dloc h0 h1 =
modifies_as_seq_within vec i j dloc h0 h1; assert (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))
false
LowStar.Vector.fst
LowStar.Vector.assign
val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec))
val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec))
let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec))
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 89, "end_line": 435, "start_col": 0, "start_line": 420 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> i: LowStar.Vector.uint32_t -> v: a -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.vector", "LowStar.Vector.uint32_t", "LowStar.Vector.slice_append", "FStar.Seq.Base.upd", "LowStar.Vector.as_seq", "FStar.UInt32.v", "FStar.Integers.op_Plus", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "LowStar.Vector.size_of", "Prims.unit", "LowStar.Vector.modifies_as_seq_within", "FStar.Integers.Unsigned", "FStar.Integers.W32", "FStar.UInt32.__uint_to_t", "LowStar.Vector.loc_vector_within", "LowStar.Vector.loc_vector_within_disjoint", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowStar.Monotonic.Buffer.upd", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.sub", "LowStar.Vector.__proj__Vec__item__vs", "FStar.Ghost.hide", "FStar.UInt32.t" ]
[]
false
true
false
false
false
let assign #a vec i v =
let hh0 = HST.get () in B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec))
false
Ast.fst
Ast.field_typ
val field_typ : Type0
let field_typ = t:typ { Type_app? t.v }
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 39, "end_line": 369, "start_col": 0, "start_line": 369 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Ast.typ", "Prims.b2t", "Ast.uu___is_Type_app", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.typ'" ]
[]
false
false
false
true
true
let field_typ =
t: typ{Type_app? t.v}
false
LowStar.Vector.fst
LowStar.Vector.forall_as_seq
val forall_as_seq: #a:Type -> s0:S.seq a -> s1:S.seq a{S.length s0 = S.length s1} -> i:nat -> j:nat{i <= j && j <= S.length s0} -> k:nat{i <= k && k < j} -> p:(a -> Tot Type0) -> Lemma (requires (p (S.index s0 k) /\ S.slice s0 i j == S.slice s1 i j)) (ensures (p (S.index s1 k))) [SMTPat (p (S.index s0 k)); SMTPat (S.slice s0 i j); SMTPat (S.slice s1 i j)]
val forall_as_seq: #a:Type -> s0:S.seq a -> s1:S.seq a{S.length s0 = S.length s1} -> i:nat -> j:nat{i <= j && j <= S.length s0} -> k:nat{i <= k && k < j} -> p:(a -> Tot Type0) -> Lemma (requires (p (S.index s0 k) /\ S.slice s0 i j == S.slice s1 i j)) (ensures (p (S.index s1 k))) [SMTPat (p (S.index s0 k)); SMTPat (S.slice s0 i j); SMTPat (S.slice s1 i j)]
let forall_as_seq #a s0 s1 i j k p = assert (S.index (S.slice s0 i j) (k - i) == S.index (S.slice s1 i j) (k - i))
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 675, "start_col": 0, "start_line": 673 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v))) #reset-options "--z3rlimit 20" let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs) // Flush elements in the vector until the index `i`. // It also frees the original allocation and reallocates a smaller space for // remaining elements. val flush: #a:Type -> vec:vector a -> ia:a -> i:uint32_t{i <= size_of vec} -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 fvec h1 -> frameOf vec = frameOf fvec /\ hmap_dom_eq h0 h1 /\ live h1 fvec /\ freeable fvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector fvec)) h0 h1 /\ size_of fvec = size_of vec - i /\ S.equal (as_seq h1 fvec) (S.slice (as_seq h0 vec) (U32.v i) (U32.v (size_of vec))))) let flush #a vec ia i = let fsz = Vec?.sz vec - i in let asz = if Vec?.sz vec = i then 1ul else fsz in let vs = Vec?.vs vec in let fvs = B.malloc (B.frameOf vs) ia asz in B.blit vs i fvs 0ul fsz; B.free vs; Vec fsz asz fvs val shrink: #a:Type -> vec:vector a -> new_size:uint32_t{new_size <= size_of vec} -> Tot (vector a) let shrink #a vec new_size = Vec new_size (Vec?.cap vec) (Vec?.vs vec) /// Iteration val fold_left_seq: #a:Type -> #b:Type0 -> seq:S.seq a -> f:(b -> a -> GTot b) -> ib:b -> GTot b (decreases (S.length seq)) let rec fold_left_seq #a #b seq f ib = if S.length seq = 0 then ib else fold_left_seq (S.tail seq) f (f ib (S.head seq)) val fold_left_buffer: #a:Type -> #b:Type0 -> len:uint32_t -> buf:B.buffer a{B.len buf = len} -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (B.as_seq h0 buf) f ib)) (decreases (B.length buf)) let rec fold_left_buffer #a #b len buf f ib = if len = 0ul then ib else (fold_left_buffer (len - 1ul) (B.sub buf 1ul (len - 1ul)) f (f ib (B.index buf 0ul))) val fold_left: #a:Type -> #b:Type0 -> vec:vector a -> f:(b -> a -> Tot b) -> ib:b -> HST.ST b (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ v == fold_left_seq (as_seq h0 vec) f ib)) let fold_left #a #b vec f ib = fold_left_buffer (Vec?.sz vec) (B.sub (Vec?.vs vec) 0ul (Vec?.sz vec)) f ib val forall_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> GTot Type0) -> GTot Type0 let forall_seq #a seq i j p = forall (idx:nat{i <= idx && idx < j}). p (S.index seq idx) val forall_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> GTot Type0) -> GTot Type0 let forall_buffer #a h buf i j p = forall_seq (B.as_seq h buf) i j p val forall_: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> Tot Type0) -> GTot Type0 let forall_ #a h vec i j p = forall_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> Tot Type0) -> GTot Type0 let forall_all #a h vec p = forall_ h vec 0ul (size_of vec) p val forall2_seq: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_seq #a seq i j p = forall (k:nat{i <= k && k < j}) (l:nat{i <= l && l < j && k <> l}). p (S.index seq k) (S.index seq l) val forall2_buffer: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:nat -> j:nat{i <= j && j <= B.length buf} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_buffer #a h buf i j p = forall2_seq (B.as_seq h buf) i j p val forall2: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2 #a h vec i j p = forall2_seq (as_seq h vec) (U32.v i) (U32.v j) p val forall2_all: #a:Type -> h:HS.mem -> vec:vector a -> p:(a -> a -> GTot Type0) -> GTot Type0 let forall2_all #a h vec p = forall2 h vec 0ul (size_of vec) p /// Facts val get_as_seq_index: #a:Type -> h:HS.mem -> buf:B.buffer a -> i:uint32_t{i < B.len buf} -> Lemma (B.get h buf (U32.v i) == S.index (B.as_seq h (B.gsub buf i 1ul)) 0) let get_as_seq_index #a h buf i = () val get_preserved: #a:Type -> vec:vector a -> i:uint32_t{i < size_of vec} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint p (loc_vector_within vec i (i + 1ul)) /\ modifies p h0 h1)) (ensures (get h0 vec i == get h1 vec i)) let get_preserved #a vec i p h0 h1 = get_as_seq_index h0 (Vec?.vs vec) i; get_as_seq_index h1 (Vec?.vs vec) i private val get_preserved_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> k:uint32_t{(k < i || j <= k) && k < size_of vec} -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ modifies (loc_vector_within vec i j) h0 h1)) (ensures (get h0 vec k == get h1 vec k)) [SMTPat (live h0 vec); SMTPat (modifies (loc_vector_within vec i j) h0 h1); SMTPat (get h0 vec k)] let get_preserved_within #a vec i j k h0 h1 = if k < i then begin loc_vector_within_disjoint vec k (k + 1ul) i j; get_preserved vec k (loc_vector_within vec i j) h0 h1 end else begin loc_vector_within_disjoint vec i j k (k + 1ul); get_preserved vec k (loc_vector_within vec i j) h0 h1 end val forall_seq_ok: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> k:nat{i <= k && k < j} -> p:(a -> GTot Type0) -> Lemma (requires (forall_seq seq i j p)) (ensures (p (S.index seq k))) let forall_seq_ok #a seq i j k p = () val forall2_seq_ok: #a:Type -> seq:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length seq} -> k:nat{i <= k && k < j} -> l:nat{i <= l && l < j && k <> l} -> p:(a -> a -> GTot Type0) -> Lemma (requires (forall2_seq seq i j p)) (ensures (p (S.index seq k) (S.index seq l))) let forall2_seq_ok #a seq i j k l p = () val forall_as_seq: #a:Type -> s0:S.seq a -> s1:S.seq a{S.length s0 = S.length s1} -> i:nat -> j:nat{i <= j && j <= S.length s0} -> k:nat{i <= k && k < j} -> p:(a -> Tot Type0) -> Lemma (requires (p (S.index s0 k) /\ S.slice s0 i j == S.slice s1 i j)) (ensures (p (S.index s1 k))) [SMTPat (p (S.index s0 k)); SMTPat (S.slice s0 i j);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: FStar.Seq.Base.seq a -> s1: FStar.Seq.Base.seq a {FStar.Seq.Base.length s0 = FStar.Seq.Base.length s1} -> i: FStar.Integers.nat -> j: FStar.Integers.nat{i <= j && j <= FStar.Seq.Base.length s0} -> k: FStar.Integers.nat{i <= k && k < j} -> p: (_: a -> Type0) -> FStar.Pervasives.Lemma (requires p (FStar.Seq.Base.index s0 k) /\ FStar.Seq.Base.slice s0 i j == FStar.Seq.Base.slice s1 i j) (ensures p (FStar.Seq.Base.index s1 k)) [ SMTPat (p (FStar.Seq.Base.index s0 k)); SMTPat (FStar.Seq.Base.slice s0 i j); SMTPat (FStar.Seq.Base.slice s1 i j) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "FStar.Integers.nat", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.Integers.op_Less", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "FStar.Integers.op_Subtraction", "Prims.unit" ]
[]
true
false
true
false
false
let forall_as_seq #a s0 s1 i j k p =
assert (S.index (S.slice s0 i j) (k - i) == S.index (S.slice s1 i j) (k - i))
false
Ast.fst
Ast.enum_case
val enum_case : Type0
let enum_case = ident & option (either int ident)
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 49, "end_line": 530, "start_col": 0, "start_line": 530 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "Ast.ident", "FStar.Pervasives.Native.option", "Ast.either", "Prims.int" ]
[]
false
false
false
true
true
let enum_case =
ident & option (either int ident)
false
Ast.fst
Ast.field_bitwidth_t
val field_bitwidth_t : Type0
let field_bitwidth_t = either (with_meta_t int) bitfield_attr
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 61, "end_line": 454, "start_col": 0, "start_line": 454 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Ast.either", "Ast.with_meta_t", "Prims.int", "Ast.bitfield_attr" ]
[]
false
false
false
true
true
let field_bitwidth_t =
either (with_meta_t int) bitfield_attr
false
Ast.fst
Ast.ident_to_string
val ident_to_string : i: Ast.with_meta_t Ast.ident' -> Prims.string
let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 10, "end_line": 133, "start_col": 0, "start_line": 129 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Ast.with_meta_t Ast.ident' -> Prims.string
Prims.Tot
[ "total" ]
[]
[ "Ast.with_meta_t", "Ast.ident'", "FStar.Printf.sprintf", "Ast.__proj__Mkident'__item__modul_name", "Ast.__proj__Mkwith_meta_t__item__v", "Prims.string", "Prims.op_Hat", "Ast.__proj__Mkident'__item__name" ]
