file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.tcut | val tcut (t: term) : Tac binding | val tcut (t: term) : Tac binding | let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro () | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 545,
"start_col": 0,
"start_line": 541
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Tactics.V2.Builtins.intro",
"FStar.Stubs.Reflection.V2.Data.binding",
"Prims.unit",
"FStar.Tactics.V2.Derived.apply",
"FStar.Tactics.NamedView.binding",
"FStar.Stubs.Reflection.Types.term",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"Prims.Nil",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.V2.Derived.cur_goal"
] | [] | false | true | false | false | false | let tcut (t: term) : Tac binding =
| let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro () | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.intros' | val intros': Prims.unit -> Tac unit | val intros': Prims.unit -> Tac unit | let intros' () : Tac unit = let _ = intros () in () | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 534,
"start_col": 0,
"start_line": 534
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.intros"
] | [] | false | true | false | false | false | let intros' () : Tac unit =
| let _ = intros () in
() | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.admit1 | val admit1: Prims.unit -> Tac unit | val admit1: Prims.unit -> Tac unit | let admit1 () : Tac unit =
tadmit () | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 509,
"start_col": 0,
"start_line": 508
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.tadmit"
] | [] | false | true | false | false | false | let admit1 () : Tac unit =
| tadmit () | false |
Spec.Ed25519.fst | Spec.Ed25519.secret_expand | val secret_expand (secret: lbytes 32) : (lbytes 32 & lbytes 32) | val secret_expand (secret: lbytes 32) : (lbytes 32 & lbytes 32) | let secret_expand (secret:lbytes 32) : (lbytes 32 & lbytes 32) =
let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low : lbytes 32 = slice h 0 32 in
let h_high : lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0] <- h_low.[0] &. u8 0xf8 in
let h_low = h_low.[31] <- (h_low.[31] &. u8 127) |. u8 64 in
h_low, h_high | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 15,
"end_line": 108,
"start_col": 0,
"start_line": 102
} | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p
// [a1]G - [a2]P
let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1
/// Ed25519 API | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | secret: Lib.ByteSequence.lbytes 32 -> Lib.ByteSequence.lbytes 32 * Lib.ByteSequence.lbytes 32 | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.lbytes",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.IntTypes.logor",
"Lib.IntTypes.logand",
"Lib.Sequence.index",
"Lib.IntTypes.mk_int",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.op_Amp_Dot",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.u8",
"Lib.Sequence.slice",
"Lib.IntTypes.uint_t",
"Spec.Hash.Definitions.hash_length'",
"Spec.Hash.Definitions.SHA2_512",
"Spec.Agile.Hash.hash",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let secret_expand (secret: lbytes 32) : (lbytes 32 & lbytes 32) =
| let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low:lbytes 32 = slice h 0 32 in
let h_high:lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0 ] <- h_low.[ 0 ] &. u8 0xf8 in
let h_low = h_low.[ 31 ] <- (h_low.[ 31 ] &. u8 127) |. u8 64 in
h_low, h_high | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.pose | val pose (t: term) : Tac binding | val pose (t: term) : Tac binding | let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro () | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 551,
"start_col": 0,
"start_line": 547
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Tactics.V2.Builtins.intro",
"FStar.Stubs.Reflection.V2.Data.binding",
"Prims.unit",
"FStar.Tactics.V2.Derived.exact",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.flip",
"FStar.Tactics.V2.Derived.apply"
] | [] | false | true | false | false | false | let pose (t: term) : Tac binding =
| apply (`__cut);
flip ();
exact t;
intro () | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.intros | val intros: Prims.unit -> Tac (list binding) | val intros: Prims.unit -> Tac (list binding) | let intros () : Tac (list binding) = repeat intro | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 532,
"start_col": 0,
"start_line": 532
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.repeat",
"FStar.Tactics.NamedView.binding",
"FStar.Stubs.Tactics.V2.Builtins.intro",
"Prims.list"
] | [] | false | true | false | false | false | let intros () : Tac (list binding) =
| repeat intro | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.intro_as | val intro_as (s: string) : Tac binding | val intro_as (s: string) : Tac binding | let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 555,
"start_col": 0,
"start_line": 553
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Stubs.Tactics.V2.Builtins.rename_to",
"FStar.Stubs.Reflection.V2.Data.binding",
"FStar.Stubs.Tactics.V2.Builtins.intro",
"FStar.Tactics.NamedView.binding"
] | [] | false | true | false | false | false | let intro_as (s: string) : Tac binding =
| let b = intro () in
rename_to b s | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.for_each_binding | val for_each_binding (f: (binding -> Tac 'a)) : Tac (list 'a) | val for_each_binding (f: (binding -> Tac 'a)) : Tac (list 'a) | let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ()) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 562,
"start_col": 0,
"start_line": 561
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac 'a)
-> FStar.Tactics.Effect.Tac (Prims.list 'a) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.Util.map",
"Prims.list",
"FStar.Tactics.V2.Derived.cur_vars"
] | [] | false | true | false | false | false | let for_each_binding (f: (binding -> Tac 'a)) : Tac (list 'a) =
| map f (cur_vars ()) | false |
Spec.Ed25519.fst | Spec.Ed25519.sign_expanded | val sign_expanded (pub s prefix:lbytes 32) (msg:bytes{length msg <= max_size_t}) : lbytes 64 | val sign_expanded (pub s prefix:lbytes 32) (msg:bytes{length msg <= max_size_t}) : lbytes 64 | let sign_expanded pub s prefix msg =
let len = length msg in
let r = sha512_modq (32 + len) (Seq.append prefix msg) in
let r' = point_mul_g (nat_to_bytes_le 32 r) in
let rs = point_compress r' in
let h = sha512_modq (64 + len) (Seq.append (concat rs pub) msg) in
let s = (r + (h * nat_from_bytes_le s) % q) % q in
concat #_ #32 #32 rs (nat_to_bytes_le 32 s) | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 130,
"start_col": 0,
"start_line": 123
} | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p
// [a1]G - [a2]P
let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1
/// Ed25519 API
let secret_expand (secret:lbytes 32) : (lbytes 32 & lbytes 32) =
let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low : lbytes 32 = slice h 0 32 in
let h_high : lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0] <- h_low.[0] &. u8 0xf8 in
let h_low = h_low.[31] <- (h_low.[31] &. u8 127) |. u8 64 in
h_low, h_high
let secret_to_public (secret:lbytes 32) : lbytes 32 =
let a, dummy = secret_expand secret in
point_compress (point_mul_g a)
let expand_keys (secret:lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32) =
let s, prefix = secret_expand secret in
let pub = point_compress (point_mul_g s) in
pub, s, prefix | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pub: Lib.ByteSequence.lbytes 32 ->
s: Lib.ByteSequence.lbytes 32 ->
prefix: Lib.ByteSequence.lbytes 32 ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t}
-> Lib.ByteSequence.lbytes 64 | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.lbytes",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.concat",
"Lib.ByteSequence.nat_to_bytes_le",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.ByteSequence.nat_from_bytes_le",
"Spec.Ed25519.q",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Spec.Ed25519.sha512_modq",
"FStar.Seq.Base.append",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.Ed25519.PointOps.point_compress",
"Spec.Ed25519.ext_point_c",
"Spec.Ed25519.point_mul_g"
] | [] | false | false | false | false | false | let sign_expanded pub s prefix msg =
| let len = length msg in
let r = sha512_modq (32 + len) (Seq.append prefix msg) in
let r' = point_mul_g (nat_to_bytes_le 32 r) in
let rs = point_compress r' in
let h = sha512_modq (64 + len) (Seq.append (concat rs pub) msg) in
let s = (r + (h * nat_from_bytes_le s) % q) % q in
concat #_ #32 #32 rs (nat_to_bytes_le 32 s) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.__cut | val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b | val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b | let __cut a b f x = f x | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 539,
"start_col": 8,
"start_line": 539
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: Type -> f: (_: a -> b) -> x: a -> b | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let __cut a b f x =
| f x | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.iseq | val iseq (ts: list (unit -> Tac unit)) : Tac unit | val iseq (ts: list (unit -> Tac unit)) : Tac unit | let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> () | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 324,
"start_col": 0,
"start_line": 321
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ts: Prims.list (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit)
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"Prims.unit",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.Derived.divide",
"FStar.Tactics.V2.Derived.iseq"
] | [
"recursion"
] | false | true | false | false | false | let rec iseq (ts: list (unit -> Tac unit)) : Tac unit =
| match ts with
| t :: ts ->
let _ = divide 1 t (fun () -> iseq ts) in
()
| [] -> () | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.binder_sort | val binder_sort (b: binder) : Tot typ | val binder_sort (b: binder) : Tot typ | let binder_sort (b : binder) : Tot typ = b.sort | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 570,
"start_col": 0,
"start_line": 570
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Tactics.NamedView.binder -> FStar.Stubs.Reflection.Types.typ | Prims.Tot | [
"total"
] | [] | [
"FStar.Tactics.NamedView.binder",
"FStar.Tactics.NamedView.__proj__Mkbinder__item__sort",
"FStar.Stubs.Reflection.Types.typ"
] | [] | false | false | false | true | false | let binder_sort (b: binder) : Tot typ =
| b.sort | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.rewrite' | val rewrite' (x: binding) : Tac unit | val rewrite' (x: binding) : Tac unit | let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
() | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 608,
"start_col": 0,
"start_line": 602
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.op_Less_Bar_Greater",
"Prims.unit",
"FStar.Stubs.Tactics.V2.Builtins.rewrite",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Stubs.Tactics.V2.Builtins.var_retype",
"FStar.Tactics.V2.Derived.fail"
] | [] | false | true | false | false | false | let rewrite' (x: binding) : Tac unit =
| ((fun () -> rewrite x) <|>
(fun () ->
var_retype x;
apply_lemma (`__eq_sym);
rewrite x) <|>
(fun () -> fail "rewrite' failed")) () | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.rewrite_eqs_from_context | val rewrite_eqs_from_context: Prims.unit -> Tac unit | val rewrite_eqs_from_context: Prims.unit -> Tac unit | let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ()) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 48,
"end_line": 632,
"start_col": 0,
"start_line": 631
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.rewrite_all_context_equalities",
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.cur_vars"
] | [] | false | true | false | false | false | let rewrite_eqs_from_context () : Tac unit =
| rewrite_all_context_equalities (cur_vars ()) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.assumption | val assumption: Prims.unit -> Tac unit | val assumption: Prims.unit -> Tac unit | let assumption () : Tac unit =
__assumption_aux (cur_vars ()) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 585,
"start_col": 0,
"start_line": 584
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.__assumption_aux",
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.cur_vars"
] | [] | false | true | false | false | false | let assumption () : Tac unit =
| __assumption_aux (cur_vars ()) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.fresh_namedv | val fresh_namedv: Prims.unit -> Tac namedv | val fresh_namedv: Prims.unit -> Tac namedv | let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
}) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 404,
"start_col": 0,
"start_line": 398
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.namedv | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.NamedView.pack_namedv",
"FStar.Stubs.Reflection.V2.Data.Mknamedv_view",
"FStar.Sealed.seal",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_Unknown",
"Prims.string",
"Prims.op_Hat",
"Prims.string_of_int",
"FStar.Tactics.NamedView.namedv",
"Prims.nat",
"FStar.Stubs.Tactics.V2.Builtins.fresh"
] | [] | false | true | false | false | false | let fresh_namedv () : Tac namedv =
| let n = fresh () in
pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n }) | false |
Vale.AES.X64.AESopt.fst | Vale.AES.X64.AESopt.va_lemma_Loop6x_final | val va_lemma_Loop6x_final : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> iv_b:buffer128 ->
scratch_b:buffer128 -> key_words:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 ->
ctr_orig:quad32 -> init:quad32_6 -> ctrs:quad32_6 -> plain:quad32_6 -> inb:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Loop6x_final alg) va_s0 /\ va_get_ok va_s0 /\
(sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 2 va_s0) (va_get_reg64 rR8
va_s0) iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 9 (va_get_mem_layout va_s0)
Secret /\ va_get_reg64 rRdi va_s0 + 96 < pow2_64 /\ va_get_reg64 rRsi va_s0 + 96 < pow2_64 /\
aes_reqs_offset alg key_words round_keys keys_b (va_get_reg64 rRcx va_s0) (va_get_mem_heaplet 0
va_s0) (va_get_mem_layout va_s0) /\ init == map_six_of #quad32 #quad32 ctrs (fun (c:quad32) ->
Vale.Def.Types_s.quad32_xor c (FStar.Seq.Base.index #Vale.Def.Types_s.quad32 round_keys 0)) /\
(va_get_xmm 9 va_s0, va_get_xmm 10 va_s0, va_get_xmm 11 va_s0, va_get_xmm 12 va_s0, va_get_xmm
13 va_s0, va_get_xmm 14 va_s0) == rounds_opaque_6 init round_keys (Vale.AES.AES_common_s.nr alg
- 1) /\ va_get_reg64 rR13 va_s0 == Vale.Def.Types_s.reverse_bytes_nat64 (Vale.Arch.Types.hi64
inb) /\ va_get_reg64 rR12 va_s0 == Vale.Def.Types_s.reverse_bytes_nat64 (Vale.Arch.Types.lo64
inb) /\ (let rk = FStar.Seq.Base.index #quad32 round_keys (Vale.AES.AES_common_s.nr alg) in
(va_get_xmm 2 va_s0, va_get_xmm 0 va_s0, va_get_xmm 5 va_s0, va_get_xmm 6 va_s0, va_get_xmm 7
va_s0, va_get_xmm 3 va_s0) == map_six_of #quad32 #quad32 plain (fun (p:quad32) ->
Vale.Def.Types_s.quad32_xor rk p) /\ Vale.X64.Decls.buffer128_read scratch_b 8
(va_get_mem_heaplet 3 va_s0) == Vale.Def.Types_s.reverse_bytes_quad32 ctr_orig))))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) 7 7 /\ Vale.X64.Decls.buffer128_read scratch_b 7
(va_get_mem_heaplet 3 va_sM) == Vale.Def.Types_s.reverse_bytes_quad32 inb /\ (va_get_xmm 9
va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm 13 va_sM,
va_get_xmm 14 va_sM) == map2_six_of #quad32 #quad32 #quad32 plain ctrs (fun (p:quad32)
(c:quad32) -> Vale.Def.Types_s.quad32_xor p (Vale.AES.AES_s.aes_encrypt_LE alg key_words c)) /\
va_get_xmm 15 va_sM == FStar.Seq.Base.index #quad32 round_keys 0 /\ va_get_reg64 rRdi va_sM ==
va_get_reg64 rRdi va_s0 + 96 /\ va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0 + 96 /\
va_get_xmm 2 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216 /\
va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read scratch_b 8 (va_get_mem_heaplet 3 va_s0) /\
(let ctr = Vale.Def.Words_s.__proj__Mkfour__item__lo0 ctr_orig `op_Modulus` 256 in ctr + 6 <
256 ==> (va_get_xmm 1 va_sM, va_get_xmm 0 va_sM, va_get_xmm 5 va_sM, va_get_xmm 6 va_sM,
va_get_xmm 7 va_sM, va_get_xmm 3 va_sM) == xor_reverse_inc32lite_6 0 0 ctr_orig (va_get_xmm 15
va_sM))) /\ va_state_eq va_sM (va_update_mem_heaplet 3 va_sM (va_update_flags va_sM
(va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM
(va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 7 va_sM
(va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM
(va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12
va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM
(va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))) | val va_lemma_Loop6x_final : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> iv_b:buffer128 ->
scratch_b:buffer128 -> key_words:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 ->
ctr_orig:quad32 -> init:quad32_6 -> ctrs:quad32_6 -> plain:quad32_6 -> inb:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Loop6x_final alg) va_s0 /\ va_get_ok va_s0 /\
(sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 2 va_s0) (va_get_reg64 rR8
va_s0) iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 9 (va_get_mem_layout va_s0)
Secret /\ va_get_reg64 rRdi va_s0 + 96 < pow2_64 /\ va_get_reg64 rRsi va_s0 + 96 < pow2_64 /\
aes_reqs_offset alg key_words round_keys keys_b (va_get_reg64 rRcx va_s0) (va_get_mem_heaplet 0
va_s0) (va_get_mem_layout va_s0) /\ init == map_six_of #quad32 #quad32 ctrs (fun (c:quad32) ->
Vale.Def.Types_s.quad32_xor c (FStar.Seq.Base.index #Vale.Def.Types_s.quad32 round_keys 0)) /\
(va_get_xmm 9 va_s0, va_get_xmm 10 va_s0, va_get_xmm 11 va_s0, va_get_xmm 12 va_s0, va_get_xmm
13 va_s0, va_get_xmm 14 va_s0) == rounds_opaque_6 init round_keys (Vale.AES.AES_common_s.nr alg
- 1) /\ va_get_reg64 rR13 va_s0 == Vale.Def.Types_s.reverse_bytes_nat64 (Vale.Arch.Types.hi64
inb) /\ va_get_reg64 rR12 va_s0 == Vale.Def.Types_s.reverse_bytes_nat64 (Vale.Arch.Types.lo64