[]
false
false
false
true
false
let ident_to_string i =
Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name
false
Ast.fst
Ast.prog
val prog : Type0
let prog = list decl & option type_refinement
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 45, "end_line": 601, "start_col": 0, "start_line": 601 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "Prims.list", "Ast.decl", "FStar.Pervasives.Native.option", "Ast.type_refinement" ]
[]
false
false
false
true
true
let prog =
list decl & option type_refinement
false
Ast.fst
Ast.decl_with_v
val decl_with_v (d: decl) (v: decl') : decl
val decl_with_v (d: decl) (v: decl') : decl
let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } }
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 45, "end_line": 591, "start_col": 0, "start_line": 590 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Ast.decl -> v: Ast.decl' -> Ast.decl
Prims.Tot
[ "total" ]
[]
[ "Ast.decl", "Ast.decl'", "Ast.Mkdecl", "Ast.Mkwith_meta_t", "Ast.__proj__Mkwith_meta_t__item__range", "Ast.__proj__Mkwith_meta_t__item__comments", "Ast.with_meta_t", "Ast.__proj__Mkdecl__item__d_decl", "Ast.__proj__Mkdecl__item__d_exported" ]
[]
false
false
false
true
false
let decl_with_v (d: decl) (v: decl') : decl =
{ d with d_decl = { d.d_decl with v = v } }
false
LowStar.Vector.fst
LowStar.Vector.insert
val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v)))
val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v)))
let insert #a vec v = let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs)
{ "file_name": "ulib/LowStar.Vector.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 475, "start_col": 0, "start_line": 462 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Vector (** * This module provides support for mutable, partially filled arrays * whose contents may grow up to some fixed capacity determined * during initialization. * * Vectors support an insertion operation that may, if the capacity * has been reached, involve copying its contents to a new * vector of twice the capacity (so long as the capacity has not * already reached max_uint32). * * Conversely, an operation called `flush` is also provided to * shrink a vector to some prefix of its current contents. * * Other operations are fairly standard, and involve reading, * writing, and iterating over a vector. * *) open FStar.Integers open LowStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module S = FStar.Seq type uint32_t = UInt32.t val max_uint32: uint32_t let max_uint32 = 4294967295ul // UInt32.uint_to_t (UInt.max_int UInt32.n) module U32 = FStar.UInt32 /// Abstract vector type inline_for_extraction noeq type vector_str a = | Vec: sz:uint32_t -> cap:uint32_t{cap >= sz} -> vs:B.buffer a{B.len vs = cap} -> vector_str a val vector (a: Type0): Tot Type0 let vector a = vector_str a /// Specification val as_seq: HS.mem -> #a:Type -> vec:vector a -> GTot (s:S.seq a{S.length s = U32.v (Vec?.sz vec)}) let as_seq h #a vec = B.as_seq h (B.gsub (Vec?.vs vec) 0ul (Vec?.sz vec)) /// Capacity inline_for_extraction val size_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let size_of #a vec = Vec?.sz vec inline_for_extraction val capacity_of: #a:Type -> vec:vector a -> Tot uint32_t inline_for_extraction let capacity_of #a vec = Vec?.cap vec val is_empty: #a:Type -> vec:vector a -> Tot bool let is_empty #a vec = size_of vec = 0ul val is_full: #a:Type -> vstr:vector_str a -> GTot bool let is_full #a vstr = Vec?.sz vstr >= max_uint32 /// Memory-related val live: #a:Type -> HS.mem -> vector a -> GTot Type0 let live #a h vec = B.live h (Vec?.vs vec) val freeable: #a:Type -> vector a -> GTot Type0 let freeable #a vec = B.freeable (Vec?.vs vec) val loc_vector: #a:Type -> vector a -> GTot loc let loc_vector #a vec = B.loc_buffer (Vec?.vs vec) val loc_addr_of_vector: #a:Type -> vector a -> GTot loc let loc_addr_of_vector #a vec = B.loc_addr_of_buffer (Vec?.vs vec) val loc_vector_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> GTot loc (decreases (U32.v (j - i))) let rec loc_vector_within #a vec i j = if i = j then loc_none else loc_union (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j) val loc_vector_within_includes_: #a:Type -> vec:vector a -> i:uint32_t -> j1:uint32_t{i <= j1 && j1 <= size_of vec} -> j2:uint32_t{i <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i j1) (loc_vector_within vec i j2))) (decreases (U32.v (j1 - i))) let rec loc_vector_within_includes_ #a vec i j1 j2 = if i = j1 then () else if i = j2 then () else begin loc_vector_within_includes_ vec (i + 1ul) j1 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j1) (loc_vector_within vec (i + 1ul) j2); loc_includes_union_r (loc_vector_within vec i j1) (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) j2) end val loc_vector_within_includes: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{i1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= j1} -> Lemma (requires True) (ensures (loc_includes (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_includes #a vec i1 j1 i2 j2 = if i1 = j1 then () else if i1 = i2 then loc_vector_within_includes_ vec i1 j1 j2 else begin loc_vector_within_includes vec (i1 + 1ul) j1 i2 j2; loc_includes_union_l (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec (i1 + 1ul) j1) (loc_vector_within vec i2 j2) end val loc_vector_within_included: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_includes (loc_vector vec) (loc_vector_within vec i j))) (decreases (U32.v (j - i))) let rec loc_vector_within_included #a vec i j = if i = j then () else loc_vector_within_included vec (i + 1ul) j val loc_vector_within_disjoint_: #a:Type -> vec:vector a -> i1:uint32_t -> i2:uint32_t{i1 < i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (B.loc_buffer (B.gsub (Vec?.vs vec) i1 1ul)) (loc_vector_within vec i2 j2))) (decreases (U32.v (j2 - i2))) let rec loc_vector_within_disjoint_ #a vec i1 i2 j2 = if i2 = j2 then () else loc_vector_within_disjoint_ vec i1 (i2 + 1ul) j2 val loc_vector_within_disjoint: #a:Type -> vec:vector a -> i1:uint32_t -> j1:uint32_t{i1 <= j1 && j1 <= size_of vec} -> i2:uint32_t{j1 <= i2} -> j2:uint32_t{i2 <= j2 && j2 <= size_of vec} -> Lemma (requires True) (ensures (loc_disjoint (loc_vector_within vec i1 j1) (loc_vector_within vec i2 j2))) (decreases (U32.v (j1 - i1))) let rec loc_vector_within_disjoint #a vec i1 j1 i2 j2 = if i1 = j1 then () else (loc_vector_within_disjoint_ vec i1 i2 j2; loc_vector_within_disjoint vec (i1 + 1ul) j1 i2 j2) val loc_vector_within_union_rev: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i < j && j <= size_of vec} -> Lemma (requires True) (ensures (loc_vector_within vec i j == loc_union (loc_vector_within vec i (j - 1ul)) (loc_vector_within vec (j - 1ul) j))) (decreases (U32.v (j - i))) let rec loc_vector_within_union_rev #a vec i j = if i = j - 1ul then () else begin loc_vector_within_union_rev vec (i + 1ul) j; loc_union_assoc (B.loc_buffer (B.gsub (Vec?.vs vec) i 1ul)) (loc_vector_within vec (i + 1ul) (j - 1ul)) (loc_vector_within vec (j - 1ul) j) end unfold val frameOf: #a:Type -> vector a -> Tot HS.rid unfold let frameOf #a vec = B.frameOf (Vec?.vs vec) unfold val hmap_dom_eq: h0:HS.mem -> h1:HS.mem -> GTot Type0 unfold let hmap_dom_eq h0 h1 = Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) val modifies_as_seq: #a:Type -> vec:vector a -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector vec) dloc /\ modifies dloc h0 h1)) (ensures (live h1 vec /\ as_seq h0 vec == as_seq h1 vec)) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector vec) dloc); SMTPat (modifies dloc h0 h1)] let modifies_as_seq #a vec dloc h0 h1 = B.modifies_buffer_elim (Vec?.vs vec) dloc h0 h1 val modifies_as_seq_within: #a:Type -> vec:vector a -> i:uint32_t -> j:uint32_t{i <= j && j <= size_of vec} -> dloc:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (live h0 vec /\ loc_disjoint (loc_vector_within vec i j) dloc /\ modifies dloc h0 h1)) (ensures (S.slice (as_seq h0 vec) (U32.v i) (U32.v j) == S.slice (as_seq h1 vec) (U32.v i) (U32.v j))) (decreases (U32.v (j - i))) [SMTPat (live h0 vec); SMTPat (loc_disjoint (loc_vector_within vec i j) dloc); SMTPat (modifies dloc h0 h1)] let rec modifies_as_seq_within #a vec i j dloc h0 h1 = if i = j then () else begin B.modifies_buffer_elim (B.gsub (Vec?.vs vec) i 1ul) dloc h0 h1; modifies_as_seq_within vec (i + 1ul) j dloc h0 h1; assert (S.equal (S.slice (as_seq h0 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h0 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h0 vec) (U32.v i + 1) (U32.v j)))); assert (S.equal (S.slice (as_seq h1 vec) (U32.v i) (U32.v j)) (S.append (S.slice (as_seq h1 vec) (U32.v i) (U32.v i + 1)) (S.slice (as_seq h1 vec) (U32.v i + 1) (U32.v j)))) end /// Construction inline_for_extraction val alloc_empty: a:Type -> Tot (vec:vector a{size_of vec = 0ul}) inline_for_extraction let alloc_empty a = Vec 0ul 0ul B.null val alloc_empty_as_seq_empty: a:Type -> h:HS.mem -> Lemma (S.equal (as_seq h (alloc_empty a)) S.empty) [SMTPat (as_seq h (alloc_empty a))] let alloc_empty_as_seq_empty a h = () val alloc_rid: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc_rid #a len v rid = Vec len len (B.malloc rid v len) // Allocate a vector with the length `len`, filled with the initial value `v`. // Note that the vector is allocated in the root region. val alloc: #a:Type -> len:uint32_t{len > 0ul} -> v:a -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = HS.root /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = len /\ S.equal (as_seq h1 vec) (S.create (U32.v len) v) /\ B.fresh_loc (loc_vector vec) h0 h1)) let alloc #a len v = alloc_rid len v HS.root // Allocate a vector with the _capacity_ `len`; we still need to provide an // initial value `ia` in order to allocate space. val alloc_reserve: #a:Type -> len:uint32_t{len > 0ul} -> ia:a -> rid:HS.rid{HST.is_eternal_region rid} -> HST.ST (vector a) (requires (fun h0 -> true)) (ensures (fun h0 vec h1 -> frameOf vec = rid /\ live h1 vec /\ freeable vec /\ modifies loc_none h0 h1 /\ B.fresh_loc (loc_vector vec) h0 h1 /\ Set.equal (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\ size_of vec = 0ul /\ S.equal (as_seq h1 vec) S.empty)) let alloc_reserve #a len ia rid = Vec 0ul len (B.malloc rid ia len) // Allocate a vector with a given buffer with the length `len`. // Note that it does not copy the buffer content; instead it directly uses the // buffer pointer. val alloc_by_buffer: #a:Type -> len:uint32_t{len > 0ul} -> buf:B.buffer a{B.len buf = len} -> HST.ST (vector a) (requires (fun h0 -> B.live h0 buf)) (ensures (fun h0 vec h1 -> frameOf vec = B.frameOf buf /\ loc_vector vec == B.loc_buffer buf /\ live h1 vec /\ h0 == h1 /\ size_of vec = len /\ S.equal (as_seq h1 vec) (B.as_seq h0 buf))) let alloc_by_buffer #a len buf = Vec len len buf /// Destruction val free: #a:Type -> vec:vector a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ freeable vec)) (ensures (fun h0 _ h1 -> modifies (loc_addr_of_vector vec) h0 h1)) let free #a vec = B.free (Vec?.vs vec) /// Element access val get: #a:Type -> h:HS.mem -> vec:vector a -> i:uint32_t{i < size_of vec} -> GTot a let get #a h vec i = S.index (as_seq h vec) (U32.v i) val index: #a:Type -> vec:vector a -> i:uint32_t -> HST.ST a (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v i) == v)) let index #a vec i = B.index (Vec?.vs vec) i val front: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) 0 == v)) let front #a vec = B.index (Vec?.vs vec) 0ul val back: #a:Type -> vec:vector a{size_of vec > 0ul} -> HST.ST a (requires (fun h0 -> live h0 vec)) (ensures (fun h0 v h1 -> h0 == h1 /\ S.index (as_seq h1 vec) (U32.v (size_of vec) - 1) == v)) let back #a vec = B.index (Vec?.vs vec) (size_of vec - 1ul) /// Operations val clear: #a:Type -> vec:vector a -> Tot (cvec:vector a{size_of cvec = 0ul}) let clear #a vec = Vec 0ul (Vec?.cap vec) (Vec?.vs vec) val clear_as_seq_empty: #a:Type -> h:HS.mem -> vec:vector a -> Lemma (S.equal (as_seq h (clear vec)) S.empty) [SMTPat (as_seq h (clear vec))] let clear_as_seq_empty #a h vec = () private val slice_append: #a:Type -> s:S.seq a -> i:nat -> j:nat{i <= j} -> k:nat{j <= k && k <= S.length s} -> Lemma (S.equal (S.slice s i k) (S.append (S.slice s i j) (S.slice s j k))) private let slice_append #a s i j k = () val assign: #a:Type -> vec:vector a -> i:uint32_t -> v:a -> HST.ST unit (requires (fun h0 -> live h0 vec /\ i < size_of vec)) (ensures (fun h0 _ h1 -> hmap_dom_eq h0 h1 /\ modifies (loc_vector_within #a vec i (i + 1ul)) h0 h1 /\ get h1 vec i == v /\ S.equal (as_seq h1 vec) (S.upd (as_seq h0 vec) (U32.v i) v) /\ live h1 vec)) #reset-options "--z3rlimit 10" let assign #a vec i v = let hh0 = HST.get () in // NOTE: `B.upd (Vec?.vs vec) i v` makes more sense, // but the `modifies` postcondition is coarse-grained. B.upd (B.sub (Vec?.vs vec) i 1ul) 0ul v; let hh1 = HST.get () in loc_vector_within_disjoint vec 0ul i i (i + 1ul); modifies_as_seq_within vec 0ul i (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; loc_vector_within_disjoint vec i (i + 1ul) (i + 1ul) (size_of vec); modifies_as_seq_within vec (i + 1ul) (size_of vec) (loc_vector_within #a vec i (i + 1ul)) hh0 hh1; slice_append (as_seq hh1 vec) 0 (U32.v i) (U32.v i + 1); slice_append (as_seq hh1 vec) 0 (U32.v i + 1) (U32.v (size_of vec)); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i) (U32.v i + 1); slice_append (S.upd (as_seq hh0 vec) (U32.v i) v) 0 (U32.v i + 1) (U32.v (size_of vec)) private val resize_ratio: uint32_t private let resize_ratio = 2ul private val new_capacity: cap:uint32_t -> Tot uint32_t private let new_capacity cap = if cap >= max_uint32 / resize_ratio then max_uint32 else if cap = 0ul then 1ul else cap * resize_ratio val insert: #a:Type -> vec:vector a -> v:a -> HST.ST (vector a) (requires (fun h0 -> live h0 vec /\ freeable vec /\ not (is_full vec) /\ HST.is_eternal_region (frameOf vec))) (ensures (fun h0 nvec h1 -> frameOf vec = frameOf nvec /\ hmap_dom_eq h0 h1 /\ live h1 nvec /\ freeable nvec /\ modifies (loc_union (loc_addr_of_vector vec) (loc_vector nvec)) h0 h1 /\ size_of nvec = size_of vec + 1ul /\ get h1 nvec (size_of vec) == v /\ S.equal (as_seq h1 nvec) (S.snoc (as_seq h0 vec) v)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowStar.Vector.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: LowStar.Vector.vector a -> v: a -> FStar.HyperStack.ST.ST (LowStar.Vector.vector a)
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.Vector.vector", "Prims.op_Equality", "LowStar.Vector.uint32_t", "LowStar.Vector.Vec", "FStar.Integers.op_Plus", "FStar.Integers.Unsigned", "FStar.Integers.W32", "FStar.UInt32.__uint_to_t", "Prims.unit", "LowStar.Monotonic.Buffer.free", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.upd", "LowStar.Monotonic.Buffer.blit", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.freeable", "LowStar.Buffer.malloc", "LowStar.Vector.new_capacity", "Prims.bool", "LowStar.Buffer.buffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.len", "LowStar.Vector.__proj__Vec__item__cap", "LowStar.Vector.__proj__Vec__item__vs", "FStar.UInt32.gte", "LowStar.Vector.__proj__Vec__item__sz" ]
[]
false
true
false
false
false
let insert #a vec v =
let sz = Vec?.sz vec in let cap = Vec?.cap vec in let vs = Vec?.vs vec in if sz = cap then (let ncap = new_capacity cap in let nvs = B.malloc (B.frameOf vs) v ncap in B.blit vs 0ul nvs 0ul sz; B.upd nvs sz v; B.free vs; Vec (sz + 1ul) ncap nvs) else (B.upd vs sz v; Vec (sz + 1ul) cap vs)
false
Ast.fst
Ast.has_entrypoint
val has_entrypoint (l: list attribute) : Tot bool
val has_entrypoint (l: list attribute) : Tot bool
let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l)
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 71, "end_line": 610, "start_col": 0, "start_line": 609 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Ast.attribute -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Ast.attribute", "FStar.Pervasives.Native.uu___is_Some", "FStar.List.Tot.Base.tryFind", "Prims.bool" ]
[]
false
false
false
true
false
let has_entrypoint (l: list attribute) : Tot bool =
Some? (List.Tot.tryFind (function | Entrypoint -> true | _ -> false) l)
false
Ast.fst
Ast.is_entrypoint_or_export
val is_entrypoint_or_export : d: Ast.decl -> Prims.bool
let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 21, "end_line": 618, "start_col": 0, "start_line": 612 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Ast.decl -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Ast.decl", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.decl'", "Ast.__proj__Mkdecl__item__d_decl", "Ast.typedef_names", "Prims.list", "Ast.param", "FStar.Pervasives.Native.option", "Ast.expr", "Ast.record", "Ast.has_entrypoint", "Ast.__proj__Mktypedef_names__item__typedef_attributes", "Prims.bool", "Ast.__proj__Mkdecl__item__d_exported", "Ast.switch_case" ]
[]
false
false
false
true
false
let is_entrypoint_or_export d =
match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported
false
Ast.fst
Ast.is_entrypoint
val is_entrypoint : d: Ast.decl -> Prims.bool
let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 14, "end_line": 624, "start_col": 0, "start_line": 620 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Ast.decl -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Ast.decl", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.decl'", "Ast.__proj__Mkdecl__item__d_decl", "Ast.typedef_names", "Prims.list", "Ast.param", "FStar.Pervasives.Native.option", "Ast.expr", "Ast.record", "Ast.has_entrypoint", "Ast.__proj__Mktypedef_names__item__typedef_attributes", "Ast.switch_case", "Prims.bool" ]
[]
false
false
false
true
false
let is_entrypoint d =
match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false
false
FStar.Seq.Properties.fst
FStar.Seq.Properties.elim_of_list''
val elim_of_list'' (#a: Type) (i: nat) (s: seq a) (l: list a) : Lemma (requires (List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l) ) (ensures (explode_and i s l)) (decreases (List.Tot.length l))
val elim_of_list'' (#a: Type) (i: nat) (s: seq a) (l: list a) : Lemma (requires (List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l) ) (ensures (explode_and i s l)) (decreases (List.Tot.length l))
let rec elim_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l)) (ensures ( explode_and i s l)) (decreases ( List.Tot.length l)) = fun #_ i s l -> match l with | [] -> () | hd :: tl -> lemma_seq_of_list_induction l; elim_of_list'' (i + 1) s tl
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 588, "start_col": 0, "start_line": 570 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> () | hd::tl -> lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> assert (s `equal` cons (head s) (tail s)); if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1)) let cons_index_slice #_ s i j _ = lemma_eq_elim (cons (index s i) (slice s (i + 1) j)) (slice s i j) let slice_is_empty #_ s i = lemma_eq_elim (slice s i i) Seq.empty let slice_length #_ s = lemma_eq_elim (slice s 0 (length s)) s let slice_slice #_ s i1 j1 i2 j2 = lemma_eq_elim (slice (slice s i1 j1) i2 j2) (slice s (i1 + i2) (i1 + j2)) let rec lemma_seq_of_list_index #_ l i = lemma_seq_of_list_induction l; match l with | [] -> () | hd::tl -> if i = 0 then () else lemma_seq_of_list_index tl (i - 1) let seq_of_list_tl #_ l = lemma_seq_of_list_induction l let rec mem_seq_of_list #_ x l = lemma_seq_of_list_induction l; match l with | [] -> () | y :: q -> let _ : squash (head (seq_of_list l) == y) = () in let _ : squash (tail (seq_of_list l) == seq_of_list q) = seq_of_list_tl l in let _ : squash (mem x (seq_of_list l) == (x = y || mem x (seq_of_list q))) = lemma_mem_inversion (seq_of_list l) in mem_seq_of_list x q let rec intro_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures ( equal (seq_of_list l) (slice s i (length s)))) (decreases ( List.Tot.length l)) = fun #_ i s l -> lemma_seq_of_list_induction l; match l with | [] -> () | hd :: tl -> intro_of_list'' (i + 1) s tl let intro_of_list' = intro_of_list'' let intro_of_list #_ s l = intro_of_list' 0 s l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.nat -> s: FStar.Seq.Base.seq a -> l: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length l + i = FStar.Seq.Base.length s /\ i <= FStar.Seq.Base.length s /\ FStar.Seq.Base.slice s i (FStar.Seq.Base.length s) == FStar.Seq.Base.seq_of_list l) (ensures FStar.Seq.Properties.explode_and i s l) (decreases FStar.List.Tot.Base.length l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "Prims.list", "FStar.Seq.Properties.elim_of_list''", "Prims.op_Addition", "Prims.unit", "FStar.Seq.Properties.lemma_seq_of_list_induction" ]
[ "recursion" ]
false
false
true
false
false
let rec elim_of_list'': #a: Type -> i: nat -> s: seq a -> l: list a -> Lemma (requires (List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l) ) (ensures (explode_and i s l)) (decreases (List.Tot.length l)) =
fun #_ i s l -> match l with | [] -> () | hd :: tl -> lemma_seq_of_list_induction l; elim_of_list'' (i + 1) s tl
false
Ast.fst
Ast.out_expr_is_out_type_expr
val out_expr_is_out_type_expr (lhs: out_expr) : Tot bool
val out_expr_is_out_type_expr (lhs: out_expr) : Tot bool
let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 13, "end_line": 634, "start_col": 0, "start_line": 631 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lhs: Ast.out_expr -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Ast.out_expr", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.out_expr'", "Ast.__proj__Mkout_expr__item__out_expr_node", "Ast.ident", "Ast.range", "Ast.comments", "FStar.Pervasives.Native.option", "Ast.out_expr_meta_t", "Prims.bool" ]
[]
false
false
false
true
false
let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool =
match lhs.out_expr_node.v with | OE_star { out_expr_node = { v = OE_id i } } -> false | _ -> true
false
Hacl.Impl.Ed25519.RecoverX.fst
Hacl.Impl.Ed25519.RecoverX.elemB
val elemB : Type0
let elemB = lbuffer uint64 5ul
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.RecoverX.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 21, "start_col": 0, "start_line": 21 }
module Hacl.Impl.Ed25519.RecoverX module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module S51 = Hacl.Spec.Curve25519.Field51.Definition module SC = Spec.Curve25519 module SE = Spec.Ed25519 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.Compatibility.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Pow2_252m2.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.RecoverX.fst" }
[ { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "SE" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
true
let elemB =
lbuffer uint64 5ul
false
Ast.fst
Ast.atomic_action_has_out_expr
val atomic_action_has_out_expr (a: atomic_action) : Tot bool
val atomic_action_has_out_expr (a: atomic_action) : Tot bool
let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 14, "end_line": 642, "start_col": 0, "start_line": 637 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Ast.atomic_action -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Ast.atomic_action", "Ast.expr", "Ast.out_expr", "Ast.out_expr_is_out_type_expr", "Prims.bool" ]
[]
false
false
false
true
false
let atomic_action_has_out_expr (a: atomic_action) : Tot bool =
match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false
false
Ast.fst
Ast.atomic_field_has_out_expr
val atomic_field_has_out_expr (f: atomic_field) : Tot bool
val atomic_field_has_out_expr (f: atomic_field) : Tot bool
let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 43, "end_line": 675, "start_col": 0, "start_line": 673 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Ast.atomic_field -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Ast.atomic_field", "Ast.field_action_has_out_expr", "Ast.__proj__Mkatomic_field'__item__field_action", "Ast.atomic_field'", "Ast.__proj__Mkwith_meta_t__item__v", "Prims.bool" ]
[]
false
false
false
true
false
let atomic_field_has_out_expr (f: atomic_field) : Tot bool =
let sf = f.v in field_action_has_out_expr sf.field_action
false
Ast.fst
Ast.comments_buffer
val comments_buffer:comments_buffer_t
val comments_buffer:comments_buffer_t
let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until }
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 73, "start_col": 0, "start_line": 44 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.comments_buffer_t
Prims.Tot
[ "total" ]
[]
[ "Ast.Mkcomments_buffer_t", "Ast.pos", "Prims.list", "Prims.string", "FStar.Pervasives.Native.tuple3", "FStar.List.map", "Prims.unit", "FStar.ST.op_Colon_Equals", "FStar.Heap.trivial_preorder", "FStar.Pervasives.Native.tuple2", "FStar.List.partition", "Prims.op_LessThanOrEqual", "Ast.__proj__Mkpos__item__line", "Prims.bool", "Options.debug_print_string", "FStar.Printf.sprintf", "FStar.ST.op_Bang", "FStar.Pervasives.all_post_h", "FStar.Monotonic.Heap.heap", "Prims.l_and", "FStar.Monotonic.Heap.sel", "Prims.Nil", "Prims.l_Forall", "Prims.l_imp", "FStar.Monotonic.Heap.contains", "FStar.Monotonic.Heap.modifies", "FStar.Set.singleton", "Prims.nat", "FStar.Monotonic.Heap.addr_of", "FStar.Monotonic.Heap.equal_dom", "Prims.eq2", "FStar.Pervasives.result", "FStar.List.Tot.Base.rev", "Prims.l_True", "FStar.Pervasives.V", "Prims.exn", "FStar.Pervasives.E", "FStar.Pervasives.Err", "Prims.Cons", "FStar.Pervasives.Native.Mktuple3", "FStar.String.substring", "Prims.op_Subtraction", "FStar.String.length", "Ast.comments_buffer_t", "FStar.ST.ref", "FStar.ST.alloc", "FStar.ST.mref" ]
[]
false
false
false
true
false
let comments_buffer:comments_buffer_t =
let buffer:ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until }
false
Ast.fst
Ast.parse_int_suffix
val parse_int_suffix (i: string) : string * option integer_type
val parse_int_suffix (i: string) : string * option integer_type
let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 16, "end_line": 170, "start_col": 0, "start_line": 159 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.string -> Prims.string * FStar.Pervasives.Native.option Ast.integer_type
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Prims.op_GreaterThanOrEqual", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.option", "Ast.integer_type", "FStar.Pervasives.Native.Some", "Ast.UInt8", "Ast.UInt16", "Ast.UInt32", "Ast.UInt64", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.String.strlen", "Prims.op_Subtraction", "FStar.String.sub", "Prims.bool", "FStar.String.length" ]
[]
false
false
false
true
false
let parse_int_suffix (i: string) : string * option integer_type =
let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None
false
Ast.fst
Ast.integer_type_lub
val integer_type_lub (t1 t2: integer_type) : Tot integer_type
val integer_type_lub (t1 t2: integer_type) : Tot integer_type
let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 25, "end_line": 190, "start_col": 0, "start_line": 182 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t1: Ast.integer_type -> t2: Ast.integer_type -> Ast.integer_type
Prims.Tot
[ "total" ]
[]
[ "Ast.integer_type", "FStar.Pervasives.Native.Mktuple2", "Ast.UInt64", "Ast.UInt32", "Ast.UInt16", "Ast.UInt8" ]
[]
false
false
false
true
false
let integer_type_lub (t1 t2: integer_type) : Tot integer_type =
match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8
false
Ast.fst
Ast.check_reserved_identifier
val check_reserved_identifier : i: Ast.ident -> FStar.All.ALL Prims.unit
let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 60, "end_line": 150, "start_col": 0, "start_line": 145 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Ast.ident -> FStar.All.ALL Prims.unit
FStar.All.ALL
[]
[]
[ "Ast.ident", "Prims.op_AmpAmp", "Prims.op_GreaterThanOrEqual", "FStar.String.length", "Prims.op_Equality", "Prims.string", "FStar.String.sub", "Ast.reserved_prefix", "Ast.error", "Prims.unit", "Ast.__proj__Mkwith_meta_t__item__range", "Ast.ident'", "Prims.bool", "Ast.__proj__Mkident'__item__name", "Ast.__proj__Mkwith_meta_t__item__v" ]
[]
false
true
false
false
false
let check_reserved_identifier (i: ident) =
let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range
false
Ast.fst
Ast.integer_type_leq
val integer_type_leq (t1 t2: integer_type) : bool
val integer_type_leq (t1 t2: integer_type) : bool
let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 29, "end_line": 193, "start_col": 0, "start_line": 192 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t1: Ast.integer_type -> t2: Ast.integer_type -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Ast.integer_type", "Prims.op_Equality", "Ast.integer_type_lub", "Prims.bool" ]
[]
false
false
false
true
false
let integer_type_leq (t1 t2: integer_type) : bool =
integer_type_lub t1 t2 = t2
false
Ast.fst
Ast.bit_order_of
val bit_order_of (i: ident) : ML bitfield_bit_order
val bit_order_of (i: ident) : ML bitfield_bit_order
let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 15, "end_line": 243, "start_col": 0, "start_line": 240 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Ast.ident -> FStar.All.ML Ast.bitfield_bit_order
FStar.All.ML
[ "ml" ]
[]
[ "Ast.ident", "Ast.maybe_bit_order_of", "Ast.error", "Ast.bitfield_bit_order", "Prims.op_Hat", "Ast.ident_to_string", "Ast.__proj__Mkwith_meta_t__item__range", "Ast.ident'" ]
[]
false
true
false
false
false
let bit_order_of (i: ident) : ML bitfield_bit_order =
match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t
false
Hacl.Test.HMAC_DRBG.fst
Hacl.Test.HMAC_DRBG.test_many
val test_many : label: C.String.t -> f: (_: a -> FStar.HyperStack.ST.Stack Prims.unit) -> vec: Test.Lowstarize.lbuffer a -> FStar.HyperStack.ST.STATE Prims.unit
let test_many #a (label:C.String.t) (f:a -> Stack unit (fun _ -> True) (fun _ _ _ -> True)) (vec: L.lbuffer a) = C.String.print label; C.String.(print !$"\n"); let L.LB len vs = vec in let f (i:UInt32.t{0 <= v i /\ v i < v len}): Stack unit (requires fun h -> True) (ensures fun h0 _ h1 -> True) = let open LowStar.BufferOps in B.recall vs; LowStar.Printf.(printf "HMAC-DRBG Test %ul/%ul\n" (i +! 1ul) len done); f vs.(i) in C.Loops.for 0ul len (fun _ _ -> True) f
{ "file_name": "code/tests/Hacl.Test.HMAC_DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 130, "start_col": 0, "start_line": 115 }