inb) /\ (let rk = FStar.Seq.Base.index #quad32 round_keys (Vale.AES.AES_common_s.nr alg) in
(va_get_xmm 2 va_s0, va_get_xmm 0 va_s0, va_get_xmm 5 va_s0, va_get_xmm 6 va_s0, va_get_xmm 7
va_s0, va_get_xmm 3 va_s0) == map_six_of #quad32 #quad32 plain (fun (p:quad32) ->
Vale.Def.Types_s.quad32_xor rk p) /\ Vale.X64.Decls.buffer128_read scratch_b 8
(va_get_mem_heaplet 3 va_s0) == Vale.Def.Types_s.reverse_bytes_quad32 ctr_orig))))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) 7 7 /\ Vale.X64.Decls.buffer128_read scratch_b 7
(va_get_mem_heaplet 3 va_sM) == Vale.Def.Types_s.reverse_bytes_quad32 inb /\ (va_get_xmm 9
va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm 13 va_sM,
va_get_xmm 14 va_sM) == map2_six_of #quad32 #quad32 #quad32 plain ctrs (fun (p:quad32)
(c:quad32) -> Vale.Def.Types_s.quad32_xor p (Vale.AES.AES_s.aes_encrypt_LE alg key_words c)) /\
va_get_xmm 15 va_sM == FStar.Seq.Base.index #quad32 round_keys 0 /\ va_get_reg64 rRdi va_sM ==
va_get_reg64 rRdi va_s0 + 96 /\ va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0 + 96 /\
va_get_xmm 2 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216 /\
va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read scratch_b 8 (va_get_mem_heaplet 3 va_s0) /\
(let ctr = Vale.Def.Words_s.__proj__Mkfour__item__lo0 ctr_orig `op_Modulus` 256 in ctr + 6 <
256 ==> (va_get_xmm 1 va_sM, va_get_xmm 0 va_sM, va_get_xmm 5 va_sM, va_get_xmm 6 va_sM,
va_get_xmm 7 va_sM, va_get_xmm 3 va_sM) == xor_reverse_inc32lite_6 0 0 ctr_orig (va_get_xmm 15
va_sM))) /\ va_state_eq va_sM (va_update_mem_heaplet 3 va_sM (va_update_flags va_sM
(va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM
(va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 7 va_sM
(va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM
(va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12
va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM
(va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))) | let va_lemma_Loop6x_final va_b0 va_s0 alg iv_b scratch_b key_words round_keys keys_b ctr_orig init
ctrs plain inb =
let (va_mods:va_mods_t) = [va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 15; va_Mod_xmm 14;
va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 7;
va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0;
va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi;
va_Mod_ok; va_Mod_mem] in
let va_qc = va_qcode_Loop6x_final va_mods alg iv_b scratch_b key_words round_keys keys_b ctr_orig
init ctrs plain inb in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_Loop6x_final alg) va_qc va_s0 (fun
va_s0 va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 589 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_ok va_sM) /\ (label va_range1
"***** POSTCONDITION NOT MET AT line 649 column 72 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) 7 7) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 652 column 73 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_sM) ==
Vale.Def.Types_s.reverse_bytes_quad32 inb) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 654 column 111 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((va_get_xmm 9 va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm
13 va_sM, va_get_xmm 14 va_sM) == map2_six_of #quad32 #quad32 #quad32 plain ctrs (fun
(p:quad32) (c:quad32) -> Vale.Def.Types_s.quad32_xor p (Vale.AES.AES_s.aes_encrypt_LE alg
key_words c))) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 655 column 39 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 15 va_sM == FStar.Seq.Base.index #quad32 round_keys 0) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 657 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0 + 96) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 658 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0 + 96) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 660 column 41 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 2 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216) /\ label
va_range1
"***** POSTCONDITION NOT MET AT line 662 column 55 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read scratch_b 8 (va_get_mem_heaplet 3 va_s0))
/\ label va_range1
"***** POSTCONDITION NOT MET AT line 663 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(let ctr = Vale.Def.Words_s.__proj__Mkfour__item__lo0 ctr_orig `op_Modulus` 256 in label
va_range1
"***** POSTCONDITION NOT MET AT line 665 column 60 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(ctr + 6 < 256 ==> (va_get_xmm 1 va_sM, va_get_xmm 0 va_sM, va_get_xmm 5 va_sM, va_get_xmm 6
va_sM, va_get_xmm 7 va_sM, va_get_xmm 3 va_sM) == xor_reverse_inc32lite_6 0 0 ctr_orig
(va_get_xmm 15 va_sM))))) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm
13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 7; va_Mod_xmm 6;
va_Mod_xmm 5; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR13;
va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_ok;
va_Mod_mem]) va_sM va_s0;
(va_sM, va_fM) | {
"file_name": "obj/Vale.AES.X64.AESopt.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 1665,
"start_col": 0,
"start_line": 1616
} | module Vale.AES.X64.AESopt
open FStar.Mul
open Vale.Def.Prop_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.AES.AES_s
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.AES.AES_helpers
//open Vale.Poly1305.Math // For lemma_poly_bits64()
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.Arch.TypesNative
open Vale.X64.CPU_Features_s
open Vale.Math.Poly2_s
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash
open Vale.AES.X64.PolyOps
open Vale.AES.X64.AESopt2
open Vale.AES.X64.AESGCM_expected_code
open Vale.Transformers.Transform
open FStar.Mul
let add = Vale.Math.Poly2_s.add
#reset-options "--z3rlimit 30"
//-- finish_aes_encrypt_le
val finish_aes_encrypt_le : alg:algorithm -> input_LE:quad32 -> key:(seq nat32)
-> Lemma
(requires (Vale.AES.AES_s.is_aes_key_LE alg key))
(ensures (Vale.AES.AES_s.aes_encrypt_LE alg key input_LE == Vale.AES.AES_s.eval_cipher alg
input_LE (Vale.AES.AES_s.key_to_round_keys_LE alg key)))
let finish_aes_encrypt_le alg input_LE key =
Vale.AES.AES_s.aes_encrypt_LE_reveal ();
Vale.AES.AES_s.eval_cipher_reveal ();
()
//--
//-- Load_two_lsb
[@ "opaque_to_smt"]
let va_code_Load_two_lsb dst =
(va_Block (va_CCons (va_code_ZeroXmm dst) (va_CCons (va_code_PinsrqImm dst 2 0
(va_op_reg_opr64_reg64 rR11)) (va_CNil ()))))
[@ "opaque_to_smt"]
let va_codegen_success_Load_two_lsb dst =
(va_pbool_and (va_codegen_success_ZeroXmm dst) (va_pbool_and (va_codegen_success_PinsrqImm dst 2
0 (va_op_reg_opr64_reg64 rR11)) (va_ttrue ())))
[@"opaque_to_smt"]
let va_lemma_Load_two_lsb va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Load_two_lsb) (va_code_Load_two_lsb dst);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s3, va_fc3) = va_lemma_ZeroXmm (va_hd va_b1) va_s0 dst in
let va_b3 = va_tl va_b1 in
Vale.Arch.Types.lemma_insert_nat64_nat32s (va_eval_xmm va_s3 dst) 2 0;
assert (Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo #Vale.Def.Words_s.nat32 2 0) == 2);
let (va_s6, va_fc6) = va_lemma_PinsrqImm (va_hd va_b3) va_s3 dst 2 0 (va_op_reg_opr64_reg64 rR11)
in
let va_b6 = va_tl va_b3 in
let (va_sM, va_f6) = va_lemma_empty_total va_s6 va_b6 in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc6 va_s6 va_f6 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load_two_lsb dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load_two_lsb (va_code_Load_two_lsb dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rR11 va_sM (va_update_ok va_sM
(va_update_operand_xmm dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_flags; va_Mod_reg64 rR11; va_mod_xmm dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load_0xc2_msb
val va_code_Load_0xc2_msb : dst:va_operand_xmm -> Tot va_code
[@ "opaque_to_smt"]
let va_code_Load_0xc2_msb dst =
(va_Block (va_CCons (va_code_ZeroXmm dst) (va_CCons (va_code_PinsrqImm dst 13979173243358019584 1
(va_op_reg_opr64_reg64 rR11)) (va_CNil ()))))
val va_codegen_success_Load_0xc2_msb : dst:va_operand_xmm -> Tot va_pbool
[@ "opaque_to_smt"]
let va_codegen_success_Load_0xc2_msb dst =
(va_pbool_and (va_codegen_success_ZeroXmm dst) (va_pbool_and (va_codegen_success_PinsrqImm dst
13979173243358019584 1 (va_op_reg_opr64_reg64 rR11)) (va_ttrue ())))
val va_lemma_Load_0xc2_msb : va_b0:va_code -> va_s0:va_state -> dst:va_operand_xmm
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Load_0xc2_msb dst) va_s0 /\ va_is_dst_xmm dst va_s0 /\
va_get_ok va_s0 /\ sse_enabled))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_xmm va_sM dst == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\
va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rR11 va_sM (va_update_ok va_sM
(va_update_operand_xmm dst va_sM va_s0))))))
[@"opaque_to_smt"]
let va_lemma_Load_0xc2_msb va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Load_0xc2_msb) (va_code_Load_0xc2_msb dst);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s3, va_fc3) = va_lemma_ZeroXmm (va_hd va_b1) va_s0 dst in
let va_b3 = va_tl va_b1 in
assert (Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo #Vale.Def.Words_s.nat32 0
3254779904) == 13979173243358019584);
Vale.Arch.Types.lemma_insert_nat64_nat32s (va_eval_xmm va_s3 dst) 0 3254779904;
let (va_s6, va_fc6) = va_lemma_PinsrqImm (va_hd va_b3) va_s3 dst 13979173243358019584 1
(va_op_reg_opr64_reg64 rR11) in
let va_b6 = va_tl va_b3 in
let (va_sM, va_f6) = va_lemma_empty_total va_s6 va_b6 in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc6 va_s6 va_f6 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in
(va_sM, va_fM)
[@ va_qattr]
let va_wp_Load_0xc2_msb (dst:va_operand_xmm) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) :
Type0 =
(va_is_dst_xmm dst va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ (forall (va_x_dst:va_value_xmm)
(va_x_r11:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64
rR11 va_x_r11 (va_upd_operand_xmm dst va_x_dst va_s0)) in va_get_ok va_sM /\ va_eval_xmm va_sM
dst == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 ==> va_k va_sM (())))
val va_wpProof_Load_0xc2_msb : dst:va_operand_xmm -> va_s0:va_state -> va_k:(va_state -> unit ->
Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Load_0xc2_msb dst va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Load_0xc2_msb dst) ([va_Mod_flags;
va_Mod_reg64 rR11; va_mod_xmm dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_Load_0xc2_msb dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load_0xc2_msb (va_code_Load_0xc2_msb dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rR11 va_sM (va_update_ok va_sM
(va_update_operand_xmm dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_flags; va_Mod_reg64 rR11; va_mod_xmm dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_Load_0xc2_msb (dst:va_operand_xmm) : (va_quickCode unit (va_code_Load_0xc2_msb dst)) =
(va_QProc (va_code_Load_0xc2_msb dst) ([va_Mod_flags; va_Mod_reg64 rR11; va_mod_xmm dst])
(va_wp_Load_0xc2_msb dst) (va_wpProof_Load_0xc2_msb dst))
//--
//-- Load_one_lsb
[@ "opaque_to_smt"]
let va_code_Load_one_lsb dst =
(va_Block (va_CCons (va_code_ZeroXmm dst) (va_CCons (va_code_PinsrqImm dst 1 0
(va_op_reg_opr64_reg64 rR11)) (va_CNil ()))))
[@ "opaque_to_smt"]
let va_codegen_success_Load_one_lsb dst =
(va_pbool_and (va_codegen_success_ZeroXmm dst) (va_pbool_and (va_codegen_success_PinsrqImm dst 1
0 (va_op_reg_opr64_reg64 rR11)) (va_ttrue ())))
[@"opaque_to_smt"]
let va_lemma_Load_one_lsb va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Load_one_lsb) (va_code_Load_one_lsb dst);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s3, va_fc3) = va_lemma_ZeroXmm (va_hd va_b1) va_s0 dst in
let va_b3 = va_tl va_b1 in
Vale.Arch.Types.lemma_insert_nat64_nat32s (va_eval_xmm va_s3 dst) 1 0;
assert (Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo #Vale.Def.Words_s.nat32 1 0) == 1);
let (va_s6, va_fc6) = va_lemma_PinsrqImm (va_hd va_b3) va_s3 dst 1 0 (va_op_reg_opr64_reg64 rR11)
in
let va_b6 = va_tl va_b3 in
let (va_sM, va_f6) = va_lemma_empty_total va_s6 va_b6 in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc6 va_s6 va_f6 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load_one_lsb dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load_one_lsb (va_code_Load_one_lsb dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rR11 va_sM (va_update_ok va_sM
(va_update_operand_xmm dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_flags; va_Mod_reg64 rR11; va_mod_xmm dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Handle_ctr32
val va_code_Handle_ctr32 : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_Handle_ctr32 () =
(va_Block (va_CCons (va_code_InitPshufbMask (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rR11))
(va_CCons (va_code_VPshufb (va_op_xmm_xmm 6) (va_op_xmm_xmm 1) (va_op_xmm_xmm 0)) (va_CCons
(va_code_Load_one_lsb (va_op_xmm_xmm 5)) (va_CCons (va_code_VPaddd (va_op_xmm_xmm 10)
(va_op_xmm_xmm 6) (va_op_xmm_xmm 5)) (va_CCons (va_code_Load_two_lsb (va_op_xmm_xmm 5))
(va_CCons (va_code_VPaddd (va_op_xmm_xmm 11) (va_op_xmm_xmm 6) (va_op_xmm_xmm 5)) (va_CCons
(va_code_VPaddd (va_op_xmm_xmm 12) (va_op_xmm_xmm 10) (va_op_xmm_xmm 5)) (va_CCons
(va_code_VPshufb (va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_xmm_xmm 0)) (va_CCons
(va_code_VPaddd (va_op_xmm_xmm 13) (va_op_xmm_xmm 11) (va_op_xmm_xmm 5)) (va_CCons
(va_code_VPshufb (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_xmm_xmm 0)) (va_CCons
(va_code_VPxor (va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_opr128_xmm 15)) (va_CCons
(va_code_VPaddd (va_op_xmm_xmm 14) (va_op_xmm_xmm 12) (va_op_xmm_xmm 5)) (va_CCons
(va_code_VPshufb (va_op_xmm_xmm 12) (va_op_xmm_xmm 12) (va_op_xmm_xmm 0)) (va_CCons
(va_code_VPxor (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_opr128_xmm 15)) (va_CCons
(va_code_VPaddd (va_op_xmm_xmm 1) (va_op_xmm_xmm 13) (va_op_xmm_xmm 5)) (va_CCons
(va_code_VPshufb (va_op_xmm_xmm 13) (va_op_xmm_xmm 13) (va_op_xmm_xmm 0)) (va_CCons
(va_code_VPshufb (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) (va_op_xmm_xmm 0)) (va_CCons
(va_code_VPshufb (va_op_xmm_xmm 1) (va_op_xmm_xmm 1) (va_op_xmm_xmm 0)) (va_CNil
()))))))))))))))))))))
val va_codegen_success_Handle_ctr32 : va_dummy:unit -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_Handle_ctr32 () =
(va_pbool_and (va_codegen_success_InitPshufbMask (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rR11))
(va_pbool_and (va_codegen_success_VPshufb (va_op_xmm_xmm 6) (va_op_xmm_xmm 1) (va_op_xmm_xmm
0)) (va_pbool_and (va_codegen_success_Load_one_lsb (va_op_xmm_xmm 5)) (va_pbool_and
(va_codegen_success_VPaddd (va_op_xmm_xmm 10) (va_op_xmm_xmm 6) (va_op_xmm_xmm 5))
(va_pbool_and (va_codegen_success_Load_two_lsb (va_op_xmm_xmm 5)) (va_pbool_and
(va_codegen_success_VPaddd (va_op_xmm_xmm 11) (va_op_xmm_xmm 6) (va_op_xmm_xmm 5))
(va_pbool_and (va_codegen_success_VPaddd (va_op_xmm_xmm 12) (va_op_xmm_xmm 10) (va_op_xmm_xmm
5)) (va_pbool_and (va_codegen_success_VPshufb (va_op_xmm_xmm 10) (va_op_xmm_xmm 10)
(va_op_xmm_xmm 0)) (va_pbool_and (va_codegen_success_VPaddd (va_op_xmm_xmm 13) (va_op_xmm_xmm
11) (va_op_xmm_xmm 5)) (va_pbool_and (va_codegen_success_VPshufb (va_op_xmm_xmm 11)
(va_op_xmm_xmm 11) (va_op_xmm_xmm 0)) (va_pbool_and (va_codegen_success_VPxor (va_op_xmm_xmm
10) (va_op_xmm_xmm 10) (va_op_opr128_xmm 15)) (va_pbool_and (va_codegen_success_VPaddd
(va_op_xmm_xmm 14) (va_op_xmm_xmm 12) (va_op_xmm_xmm 5)) (va_pbool_and
(va_codegen_success_VPshufb (va_op_xmm_xmm 12) (va_op_xmm_xmm 12) (va_op_xmm_xmm 0))
(va_pbool_and (va_codegen_success_VPxor (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_opr128_xmm
15)) (va_pbool_and (va_codegen_success_VPaddd (va_op_xmm_xmm 1) (va_op_xmm_xmm 13)
(va_op_xmm_xmm 5)) (va_pbool_and (va_codegen_success_VPshufb (va_op_xmm_xmm 13) (va_op_xmm_xmm
13) (va_op_xmm_xmm 0)) (va_pbool_and (va_codegen_success_VPshufb (va_op_xmm_xmm 14)
(va_op_xmm_xmm 14) (va_op_xmm_xmm 0)) (va_pbool_and (va_codegen_success_VPshufb (va_op_xmm_xmm
1) (va_op_xmm_xmm 1) (va_op_xmm_xmm 0)) (va_ttrue ())))))))))))))))))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_Handle_ctr32 (va_mods:va_mods_t) (ctr_BE:quad32) : (va_quickCode unit
(va_code_Handle_ctr32 ())) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 256 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_InitPshufbMask (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rR11)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 257 column 12 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPshufb (va_op_xmm_xmm 6) (va_op_xmm_xmm 1) (va_op_xmm_xmm 0)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 261 column 17 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Load_one_lsb (va_op_xmm_xmm 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 262 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 10) (va_op_xmm_xmm 6) (va_op_xmm_xmm 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 263 column 17 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Load_two_lsb (va_op_xmm_xmm 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 264 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 11) (va_op_xmm_xmm 6) (va_op_xmm_xmm 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 265 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 12) (va_op_xmm_xmm 10) (va_op_xmm_xmm 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 266 column 12 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPshufb (va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_xmm_xmm 0)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 267 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 13) (va_op_xmm_xmm 11) (va_op_xmm_xmm 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 268 column 12 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPshufb (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_xmm_xmm 0)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 269 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_opr128_xmm 15)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 270 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 14) (va_op_xmm_xmm 12) (va_op_xmm_xmm 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 271 column 12 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPshufb (va_op_xmm_xmm 12) (va_op_xmm_xmm 12) (va_op_xmm_xmm 0)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 272 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_opr128_xmm 15)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 273 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 1) (va_op_xmm_xmm 13) (va_op_xmm_xmm 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 274 column 12 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPshufb (va_op_xmm_xmm 13) (va_op_xmm_xmm 13) (va_op_xmm_xmm 0)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 275 column 12 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPshufb (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) (va_op_xmm_xmm 0)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 276 column 12 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPshufb (va_op_xmm_xmm 1) (va_op_xmm_xmm 1) (va_op_xmm_xmm 0)) (va_QEmpty
(())))))))))))))))))))))
val va_lemma_Handle_ctr32 : va_b0:va_code -> va_s0:va_state -> ctr_BE:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Handle_ctr32 ()) va_s0 /\ va_get_ok va_s0 /\
(avx_enabled /\ sse_enabled /\ va_get_xmm 1 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32
ctr_BE)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm 13 va_sM, va_get_xmm
14 va_sM, va_get_xmm 1 va_sM) == xor_reverse_inc32lite_6 2 1 ctr_BE (va_get_xmm 15 va_sM) /\
va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM
(va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 6 va_sM
(va_update_xmm 5 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM
(va_update_reg64 rR11 va_sM (va_update_ok va_sM va_s0)))))))))))))))
[@"opaque_to_smt"]
let va_lemma_Handle_ctr32 va_b0 va_s0 ctr_BE =
let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm
11; va_Mod_xmm 10; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0;
va_Mod_reg64 rR11; va_Mod_ok] in
let va_qc = va_qcode_Handle_ctr32 va_mods ctr_BE in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_Handle_ctr32 ()) va_qc va_s0 (fun va_s0
va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 234 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_ok va_sM) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 254 column 107 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm 13 va_sM,
va_get_xmm 14 va_sM, va_get_xmm 1 va_sM) == xor_reverse_inc32lite_6 2 1 ctr_BE (va_get_xmm 15
va_sM))) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11;
va_Mod_xmm 10; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0;
va_Mod_reg64 rR11; va_Mod_ok]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_Handle_ctr32 (ctr_BE:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (avx_enabled /\ sse_enabled /\ va_get_xmm 1 va_s0 ==
Vale.Def.Types_s.reverse_bytes_quad32 ctr_BE) /\ (forall (va_x_r11:nat64) (va_x_xmm0:quad32)
(va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm10:quad32)
(va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 14 va_x_xmm14
(va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10
va_x_xmm10 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm
1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 va_s0))))))))))) in va_get_ok
va_sM /\ (va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm 13 va_sM,
va_get_xmm 14 va_sM, va_get_xmm 1 va_sM) == xor_reverse_inc32lite_6 2 1 ctr_BE (va_get_xmm 15
va_sM) ==> va_k va_sM (())))
val va_wpProof_Handle_ctr32 : ctr_BE:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Handle_ctr32 ctr_BE va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Handle_ctr32 ()) ([va_Mod_flags;
va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 6;
va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11]) va_s0 va_k ((va_sM,
va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_Handle_ctr32 ctr_BE va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Handle_ctr32 (va_code_Handle_ctr32 ()) va_s0 ctr_BE in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM
(va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 6 va_sM
(va_update_xmm 5 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM
(va_update_reg64 rR11 va_sM (va_update_ok va_sM va_s0))))))))))))));
va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11;
va_Mod_xmm 10; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0;
va_Mod_reg64 rR11]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_Handle_ctr32 (ctr_BE:quad32) : (va_quickCode unit (va_code_Handle_ctr32 ())) =
(va_QProc (va_code_Handle_ctr32 ()) ([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12;
va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1;
va_Mod_xmm 0; va_Mod_reg64 rR11]) (va_wp_Handle_ctr32 ctr_BE) (va_wpProof_Handle_ctr32 ctr_BE))
//--
//-- Loop6x_ctr_update
val va_code_Loop6x_ctr_update : alg:algorithm -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_Loop6x_ctr_update alg =
(va_Block (va_CCons (va_code_Add64 (va_op_dst_opr64_reg64 rRbx) (va_const_opr64 6)) (va_CCons
(va_IfElse (va_cmp_ge (va_op_cmp_reg64 rRbx) (va_const_cmp 256)) (va_Block (va_CCons
(va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 3) (va_op_reg_opr64_reg64
rR9) (0 - 32) Secret) (va_CCons (va_code_Handle_ctr32 ()) (va_CCons (va_code_Sub64
(va_op_dst_opr64_reg64 rRbx) (va_const_opr64 256)) (va_CNil ()))))) (va_Block (va_CCons
(va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 3) (va_op_reg_opr64_reg64
rR9) (0 - 32) Secret) (va_CCons (va_code_VPaddd (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)
(va_op_xmm_xmm 14)) (va_CCons (va_code_VPxor (va_op_xmm_xmm 10) (va_op_xmm_xmm 10)
(va_op_opr128_xmm 15)) (va_CCons (va_code_VPxor (va_op_xmm_xmm 11) (va_op_xmm_xmm 11)
(va_op_opr128_xmm 15)) (va_CNil ()))))))) (va_CNil ()))))
val va_codegen_success_Loop6x_ctr_update : alg:algorithm -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_Loop6x_ctr_update alg =
(va_pbool_and (va_codegen_success_Add64 (va_op_dst_opr64_reg64 rRbx) (va_const_opr64 6))
(va_pbool_and (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_xmm_xmm 3) (va_op_reg_opr64_reg64 rR9) (0 - 32) Secret) (va_pbool_and
(va_codegen_success_Handle_ctr32 ()) (va_pbool_and (va_codegen_success_Sub64
(va_op_dst_opr64_reg64 rRbx) (va_const_opr64 256)) (va_pbool_and
(va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 3)
(va_op_reg_opr64_reg64 rR9) (0 - 32) Secret) (va_pbool_and (va_codegen_success_VPaddd
(va_op_xmm_xmm 1) (va_op_xmm_xmm 2) (va_op_xmm_xmm 14)) (va_pbool_and (va_codegen_success_VPxor
(va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_opr128_xmm 15)) (va_codegen_success_VPxor
(va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_opr128_xmm 15)))))))) (va_ttrue ())))
[@ "opaque_to_smt" va_qattr]
let va_qcode_Loop6x_ctr_update (va_mods:va_mods_t) (alg:algorithm) (h_LE:quad32) (key_words:(seq
nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (hkeys_b:buffer128) (ctr_BE:quad32) :
(va_quickCode unit (va_code_Loop6x_ctr_update alg)) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let
(h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_QBind va_range1
"***** PRECONDITION NOT MET AT line 339 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Add64 (va_op_dst_opr64_reg64 rRbx) (va_const_opr64 6)) (fun (va_s:va_state) _ ->
va_QBind va_range1
"***** PRECONDITION NOT MET AT line 340 column 8 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_qIf va_mods (Cmp_ge (va_op_cmp_reg64 rRbx) (va_const_cmp 256)) (qblock va_mods (fun
(va_s:va_state) -> va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 341 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 3) (va_op_reg_opr64_reg64
rR9) (0 - 32) Secret hkeys_b 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 342 column 21 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Handle_ctr32 ctr_BE) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 343 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Sub64 (va_op_dst_opr64_reg64 rRbx) (va_const_opr64 256)) (va_QEmpty (())))))) (qblock
va_mods (fun (va_s:va_state) -> va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 345 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 3) (va_op_reg_opr64_reg64
rR9) (0 - 32) Secret hkeys_b 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 346 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 1) (va_op_xmm_xmm 2) (va_op_xmm_xmm 14)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 347 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_opr128_xmm 15)) (va_QBind
va_range1
"***** PRECONDITION NOT MET AT line 348 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_opr128_xmm 15)) (fun
(va_s:va_state) _ -> let (va_arg36:Prims.nat) = va_get_reg64 rRbx va_old_s in let
(va_arg35:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_s in let
(va_arg34:Vale.Def.Types_s.quad32) = va_get_xmm 14 va_s in let
(va_arg33:Vale.Def.Types_s.quad32) = ctr_BE in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 349 column 28 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.lemma_msb_in_bounds va_arg33 va_arg34 va_arg35 va_arg36)
(va_QEmpty (()))))))))) (fun (va_s:va_state) va_g -> va_QEmpty (())))))
val va_lemma_Loop6x_ctr_update : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> h_LE:quad32 ->
key_words:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> hkeys_b:buffer128 ->
ctr_BE:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Loop6x_ctr_update alg) va_s0 /\ va_get_ok va_s0 /\
(let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in sse_enabled /\ aes_reqs_offset alg key_words
round_keys keys_b (va_get_reg64 rRcx va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout
va_s0) /\ va_get_xmm 2 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216
/\ va_get_xmm 1 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE
0) /\ va_get_reg64 rRbx va_s0 == Vale.Def.Words_s.__proj__Mkfour__item__lo0 ctr_BE `op_Modulus`
256 /\ va_get_xmm 9 va_s0 == Vale.Def.Types_s.quad32_xor (Vale.Def.Types_s.reverse_bytes_quad32
(Vale.AES.GCTR.inc32lite ctr_BE 0)) (va_get_xmm 15 va_s0) /\ (va_get_reg64 rRbx va_s0 + 6 < 256
==> (va_get_xmm 9 va_s0, va_get_xmm 10 va_s0, va_get_xmm 11 va_s0, va_get_xmm 12 va_s0,
va_get_xmm 13 va_s0, va_get_xmm 14 va_s0) == xor_reverse_inc32lite_6 1 0 ctr_BE (va_get_xmm 15
va_s0)) /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)
(va_get_reg64 rR9 va_s0 - 32) h)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 1 va_sM ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE 6) /\ (0 <= va_get_reg64
rRbx va_sM /\ va_get_reg64 rRbx va_sM < 256) /\ va_get_reg64 rRbx va_sM ==
Vale.Def.Words_s.__proj__Mkfour__item__lo0 (Vale.AES.GCTR.inc32lite ctr_BE 6) `op_Modulus` 256
/\ (va_get_xmm 9 va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM,
va_get_xmm 13 va_sM, va_get_xmm 14 va_sM) == xor_reverse_inc32lite_6 3 0 ctr_BE (va_get_xmm 15
va_sM) /\ va_get_xmm 3 va_sM == Vale.X64.Decls.buffer128_read hkeys_b 0 (va_get_mem_heaplet 0
va_sM)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 14 va_sM (va_update_xmm 13
va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9
va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1
va_sM (va_update_xmm 0 va_sM (va_update_xmm 3 va_sM (va_update_reg64 rR11 va_sM
(va_update_reg64 rRbx va_sM (va_update_ok va_sM va_s0))))))))))))))))))
[@"opaque_to_smt"]
let va_lemma_Loop6x_ctr_update va_b0 va_s0 alg h_LE key_words round_keys keys_b hkeys_b ctr_BE =
let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm
11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1;
va_Mod_xmm 0; va_Mod_xmm 3; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_ok] in
let va_qc = va_qcode_Loop6x_ctr_update va_mods alg h_LE key_words round_keys keys_b hkeys_b
ctr_BE in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_Loop6x_ctr_update alg) va_qc va_s0 (fun
va_s0 va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 279 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_ok va_sM) /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in label va_range1
"***** POSTCONDITION NOT MET AT line 330 column 57 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 1 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE
6)) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 331 column 27 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(0 <= va_get_reg64 rRbx va_sM /\ va_get_reg64 rRbx va_sM < 256) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 332 column 50 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_reg64 rRbx va_sM == Vale.Def.Words_s.__proj__Mkfour__item__lo0 (Vale.AES.GCTR.inc32lite
ctr_BE 6) `op_Modulus` 256) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 334 column 58 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((va_get_xmm 9 va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm
13 va_sM, va_get_xmm 14 va_sM) == xor_reverse_inc32lite_6 3 0 ctr_BE (va_get_xmm 15 va_sM)) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 335 column 50 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 3 va_sM == Vale.X64.Decls.buffer128_read hkeys_b 0 (va_get_mem_heaplet 0 va_sM))))
in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11;
va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm
0; va_Mod_xmm 3; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_ok]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_Loop6x_ctr_update (alg:algorithm) (h_LE:quad32) (key_words:(seq nat32)) (round_keys:(seq
quad32)) (keys_b:buffer128) (hkeys_b:buffer128) (ctr_BE:quad32) (va_s0:va_state) (va_k:(va_state
-> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in sse_enabled /\ aes_reqs_offset alg key_words
round_keys keys_b (va_get_reg64 rRcx va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout
va_s0) /\ va_get_xmm 2 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216
/\ va_get_xmm 1 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE
0) /\ va_get_reg64 rRbx va_s0 == Vale.Def.Words_s.__proj__Mkfour__item__lo0 ctr_BE `op_Modulus`
256 /\ va_get_xmm 9 va_s0 == Vale.Def.Types_s.quad32_xor (Vale.Def.Types_s.reverse_bytes_quad32
(Vale.AES.GCTR.inc32lite ctr_BE 0)) (va_get_xmm 15 va_s0) /\ (va_get_reg64 rRbx va_s0 + 6 < 256
==> (va_get_xmm 9 va_s0, va_get_xmm 10 va_s0, va_get_xmm 11 va_s0, va_get_xmm 12 va_s0,
va_get_xmm 13 va_s0, va_get_xmm 14 va_s0) == xor_reverse_inc32lite_6 1 0 ctr_BE (va_get_xmm 15
va_s0)) /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)
(va_get_reg64 rR9 va_s0 - 32) h) /\ (forall (va_x_rbx:nat64) (va_x_r11:nat64)
(va_x_xmm3:quad32) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm5:quad32)
(va_x_xmm6:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32)
(va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_efl:Vale.X64.Flags.t) . let
va_sM = va_upd_flags va_x_efl (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm
12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9
(va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1
(va_upd_xmm 0 va_x_xmm0 (va_upd_xmm 3 va_x_xmm3 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx
va_x_rbx va_s0)))))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) =
Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 1
va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE 6) /\ (0 <=
va_get_reg64 rRbx va_sM /\ va_get_reg64 rRbx va_sM < 256) /\ va_get_reg64 rRbx va_sM ==
Vale.Def.Words_s.__proj__Mkfour__item__lo0 (Vale.AES.GCTR.inc32lite ctr_BE 6) `op_Modulus` 256
/\ (va_get_xmm 9 va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM,
va_get_xmm 13 va_sM, va_get_xmm 14 va_sM) == xor_reverse_inc32lite_6 3 0 ctr_BE (va_get_xmm 15
va_sM) /\ va_get_xmm 3 va_sM == Vale.X64.Decls.buffer128_read hkeys_b 0 (va_get_mem_heaplet 0
va_sM)) ==> va_k va_sM (())))
val va_wpProof_Loop6x_ctr_update : alg:algorithm -> h_LE:quad32 -> key_words:(seq nat32) ->
round_keys:(seq quad32) -> keys_b:buffer128 -> hkeys_b:buffer128 -> ctr_BE:quad32 ->
va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Loop6x_ctr_update alg h_LE key_words round_keys keys_b
hkeys_b ctr_BE va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Loop6x_ctr_update alg) ([va_Mod_flags;
va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9;
va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_xmm 3;
va_Mod_reg64 rR11; va_Mod_reg64 rRbx]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_Loop6x_ctr_update alg h_LE key_words round_keys keys_b hkeys_b ctr_BE va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Loop6x_ctr_update (va_code_Loop6x_ctr_update alg) va_s0 alg h_LE
key_words round_keys keys_b hkeys_b ctr_BE in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM
(va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM
(va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM
(va_update_xmm 0 va_sM (va_update_xmm 3 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx
va_sM (va_update_ok va_sM va_s0)))))))))))))))));
va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11;
va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm
0; va_Mod_xmm 3; va_Mod_reg64 rR11; va_Mod_reg64 rRbx]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_Loop6x_ctr_update (alg:algorithm) (h_LE:quad32) (key_words:(seq nat32))
(round_keys:(seq quad32)) (keys_b:buffer128) (hkeys_b:buffer128) (ctr_BE:quad32) : (va_quickCode
unit (va_code_Loop6x_ctr_update alg)) =
(va_QProc (va_code_Loop6x_ctr_update alg) ([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13;
va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 6; va_Mod_xmm 5;
va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_xmm 3; va_Mod_reg64 rR11; va_Mod_reg64 rRbx])
(va_wp_Loop6x_ctr_update alg h_LE key_words round_keys keys_b hkeys_b ctr_BE)
(va_wpProof_Loop6x_ctr_update alg h_LE key_words round_keys keys_b hkeys_b ctr_BE))
//--
//-- Loop6x_plain
val va_code_Loop6x_plain : alg:algorithm -> rnd:nat -> rndkey:va_operand_xmm -> Tot va_code
[@ "opaque_to_smt"]
let va_code_Loop6x_plain alg rnd rndkey =
(va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) rndkey
(va_op_reg_opr64_reg64 rRcx) (16 `op_Multiply` (rnd + 1) - 128) Secret) (va_CCons