module Hacl.Test.HMAC_DRBG open FStar.HyperStack.ST open Test.Lowstarize open Lib.IntTypes open Hacl.HMAC_DRBG open Spec.HMAC_DRBG.Test.Vectors module D = Spec.Hash.Definitions module L = Test.Lowstarize module B = LowStar.Buffer #set-options "--fuel 0 --ifuel 0 --z3rlimit 100" (* FStar.Reflection only supports up to 8-tuples *) noextract let vectors_tmp = List.Tot.map (fun x -> x.a, h x.entropy_input, h x.nonce, h x.personalization_string, h x.entropy_input_reseed, h x.additional_input_reseed, (h x.additional_input_1, h x.additional_input_2), h x.returned_bits) test_vectors %splice[vectors_low] (lowstarize_toplevel "vectors_tmp" "vectors_low") // Cheap alternative to friend Lib.IntTypes needed because Test.Lowstarize uses UInt8.t assume val declassify_uint8: squash (uint8 == UInt8.t) let vec8 = L.lbuffer UInt8.t let vector = D.hash_alg & vec8 & vec8 & vec8 & vec8 & vec8 & (vec8 & vec8) & vec8 // This could replace TestLib.compare_and_print val compare_and_print: b1:B.buffer UInt8.t -> b2:B.buffer UInt8.t -> len:UInt32.t -> Stack bool (requires fun h0 -> B.live h0 b1 /\ B.live h0 b2 /\ B.length b1 == v len /\ B.length b2 == v len) (ensures fun h0 _ h1 -> B.modifies B.loc_none h0 h1) let compare_and_print b1 b2 len = push_frame(); LowStar.Printf.(printf "Expected: %xuy\n" len b1 done); LowStar.Printf.(printf "Computed: %xuy\n" len b2 done); let b = Lib.ByteBuffer.lbytes_eq #len b1 b2 in if b then LowStar.Printf.(printf "PASS\n" done) else LowStar.Printf.(printf "FAIL\n" done); pop_frame(); b let test_one (vec:vector) : Stack unit (requires fun _ -> True) (ensures fun _ _ _ -> True) = let a, LB entropy_input_len entropy_input, LB nonce_len nonce, LB personalization_string_len personalization_string, LB entropy_input_reseed_len entropy_input_reseed, LB additional_input_reseed_len additional_input_reseed, (LB additional_input_1_len additional_input_1, LB additional_input_2_len additional_input_2), LB returned_bits_len returned_bits = vec in B.recall entropy_input; B.recall nonce; B.recall personalization_string; B.recall entropy_input_reseed; B.recall additional_input_reseed; B.recall additional_input_1; B.recall additional_input_2; B.recall returned_bits; // We need to check this at runtime because Low*-ized vectors don't carry any refinements if not (Spec.HMAC_DRBG.is_supported_alg a && min_length a <=. entropy_input_len && entropy_input_len <=. max_length && min_length a /. 2ul <=. nonce_len && nonce_len <=. max_length && personalization_string_len <=. max_personalization_string_length && min_length a <=. entropy_input_reseed_len && entropy_input_reseed_len <=. max_length && additional_input_reseed_len <=. max_additional_input_length && additional_input_1_len <=. max_additional_input_length && additional_input_2_len <=. max_additional_input_length && 0ul <. returned_bits_len && returned_bits_len <=. max_output_length) then C.exit (-1l) else begin push_frame(); let output = B.alloca (u8 0) returned_bits_len in let st = alloca a in instantiate a st entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; reseed a st entropy_input_reseed_len entropy_input_reseed additional_input_reseed_len additional_input_reseed; let ok = generate a output st returned_bits_len additional_input_1_len additional_input_1 in if ok then let ok = generate a output st returned_bits_len additional_input_2_len additional_input_2 in if ok then let ok = compare_and_print returned_bits output returned_bits_len in if ok then () else C.exit 1l else C.exit 1l else C.exit 1l; pop_frame() end
{ "checked_file": "/", "dependencies": [ "Test.Lowstarize.fst.checked", "Spec.HMAC_DRBG.Test.Vectors.fst.checked", "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.Printf.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Hacl.HMAC_DRBG.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "C.String.fsti.checked", "C.Loops.fst.checked", "C.fst.checked" ], "interface_file": false, "source_file": "Hacl.Test.HMAC_DRBG.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "Test.Lowstarize", "short_module": "L" }, { "abbrev": true, "full_module": "Spec.Hash.Definitions", "short_module": "D" }, { "abbrev": false, "full_module": "Spec.HMAC_DRBG.Test.Vectors", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Test.Lowstarize", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Test", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
label: C.String.t -> f: (_: a -> FStar.HyperStack.ST.Stack Prims.unit) -> vec: Test.Lowstarize.lbuffer a -> FStar.HyperStack.ST.STATE Prims.unit
FStar.HyperStack.ST.STATE
[]
[]
[ "C.String.t", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_True", "Test.Lowstarize.lbuffer", "FStar.UInt32.t", "LowStar.Buffer.buffer", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.len", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.recallable", "C.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThan", "LowStar.BufferOps.op_Array_Access", "LowStar.Printf.printf", "Lib.IntTypes.op_Plus_Bang", "LowStar.Printf.done", "LowStar.Monotonic.Buffer.recall", "C.String.print", "C.String.op_Bang_Dollar" ]
[]
false
true
false
false
false
let test_many #a (label: C.String.t) (f: (a -> Stack unit (fun _ -> True) (fun _ _ _ -> True))) (vec: L.lbuffer a) =
C.String.print label; (let open C.String in print !$"\n"); let L.LB len vs = vec in let f (i: UInt32.t{0 <= v i /\ v i < v len}) : Stack unit (requires fun h -> True) (ensures fun h0 _ h1 -> True) = let open LowStar.BufferOps in B.recall vs; (let open LowStar.Printf in printf "HMAC-DRBG Test %ul/%ul\n" (i +! 1ul) len done); f vs.(i) in C.Loops.for 0ul len (fun _ _ -> True) f
false
Ast.fst
Ast.maybe_as_integer_typ
val maybe_as_integer_typ (i: ident) : Tot (option integer_type)
val maybe_as_integer_typ (i: ident) : Tot (option integer_type)
let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 15, "end_line": 208, "start_col": 0, "start_line": 195 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Ast.ident -> FStar.Pervasives.Native.option Ast.integer_type
Prims.Tot
[ "total" ]
[]
[ "Ast.ident", "Prims.op_disEquality", "FStar.Pervasives.Native.option", "Prims.string", "Ast.__proj__Mkident'__item__modul_name", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.ident'", "FStar.Pervasives.Native.None", "Ast.integer_type", "Prims.bool", "Ast.__proj__Mkident'__item__name", "FStar.Pervasives.Native.Some", "Ast.UInt8", "Ast.UInt16", "Ast.UInt32", "Ast.UInt64" ]
[]
false
false
false
true
false
let maybe_as_integer_typ (i: ident) : Tot (option integer_type) =
if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None
false
Ast.fst
Ast.decl_has_out_expr
val decl_has_out_expr (d: decl) : Tot bool
val decl_has_out_expr (d: decl) : Tot bool
let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 14, "end_line": 721, "start_col": 0, "start_line": 715 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Ast.decl -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Ast.decl", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.decl'", "Ast.__proj__Mkdecl__item__d_decl", "Ast.typedef_names", "Prims.list", "Ast.param", "FStar.Pervasives.Native.option", "Ast.expr", "Ast.record", "Ast.record_has_out_expr", "Ast.switch_case", "Ast.switch_case_has_out_expr", "Prims.bool" ]
[]
false
false
false
true
false
let decl_has_out_expr (d: decl) : Tot bool =
match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false
false
Ast.fst
Ast.as_integer_typ
val as_integer_typ (i: ident) : ML integer_type
val as_integer_typ (i: ident) : ML integer_type
let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 15, "end_line": 213, "start_col": 0, "start_line": 210 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Ast.ident -> FStar.All.ML Ast.integer_type
FStar.All.ML
[ "ml" ]
[]
[ "Ast.ident", "Ast.maybe_as_integer_typ", "Ast.error", "Ast.integer_type", "Prims.op_Hat", "Ast.ident_to_string", "Ast.__proj__Mkwith_meta_t__item__range", "Ast.ident'" ]
[]
false
true
false
false
false
let as_integer_typ (i: ident) : ML integer_type =
match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t
false
Ast.fst
Ast.sequence_non_failing_actions
val sequence_non_failing_actions (a0: action{Action_act? a0.v}) (a1: action{Action_act? a1.v}) : a: action{Action_act? a.v}
val sequence_non_failing_actions (a0: action{Action_act? a0.v}) (a1: action{Action_act? a1.v}) : a: action{Action_act? a.v}
let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 18, "end_line": 429, "start_col": 0, "start_line": 395 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a0: Ast.action{Action_act? (Mkwith_meta_t?.v a0)} -> a1: Ast.action{Action_act? (Mkwith_meta_t?.v a1)} -> a: Ast.action{Action_act? (Mkwith_meta_t?.v a)}
Prims.Tot
[ "total" ]
[]
[ "Ast.action", "Prims.b2t", "Ast.uu___is_Action_act", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.action'", "Ast.with_range_and_comments", "Ast.Action_act", "Ast.__proj__Mkwith_meta_t__item__range", "Ast.__proj__Mkwith_meta_t__item__comments", "Ast.with_meta_t", "Ast.atomic_action", "Ast.Action_seq", "Ast.expr", "FStar.Pervasives.Native.option", "Ast.Action_ite", "FStar.Pervasives.Native.Some", "Ast.ident", "Ast.Action_let", "FStar.List.Tot.Base.op_At", "Prims.string" ]
[]
false
false
false
false
false
let sequence_non_failing_actions (a0: action{Action_act? a0.v}) (a1: action{Action_act? a1.v}) : a: action{Action_act? a.v} =
let rec seq (a0: action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments
false
Ast.fst
Ast.maybe_bit_order_of
val maybe_bit_order_of (i: ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i)))
val maybe_bit_order_of (i: ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i)))
let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 15, "end_line": 238, "start_col": 0, "start_line": 221 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Ast.ident -> Prims.Pure (FStar.Pervasives.Native.option Ast.bitfield_bit_order)
Prims.Pure
[]
[]
[ "Ast.ident", "Prims.op_disEquality", "FStar.Pervasives.Native.option", "Prims.string", "Ast.__proj__Mkident'__item__modul_name", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.ident'", "FStar.Pervasives.Native.None", "Ast.bitfield_bit_order", "Prims.bool", "Ast.__proj__Mkident'__item__name", "FStar.Pervasives.Native.Some", "Ast.LSBFirst", "Ast.MSBFirst", "Prims.l_True", "Prims.eq2", "FStar.Pervasives.Native.uu___is_Some", "Ast.integer_type", "Ast.maybe_as_integer_typ" ]
[]
false
false
false
false
false
let maybe_bit_order_of (i: ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i))) =
if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None
false
Ast.fst
Ast.dummy_range
val dummy_range : Ast.pos * Ast.pos
let dummy_range = dummy_pos, dummy_pos
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 781, "start_col": 0, "start_line": 781 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.pos * Ast.pos
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.Mktuple2", "Ast.pos", "Ast.dummy_pos" ]
[]
false
false
false
true
false
let dummy_range =
dummy_pos, dummy_pos
false
Ast.fst
Ast.eq_typ_param
val eq_typ_param (p1 p2: typ_param) : bool
val eq_typ_param (p1 p2: typ_param) : bool
let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 14, "end_line": 762, "start_col": 0, "start_line": 758 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: Ast.typ_param -> p2: Ast.typ_param -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Ast.typ_param", "FStar.Pervasives.Native.Mktuple2", "Ast.either", "Ast.expr", "Ast.out_expr", "Ast.eq_expr", "Ast.eq_out_expr", "FStar.Pervasives.Native.tuple2", "Prims.bool" ]
[]
false
false
false
true
false
let eq_typ_param (p1 p2: typ_param) : bool =
match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false
false
Ast.fst
Ast.puint8
val puint8 : Ast.with_meta_t Ast.typ'
let puint8 = mk_prim_t "PUINT8"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 31, "end_line": 789, "start_col": 0, "start_line": 789 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false (** Common AST constants and builders **) let dummy_range = dummy_pos, dummy_pos let with_dummy_range x = with_range x dummy_range let to_ident' x = {modul_name=None;name=x} let mk_prim_t x = with_dummy_range (Type_app (with_dummy_range (to_ident' x)) KindSpec []) let tbool = mk_prim_t "Bool" let tunit = mk_prim_t "unit" let tuint8 = mk_prim_t "UINT8"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.with_meta_t Ast.typ'