(va_code_VAESNI_enc (va_op_xmm_xmm 9) (va_op_xmm_xmm 9) rndkey) (va_CCons (va_code_VAESNI_enc
(va_op_xmm_xmm 10) (va_op_xmm_xmm 10) rndkey) (va_CCons (va_code_VAESNI_enc (va_op_xmm_xmm 11)
(va_op_xmm_xmm 11) rndkey) (va_CCons (va_code_VAESNI_enc (va_op_xmm_xmm 12) (va_op_xmm_xmm 12)
rndkey) (va_CCons (va_code_VAESNI_enc (va_op_xmm_xmm 13) (va_op_xmm_xmm 13) rndkey) (va_CCons
(va_code_VAESNI_enc (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) rndkey) (va_CNil ())))))))))
val va_codegen_success_Loop6x_plain : alg:algorithm -> rnd:nat -> rndkey:va_operand_xmm -> Tot
va_pbool
[@ "opaque_to_smt"]
let va_codegen_success_Loop6x_plain alg rnd rndkey =
(va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) rndkey
(va_op_reg_opr64_reg64 rRcx) (16 `op_Multiply` (rnd + 1) - 128) Secret) (va_pbool_and
(va_codegen_success_VAESNI_enc (va_op_xmm_xmm 9) (va_op_xmm_xmm 9) rndkey) (va_pbool_and
(va_codegen_success_VAESNI_enc (va_op_xmm_xmm 10) (va_op_xmm_xmm 10) rndkey) (va_pbool_and
(va_codegen_success_VAESNI_enc (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) rndkey) (va_pbool_and
(va_codegen_success_VAESNI_enc (va_op_xmm_xmm 12) (va_op_xmm_xmm 12) rndkey) (va_pbool_and
(va_codegen_success_VAESNI_enc (va_op_xmm_xmm 13) (va_op_xmm_xmm 13) rndkey) (va_pbool_and
(va_codegen_success_VAESNI_enc (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) rndkey) (va_ttrue
()))))))))
val va_lemma_Loop6x_plain : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> rnd:nat ->
key_words:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> init:quad32_6 ->
rndkey:va_operand_xmm
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Loop6x_plain alg rnd rndkey) va_s0 /\ va_is_dst_xmm
rndkey va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (rndkey == 1 \/ rndkey == 2 \/ rndkey == 15)
/\ aes_reqs_offset alg key_words round_keys keys_b (va_get_reg64 rRcx va_s0)
(va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ rnd + 1 < FStar.Seq.Base.length
#quad32 round_keys /\ (va_get_xmm 9 va_s0, va_get_xmm 10 va_s0, va_get_xmm 11 va_s0, va_get_xmm
12 va_s0, va_get_xmm 13 va_s0, va_get_xmm 14 va_s0) == rounds_opaque_6 init round_keys rnd)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(va_get_xmm 9 va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm
13 va_sM, va_get_xmm 14 va_sM) == rounds_opaque_6 init round_keys (rnd + 1) /\ va_state_eq
va_sM (va_update_flags va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12
va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_ok
va_sM (va_update_operand_xmm rndkey va_sM va_s0)))))))))))
[@"opaque_to_smt"]
let va_lemma_Loop6x_plain va_b0 va_s0 alg rnd key_words round_keys keys_b init rndkey =
va_reveal_opaque (`%va_code_Loop6x_plain) (va_code_Loop6x_plain alg rnd rndkey);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s9, va_fc9) = va_lemma_Load128_buffer (va_hd va_b1) va_s0 (va_op_heaplet_mem_heaplet 0)
rndkey (va_op_reg_opr64_reg64 rRcx) (16 `op_Multiply` (rnd + 1) - 128) Secret keys_b (rnd + 1)
in
let va_b9 = va_tl va_b1 in
let (va_s10, va_fc10) = va_lemma_VAESNI_enc (va_hd va_b9) va_s9 (va_op_xmm_xmm 9) (va_op_xmm_xmm
9) rndkey in
let va_b10 = va_tl va_b9 in
let (va_s11, va_fc11) = va_lemma_VAESNI_enc (va_hd va_b10) va_s10 (va_op_xmm_xmm 10)
(va_op_xmm_xmm 10) rndkey in
let va_b11 = va_tl va_b10 in
let (va_s12, va_fc12) = va_lemma_VAESNI_enc (va_hd va_b11) va_s11 (va_op_xmm_xmm 11)
(va_op_xmm_xmm 11) rndkey in
let va_b12 = va_tl va_b11 in
let (va_s13, va_fc13) = va_lemma_VAESNI_enc (va_hd va_b12) va_s12 (va_op_xmm_xmm 12)
(va_op_xmm_xmm 12) rndkey in
let va_b13 = va_tl va_b12 in
let (va_s14, va_fc14) = va_lemma_VAESNI_enc (va_hd va_b13) va_s13 (va_op_xmm_xmm 13)
(va_op_xmm_xmm 13) rndkey in
let va_b14 = va_tl va_b13 in
let (va_s15, va_fc15) = va_lemma_VAESNI_enc (va_hd va_b14) va_s14 (va_op_xmm_xmm 14)
(va_op_xmm_xmm 14) rndkey in
let va_b15 = va_tl va_b14 in
Vale.AES.AES_s.eval_rounds_reveal ();
Vale.AES.AES_helpers.commute_sub_bytes_shift_rows_forall ();
let (va_sM, va_f15) = va_lemma_empty_total va_s15 va_b15 in
let va_f14 = va_lemma_merge_total va_b14 va_s14 va_fc15 va_s15 va_f15 va_sM in
let va_f13 = va_lemma_merge_total va_b13 va_s13 va_fc14 va_s14 va_f14 va_sM in
let va_f12 = va_lemma_merge_total va_b12 va_s12 va_fc13 va_s13 va_f13 va_sM in
let va_f11 = va_lemma_merge_total va_b11 va_s11 va_fc12 va_s12 va_f12 va_sM in
let va_f10 = va_lemma_merge_total va_b10 va_s10 va_fc11 va_s11 va_f11 va_sM in
let va_f9 = va_lemma_merge_total va_b9 va_s9 va_fc10 va_s10 va_f10 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc9 va_s9 va_f9 va_sM in
(va_sM, va_fM)
[@ va_qattr]
let va_wp_Loop6x_plain (alg:algorithm) (rnd:nat) (key_words:(seq nat32)) (round_keys:(seq quad32))
(keys_b:buffer128) (init:quad32_6) (rndkey:va_operand_xmm) (va_s0:va_state) (va_k:(va_state ->
unit -> Type0)) : Type0 =
(va_is_dst_xmm rndkey va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (rndkey == 1 \/ rndkey == 2 \/
rndkey == 15) /\ aes_reqs_offset alg key_words round_keys keys_b (va_get_reg64 rRcx va_s0)
(va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ rnd + 1 < FStar.Seq.Base.length
#quad32 round_keys /\ (va_get_xmm 9 va_s0, va_get_xmm 10 va_s0, va_get_xmm 11 va_s0, va_get_xmm
12 va_s0, va_get_xmm 13 va_s0, va_get_xmm 14 va_s0) == rounds_opaque_6 init round_keys rnd) /\
(forall (va_x_rndkey:va_value_xmm) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32)
(va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_efl:Vale.X64.Flags.t) . let
va_sM = va_upd_flags va_x_efl (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm
12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9
(va_upd_operand_xmm rndkey va_x_rndkey va_s0))))))) in va_get_ok va_sM /\ (va_get_xmm 9 va_sM,
va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm 13 va_sM, va_get_xmm
14 va_sM) == rounds_opaque_6 init round_keys (rnd + 1) ==> va_k va_sM (())))
val va_wpProof_Loop6x_plain : alg:algorithm -> rnd:nat -> key_words:(seq nat32) -> round_keys:(seq
quad32) -> keys_b:buffer128 -> init:quad32_6 -> rndkey:va_operand_xmm -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Loop6x_plain alg rnd key_words round_keys keys_b init
rndkey va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Loop6x_plain alg rnd rndkey)
([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10;
va_Mod_xmm 9; va_mod_xmm rndkey]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_Loop6x_plain alg rnd key_words round_keys keys_b init rndkey va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Loop6x_plain (va_code_Loop6x_plain alg rnd rndkey) va_s0 alg rnd
key_words round_keys keys_b init rndkey in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM
(va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM
(va_update_ok va_sM (va_update_operand_xmm rndkey va_sM va_s0))))))))));
va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11;
va_Mod_xmm 10; va_Mod_xmm 9; va_mod_xmm rndkey]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_Loop6x_plain (alg:algorithm) (rnd:nat) (key_words:(seq nat32)) (round_keys:(seq
quad32)) (keys_b:buffer128) (init:quad32_6) (rndkey:va_operand_xmm) : (va_quickCode unit
(va_code_Loop6x_plain alg rnd rndkey)) =
(va_QProc (va_code_Loop6x_plain alg rnd rndkey) ([va_Mod_flags; va_Mod_xmm 14; va_Mod_xmm 13;
va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_mod_xmm rndkey])
(va_wp_Loop6x_plain alg rnd key_words round_keys keys_b init rndkey) (va_wpProof_Loop6x_plain
alg rnd key_words round_keys keys_b init rndkey))
//--
//-- Loop6x_preamble
val va_code_Loop6x_preamble : alg:algorithm -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_Loop6x_preamble alg =
(va_Block (va_CCons (va_code_Loop6x_ctr_update alg) (va_CCons (va_code_Store128_buffer
(va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp) (va_op_xmm_xmm 1) 128 Secret)
(va_CCons (va_code_VPxor (va_op_xmm_xmm 12) (va_op_xmm_xmm 12) (va_op_opr128_xmm 15)) (va_CCons
(va_code_VPxor (va_op_xmm_xmm 13) (va_op_xmm_xmm 13) (va_op_opr128_xmm 15)) (va_CCons
(va_code_VPxor (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) (va_op_opr128_xmm 15)) (va_CNil ())))))))
val va_codegen_success_Loop6x_preamble : alg:algorithm -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_Loop6x_preamble alg =
(va_pbool_and (va_codegen_success_Loop6x_ctr_update alg) (va_pbool_and
(va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_xmm_xmm 1) 128 Secret) (va_pbool_and (va_codegen_success_VPxor (va_op_xmm_xmm 12)
(va_op_xmm_xmm 12) (va_op_opr128_xmm 15)) (va_pbool_and (va_codegen_success_VPxor
(va_op_xmm_xmm 13) (va_op_xmm_xmm 13) (va_op_opr128_xmm 15)) (va_pbool_and
(va_codegen_success_VPxor (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) (va_op_opr128_xmm 15))
(va_ttrue ()))))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_Loop6x_preamble (va_mods:va_mods_t) (alg:algorithm) (h_LE:quad32) (iv_b:buffer128)
(scratch_b:buffer128) (key_words:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128)
(hkeys_b:buffer128) (ctr_BE:quad32) : (va_quickCode unit (va_code_Loop6x_preamble alg)) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let
(h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_QBind va_range1
"***** PRECONDITION NOT MET AT line 477 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Loop6x_ctr_update alg h_LE key_words round_keys keys_b hkeys_b ctr_BE) (fun
(va_s:va_state) _ -> let (va_arg43:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = round_keys
in let (va_arg42:Vale.Def.Types_s.quad32) = va_get_xmm 9 va_s in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 479 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.init_rounds_opaque va_arg42 va_arg43) (let
(va_arg41:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = round_keys in let
(va_arg40:Vale.Def.Types_s.quad32) = va_get_xmm 10 va_s in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 480 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.init_rounds_opaque va_arg40 va_arg41) (let
(va_arg39:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = round_keys in let
(va_arg38:Vale.Def.Types_s.quad32) = va_get_xmm 11 va_s in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 481 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.init_rounds_opaque va_arg38 va_arg39) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 498 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_xmm_xmm 1) 128 Secret scratch_b 8) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 499 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 12) (va_op_xmm_xmm 12) (va_op_opr128_xmm 15)) (fun
(va_s:va_state) _ -> let (va_arg37:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = round_keys
in let (va_arg36:Vale.Def.Types_s.quad32) = va_get_xmm 12 va_s in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 499 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.init_rounds_opaque va_arg36 va_arg37) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 500 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 13) (va_op_xmm_xmm 13) (va_op_opr128_xmm 15)) (fun
(va_s:va_state) _ -> let (va_arg35:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = round_keys
in let (va_arg34:Vale.Def.Types_s.quad32) = va_get_xmm 13 va_s in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 500 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.init_rounds_opaque va_arg34 va_arg35) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 501 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) (va_op_opr128_xmm 15)) (fun
(va_s:va_state) _ -> let (va_arg33:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = round_keys
in let (va_arg32:Vale.Def.Types_s.quad32) = va_get_xmm 14 va_s in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 501 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.init_rounds_opaque va_arg32 va_arg33) (va_QEmpty
(()))))))))))))))
val va_lemma_Loop6x_preamble : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> h_LE:quad32 ->
iv_b:buffer128 -> scratch_b:buffer128 -> key_words:(seq nat32) -> round_keys:(seq quad32) ->
keys_b:buffer128 -> hkeys_b:buffer128 -> ctr_BE:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Loop6x_preamble alg) va_s0 /\ va_get_ok va_s0 /\ (let
(h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in sse_enabled /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 9 (va_get_mem_layout va_s0)
Secret /\ aes_reqs_offset alg key_words round_keys keys_b (va_get_reg64 rRcx va_s0)
(va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ va_get_xmm 15 va_s0 ==
FStar.Seq.Base.index #quad32 round_keys 0 /\ va_get_xmm 2 va_s0 == Vale.Def.Words_s.Mkfour
#Vale.Def.Types_s.nat32 0 0 0 16777216 /\ va_get_xmm 1 va_s0 ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE 0) /\ va_get_reg64 rRbx
va_s0 == Vale.Def.Words_s.__proj__Mkfour__item__lo0 ctr_BE `op_Modulus` 256 /\ va_get_xmm 9
va_s0 == Vale.Def.Types_s.quad32_xor (Vale.Def.Types_s.reverse_bytes_quad32
(Vale.AES.GCTR.inc32lite ctr_BE 0)) (va_get_xmm 15 va_s0) /\ (va_get_reg64 rRbx va_s0 + 6 < 256
==> (va_get_xmm 9 va_s0, va_get_xmm 10 va_s0, va_get_xmm 11 va_s0, va_get_xmm 12 va_s0,
va_get_xmm 13 va_s0, va_get_xmm 14 va_s0) == xor_reverse_inc32lite_6 1 0 ctr_BE (va_get_xmm 15
va_s0)) /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)
(va_get_reg64 rR9 va_s0 - 32) h)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in Vale.X64.Decls.modifies_buffer_specific128
scratch_b (va_get_mem_heaplet 3 va_s0) (va_get_mem_heaplet 3 va_sM) 8 8 /\ (let init =
make_six_of #Vale.Def.Types_s.quad32 (fun (n:(va_int_range 0 5)) -> Vale.Def.Types_s.quad32_xor
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE n)) (va_get_xmm 15
va_sM)) in (va_get_xmm 9 va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM,
va_get_xmm 13 va_sM, va_get_xmm 14 va_sM) == rounds_opaque_6 init round_keys 0 /\
Vale.X64.Decls.buffer128_read scratch_b 8 (va_get_mem_heaplet 3 va_sM) ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE 6) /\ (0 <= va_get_reg64
rRbx va_sM /\ va_get_reg64 rRbx va_sM < 256) /\ va_get_reg64 rRbx va_sM ==
Vale.Def.Words_s.__proj__Mkfour__item__lo0 (Vale.AES.GCTR.inc32lite ctr_BE 6) `op_Modulus` 256
/\ va_get_xmm 3 va_sM == Vale.X64.Decls.buffer128_read hkeys_b 0 (va_get_mem_heaplet 0 va_s0)))
/\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 3 va_sM (va_update_xmm 14
va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10
va_sM (va_update_xmm 9 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 2
va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_xmm 3 va_sM (va_update_reg64
rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM
va_s0))))))))))))))))))))
[@"opaque_to_smt"]
let va_lemma_Loop6x_preamble va_b0 va_s0 alg h_LE iv_b scratch_b key_words round_keys keys_b
hkeys_b ctr_BE =
let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_mem_heaplet 3; va_Mod_xmm 14; va_Mod_xmm 13;
va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 6; va_Mod_xmm 5;
va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_xmm 3; va_Mod_reg64 rR11; va_Mod_reg64 rRbx;
va_Mod_ok; va_Mod_mem] in
let va_qc = va_qcode_Loop6x_preamble va_mods alg h_LE iv_b scratch_b key_words round_keys keys_b
hkeys_b ctr_BE in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_Loop6x_preamble alg) va_qc va_s0 (fun
va_s0 va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 402 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_ok va_sM) /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in label va_range1
"***** POSTCONDITION NOT MET AT line 459 column 72 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) 8 8) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 464 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(let init = make_six_of #Vale.Def.Types_s.quad32 (fun (n:(va_int_range 0 5)) ->
Vale.Def.Types_s.quad32_xor (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite
ctr_BE n)) (va_get_xmm 15 va_sM)) in label va_range1
"***** POSTCONDITION NOT MET AT line 466 column 102 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((va_get_xmm 9 va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM, va_get_xmm
13 va_sM, va_get_xmm 14 va_sM) == rounds_opaque_6 init round_keys 0) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 469 column 90 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.buffer128_read scratch_b 8 (va_get_mem_heaplet 3 va_sM) ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE 6)) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 472 column 27 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(0 <= va_get_reg64 rRbx va_sM /\ va_get_reg64 rRbx va_sM < 256) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 473 column 50 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_reg64 rRbx va_sM == Vale.Def.Words_s.__proj__Mkfour__item__lo0 (Vale.AES.GCTR.inc32lite
ctr_BE 6) `op_Modulus` 256) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 475 column 55 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 3 va_sM == Vale.X64.Decls.buffer128_read hkeys_b 0 (va_get_mem_heaplet 0 va_s0)))))
in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_flags; va_Mod_mem_heaplet 3; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm
12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2;
va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_xmm 3; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_ok;
va_Mod_mem]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_Loop6x_preamble (alg:algorithm) (h_LE:quad32) (iv_b:buffer128) (scratch_b:buffer128)
(key_words:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (hkeys_b:buffer128)
(ctr_BE:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in sse_enabled /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 9 (va_get_mem_layout va_s0)
Secret /\ aes_reqs_offset alg key_words round_keys keys_b (va_get_reg64 rRcx va_s0)
(va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ va_get_xmm 15 va_s0 ==
FStar.Seq.Base.index #quad32 round_keys 0 /\ va_get_xmm 2 va_s0 == Vale.Def.Words_s.Mkfour
#Vale.Def.Types_s.nat32 0 0 0 16777216 /\ va_get_xmm 1 va_s0 ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE 0) /\ va_get_reg64 rRbx