Prims.Tot
[ "total" ]
[]
[ "Ast.mk_prim_t" ]
[]
false
false
false
true
false
let puint8 =
mk_prim_t "PUINT8"
false
Ast.fst
Ast.tuint32
val tuint32 : Ast.with_meta_t Ast.typ'
let tuint32 = mk_prim_t "UINT32"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 791, "start_col": 0, "start_line": 791 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false (** Common AST constants and builders **) let dummy_range = dummy_pos, dummy_pos let with_dummy_range x = with_range x dummy_range let to_ident' x = {modul_name=None;name=x} let mk_prim_t x = with_dummy_range (Type_app (with_dummy_range (to_ident' x)) KindSpec []) let tbool = mk_prim_t "Bool" let tunit = mk_prim_t "unit" let tuint8 = mk_prim_t "UINT8" let tuint8be = mk_prim_t "UINT8BE" let puint8 = mk_prim_t "PUINT8"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.with_meta_t Ast.typ'
Prims.Tot
[ "total" ]
[]
[ "Ast.mk_prim_t" ]
[]
false
false
false
true
false
let tuint32 =
mk_prim_t "UINT32"
false
Ast.fst
Ast.mk_prim_t
val mk_prim_t : x: Prims.string -> Ast.with_meta_t Ast.typ'
let mk_prim_t x = with_dummy_range (Type_app (with_dummy_range (to_ident' x)) KindSpec [])
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 90, "end_line": 784, "start_col": 0, "start_line": 784 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false (** Common AST constants and builders **) let dummy_range = dummy_pos, dummy_pos let with_dummy_range x = with_range x dummy_range
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.string -> Ast.with_meta_t Ast.typ'
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Ast.with_dummy_range", "Ast.typ'", "Ast.Type_app", "Ast.ident'", "Ast.to_ident'", "Ast.KindSpec", "Prims.Nil", "Ast.either", "Ast.expr", "Ast.out_expr", "Ast.with_meta_t" ]
[]
false
false
false
true
false
let mk_prim_t x =
with_dummy_range (Type_app (with_dummy_range (to_ident' x)) KindSpec [])
false
Ast.fst
Ast.tbool
val tbool : Ast.with_meta_t Ast.typ'
let tbool = mk_prim_t "Bool"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 28, "end_line": 785, "start_col": 0, "start_line": 785 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false (** Common AST constants and builders **) let dummy_range = dummy_pos, dummy_pos let with_dummy_range x = with_range x dummy_range let to_ident' x = {modul_name=None;name=x}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.with_meta_t Ast.typ'
Prims.Tot
[ "total" ]
[]
[ "Ast.mk_prim_t" ]
[]
false
false
false
true
false
let tbool =
mk_prim_t "Bool"
false
Ast.fst
Ast.tuint64
val tuint64 : Ast.with_meta_t Ast.typ'
let tuint64 = mk_prim_t "UINT64"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 792, "start_col": 0, "start_line": 792 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false (** Common AST constants and builders **) let dummy_range = dummy_pos, dummy_pos let with_dummy_range x = with_range x dummy_range let to_ident' x = {modul_name=None;name=x} let mk_prim_t x = with_dummy_range (Type_app (with_dummy_range (to_ident' x)) KindSpec []) let tbool = mk_prim_t "Bool" let tunit = mk_prim_t "unit" let tuint8 = mk_prim_t "UINT8" let tuint8be = mk_prim_t "UINT8BE" let puint8 = mk_prim_t "PUINT8" let tuint16 = mk_prim_t "UINT16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.with_meta_t Ast.typ'
Prims.Tot
[ "total" ]
[]
[ "Ast.mk_prim_t" ]
[]
false
false
false
true
false
let tuint64 =
mk_prim_t "UINT64"
false
Ast.fst
Ast.tunit
val tunit : Ast.with_meta_t Ast.typ'
let tunit = mk_prim_t "unit"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 28, "end_line": 786, "start_col": 0, "start_line": 786 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false (** Common AST constants and builders **) let dummy_range = dummy_pos, dummy_pos let with_dummy_range x = with_range x dummy_range let to_ident' x = {modul_name=None;name=x} let mk_prim_t x = with_dummy_range (Type_app (with_dummy_range (to_ident' x)) KindSpec [])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.with_meta_t Ast.typ'
Prims.Tot
[ "total" ]
[]
[ "Ast.mk_prim_t" ]
[]
false
false
false
true
false
let tunit =
mk_prim_t "unit"
false
Hacl.Test.HMAC_DRBG.fst
Hacl.Test.HMAC_DRBG.main
val main: Prims.unit -> St C.exit_code
val main: Prims.unit -> St C.exit_code
let main () : St C.exit_code = test_many C.String.(!$"[HMAC_DRBG]") test_one vectors_low; C.EXIT_SUCCESS
{ "file_name": "code/tests/Hacl.Test.HMAC_DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 134, "start_col": 0, "start_line": 132 }
module Hacl.Test.HMAC_DRBG open FStar.HyperStack.ST open Test.Lowstarize open Lib.IntTypes open Hacl.HMAC_DRBG open Spec.HMAC_DRBG.Test.Vectors module D = Spec.Hash.Definitions module L = Test.Lowstarize module B = LowStar.Buffer #set-options "--fuel 0 --ifuel 0 --z3rlimit 100" (* FStar.Reflection only supports up to 8-tuples *) noextract let vectors_tmp = List.Tot.map (fun x -> x.a, h x.entropy_input, h x.nonce, h x.personalization_string, h x.entropy_input_reseed, h x.additional_input_reseed, (h x.additional_input_1, h x.additional_input_2), h x.returned_bits) test_vectors %splice[vectors_low] (lowstarize_toplevel "vectors_tmp" "vectors_low") // Cheap alternative to friend Lib.IntTypes needed because Test.Lowstarize uses UInt8.t assume val declassify_uint8: squash (uint8 == UInt8.t) let vec8 = L.lbuffer UInt8.t let vector = D.hash_alg & vec8 & vec8 & vec8 & vec8 & vec8 & (vec8 & vec8) & vec8 // This could replace TestLib.compare_and_print val compare_and_print: b1:B.buffer UInt8.t -> b2:B.buffer UInt8.t -> len:UInt32.t -> Stack bool (requires fun h0 -> B.live h0 b1 /\ B.live h0 b2 /\ B.length b1 == v len /\ B.length b2 == v len) (ensures fun h0 _ h1 -> B.modifies B.loc_none h0 h1) let compare_and_print b1 b2 len = push_frame(); LowStar.Printf.(printf "Expected: %xuy\n" len b1 done); LowStar.Printf.(printf "Computed: %xuy\n" len b2 done); let b = Lib.ByteBuffer.lbytes_eq #len b1 b2 in if b then LowStar.Printf.(printf "PASS\n" done) else LowStar.Printf.(printf "FAIL\n" done); pop_frame(); b let test_one (vec:vector) : Stack unit (requires fun _ -> True) (ensures fun _ _ _ -> True) = let a, LB entropy_input_len entropy_input, LB nonce_len nonce, LB personalization_string_len personalization_string, LB entropy_input_reseed_len entropy_input_reseed, LB additional_input_reseed_len additional_input_reseed, (LB additional_input_1_len additional_input_1, LB additional_input_2_len additional_input_2), LB returned_bits_len returned_bits = vec in B.recall entropy_input; B.recall nonce; B.recall personalization_string; B.recall entropy_input_reseed; B.recall additional_input_reseed; B.recall additional_input_1; B.recall additional_input_2; B.recall returned_bits; // We need to check this at runtime because Low*-ized vectors don't carry any refinements if not (Spec.HMAC_DRBG.is_supported_alg a && min_length a <=. entropy_input_len && entropy_input_len <=. max_length && min_length a /. 2ul <=. nonce_len && nonce_len <=. max_length && personalization_string_len <=. max_personalization_string_length && min_length a <=. entropy_input_reseed_len && entropy_input_reseed_len <=. max_length && additional_input_reseed_len <=. max_additional_input_length && additional_input_1_len <=. max_additional_input_length && additional_input_2_len <=. max_additional_input_length && 0ul <. returned_bits_len && returned_bits_len <=. max_output_length) then C.exit (-1l) else begin push_frame(); let output = B.alloca (u8 0) returned_bits_len in let st = alloca a in instantiate a st entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; reseed a st entropy_input_reseed_len entropy_input_reseed additional_input_reseed_len additional_input_reseed; let ok = generate a output st returned_bits_len additional_input_1_len additional_input_1 in if ok then let ok = generate a output st returned_bits_len additional_input_2_len additional_input_2 in if ok then let ok = compare_and_print returned_bits output returned_bits_len in if ok then () else C.exit 1l else C.exit 1l else C.exit 1l; pop_frame() end inline_for_extraction noextract let test_many #a (label:C.String.t) (f:a -> Stack unit (fun _ -> True) (fun _ _ _ -> True)) (vec: L.lbuffer a) = C.String.print label; C.String.(print !$"\n"); let L.LB len vs = vec in let f (i:UInt32.t{0 <= v i /\ v i < v len}): Stack unit (requires fun h -> True) (ensures fun h0 _ h1 -> True) = let open LowStar.BufferOps in B.recall vs; LowStar.Printf.(printf "HMAC-DRBG Test %ul/%ul\n" (i +! 1ul) len done); f vs.(i) in C.Loops.for 0ul len (fun _ _ -> True) f
{ "checked_file": "/", "dependencies": [ "Test.Lowstarize.fst.checked", "Spec.HMAC_DRBG.Test.Vectors.fst.checked", "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.Printf.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Hacl.HMAC_DRBG.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "C.String.fsti.checked", "C.Loops.fst.checked", "C.fst.checked" ], "interface_file": false, "source_file": "Hacl.Test.HMAC_DRBG.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "Test.Lowstarize", "short_module": "L" }, { "abbrev": true, "full_module": "Spec.Hash.Definitions", "short_module": "D" }, { "abbrev": false, "full_module": "Spec.HMAC_DRBG.Test.Vectors", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Test.Lowstarize", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Test", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.HyperStack.ST.St C.exit_code
FStar.HyperStack.ST.St
[]
[]
[ "Prims.unit", "C.EXIT_SUCCESS", "C.exit_code", "Hacl.Test.HMAC_DRBG.test_many", "FStar.Pervasives.Native.tuple8", "Spec.Hash.Definitions.hash_alg", "Test.Lowstarize.lbuffer", "FStar.UInt8.t", "FStar.Pervasives.Native.tuple2", "C.String.op_Bang_Dollar", "Hacl.Test.HMAC_DRBG.test_one", "Hacl.Test.HMAC_DRBG.vectors_low" ]
[]
false
true
false
false
false
let main () : St C.exit_code =
test_many C.String.(!$"[HMAC_DRBG]") test_one vectors_low; C.EXIT_SUCCESS
false
Ast.fst
Ast.tuint16
val tuint16 : Ast.with_meta_t Ast.typ'
let tuint16 = mk_prim_t "UINT16"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 790, "start_col": 0, "start_line": 790 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false (** Common AST constants and builders **) let dummy_range = dummy_pos, dummy_pos let with_dummy_range x = with_range x dummy_range let to_ident' x = {modul_name=None;name=x} let mk_prim_t x = with_dummy_range (Type_app (with_dummy_range (to_ident' x)) KindSpec []) let tbool = mk_prim_t "Bool" let tunit = mk_prim_t "unit" let tuint8 = mk_prim_t "UINT8" let tuint8be = mk_prim_t "UINT8BE"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.with_meta_t Ast.typ'