va_s0 == Vale.Def.Words_s.__proj__Mkfour__item__lo0 ctr_BE `op_Modulus` 256 /\ va_get_xmm 9
va_s0 == Vale.Def.Types_s.quad32_xor (Vale.Def.Types_s.reverse_bytes_quad32
(Vale.AES.GCTR.inc32lite ctr_BE 0)) (va_get_xmm 15 va_s0) /\ (va_get_reg64 rRbx va_s0 + 6 < 256
==> (va_get_xmm 9 va_s0, va_get_xmm 10 va_s0, va_get_xmm 11 va_s0, va_get_xmm 12 va_s0,
va_get_xmm 13 va_s0, va_get_xmm 14 va_s0) == xor_reverse_inc32lite_6 1 0 ctr_BE (va_get_xmm 15
va_s0)) /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)
(va_get_reg64 rR9 va_s0 - 32) h) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64)
(va_x_r11:nat64) (va_x_xmm3:quad32) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32)
(va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32)
(va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32)
(va_x_heap3:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl
(va_upd_mem_heaplet 3 va_x_heap3 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13
(va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9
va_x_xmm9 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1
va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_xmm 3 va_x_xmm3 (va_upd_reg64 rR11 va_x_r11
(va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))))) in va_get_ok va_sM /\
(let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32
(Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in Vale.X64.Decls.modifies_buffer_specific128
scratch_b (va_get_mem_heaplet 3 va_s0) (va_get_mem_heaplet 3 va_sM) 8 8 /\ (let init =
make_six_of #Vale.Def.Types_s.quad32 (fun (n:(va_int_range 0 5)) -> Vale.Def.Types_s.quad32_xor
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE n)) (va_get_xmm 15
va_sM)) in (va_get_xmm 9 va_sM, va_get_xmm 10 va_sM, va_get_xmm 11 va_sM, va_get_xmm 12 va_sM,
va_get_xmm 13 va_sM, va_get_xmm 14 va_sM) == rounds_opaque_6 init round_keys 0 /\
Vale.X64.Decls.buffer128_read scratch_b 8 (va_get_mem_heaplet 3 va_sM) ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GCTR.inc32lite ctr_BE 6) /\ (0 <= va_get_reg64
rRbx va_sM /\ va_get_reg64 rRbx va_sM < 256) /\ va_get_reg64 rRbx va_sM ==
Vale.Def.Words_s.__proj__Mkfour__item__lo0 (Vale.AES.GCTR.inc32lite ctr_BE 6) `op_Modulus` 256
/\ va_get_xmm 3 va_sM == Vale.X64.Decls.buffer128_read hkeys_b 0 (va_get_mem_heaplet 0 va_s0)))
==> va_k va_sM (())))
val va_wpProof_Loop6x_preamble : alg:algorithm -> h_LE:quad32 -> iv_b:buffer128 ->
scratch_b:buffer128 -> key_words:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 ->
hkeys_b:buffer128 -> ctr_BE:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Loop6x_preamble alg h_LE iv_b scratch_b key_words
round_keys keys_b hkeys_b ctr_BE va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Loop6x_preamble alg) ([va_Mod_flags;
va_Mod_mem_heaplet 3; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm
10; va_Mod_xmm 9; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0;
va_Mod_xmm 3; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0,
va_g))))
[@"opaque_to_smt"]
let va_wpProof_Loop6x_preamble alg h_LE iv_b scratch_b key_words round_keys keys_b hkeys_b ctr_BE
va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Loop6x_preamble (va_code_Loop6x_preamble alg) va_s0 alg h_LE iv_b
scratch_b key_words round_keys keys_b hkeys_b ctr_BE in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 3 va_sM (va_update_xmm 14
va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10
va_sM (va_update_xmm 9 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 2
va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_xmm 3 va_sM (va_update_reg64
rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM
va_s0)))))))))))))))))));
va_lemma_norm_mods ([va_Mod_flags; va_Mod_mem_heaplet 3; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm
12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 2;
va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_xmm 3; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_Loop6x_preamble (alg:algorithm) (h_LE:quad32) (iv_b:buffer128) (scratch_b:buffer128)
(key_words:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (hkeys_b:buffer128)
(ctr_BE:quad32) : (va_quickCode unit (va_code_Loop6x_preamble alg)) =
(va_QProc (va_code_Loop6x_preamble alg) ([va_Mod_flags; va_Mod_mem_heaplet 3; va_Mod_xmm 14;
va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 6;
va_Mod_xmm 5; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_xmm 3; va_Mod_reg64 rR11;
va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Loop6x_preamble alg h_LE iv_b scratch_b key_words
round_keys keys_b hkeys_b ctr_BE) (va_wpProof_Loop6x_preamble alg h_LE iv_b scratch_b key_words
round_keys keys_b hkeys_b ctr_BE))
//--
//-- Loop6x_reverse128
val va_code_Loop6x_reverse128 : in0_offset:nat -> stack_offset:nat -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_Loop6x_reverse128 in0_offset stack_offset =
(va_Block (va_CCons (va_code_LoadBe64_buffer128 (va_op_heaplet_mem_heaplet 6)
(va_op_reg_opr64_reg64 rR13) (va_op_reg_opr64_reg64 rR14) (in0_offset `op_Multiply` 16 + 8)
Secret true) (va_CCons (va_code_LoadBe64_buffer128 (va_op_heaplet_mem_heaplet 6)
(va_op_reg_opr64_reg64 rR12) (va_op_reg_opr64_reg64 rR14) (in0_offset `op_Multiply` 16) Secret
false) (va_CCons (va_code_Store64_buffer128 (va_op_heaplet_mem_heaplet 3)
(va_op_reg_opr64_reg64 rRbp) (va_op_reg_opr64_reg64 rR13) (stack_offset `op_Multiply` 16)
Secret false) (va_CCons (va_code_Store64_buffer128 (va_op_heaplet_mem_heaplet 3)
(va_op_reg_opr64_reg64 rRbp) (va_op_reg_opr64_reg64 rR12) (stack_offset `op_Multiply` 16 + 8)
Secret true) (va_CNil ()))))))
val va_codegen_success_Loop6x_reverse128 : in0_offset:nat -> stack_offset:nat -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_Loop6x_reverse128 in0_offset stack_offset =
(va_pbool_and (va_codegen_success_LoadBe64_buffer128 (va_op_heaplet_mem_heaplet 6)
(va_op_reg_opr64_reg64 rR13) (va_op_reg_opr64_reg64 rR14) (in0_offset `op_Multiply` 16 + 8)
Secret true) (va_pbool_and (va_codegen_success_LoadBe64_buffer128 (va_op_heaplet_mem_heaplet 6)
(va_op_reg_opr64_reg64 rR12) (va_op_reg_opr64_reg64 rR14) (in0_offset `op_Multiply` 16) Secret
false) (va_pbool_and (va_codegen_success_Store64_buffer128 (va_op_heaplet_mem_heaplet 3)
(va_op_reg_opr64_reg64 rRbp) (va_op_reg_opr64_reg64 rR13) (stack_offset `op_Multiply` 16)
Secret false) (va_pbool_and (va_codegen_success_Store64_buffer128 (va_op_heaplet_mem_heaplet 3)
(va_op_reg_opr64_reg64 rRbp) (va_op_reg_opr64_reg64 rR12) (stack_offset `op_Multiply` 16 + 8)
Secret true) (va_ttrue ())))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_Loop6x_reverse128 (va_mods:va_mods_t) (in0_offset:nat) (stack_offset:nat) (start:nat)
(in0_b:buffer128) (scratch_b:buffer128) : (va_quickCode unit (va_code_Loop6x_reverse128
in0_offset stack_offset)) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 527 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_LoadBe64_buffer128 (va_op_heaplet_mem_heaplet 6) (va_op_reg_opr64_reg64 rR13)
(va_op_reg_opr64_reg64 rR14) (in0_offset `op_Multiply` 16 + 8) Secret true in0_b (start +
in0_offset)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 528 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_LoadBe64_buffer128 (va_op_heaplet_mem_heaplet 6) (va_op_reg_opr64_reg64 rR12)
(va_op_reg_opr64_reg64 rR14) (in0_offset `op_Multiply` 16) Secret false in0_b (start +
in0_offset)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 529 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Store64_buffer128 (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_reg_opr64_reg64 rR13) (stack_offset `op_Multiply` 16) Secret false scratch_b
stack_offset) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 530 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Store64_buffer128 (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_reg_opr64_reg64 rR12) (stack_offset `op_Multiply` 16 + 8) Secret true scratch_b
stack_offset) (fun (va_s:va_state) _ -> let (va_arg10:Vale.Def.Types_s.quad32) =
Vale.X64.Decls.buffer128_read scratch_b stack_offset (va_get_mem_heaplet 3 va_s) in let
(va_arg9:Vale.Def.Types_s.quad32) = Vale.X64.Decls.buffer128_read scratch_b stack_offset
(va_get_mem_heaplet 3 va_old_s) in let (va_arg8:Vale.Def.Types_s.quad32) =
Vale.X64.Decls.buffer128_read in0_b (start + in0_offset) (va_get_mem_heaplet 6 va_old_s) in
va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 531 column 34 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.Arch.Types.lemma_reverse_bytes_quad32_64 va_arg8 va_arg9 va_arg10)
(va_QEmpty (()))))))))
val va_lemma_Loop6x_reverse128 : va_b0:va_code -> va_s0:va_state -> in0_offset:nat ->
stack_offset:nat -> start:nat -> in0_b:buffer128 -> scratch_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Loop6x_reverse128 in0_offset stack_offset) va_s0 /\
va_get_ok va_s0 /\ (sse_enabled /\ movbe_enabled /\ Vale.X64.Decls.validSrcAddrsOffset128
(va_get_mem_heaplet 6 va_s0) (va_get_reg64 rR14 va_s0) in0_b start (in0_offset + 1)
(va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 3
va_s0) (va_get_reg64 rRbp va_s0) scratch_b (stack_offset + 1) (va_get_mem_layout va_s0)
Secret)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) stack_offset stack_offset /\ Vale.X64.Decls.buffer128_read
scratch_b stack_offset (va_get_mem_heaplet 3 va_sM) == Vale.Def.Types_s.reverse_bytes_quad32
(Vale.X64.Decls.buffer128_read in0_b (start + in0_offset) (va_get_mem_heaplet 6 va_s0))) /\
va_state_eq va_sM (va_update_mem_heaplet 3 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64
rR12 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))
[@"opaque_to_smt"]
let va_lemma_Loop6x_reverse128 va_b0 va_s0 in0_offset stack_offset start in0_b scratch_b =
let (va_mods:va_mods_t) = [va_Mod_mem_heaplet 3; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_ok;
va_Mod_mem] in
let va_qc = va_qcode_Loop6x_reverse128 va_mods in0_offset stack_offset start in0_b scratch_b in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_Loop6x_reverse128 in0_offset
stack_offset) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 504 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_ok va_sM) /\ (label va_range1
"***** POSTCONDITION NOT MET AT line 523 column 94 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) stack_offset stack_offset) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 525 column 88 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.buffer128_read scratch_b stack_offset (va_get_mem_heaplet 3 va_sM) ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read in0_b (start + in0_offset)
(va_get_mem_heaplet 6 va_s0))))) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_mem_heaplet 3; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_ok;
va_Mod_mem]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_Loop6x_reverse128 (in0_offset:nat) (stack_offset:nat) (start:nat) (in0_b:buffer128)
(scratch_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (sse_enabled /\ movbe_enabled /\ Vale.X64.Decls.validSrcAddrsOffset128
(va_get_mem_heaplet 6 va_s0) (va_get_reg64 rR14 va_s0) in0_b start (in0_offset + 1)
(va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 3
va_s0) (va_get_reg64 rRbp va_s0) scratch_b (stack_offset + 1) (va_get_mem_layout va_s0) Secret)
/\ (forall (va_x_mem:vale_heap) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_heap3:vale_heap) . let
va_sM = va_upd_mem_heaplet 3 va_x_heap3 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12
(va_upd_mem va_x_mem va_s0))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer_specific128
scratch_b (va_get_mem_heaplet 3 va_s0) (va_get_mem_heaplet 3 va_sM) stack_offset stack_offset
/\ Vale.X64.Decls.buffer128_read scratch_b stack_offset (va_get_mem_heaplet 3 va_sM) ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read in0_b (start + in0_offset)
(va_get_mem_heaplet 6 va_s0))) ==> va_k va_sM (())))
val va_wpProof_Loop6x_reverse128 : in0_offset:nat -> stack_offset:nat -> start:nat ->
in0_b:buffer128 -> scratch_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Loop6x_reverse128 in0_offset stack_offset start in0_b
scratch_b va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Loop6x_reverse128 in0_offset
stack_offset) ([va_Mod_mem_heaplet 3; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_mem]) va_s0
va_k ((va_sM, va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_Loop6x_reverse128 in0_offset stack_offset start in0_b scratch_b va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Loop6x_reverse128 (va_code_Loop6x_reverse128 in0_offset
stack_offset) va_s0 in0_offset stack_offset start in0_b scratch_b in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_mem_heaplet 3 va_sM (va_update_reg64 rR13 va_sM
(va_update_reg64 rR12 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_mem_heaplet 3; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_mem])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_Loop6x_reverse128 (in0_offset:nat) (stack_offset:nat) (start:nat) (in0_b:buffer128)
(scratch_b:buffer128) : (va_quickCode unit (va_code_Loop6x_reverse128 in0_offset stack_offset)) =
(va_QProc (va_code_Loop6x_reverse128 in0_offset stack_offset) ([va_Mod_mem_heaplet 3;
va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_mem]) (va_wp_Loop6x_reverse128 in0_offset
stack_offset start in0_b scratch_b) (va_wpProof_Loop6x_reverse128 in0_offset stack_offset start
in0_b scratch_b))
//--
//-- Loop6x_round9
val va_code_Loop6x_round9 : alg:algorithm -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_Loop6x_round9 alg =
(va_Block (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64
rRbp) (va_op_xmm_xmm 7) 16 Secret) (va_CCons (va_code_Mem128_lemma ()) (va_CCons (va_code_VPxor
(va_op_xmm_xmm 2) (va_op_xmm_xmm 1) (va_opr_code_Mem128 (va_op_heaplet_mem_heaplet 6)
(va_op_reg64_reg64 rRdi) 0 Secret)) (va_CCons (va_code_Mem128_lemma ()) (va_CCons
(va_code_VPxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 16 Secret)) (va_CCons
(va_code_Mem128_lemma ()) (va_CCons (va_code_VPxor (va_op_xmm_xmm 5) (va_op_xmm_xmm 1)
(va_opr_code_Mem128 (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 32 Secret))
(va_CCons (va_code_Mem128_lemma ()) (va_CCons (va_code_VPxor (va_op_xmm_xmm 6) (va_op_xmm_xmm
1) (va_opr_code_Mem128 (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 48 Secret))
(va_CCons (va_code_Mem128_lemma ()) (va_CCons (va_code_VPxor (va_op_xmm_xmm 7) (va_op_xmm_xmm
1) (va_opr_code_Mem128 (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 64 Secret))
(va_CCons (va_code_Mem128_lemma ()) (va_CCons (va_code_VPxor (va_op_xmm_xmm 3) (va_op_xmm_xmm
1) (va_opr_code_Mem128 (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 80 Secret))
(va_CNil ())))))))))))))))
val va_codegen_success_Loop6x_round9 : alg:algorithm -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_Loop6x_round9 alg =
(va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 3)
(va_op_reg_opr64_reg64 rRbp) (va_op_xmm_xmm 7) 16 Secret) (va_pbool_and
(va_codegen_success_Mem128_lemma ()) (va_pbool_and (va_codegen_success_VPxor (va_op_xmm_xmm 2)
(va_op_xmm_xmm 1) (va_opr_code_Mem128 (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 0
Secret)) (va_pbool_and (va_codegen_success_Mem128_lemma ()) (va_pbool_and
(va_codegen_success_VPxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 16 Secret)) (va_pbool_and
(va_codegen_success_Mem128_lemma ()) (va_pbool_and (va_codegen_success_VPxor (va_op_xmm_xmm 5)
(va_op_xmm_xmm 1) (va_opr_code_Mem128 (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 32
Secret)) (va_pbool_and (va_codegen_success_Mem128_lemma ()) (va_pbool_and
(va_codegen_success_VPxor (va_op_xmm_xmm 6) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 48 Secret)) (va_pbool_and
(va_codegen_success_Mem128_lemma ()) (va_pbool_and (va_codegen_success_VPxor (va_op_xmm_xmm 7)
(va_op_xmm_xmm 1) (va_opr_code_Mem128 (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 64
Secret)) (va_pbool_and (va_codegen_success_Mem128_lemma ()) (va_pbool_and
(va_codegen_success_VPxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 80 Secret)) (va_ttrue ()))))))))))))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_Loop6x_round9 (va_mods:va_mods_t) (alg:algorithm) (count:nat) (in_b:buffer128)
(scratch_b:buffer128) (key_words:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) :
(va_quickCode unit (va_code_Loop6x_round9 alg)) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 567 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_xmm_xmm 7) 16 Secret scratch_b 1) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 568 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Mem128_lemma (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 0 Secret in_b
(count `op_Multiply` 6 + 0)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 568 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 0 Secret)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 569 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Mem128_lemma (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 16 Secret in_b
(count `op_Multiply` 6 + 1)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 569 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 16 Secret)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 570 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Mem128_lemma (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 32 Secret in_b
(count `op_Multiply` 6 + 2)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 570 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 5) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 32 Secret)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 571 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Mem128_lemma (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 48 Secret in_b
(count `op_Multiply` 6 + 3)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 571 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 6) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 48 Secret)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 572 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Mem128_lemma (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 64 Secret in_b
(count `op_Multiply` 6 + 4)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 572 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 7) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 64 Secret)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 573 column 28 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Mem128_lemma (va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 80 Secret in_b
(count `op_Multiply` 6 + 5)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 573 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 1) (va_opr_code_Mem128
(va_op_heaplet_mem_heaplet 6) (va_op_reg64_reg64 rRdi) 80 Secret)) (va_QEmpty
(()))))))))))))))))
val va_lemma_Loop6x_round9 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> count:nat ->
in_b:buffer128 -> scratch_b:buffer128 -> key_words:(seq nat32) -> round_keys:(seq quad32) ->
keys_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Loop6x_round9 alg) va_s0 /\ va_get_ok va_s0 /\
(sse_enabled /\ Vale.X64.Decls.validSrcAddrsOffset128 (va_get_mem_heaplet 6 va_s0)
(va_get_reg64 rRdi va_s0) in_b (count `op_Multiply` 6) 6 (va_get_mem_layout va_s0) Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0)
scratch_b 8 (va_get_mem_layout va_s0) Secret /\ aes_reqs_offset alg key_words round_keys keys_b
(va_get_reg64 rRcx va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ va_get_xmm
1 va_s0 == Vale.X64.Decls.buffer128_read keys_b (Vale.AES.AES_common_s.nr alg)
(va_get_mem_heaplet 0 va_s0))))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) 1 1 /\ (va_get_xmm 2 va_sM, va_get_xmm 0 va_sM, va_get_xmm 5
va_sM, va_get_xmm 6 va_sM, va_get_xmm 7 va_sM, va_get_xmm 3 va_sM) == make_six_of #quad32 (fun
(i:(va_int_range 0 5)) -> Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index
#Vale.Def.Types_s.quad32 round_keys (Vale.AES.AES_common_s.nr alg))
(Vale.X64.Decls.buffer128_read in_b (count `op_Multiply` 6 + i) (va_get_mem_heaplet 6 va_sM)))
/\ Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_sM) == va_get_xmm 7
va_s0) /\ va_state_eq va_sM (va_update_mem_heaplet 3 va_sM (va_update_flags va_sM
(va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 3 va_sM
(va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM
(va_update_mem va_sM va_s0)))))))))))))
[@"opaque_to_smt"]
let va_lemma_Loop6x_round9 va_b0 va_s0 alg count in_b scratch_b key_words round_keys keys_b =
let (va_mods:va_mods_t) = [va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 7; va_Mod_xmm 6;
va_Mod_xmm 5; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_ok; va_Mod_mem] in
let va_qc = va_qcode_Loop6x_round9 va_mods alg count in_b scratch_b key_words round_keys keys_b in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_Loop6x_round9 alg) va_qc va_s0 (fun
va_s0 va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 535 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_ok va_sM) /\ (label va_range1
"***** POSTCONDITION NOT MET AT line 561 column 72 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) 1 1) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 563 column 102 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((va_get_xmm 2 va_sM, va_get_xmm 0 va_sM, va_get_xmm 5 va_sM, va_get_xmm 6 va_sM, va_get_xmm 7
va_sM, va_get_xmm 3 va_sM) == make_six_of #quad32 (fun (i:(va_int_range 0 5)) ->
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index #Vale.Def.Types_s.quad32 round_keys
(Vale.AES.AES_common_s.nr alg)) (Vale.X64.Decls.buffer128_read in_b (count `op_Multiply` 6 + i)
(va_get_mem_heaplet 6 va_sM)))) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 564 column 55 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_sM) == va_get_xmm 7
va_s0))) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm
5; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_ok; va_Mod_mem]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_Loop6x_round9 (alg:algorithm) (count:nat) (in_b:buffer128) (scratch_b:buffer128)
(key_words:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state)
(va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrsOffset128 (va_get_mem_heaplet 6
va_s0) (va_get_reg64 rRdi va_s0) in_b (count `op_Multiply` 6) 6 (va_get_mem_layout va_s0)
Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp
va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ aes_reqs_offset alg key_words round_keys
keys_b (va_get_reg64 rRcx va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\
va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read keys_b (Vale.AES.AES_common_s.nr alg)
(va_get_mem_heaplet 0 va_s0)) /\ (forall (va_x_mem:vale_heap) (va_x_xmm0:quad32)
(va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32)
(va_x_xmm7:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_heap3:vale_heap) . let va_sM =
va_upd_mem_heaplet 3 va_x_heap3 (va_upd_flags va_x_efl (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6
va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1
va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem va_x_mem va_s0))))))))) in va_get_ok va_sM /\
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b (va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM) 1 1 /\ (va_get_xmm 2 va_sM, va_get_xmm 0 va_sM, va_get_xmm 5
va_sM, va_get_xmm 6 va_sM, va_get_xmm 7 va_sM, va_get_xmm 3 va_sM) == make_six_of #quad32 (fun
(i:(va_int_range 0 5)) -> Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index
#Vale.Def.Types_s.quad32 round_keys (Vale.AES.AES_common_s.nr alg))
(Vale.X64.Decls.buffer128_read in_b (count `op_Multiply` 6 + i) (va_get_mem_heaplet 6 va_sM)))
/\ Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_sM) == va_get_xmm 7
va_s0) ==> va_k va_sM (())))
val va_wpProof_Loop6x_round9 : alg:algorithm -> count:nat -> in_b:buffer128 -> scratch_b:buffer128
-> key_words:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Loop6x_round9 alg count in_b scratch_b key_words
round_keys keys_b va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Loop6x_round9 alg)
([va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 3;
va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_Loop6x_round9 alg count in_b scratch_b key_words round_keys keys_b va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Loop6x_round9 (va_code_Loop6x_round9 alg) va_s0 alg count in_b
scratch_b key_words round_keys keys_b in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_mem_heaplet 3 va_sM (va_update_flags va_sM (va_update_xmm 7
va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2
va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM (va_update_mem va_sM
va_s0))))))))))));
va_lemma_norm_mods ([va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm
5; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_mem]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_Loop6x_round9 (alg:algorithm) (count:nat) (in_b:buffer128) (scratch_b:buffer128)
(key_words:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit
(va_code_Loop6x_round9 alg)) =
(va_QProc (va_code_Loop6x_round9 alg) ([va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 7;
va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0;
va_Mod_mem]) (va_wp_Loop6x_round9 alg count in_b scratch_b key_words round_keys keys_b)
(va_wpProof_Loop6x_round9 alg count in_b scratch_b key_words round_keys keys_b))
//--
//-- load_one_msb
val va_code_load_one_msb : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_load_one_msb () =
(va_Block (va_CCons (va_code_ZeroXmm (va_op_xmm_xmm 2)) (va_CCons (va_code_PinsrqImm
(va_op_xmm_xmm 2) 72057594037927936 1 (va_op_reg_opr64_reg64 rR11)) (va_CNil ()))))
val va_codegen_success_load_one_msb : va_dummy:unit -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_load_one_msb () =
(va_pbool_and (va_codegen_success_ZeroXmm (va_op_xmm_xmm 2)) (va_pbool_and
(va_codegen_success_PinsrqImm (va_op_xmm_xmm 2) 72057594037927936 1 (va_op_reg_opr64_reg64
rR11)) (va_ttrue ())))
[@ "opaque_to_smt" va_qattr]
let va_qcode_load_one_msb (va_mods:va_mods_t) : (va_quickCode unit (va_code_load_one_msb ())) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QBind va_range1
"***** PRECONDITION NOT MET AT line 583 column 12 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_ZeroXmm (va_op_xmm_xmm 2)) (fun (va_s:va_state) _ -> va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 584 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo #Vale.Def.Words_s.nat32 0 16777216) ==
72057594037927936) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 585 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_PinsrqImm (va_op_xmm_xmm 2) 72057594037927936 1 (va_op_reg_opr64_reg64 rR11)) (fun
(va_s:va_state) _ -> va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 586 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.Def.Types_s.insert_nat64_reveal ()) (va_QEmpty (())))))))
val va_lemma_load_one_msb : va_b0:va_code -> va_s0:va_state
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_load_one_msb ()) va_s0 /\ va_get_ok va_s0 /\
sse_enabled))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_xmm 2 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216 /\
va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_reg64 rR11 va_sM
(va_update_ok va_sM va_s0))))))
[@"opaque_to_smt"]
let va_lemma_load_one_msb va_b0 va_s0 =
let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 2; va_Mod_reg64 rR11; va_Mod_ok] in
let va_qc = va_qcode_load_one_msb va_mods in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_load_one_msb ()) va_qc va_s0 (fun va_s0
va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 576 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_ok va_sM) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 581 column 46 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 2 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216)) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_reg64 rR11; va_Mod_ok]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_load_one_msb (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ sse_enabled /\ (forall (va_x_r11:nat64) (va_x_xmm2:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2
(va_upd_reg64 rR11 va_x_r11 va_s0)) in va_get_ok va_sM /\ va_get_xmm 2 va_sM ==
Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216 ==> va_k va_sM (())))
val va_wpProof_load_one_msb : va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_load_one_msb va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_load_one_msb ()) ([va_Mod_flags;
va_Mod_xmm 2; va_Mod_reg64 rR11]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_load_one_msb va_s0 va_k =
let (va_sM, va_f0) = va_lemma_load_one_msb (va_code_load_one_msb ()) va_s0 in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_reg64 rR11
va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_reg64 rR11]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_load_one_msb () : (va_quickCode unit (va_code_load_one_msb ())) =
(va_QProc (va_code_load_one_msb ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_reg64 rR11])
va_wp_load_one_msb va_wpProof_load_one_msb)
//--
//-- Loop6x_final
[@ "opaque_to_smt" va_qattr]
let va_code_Loop6x_final alg =
(va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 3) (va_op_xmm_xmm 1)
(va_op_reg_opr64_reg64 rRbp) 128 Secret) (va_CCons (va_code_VAESNI_enc_last (va_op_xmm_xmm 9)
(va_op_xmm_xmm 9) (va_op_xmm_xmm 2)) (va_CCons (va_code_load_one_msb ()) (va_CCons
(va_code_VAESNI_enc_last (va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_xmm_xmm 0)) (va_CCons
(va_code_VPaddd (va_op_xmm_xmm 0) (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons
(va_code_Store64_buffer128 (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_reg_opr64_reg64 rR13) (7 `op_Multiply` 16) Secret false) (va_CCons (va_code_AddLea64
(va_op_dst_opr64_reg64 rRdi) (va_op_opr64_reg64 rRdi) (va_const_opr64 96)) (va_CCons
(va_code_VAESNI_enc_last (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_xmm_xmm 5)) (va_CCons
(va_code_VPaddd (va_op_xmm_xmm 5) (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons
(va_code_Store64_buffer128 (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_reg_opr64_reg64 rR12) (7 `op_Multiply` 16 + 8) Secret true) (va_CCons (va_code_AddLea64
(va_op_dst_opr64_reg64 rRsi) (va_op_opr64_reg64 rRsi) (va_const_opr64 96)) (va_CCons
(va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 15) (va_op_reg_opr64_reg64
rRcx) (0 - 128) Secret) (va_CCons (va_code_VAESNI_enc_last (va_op_xmm_xmm 12) (va_op_xmm_xmm
12) (va_op_xmm_xmm 6)) (va_CCons (va_code_VPaddd (va_op_xmm_xmm 6) (va_op_xmm_xmm 5)
(va_op_xmm_xmm 2)) (va_CCons (va_code_VAESNI_enc_last (va_op_xmm_xmm 13) (va_op_xmm_xmm 13)
(va_op_xmm_xmm 7)) (va_CCons (va_code_VPaddd (va_op_xmm_xmm 7) (va_op_xmm_xmm 6) (va_op_xmm_xmm
2)) (va_CCons (va_code_VAESNI_enc_last (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) (va_op_xmm_xmm 3))
(va_CCons (va_code_VPaddd (va_op_xmm_xmm 3) (va_op_xmm_xmm 7) (va_op_xmm_xmm 2)) (va_CNil
()))))))))))))))))))))
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_Loop6x_final alg =
(va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 3) (va_op_xmm_xmm 1)
(va_op_reg_opr64_reg64 rRbp) 128 Secret) (va_pbool_and (va_codegen_success_VAESNI_enc_last
(va_op_xmm_xmm 9) (va_op_xmm_xmm 9) (va_op_xmm_xmm 2)) (va_pbool_and
(va_codegen_success_load_one_msb ()) (va_pbool_and (va_codegen_success_VAESNI_enc_last
(va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_xmm_xmm 0)) (va_pbool_and
(va_codegen_success_VPaddd (va_op_xmm_xmm 0) (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and
(va_codegen_success_Store64_buffer128 (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64
rRbp) (va_op_reg_opr64_reg64 rR13) (7 `op_Multiply` 16) Secret false) (va_pbool_and
(va_codegen_success_AddLea64 (va_op_dst_opr64_reg64 rRdi) (va_op_opr64_reg64 rRdi)
(va_const_opr64 96)) (va_pbool_and (va_codegen_success_VAESNI_enc_last (va_op_xmm_xmm 11)
(va_op_xmm_xmm 11) (va_op_xmm_xmm 5)) (va_pbool_and (va_codegen_success_VPaddd (va_op_xmm_xmm
5) (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store64_buffer128
(va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp) (va_op_reg_opr64_reg64 rR12) (7
`op_Multiply` 16 + 8) Secret true) (va_pbool_and (va_codegen_success_AddLea64
(va_op_dst_opr64_reg64 rRsi) (va_op_opr64_reg64 rRsi) (va_const_opr64 96)) (va_pbool_and
(va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 15)
(va_op_reg_opr64_reg64 rRcx) (0 - 128) Secret) (va_pbool_and
(va_codegen_success_VAESNI_enc_last (va_op_xmm_xmm 12) (va_op_xmm_xmm 12) (va_op_xmm_xmm 6))
(va_pbool_and (va_codegen_success_VPaddd (va_op_xmm_xmm 6) (va_op_xmm_xmm 5) (va_op_xmm_xmm 2))
(va_pbool_and (va_codegen_success_VAESNI_enc_last (va_op_xmm_xmm 13) (va_op_xmm_xmm 13)
(va_op_xmm_xmm 7)) (va_pbool_and (va_codegen_success_VPaddd (va_op_xmm_xmm 7) (va_op_xmm_xmm 6)
(va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_VAESNI_enc_last (va_op_xmm_xmm 14)
(va_op_xmm_xmm 14) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPaddd (va_op_xmm_xmm
3) (va_op_xmm_xmm 7) (va_op_xmm_xmm 2)) (va_ttrue ())))))))))))))))))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_Loop6x_final (va_mods:va_mods_t) (alg:algorithm) (iv_b:buffer128)
(scratch_b:buffer128) (key_words:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128)
(ctr_orig:quad32) (init:quad32_6) (ctrs:quad32_6) (plain:quad32_6) (inb:quad32) : (va_quickCode
unit (va_code_Loop6x_final alg)) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 667 column 37 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.Arch.TypesNative.lemma_quad32_xor_commutes_forall ()) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 669 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 3) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64
rRbp) 128 Secret scratch_b 8) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 671 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VAESNI_enc_last (va_op_xmm_xmm 9) (va_op_xmm_xmm 9) (va_op_xmm_xmm 2)) (va_QSeq
va_range1
"***** PRECONDITION NOT MET AT line 672 column 17 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_load_one_msb ()) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 673 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VAESNI_enc_last (va_op_xmm_xmm 10) (va_op_xmm_xmm 10) (va_op_xmm_xmm 0)) (va_QSeq
va_range1
"***** PRECONDITION NOT MET AT line 674 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 0) (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 675 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Store64_buffer128 (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_reg_opr64_reg64 rR13) (7 `op_Multiply` 16) Secret false scratch_b 7) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 676 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_AddLea64 (va_op_dst_opr64_reg64 rRdi) (va_op_opr64_reg64 rRdi) (va_const_opr64 96))
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 677 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VAESNI_enc_last (va_op_xmm_xmm 11) (va_op_xmm_xmm 11) (va_op_xmm_xmm 5)) (va_QSeq
va_range1
"***** PRECONDITION NOT MET AT line 678 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 5) (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 679 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Store64_buffer128 (va_op_heaplet_mem_heaplet 3) (va_op_reg_opr64_reg64 rRbp)
(va_op_reg_opr64_reg64 rR12) (7 `op_Multiply` 16 + 8) Secret true scratch_b 7) (va_QSeq
va_range1
"***** PRECONDITION NOT MET AT line 680 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_AddLea64 (va_op_dst_opr64_reg64 rRsi) (va_op_opr64_reg64 rRsi) (va_const_opr64 96))
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 681 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 15)
(va_op_reg_opr64_reg64 rRcx) (0 - 128) Secret keys_b 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 683 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VAESNI_enc_last (va_op_xmm_xmm 12) (va_op_xmm_xmm 12) (va_op_xmm_xmm 6)) (va_QSeq
va_range1