Prims.Tot
[ "total" ]
[]
[ "Ast.mk_prim_t" ]
[]
false
false
false
true
false
let tuint16 =
mk_prim_t "UINT16"
false
Ast.fst
Ast.tuint8be
val tuint8be : Ast.with_meta_t Ast.typ'
let tuint8be = mk_prim_t "UINT8BE"
{ "file_name": "src/3d/Ast.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 34, "end_line": 788, "start_col": 0, "start_line": 788 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Ast (* The source abstract syntax for the 3d frontend to EverParse *) open FStar.All let reserved_prefix = "___" //redefining either because we need to serialize to Json [@@ PpxDerivingYoJson ] type either a b = | Inl of a | Inr of b /// pos: Source locations type pos = { filename: string; line:int; col:int } noeq type comments_buffer_t = { push: string & pos & pos -> ML unit; flush: unit -> ML (list string); flush_until: pos -> ML (list string); } #push-options "--warn_error -272" //top-level effect; ok let comments_buffer : comments_buffer_t = let buffer : ref (list (string & pos & pos)) = FStar.ST.alloc [] in let buffer_comment (c, s, p) = let c = String.substring c 2 (String.length c - 2) in buffer := (c, s, p) :: !buffer in let flush_comments () = let cs = !buffer in buffer := []; (List.rev cs) |> List.map (fun (c, _, _) -> c) in let flush_until pos : ML (list string) = let cs = !buffer in let preceding, following = List.partition (fun (c, _, end_pos) -> Options.debug_print_string (Printf.sprintf "Requesting comments until line %d,\nAt line %d we have comment (*%s*)\n" pos.line end_pos.line c); end_pos.line <= pos.line) cs in buffer := following; preceding |> List.map (fun (c, _, _) -> c) in { push = buffer_comment; flush = flush_comments; flush_until = flush_until } #pop-options let string_of_pos p = Printf.sprintf "%s:(%d,%d)" p.filename p.line p.col /// range: A source extent let range = pos * pos /// comment: A list of line comments, i.e., a list of strings let comments = list string let string_of_range r = let p, q = r in if p.filename = q.filename then Printf.sprintf "%s:(%d,%d--%d,%d)" p.filename p.line p.col q.line q.col else Printf.sprintf "%s -- %s" (string_of_pos p) (string_of_pos q) let dummy_pos = { filename=""; line=0; col=0; } noeq type with_meta_t 'a = { v:'a; range:range; comments: comments } (* Override the json serializers for with_meta_t to avoid polluting the generated JSON with ranges everywhere *) let with_meta_t_of_yojson (#a #b #c:Type) (f:(a -> b)) (x:a) : ML c = failwith "No reading yojson" let with_meta_t_to_yojson (f:('a -> 'b)) (x:with_meta_t 'a) : 'b = f x.v let with_range_and_comments (x:'a) r c : with_meta_t 'a = { v = x; range = r; comments = c } let with_range (x:'a) (r:range) : with_meta_t 'a = with_range_and_comments x r [] [@@ PpxDerivingYoJson ] type ident' = { modul_name : option string; name : string } [@@ PpxDerivingYoJson ] let ident = with_meta_t ident' let ident_to_string i = Printf.sprintf "%s%s" (match i.v.modul_name with | None -> "" | Some m -> m ^ ".") i.v.name let ident_name i = i.v.name exception Error of string let error #a msg (r:range) : ML a = raise (Error (Printf.sprintf "%s: (Error) %s\n" (string_of_pos (fst r)) msg)) let warning msg (r:range) : ML unit = FStar.IO.print_string (Printf.sprintf "%s: (Warning) %s\n" (string_of_pos (fst r)) msg) let check_reserved_identifier (i:ident) = let open FStar.String in let s = i.v.name in if length s >= 3 && sub s 0 3 = reserved_prefix then error "Identifiers cannot begin with \"___\"" i.range [@@ PpxDerivingYoJson ] type integer_type = | UInt8 | UInt16 | UInt32 | UInt64 let parse_int_suffix (i:string) : string * option integer_type = let l = String.length i in if l >= 2 then let suffix = String.sub i (l - 2) 2 in let prefix = String.sub i 0 (l - 2) in match suffix with | "uy" -> prefix, Some UInt8 | "us" -> prefix, Some UInt16 | "ul" -> prefix, Some UInt32 | "uL" -> prefix, Some UInt64 | _ -> i, None else i, None let smallest_integer_type_of r (i:int) : ML integer_type = if FStar.UInt.fits i 8 then UInt8 else if FStar.UInt.fits i 16 then UInt16 else if FStar.UInt.fits i 32 then UInt32 else if FStar.UInt.fits i 64 then UInt64 else error (Printf.sprintf "Integer %d is too large for all supported fixed-width types" i) r let integer_type_lub (t1 t2: integer_type) : Tot integer_type = match t1, t2 with | UInt64, _ | _, UInt64 -> UInt64 | _, UInt32 | UInt32, _ -> UInt32 | _, UInt16 | UInt16, _ -> UInt16 | UInt8, UInt8 -> UInt8 let integer_type_leq (t1 t2: integer_type) : bool = integer_type_lub t1 t2 = t2 let maybe_as_integer_typ (i:ident) : Tot (option integer_type) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some UInt8 | "UINT16" -> Some UInt16 | "UINT32" -> Some UInt32 | "UINT64" -> Some UInt64 | "UINT8BE" -> Some UInt8 | "UINT16BE" -> Some UInt16 | "UINT32BE" -> Some UInt32 | "UINT64BE" -> Some UInt64 | _ -> None let as_integer_typ (i:ident) : ML integer_type = match maybe_as_integer_typ i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Bit order for bitfields [@@ PpxDerivingYoJson ] type bitfield_bit_order = | LSBFirst (* Least-significant bit first (MSVC default) *) | MSBFirst (* Most-significant bit first (necessary for many IETF protocols) *) let maybe_bit_order_of (i:ident) : Pure (option bitfield_bit_order) (requires True) (ensures (fun y -> Some? y == Some? (maybe_as_integer_typ i) )) = if i.v.modul_name <> None then None else match i.v.name with | "UINT8" -> Some LSBFirst | "UINT16" -> Some LSBFirst | "UINT32" -> Some LSBFirst | "UINT64" -> Some LSBFirst | "UINT8BE" -> Some MSBFirst | "UINT16BE" -> Some MSBFirst | "UINT32BE" -> Some MSBFirst | "UINT64BE" -> Some MSBFirst | _ -> None let bit_order_of (i:ident) : ML bitfield_bit_order = match maybe_bit_order_of i with | None -> error ("Unknown integer type: " ^ ident_to_string i) i.range | Some t -> t /// Integer, hex and boolean constants [@@ PpxDerivingYoJson ] type constant = | Unit | Int : integer_type -> int -> constant | XInt: integer_type -> string -> constant //hexadecimal constants | Bool of bool /// Operators supported in refinement expressions [@@ PpxDerivingYoJson ] type op = | Eq | Neq | And | Or | Not | Plus of option integer_type | Minus of option integer_type | Mul of option integer_type | Division of option integer_type | Remainder of option integer_type | BitwiseAnd of option integer_type | BitwiseXor of option integer_type | BitwiseOr of option integer_type | BitwiseNot of option integer_type | ShiftRight of option integer_type | ShiftLeft of option integer_type | LT of option integer_type | GT of option integer_type | LE of option integer_type | GE of option integer_type | IfThenElse | BitFieldOf: sz: int -> order: bitfield_bit_order -> op //BitFieldOf_n(i, from, to); the integer is the size of i in bits | SizeOf | Cast : from:option integer_type -> to:integer_type -> op | Ext of string //OffsetOf ? /// Expressions used in refinements /// Expressions have no binding structure /// Names are represented using concrete identifiers, i.e., strings /// We enforce that all names are unique in a scope, i.e., no shadowing allowed [@@ PpxDerivingYoJson ] noeq type expr' = | Constant of constant | Identifier of ident | Static of expr //the guard of a #if; must be made from compile-time constants only | This | App : op -> list expr -> expr' and expr = with_meta_t expr' /// A non-pointer type in the AST (see typ below) may be /// - A spec type, i.e. a type that has an interpretation in 3d, that 3d understands /// - An output type, may be used as the type of the parse tree constructed as part of actions /// This includes structs and unions, and actions support assignment to fields of output types /// - An extern type, an abstract, uninterpreted type [@@ PpxDerivingYoJson ] type t_kind = | KindSpec | KindOutput | KindExtern /// Syntax for output expressions /// /// Output expressions may appear as type parameters or as lhs of assignment actions [@@ PpxDerivingYoJson ] noeq type out_expr' = | OE_id : ident -> out_expr' | OE_star : out_expr -> out_expr' | OE_addrof : out_expr -> out_expr' | OE_deref : out_expr -> ident -> out_expr' //deref a field | OE_dot : out_expr -> ident -> out_expr' //read a field /// Output expressions maintain metadata /// (base type, type of the expr and its bitwidth, in case the expression is of a bitfield type) /// /// where base type is the type of the base identifier, /// and type of the output expression /// /// The metadata is initially None after parsing, /// and is populated after typechecking (in Binding.fst) /// /// It is used during emitting F* and C code /// For each output expression, we emit an action (external function call) /// whose signature requires all this /// /// TODO: could we also store the source string for pretty printing? and out_expr_meta_t = { out_expr_base_t : typ; out_expr_t : typ; out_expr_bit_width : option int; } and out_expr = { out_expr_node: with_meta_t out_expr'; out_expr_meta: option out_expr_meta_t } /// A type parameter is either an expression or an output expression and typ_param = either expr out_expr /// Types: all types are named and fully instantiated to expressions only /// i.e., no type-parameterized types /// /// The t_kind field maintains the kind /// /// It is set during the desugaring phase, the parser always sets it to KindSpec /// We could move it to the parser itself /// /// Keeping this makes it easy to check whether a type is an output type or an extern type /// Alternatively we would have to carry some environment along and typ' = | Type_app : ident -> t_kind -> list typ_param -> typ' | Pointer : typ -> typ' and typ = with_meta_t typ' let field_typ = t:typ { Type_app? t.v } [@@ PpxDerivingYoJson ] noeq type atomic_action = | Action_return of expr | Action_abort | Action_field_pos_64 | Action_field_pos_32 | Action_field_ptr | Action_field_ptr_after: sz:expr -> write_to:out_expr -> atomic_action | Action_deref of ident | Action_assignment : lhs:out_expr -> rhs:expr -> atomic_action | Action_call : f:ident -> args:list expr -> atomic_action noeq [@@ PpxDerivingYoJson ] type action' = | Atomic_action of atomic_action | Action_seq : hd:atomic_action -> tl:action -> action' | Action_ite : hd:expr -> then_:action -> else_:option action -> action' | Action_let : i:ident -> a:atomic_action -> k:action -> action' | Action_act : action -> action' and action = with_meta_t action' open FStar.List.Tot let sequence_non_failing_actions (a0:action{Action_act? a0.v}) (a1:action {Action_act? a1.v}) : a:action{Action_act? a.v} = let rec seq (a0:action) = let w a = with_range_and_comments a a1.range (a0.comments @ a1.comments) in let Action_act a1 = a1.v in match a0.v with | Atomic_action a -> w (Action_seq a a1) | Action_seq a0 tl -> w (Action_seq a0 (seq tl)) | Action_ite hd th el -> let th = seq th in let el = match el with | None -> Some a1 | Some el -> Some (seq el) in w (Action_ite hd th el) | Action_let i a k -> w (Action_let i a (seq k)) | Action_act a -> seq a in let res = seq a0 in with_range_and_comments (Action_act res) res.range res.comments [@@ PpxDerivingYoJson ] type qualifier = | Immutable | Mutable /// Parameters: Type definitions can be parameterized by values /// Parameters have a name and are always annoted with their type [@@ PpxDerivingYoJson ] type param = typ & ident & qualifier [@@ PpxDerivingYoJson ] noeq type bitfield_attr' = { bitfield_width : int; bitfield_identifier : int; bitfield_type : typ; bitfield_from : int; bitfield_to: int } and bitfield_attr = with_meta_t bitfield_attr' [@@ PpxDerivingYoJson ] let field_bitwidth_t = either (with_meta_t int) bitfield_attr [@@ PpxDerivingYoJson ] type array_qualifier = | ByteArrayByteSize //[ | ArrayByteSize //[:byte-size | ArrayByteSizeAtMost //[:byte-size-single-element-array-at-most | ArrayByteSizeSingleElementArray //[:byte-size-single-element-array [@@ PpxDerivingYoJson ] noeq type field_array_t = | FieldScalar | FieldArrayQualified of (expr & array_qualifier) //array size in bytes, the qualifier indicates whether this is a variable-length suffix or not | FieldString of (option expr) | FieldConsumeAll // [:consume-all] [@@ PpxDerivingYoJson ] noeq type probe_call = { probe_fn:option ident; probe_length:expr; probe_dest:ident } [@@ PpxDerivingYoJson ] noeq type atomic_field' = { field_dependence:bool; //computed; whether or not the rest of the struct depends on this field field_ident:ident; //name of the field field_type:typ; //type of the field field_array_opt: field_array_t; field_constraint:option expr; //refinement constraint field_bitwidth:option field_bitwidth_t; //bits used for the field; elaborate from Inl to Inr field_action:option (action & bool); //bool indicates if the action depends on the field value field_probe:option probe_call; //set in case this field has to be probed then validated } and atomic_field = with_meta_t atomic_field' and field' = | AtomicField of atomic_field | RecordField : record -> ident -> field' | SwitchCaseField : switch_case -> ident -> field' and field = with_meta_t field' and record = list field and case = | Case : expr -> field -> case | DefaultCase : field -> case and switch_case = expr & list case [@@ PpxDerivingYoJson ] type attribute = | Entrypoint | Aligned /// Typedefs are given 2 names by convention and can be tagged as an /// "entrypoint" for the validator /// /// E.g., /// typedef [entrypoint] struct _T { ... } T, *PTR_T; [@@ PpxDerivingYoJson ] noeq type typedef_names = { typedef_name: ident; typedef_abbrev: ident; typedef_ptr_abbrev: ident; typedef_attributes: list attribute } [@@ PpxDerivingYoJson ] let enum_case = ident & option (either int ident) /// Specification of output types /// /// Output types contain atomic fields with optional bitwidths for bitfield types, /// but they may also contain anonymous structs and unions [@@ PpxDerivingYoJson ] noeq type out_field = | Out_field_named: ident -> typ -> bit_width:option int -> out_field | Out_field_anon : list out_field -> is_union:bool -> out_field [@@ PpxDerivingYoJson ] noeq type out_typ = { out_typ_names : typedef_names; out_typ_fields : list out_field; out_typ_is_union : bool; //TODO: unclear if this field is needed } /// A 3d specification a list of declarations /// - Define: macro definitions for constants /// - TypeAbbrev: macro definition of types /// - Enum: enumerated type using existing constants or newly defined constants /// - Record: a struct with refinements /// - CaseType: an untagged union /// /// - OutputType: an output type definition /// no validators are generated for these types, /// they are used only in the parse trees construction in the actions /// - ExternType: An abstract type declaration /// - ExternFn: An abstract function declaration, may be used in the actions [@@ PpxDerivingYoJson ] noeq type decl' = | ModuleAbbrev: ident -> ident -> decl' | Define: ident -> option typ -> constant -> decl' | TypeAbbrev: typ -> ident -> decl' | Enum: typ -> ident -> list enum_case -> decl' | Record: names:typedef_names -> params:list param -> where:option expr -> fields:record -> decl' | CaseType: typedef_names -> list param -> switch_case -> decl' | OutputType : out_typ -> decl' | ExternType : typedef_names -> decl' | ExternFn : ident -> typ -> list param -> decl' | ExternProbe : ident -> decl' [@@ PpxDerivingYoJson ] noeq type decl = { d_decl : with_meta_t decl'; d_exported : bool } let mk_decl (d:decl') r c (is_exported:bool) : decl = { d_decl = with_range_and_comments d r c; d_exported = is_exported } let decl_with_v (d:decl) (v:decl') : decl = { d with d_decl = { d.d_decl with v = v } } [@@ PpxDerivingYoJson ] noeq type type_refinement = { includes:list string; type_map:list (ident * option ident) } [@@ PpxDerivingYoJson ] let prog = list decl & option type_refinement //////////////////////////////////////////////////////////////////////////////// // Utilities //////////////////////////////////////////////////////////////////////////////// (** Entrypoint and export definitions *) let has_entrypoint (l:list attribute) : Tot bool = Some? (List.Tot.tryFind (function Entrypoint -> true | _ -> false) l) let is_entrypoint_or_export d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> if has_entrypoint (names.typedef_attributes) then true else d.d_exported | _ -> d.d_exported let is_entrypoint d = match d.d_decl.v with | Record names _ _ _ | CaseType names _ _ -> has_entrypoint (names.typedef_attributes) | _ -> false (** Determine if there are output type expressions: which cases in TranslateForInterpreter introduce the Output_type_expr constructor? *) /// Matches translate_action_assignment, translate_action_field_ptr_after let out_expr_is_out_type_expr (lhs: out_expr) : Tot bool = match lhs.out_expr_node.v with | OE_star ({out_expr_node = {v=OE_id i}}) -> false | _ -> true /// Matches translate_atomic_action let atomic_action_has_out_expr (a: atomic_action) : Tot bool = match a with | Action_field_ptr_after _ write_to | Action_assignment write_to _ -> out_expr_is_out_type_expr write_to | _ -> false /// Matches translate_action let rec action_has_out_expr (a: action) : Tot bool = match a.v with | Atomic_action a -> atomic_action_has_out_expr a | Action_seq hd tl -> if atomic_action_has_out_expr hd then true else action_has_out_expr tl | Action_ite _ then_ (Some else_) -> if action_has_out_expr then_ then true else action_has_out_expr else_ | Action_ite _ then_ None -> action_has_out_expr then_ | Action_let _ a k -> if atomic_action_has_out_expr a then true else action_has_out_expr k | Action_act a -> action_has_out_expr a let field_action_has_out_expr (f: option (action & bool)) : Tot bool = match f with | None -> false | Some (a, _) -> action_has_out_expr a /// Matches translate_atomic_field let atomic_field_has_out_expr (f: atomic_field) : Tot bool = let sf = f.v in field_action_has_out_expr sf.field_action /// Matches field_as_grouped_fields let rec field_has_out_expr (f: field) : Tot bool = match f.v with | AtomicField af -> atomic_field_has_out_expr af | RecordField fs _ -> record_has_out_expr fs | SwitchCaseField sw _ -> switch_case_has_out_expr sw and record_has_out_expr (fs: record) : Tot bool = match fs with | [] -> false | f :: fs' -> if field_has_out_expr f then true else record_has_out_expr fs' and switch_case_has_out_expr (sw: switch_case) : Tot bool = let (_, c) = sw in cases_have_out_expr c and cases_have_out_expr (cs: list case) : Tot bool = match cs with | [] -> false | c :: cs -> if case_has_out_expr c then true else cases_have_out_expr cs and case_has_out_expr (c: case) : Tot bool = match c with | Case _ f | DefaultCase f -> field_has_out_expr f /// Matches parse_field let decl_has_out_expr (d: decl) : Tot bool = match d.d_decl.v with | Record _ _ _ ast_fields -> record_has_out_expr ast_fields | CaseType _ _ switch_case -> switch_case_has_out_expr switch_case | _ -> false (** Equality on expressions and types **) /// eq_expr partially decides equality on expressions, by requiring /// syntactic equality let rec eq_expr (e1 e2:expr) : Tot bool (decreases e1) = match e1.v, e2.v with | Constant i, Constant j -> i = j | Identifier i, Identifier j -> i.v = j.v | This, This -> true | App op1 es1, App op2 es2 -> op1 = op2 && eq_exprs es1 es2 | _ -> false and eq_exprs (es1 es2:list expr) : Tot bool = match es1, es2 with | [], [] -> true | hd1::es1, hd2::es2 -> eq_expr hd1 hd2 && eq_exprs es1 es2 | _ -> false let eq_idents (i1 i2:ident) : Tot bool = i1.v.modul_name = i2.v.modul_name && i1.v.name = i2.v.name /// eq_typ: syntactic equalty of types let rec eq_out_expr (o1 o2:out_expr) : bool = match o1.out_expr_node.v, o2.out_expr_node.v with | OE_id i1, OE_id i2 -> eq_idents i1 i2 | OE_star o1, OE_star o2 | OE_addrof o1, OE_addrof o2 -> eq_out_expr o1 o2 | OE_deref o1 i1, OE_deref o2 i2 | OE_dot o1 i1, OE_dot o2 i2 -> eq_idents i1 i2 && eq_out_expr o1 o2 | _ -> false let eq_typ_param (p1 p2:typ_param) : bool = match p1, p2 with | Inl e1, Inl e2 -> eq_expr e1 e2 | Inr o1, Inr o2 -> eq_out_expr o1 o2 | _ -> false let rec eq_typ_params (ps1 ps2:list typ_param) : bool = match ps1, ps2 with | [], [] -> true | p1::ps1, p2::ps2 -> eq_typ_param p1 p2 && eq_typ_params ps1 ps2 | _ -> false let rec eq_typ (t1 t2:typ) : Tot bool = match t1.v, t2.v with | Type_app hd1 k1 ps1, Type_app hd2 k2 ps2 -> eq_idents hd1 hd2 && k1 = k2 && eq_typ_params ps1 ps2 | Pointer t1, Pointer t2 -> eq_typ t1 t2 | _ -> false (** Common AST constants and builders **) let dummy_range = dummy_pos, dummy_pos let with_dummy_range x = with_range x dummy_range let to_ident' x = {modul_name=None;name=x} let mk_prim_t x = with_dummy_range (Type_app (with_dummy_range (to_ident' x)) KindSpec []) let tbool = mk_prim_t "Bool" let tunit = mk_prim_t "unit"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Ast.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Ast.with_meta_t Ast.typ'
Prims.Tot
[ "total" ]
[]
[ "Ast.mk_prim_t" ]
[]
false
false
false
true
false
let tuint8be =
mk_prim_t "UINT8BE"
false