"***** PRECONDITION NOT MET AT line 684 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 6) (va_op_xmm_xmm 5) (va_op_xmm_xmm 2)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 685 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VAESNI_enc_last (va_op_xmm_xmm 13) (va_op_xmm_xmm 13) (va_op_xmm_xmm 7)) (va_QSeq
va_range1
"***** PRECONDITION NOT MET AT line 686 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 7) (va_op_xmm_xmm 6) (va_op_xmm_xmm 2)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 687 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VAESNI_enc_last (va_op_xmm_xmm 14) (va_op_xmm_xmm 14) (va_op_xmm_xmm 3)) (va_QBind
va_range1
"***** PRECONDITION NOT MET AT line 688 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_quick_VPaddd (va_op_xmm_xmm 3) (va_op_xmm_xmm 7) (va_op_xmm_xmm 2)) (fun (va_s:va_state) _
-> let (va_arg117:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = round_keys in let
(va_arg116:Vale.Def.Types_s.quad32) = va_get_xmm 9 va_s in let
(va_arg115:Vale.Def.Types_s.quad32) = va_get_xmm 9 va_old_s in let
(va_arg114:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___1 #quad32 #quad32 #quad32
#quad32 #quad32 #quad32 init in let (va_arg113:Vale.Def.Types_s.quad32) =
__proj__Mktuple6__item___1 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 plain in let
(va_arg112:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___1 #quad32 #quad32 #quad32
#quad32 #quad32 #quad32 ctrs in let (va_arg111:Vale.AES.AES_common_s.algorithm) = alg in
va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 690 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.finish_cipher_opt va_arg111 va_arg112 va_arg113 va_arg114
va_arg115 va_arg116 va_arg117) (let (va_arg110:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) =
round_keys in let (va_arg109:Vale.Def.Types_s.quad32) = va_get_xmm 10 va_s in let
(va_arg108:Vale.Def.Types_s.quad32) = va_get_xmm 10 va_old_s in let
(va_arg107:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___2 #quad32 #quad32 #quad32
#quad32 #quad32 #quad32 init in let (va_arg106:Vale.Def.Types_s.quad32) =
__proj__Mktuple6__item___2 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 plain in let
(va_arg105:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___2 #quad32 #quad32 #quad32
#quad32 #quad32 #quad32 ctrs in let (va_arg104:Vale.AES.AES_common_s.algorithm) = alg in
va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 691 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.finish_cipher_opt va_arg104 va_arg105 va_arg106 va_arg107
va_arg108 va_arg109 va_arg110) (let (va_arg103:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) =
round_keys in let (va_arg102:Vale.Def.Types_s.quad32) = va_get_xmm 11 va_s in let
(va_arg101:Vale.Def.Types_s.quad32) = va_get_xmm 11 va_old_s in let
(va_arg100:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___3 #quad32 #quad32 #quad32
#quad32 #quad32 #quad32 init in let (va_arg99:Vale.Def.Types_s.quad32) =
__proj__Mktuple6__item___3 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 plain in let
(va_arg98:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___3 #quad32 #quad32 #quad32 #quad32
#quad32 #quad32 ctrs in let (va_arg97:Vale.AES.AES_common_s.algorithm) = alg in va_qPURE
va_range1
"***** PRECONDITION NOT MET AT line 692 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.finish_cipher_opt va_arg97 va_arg98 va_arg99 va_arg100
va_arg101 va_arg102 va_arg103) (let (va_arg96:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) =
round_keys in let (va_arg95:Vale.Def.Types_s.quad32) = va_get_xmm 12 va_s in let
(va_arg94:Vale.Def.Types_s.quad32) = va_get_xmm 12 va_old_s in let
(va_arg93:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___4 #quad32 #quad32 #quad32 #quad32
#quad32 #quad32 init in let (va_arg92:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___4
#quad32 #quad32 #quad32 #quad32 #quad32 #quad32 plain in let (va_arg91:Vale.Def.Types_s.quad32)
= __proj__Mktuple6__item___4 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs in let
(va_arg90:Vale.AES.AES_common_s.algorithm) = alg in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 693 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.finish_cipher_opt va_arg90 va_arg91 va_arg92 va_arg93
va_arg94 va_arg95 va_arg96) (let (va_arg89:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) =
round_keys in let (va_arg88:Vale.Def.Types_s.quad32) = va_get_xmm 13 va_s in let
(va_arg87:Vale.Def.Types_s.quad32) = va_get_xmm 13 va_old_s in let
(va_arg86:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___5 #quad32 #quad32 #quad32 #quad32
#quad32 #quad32 init in let (va_arg85:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___5
#quad32 #quad32 #quad32 #quad32 #quad32 #quad32 plain in let (va_arg84:Vale.Def.Types_s.quad32)
= __proj__Mktuple6__item___5 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs in let
(va_arg83:Vale.AES.AES_common_s.algorithm) = alg in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 694 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.finish_cipher_opt va_arg83 va_arg84 va_arg85 va_arg86
va_arg87 va_arg88 va_arg89) (let (va_arg82:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) =
round_keys in let (va_arg81:Vale.Def.Types_s.quad32) = va_get_xmm 14 va_s in let
(va_arg80:Vale.Def.Types_s.quad32) = va_get_xmm 14 va_old_s in let
(va_arg79:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___6 #quad32 #quad32 #quad32 #quad32
#quad32 #quad32 init in let (va_arg78:Vale.Def.Types_s.quad32) = __proj__Mktuple6__item___6
#quad32 #quad32 #quad32 #quad32 #quad32 #quad32 plain in let (va_arg77:Vale.Def.Types_s.quad32)
= __proj__Mktuple6__item___6 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs in let
(va_arg76:Vale.AES.AES_common_s.algorithm) = alg in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 695 column 22 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.finish_cipher_opt va_arg76 va_arg77 va_arg78 va_arg79
va_arg80 va_arg81 va_arg82) (va_QLemma va_range1
"***** PRECONDITION NOT MET AT line 696 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) -> Vale.AES.AES_s.is_aes_key_LE alg
key) alg (__proj__Mktuple6__item___1 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs)
key_words) (fun _ -> (fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) ->
Vale.AES.AES_s.aes_encrypt_LE alg key input_LE == Vale.AES.AES_s.eval_cipher alg input_LE
(Vale.AES.AES_s.key_to_round_keys_LE alg key)) alg (__proj__Mktuple6__item___1 #quad32 #quad32
#quad32 #quad32 #quad32 #quad32 ctrs) key_words) (fun (_:unit) -> finish_aes_encrypt_le alg
(__proj__Mktuple6__item___1 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs) key_words)
(va_QLemma va_range1
"***** PRECONDITION NOT MET AT line 697 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) -> Vale.AES.AES_s.is_aes_key_LE alg
key) alg (__proj__Mktuple6__item___2 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs)
key_words) (fun _ -> (fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) ->
Vale.AES.AES_s.aes_encrypt_LE alg key input_LE == Vale.AES.AES_s.eval_cipher alg input_LE
(Vale.AES.AES_s.key_to_round_keys_LE alg key)) alg (__proj__Mktuple6__item___2 #quad32 #quad32
#quad32 #quad32 #quad32 #quad32 ctrs) key_words) (fun (_:unit) -> finish_aes_encrypt_le alg
(__proj__Mktuple6__item___2 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs) key_words)
(va_QLemma va_range1
"***** PRECONDITION NOT MET AT line 698 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) -> Vale.AES.AES_s.is_aes_key_LE alg
key) alg (__proj__Mktuple6__item___3 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs)
key_words) (fun _ -> (fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) ->
Vale.AES.AES_s.aes_encrypt_LE alg key input_LE == Vale.AES.AES_s.eval_cipher alg input_LE
(Vale.AES.AES_s.key_to_round_keys_LE alg key)) alg (__proj__Mktuple6__item___3 #quad32 #quad32
#quad32 #quad32 #quad32 #quad32 ctrs) key_words) (fun (_:unit) -> finish_aes_encrypt_le alg
(__proj__Mktuple6__item___3 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs) key_words)
(va_QLemma va_range1
"***** PRECONDITION NOT MET AT line 699 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) -> Vale.AES.AES_s.is_aes_key_LE alg
key) alg (__proj__Mktuple6__item___4 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs)
key_words) (fun _ -> (fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) ->
Vale.AES.AES_s.aes_encrypt_LE alg key input_LE == Vale.AES.AES_s.eval_cipher alg input_LE
(Vale.AES.AES_s.key_to_round_keys_LE alg key)) alg (__proj__Mktuple6__item___4 #quad32 #quad32
#quad32 #quad32 #quad32 #quad32 ctrs) key_words) (fun (_:unit) -> finish_aes_encrypt_le alg
(__proj__Mktuple6__item___4 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs) key_words)
(va_QLemma va_range1
"***** PRECONDITION NOT MET AT line 700 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) -> Vale.AES.AES_s.is_aes_key_LE alg
key) alg (__proj__Mktuple6__item___5 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs)
key_words) (fun _ -> (fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) ->
Vale.AES.AES_s.aes_encrypt_LE alg key input_LE == Vale.AES.AES_s.eval_cipher alg input_LE
(Vale.AES.AES_s.key_to_round_keys_LE alg key)) alg (__proj__Mktuple6__item___5 #quad32 #quad32
#quad32 #quad32 #quad32 #quad32 ctrs) key_words) (fun (_:unit) -> finish_aes_encrypt_le alg
(__proj__Mktuple6__item___5 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs) key_words)
(va_QLemma va_range1
"***** PRECONDITION NOT MET AT line 701 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) -> Vale.AES.AES_s.is_aes_key_LE alg
key) alg (__proj__Mktuple6__item___6 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs)
key_words) (fun _ -> (fun (alg:algorithm) (input_LE:quad32) (key:(seq nat32)) ->
Vale.AES.AES_s.aes_encrypt_LE alg key input_LE == Vale.AES.AES_s.eval_cipher alg input_LE
(Vale.AES.AES_s.key_to_round_keys_LE alg key)) alg (__proj__Mktuple6__item___6 #quad32 #quad32
#quad32 #quad32 #quad32 #quad32 ctrs) key_words) (fun (_:unit) -> finish_aes_encrypt_le alg
(__proj__Mktuple6__item___6 #quad32 #quad32 #quad32 #quad32 #quad32 #quad32 ctrs) key_words)
(let (va_arg75:Vale.Def.Types_s.quad32) = Vale.X64.Decls.buffer128_read scratch_b 7
(va_get_mem_heaplet 3 va_s) in let (va_arg74:Vale.Def.Types_s.quad32) =
Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_old_s) in let
(va_arg73:Vale.Def.Types_s.quad32) = inb in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 703 column 34 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.Arch.Types.lemma_reverse_bytes_quad32_64 va_arg73 va_arg74 va_arg75) (let
(va_arg72:Vale.Def.Types_s.quad32) = va_get_xmm 0 va_s in let
(va_arg71:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_s in let
(va_arg70:Vale.Def.Types_s.quad32) = ctr_orig in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 705 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.lemma_incr_msb va_arg70 va_arg71 va_arg72 1) (let
(va_arg69:Vale.Def.Types_s.quad32) = va_get_xmm 5 va_s in let
(va_arg68:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_s in let
(va_arg67:Vale.Def.Types_s.quad32) = ctr_orig in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 706 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.lemma_incr_msb va_arg67 va_arg68 va_arg69 2) (let
(va_arg66:Vale.Def.Types_s.quad32) = va_get_xmm 6 va_s in let
(va_arg65:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_s in let
(va_arg64:Vale.Def.Types_s.quad32) = ctr_orig in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 707 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.lemma_incr_msb va_arg64 va_arg65 va_arg66 3) (let
(va_arg63:Vale.Def.Types_s.quad32) = va_get_xmm 7 va_s in let
(va_arg62:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_s in let
(va_arg61:Vale.Def.Types_s.quad32) = ctr_orig in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 708 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.lemma_incr_msb va_arg61 va_arg62 va_arg63 4) (let
(va_arg60:Vale.Def.Types_s.quad32) = va_get_xmm 3 va_s in let
(va_arg59:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_s in let
(va_arg58:Vale.Def.Types_s.quad32) = ctr_orig in va_qPURE va_range1
"***** PRECONDITION NOT MET AT line 709 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(fun (_:unit) -> Vale.AES.AES_helpers.lemma_incr_msb va_arg58 va_arg59 va_arg60 5) (va_QEmpty
(())))))))))))))))))))))))))))))))))))))))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Transformers.Transform.fsti.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.X64.PolyOps.fsti.checked",
"Vale.AES.X64.AESopt2.fsti.checked",
"Vale.AES.X64.AESGCM_expected_code.fsti.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES_helpers.fsti.checked",
"Vale.AES.AES_common_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.X64.AESopt.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers.Transform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESGCM_expected_code",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESopt2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers.Transform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESGCM_expected_code",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESopt2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
alg: Vale.AES.AES_common_s.algorithm ->
iv_b: Vale.X64.Memory.buffer128 ->
scratch_b: Vale.X64.Memory.buffer128 ->
key_words: FStar.Seq.Base.seq Vale.X64.Memory.nat32 ->
round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 ->
keys_b: Vale.X64.Memory.buffer128 ->
ctr_orig: Vale.X64.Decls.quad32 ->
init: Vale.AES.X64.AESopt.quad32_6 ->
ctrs: Vale.AES.X64.AESopt.quad32_6 ->
plain: Vale.AES.X64.AESopt.quad32_6 ->
inb: Vale.X64.Decls.quad32
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | Prims.Ghost | [] | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.AES.AES_common_s.algorithm",
"Vale.X64.Memory.buffer128",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.nat32",
"Vale.X64.Decls.quad32",
"Vale.AES.X64.AESopt.quad32_6",
"Vale.X64.QuickCodes.fuel",
"Prims.unit",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_fuel",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_mem_heaplet",
"Vale.X64.QuickCode.va_Mod_flags",
"Vale.X64.QuickCode.va_Mod_xmm",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rR13",
"Vale.X64.Machine_s.rR12",
"Vale.X64.Machine_s.rR11",
"Vale.X64.Machine_s.rRsi",
"Vale.X64.Machine_s.rRdi",
"Vale.X64.QuickCode.va_Mod_ok",
"Vale.X64.QuickCode.va_Mod_mem",
"Prims.Nil",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.list",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.AES.X64.AESopt.va_code_Loop6x_final",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCodes.va_wp_sound_code_norm",
"Prims.l_and",
"Vale.X64.QuickCodes.label",
"Vale.X64.QuickCodes.va_range1",
"Prims.b2t",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.Decls.modifies_buffer_specific128",
"Vale.X64.Decls.va_get_mem_heaplet",
"Vale.Def.Types_s.quad32",
"Vale.X64.Decls.buffer128_read",
"Vale.Def.Types_s.reverse_bytes_quad32",
"FStar.Pervasives.Native.tuple6",
"FStar.Pervasives.Native.Mktuple6",
"Vale.X64.Decls.va_get_xmm",
"Vale.AES.X64.AESopt.map2_six_of",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.AES_s.aes_encrypt_LE",
"FStar.Seq.Base.index",
"Prims.int",
"Vale.X64.Decls.va_get_reg64",
"Prims.op_Addition",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.Mkfour",
"Prims.l_imp",
"Prims.op_LessThan",
"Vale.AES.X64.AESopt.xor_reverse_inc32lite_6",
"Prims.op_Modulus",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.X64.QuickCode.quickCode",
"Vale.AES.X64.AESopt.va_qcode_Loop6x_final"
] | [] | false | false | false | false | false | let va_lemma_Loop6x_final
va_b0
va_s0
alg
iv_b
scratch_b
key_words
round_keys
keys_b
ctr_orig
init
ctrs
plain
inb
=
| let va_mods:va_mods_t =
[
va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12;
va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5;
va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR13; va_Mod_reg64 rR12;
va_Mod_reg64 rR11; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_ok; va_Mod_mem
]
in
let va_qc =
va_qcode_Loop6x_final va_mods alg iv_b scratch_b key_words round_keys keys_b ctr_orig init ctrs
plain inb
in
let va_sM, va_fM, va_g =
va_wp_sound_code_norm (va_code_Loop6x_final alg)
va_qc
va_s0
(fun va_s0 va_sM va_g ->
let () = va_g in
label va_range1
"***** POSTCONDITION NOT MET AT line 589 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_ok va_sM) /\
(label va_range1
"***** POSTCONDITION NOT MET AT line 649 column 72 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.modifies_buffer_specific128 scratch_b
(va_get_mem_heaplet 3 va_s0)
(va_get_mem_heaplet 3 va_sM)
7
7) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 652 column 73 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_sM) ==
Vale.Def.Types_s.reverse_bytes_quad32 inb) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 654 column 111 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
((va_get_xmm 9 va_sM,
va_get_xmm 10 va_sM,
va_get_xmm 11 va_sM,
va_get_xmm 12 va_sM,
va_get_xmm 13 va_sM,
va_get_xmm 14 va_sM) ==
map2_six_of #quad32
#quad32
#quad32
plain
ctrs
(fun (p: quad32) (c: quad32) ->
Vale.Def.Types_s.quad32_xor p (Vale.AES.AES_s.aes_encrypt_LE alg key_words c))) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 655 column 39 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 15 va_sM == FStar.Seq.Base.index #quad32 round_keys 0) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 657 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0 + 96) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 658 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0 + 96) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 660 column 41 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 2 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 16777216) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 662 column 55 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(va_get_xmm 1 va_sM ==
Vale.X64.Decls.buffer128_read scratch_b 8 (va_get_mem_heaplet 3 va_s0)) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 663 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(let ctr = (Vale.Def.Words_s.__proj__Mkfour__item__lo0 ctr_orig) `op_Modulus` 256 in
label va_range1
"***** POSTCONDITION NOT MET AT line 665 column 60 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/thirdPartyPorts/OpenSSL/aes/Vale.AES.X64.AESopt.vaf *****"
(ctr + 6 < 256 ==>
(va_get_xmm 1 va_sM,
va_get_xmm 0 va_sM,
va_get_xmm 5 va_sM,
va_get_xmm 6 va_sM,
va_get_xmm 7 va_sM,
va_get_xmm 3 va_sM) ==
xor_reverse_inc32lite_6 0 0 ctr_orig (va_get_xmm 15 va_sM)))))
in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([
va_Mod_mem_heaplet 3; va_Mod_flags; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12;
va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5;
va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR13; va_Mod_reg64 rR12;
va_Mod_reg64 rR11; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_ok; va_Mod_mem
])
va_sM
va_s0;
(va_sM, va_fM) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.rewrite_equality | val rewrite_equality (t: term) : Tac unit | val rewrite_equality (t: term) : Tac unit | let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ()) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 635,
"start_col": 0,
"start_line": 634
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.try_rewrite_equality",
"Prims.unit",
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.cur_vars"
] | [] | false | true | false | false | false | let rewrite_equality (t: term) : Tac unit =
| try_rewrite_equality t (cur_vars ()) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.mapAll | val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) | val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) | let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 66,
"end_line": 344,
"start_col": 0,
"start_line": 341
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac (Prims.list 'a) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.Nil",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"Prims.Cons",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.Derived.divide",
"FStar.Tactics.V2.Derived.mapAll",
"FStar.Tactics.V2.Derived.goals"
] | [
"recursion"
] | false | true | false | false | false | let rec mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) =
| match goals () with
| [] -> []
| _ :: _ ->
let h, t = divide 1 t (fun () -> mapAll t) in
h :: t | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.unfold_def | val unfold_def (t: term) : Tac unit | val unfold_def (t: term) : Tac unit | let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv" | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 642,
"start_col": 0,
"start_line": 637
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_fully",
"Prims.string",
"Prims.Nil",
"Prims.unit",
"FStar.Stubs.Reflection.V2.Builtins.implode_qn",
"FStar.Stubs.Reflection.V2.Builtins.inspect_fv",
"FStar.Tactics.NamedView.named_term_view",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.NamedView.inspect"
] | [] | false | true | false | false | false | let unfold_def (t: term) : Tac unit =
| match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv" | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.destruct_equality_implication | val destruct_equality_implication (t: term) : Tac (option (formula * term)) | val destruct_equality_implication (t: term) : Tac (option (formula * term)) | let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 595,
"start_col": 0,
"start_line": 587
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac
(FStar.Pervasives.Native.option (FStar.Reflection.V2.Formula.formula *
FStar.Tactics.NamedView.term)) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.Formula.formula",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.None",
"FStar.Reflection.V2.Formula.term_as_formula'",
"FStar.Reflection.V2.Formula.term_as_formula"
] | [] | false | true | false | false | false | let destruct_equality_implication (t: term) : Tac (option (formula * term)) =
| match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
(match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None)
| _ -> None | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.iterAll | val iterAll (t: (unit -> Tac unit)) : Tac unit | val iterAll (t: (unit -> Tac unit)) : Tac unit | let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 60,
"end_line": 350,
"start_col": 0,
"start_line": 346
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.Derived.divide",
"FStar.Tactics.V2.Derived.iterAll",
"FStar.Tactics.V2.Derived.goals"
] | [
"recursion"
] | false | true | false | false | false | let rec iterAll (t: (unit -> Tac unit)) : Tac unit =
| match goals () with
| [] -> ()
| _ :: _ ->
let _ = divide 1 t (fun () -> iterAll t) in
() | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.l_to_r | val l_to_r (lems: list term) : Tac unit | val l_to_r (lems: list term) : Tac unit | let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 653,
"start_col": 0,
"start_line": 647
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | lems: Prims.list FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.pointwise",
"Prims.unit",
"FStar.Tactics.Util.fold_left",
"FStar.Tactics.V2.Derived.or_else",
"FStar.Tactics.V2.Derived.apply_lemma_rw",
"FStar.Tactics.V2.Derived.trefl"
] | [] | false | true | false | false | false | let l_to_r (lems: list term) : Tac unit =
| let first_or_trefl () : Tac unit =
fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems ()
in
pointwise first_or_trefl | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.fresh_binder_named | val fresh_binder_named (s: string) (t: typ) : Tac simple_binder | val fresh_binder_named (s: string) (t: typ) : Tac simple_binder | let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
} | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 414,
"start_col": 0,
"start_line": 406
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
}) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> t: FStar.Stubs.Reflection.Types.typ
-> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.simple_binder | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.NamedView.Mkbinder",
"FStar.Sealed.seal",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Prims.Nil",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.NamedView.simple_binder",
"Prims.nat",
"FStar.Stubs.Tactics.V2.Builtins.fresh"
] | [] | false | true | false | false | false | let fresh_binder_named (s: string) (t: typ) : Tac simple_binder =
| let n = fresh () in
{ ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] } | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.focus | val focus (t: (unit -> Tac 'a)) : Tac 'a | val focus (t: (unit -> Tac 'a)) : Tac 'a | let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 9,
"end_line": 336,
"start_col": 0,
"start_line": 328
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.fail",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.V2.Builtins.set_smt_goals",
"FStar.Tactics.V2.Derived.op_At",
"FStar.Tactics.V2.Derived.smt_goals",
"FStar.Stubs.Tactics.V2.Builtins.set_goals",
"FStar.Tactics.V2.Derived.goals",
"Prims.Nil",
"Prims.Cons"
] | [] | false | true | false | false | false | let focus (t: (unit -> Tac 'a)) : Tac 'a =
| match goals () with
| [] -> fail "focus: no goals"
| g :: gs ->
let sgs = smt_goals () in
set_goals [g];
set_smt_goals [];
let x = t () in
set_goals (goals () @ gs);
set_smt_goals (smt_goals () @ sgs);
x | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.grewrite | val grewrite (t1 t2: term) : Tac unit | val grewrite (t1 t2: term) : Tac unit | let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ()) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 680,
"start_col": 0,
"start_line": 665
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2]. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: FStar.Tactics.NamedView.term -> t2: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.pointwise",
"Prims.unit",
"FStar.Tactics.V2.Derived.trefl",
"Prims.bool",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Tactics.V2.Derived.exact",
"Prims.exn",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.typ",
"Prims.nat",
"FStar.Stubs.Reflection.Types.ctx_uvar_and_subst",
"FStar.Tactics.NamedView.named_term_view",
"FStar.Tactics.NamedView.inspect",
"FStar.Reflection.V2.Formula.formula",
"FStar.Reflection.V2.Formula.term_as_formula",
"FStar.Tactics.V2.Derived.cur_goal",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_Var",
"FStar.Tactics.V2.SyntaxCoercions.binding_to_namedv",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.tcut",
"FStar.Tactics.V2.Derived.mk_sq_eq"
] | [] | false | true | false | false | false | let grewrite (t1 t2: term) : Tac unit =
| let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
let is_uvar =
match term_as_formula (cur_goal ()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar then trefl () else try exact e with | _ -> trefl ()) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.mk_sq_eq | val mk_sq_eq (t1 t2: term) : Tot term | val mk_sq_eq (t1 t2: term) : Tot term | let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2]) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 661,
"start_col": 0,
"start_line": 659
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: FStar.Tactics.NamedView.term -> t2: FStar.Tactics.NamedView.term -> FStar.Tactics.NamedView.term | Prims.Tot | [
"total"
] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.mk_squash",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Stubs.Reflection.Types.term",
"Prims.Nil",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_FVar",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"FStar.Reflection.Const.eq2_qn"
] | [] | false | false | false | true | false | let mk_sq_eq (t1 t2: term) : Tot term =
| let eq:term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2]) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.magic_dump | val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a | val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a | let magic_dump #a #x () = x | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 717,
"start_col": 0,
"start_line": 717
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> a | Prims.Tot | [
"total"
] | [] | [
"Prims.unit"
] | [] | false | false | false | true | false | let magic_dump #a #x () =
| x | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.fresh_binder | val fresh_binder (t: typ) : Tac simple_binder | val fresh_binder (t: typ) : Tac simple_binder | let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
} | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 424,
"start_col": 0,
"start_line": 416
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.typ
-> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.simple_binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.NamedView.Mkbinder",
"FStar.Sealed.seal",
"Prims.string",
"Prims.op_Hat",
"Prims.string_of_int",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Prims.Nil",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.NamedView.simple_binder",
"Prims.nat",
"FStar.Stubs.Tactics.V2.Builtins.fresh"
] | [] | false | true | false | false | false | let fresh_binder (t: typ) : Tac simple_binder =
| let n = fresh () in
{ ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] } | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.mk_squash | val mk_squash (t: term) : Tot term | val mk_squash (t: term) : Tot term | let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t] | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 657,
"start_col": 0,
"start_line": 655
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term -> FStar.Tactics.NamedView.term | Prims.Tot | [
"total"
] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Stubs.Reflection.Types.term",
"Prims.Nil",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_FVar",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"FStar.Reflection.Const.squash_qn"
] | [] | false | false | false | true | false | let mk_squash (t: term) : Tot term =
| let sq:term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t] | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.grewrite_eq | val grewrite_eq (b: binding) : Tac unit | val grewrite_eq (b: binding) : Tac unit | let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 699,
"start_col": 0,
"start_line": 686
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.binding",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.iseq",
"Prims.Cons",
"Prims.unit",
"FStar.Tactics.V2.Derived.idtac",
"FStar.Tactics.V2.Derived.exact",
"FStar.Tactics.V2.SyntaxCoercions.binding_to_term",
"Prims.Nil",
"FStar.Tactics.V2.Derived.grewrite",
"FStar.Reflection.V2.Formula.formula",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Tactics.V2.Derived.fail",
"FStar.Reflection.V2.Formula.term_as_formula'",
"FStar.Tactics.V2.Derived.type_of_binding",
"FStar.Reflection.V2.Formula.term_as_formula"
] | [] | false | true | false | false | false | let grewrite_eq (b: binding) : Tac unit =
| match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [
idtac;
(fun () ->
apply_lemma (`__un_sq_eq);
exact b)
]
| _ -> fail "grewrite_eq: binder type is not an equality" | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.fresh_implicit_binder | val fresh_implicit_binder (t: typ) : Tac binder | val fresh_implicit_binder (t: typ) : Tac binder | let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
} | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 434,
"start_col": 0,
"start_line": 426
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.typ -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.NamedView.Mkbinder",
"FStar.Sealed.seal",
"Prims.string",
"Prims.op_Hat",
"Prims.string_of_int",
"FStar.Stubs.Reflection.V2.Data.Q_Implicit",
"Prims.Nil",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.NamedView.binder",
"Prims.nat",
"FStar.Stubs.Tactics.V2.Builtins.fresh"
] | [] | false | true | false | false | false | let fresh_implicit_binder (t: typ) : Tac binder =
| let n = fresh () in
{ ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] } | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.admit_dump_t | val admit_dump_t: Prims.unit -> Tac unit | val admit_dump_t: Prims.unit -> Tac unit | let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 704,
"start_col": 0,
"start_line": 702
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.apply",
"FStar.Stubs.Tactics.V2.Builtins.dump"
] | [] | false | true | false | false | false | let admit_dump_t () : Tac unit =
| dump "Admitting";
apply (`admit) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.admit_dump | val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a | val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a | let admit_dump #a #x () = x () | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 707,
"start_col": 0,
"start_line": 707
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> Prims.Admit a | Prims.Admit | [] | [] | [
"Prims.unit"
] | [] | false | true | false | false | false | let admit_dump #a #x () =
| x () | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.change_sq | val change_sq (t1: term) : Tac unit | val change_sq (t1: term) : Tac unit | let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1]) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 726,
"start_col": 0,
"start_line": 725
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Tactics.V2.Builtins.change",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Stubs.Reflection.Types.term",
"Prims.Nil",
"Prims.unit"
] | [] | false | true | false | false | false | let change_sq (t1: term) : Tac unit =
| change (mk_e_app (`squash) [t1]) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.fresh_namedv_named | val fresh_namedv_named (s: string) : Tac namedv | val fresh_namedv_named (s: string) : Tac namedv | let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
}) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 394,
"start_col": 0,
"start_line": 388
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.namedv | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Tactics.NamedView.pack_namedv",
"FStar.Stubs.Reflection.V2.Data.Mknamedv_view",
"FStar.Sealed.seal",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_Unknown",
"FStar.Tactics.NamedView.namedv",
"Prims.nat",
"FStar.Stubs.Tactics.V2.Builtins.fresh"
] | [] | false | true | false | false | false | let fresh_namedv_named (s: string) : Tac namedv =
| let n = fresh () in
pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n }) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.add_elem | val add_elem (t: (unit -> Tac 'a)) : Tac 'a | val add_elem (t: (unit -> Tac 'a)) : Tac 'a | let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 747,
"start_col": 0,
"start_line": 740
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.focus",
"FStar.Tactics.V2.Derived.qed",
"FStar.Tactics.V2.Derived.apply"
] | [] | false | true | false | false | false | let add_elem (t: (unit -> Tac 'a)) : Tac 'a =
| focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x)) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.magic_dump_t | val magic_dump_t: Prims.unit -> Tac unit | val magic_dump_t: Prims.unit -> Tac unit | let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
() | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 714,
"start_col": 0,
"start_line": 710
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.exact",
"FStar.Tactics.V2.Derived.apply",
"FStar.Stubs.Tactics.V2.Builtins.dump"
] | [] | false | true | false | false | false | let magic_dump_t () : Tac unit =
| dump "Admitting";
apply (`magic);
exact (`());
() | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.specialize | val specialize: #a: Type -> f: a -> l: list string -> unit -> Tac unit | val specialize: #a: Type -> f: a -> l: list string -> unit -> Tac unit | let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 96,
"end_line": 765,
"start_col": 0,
"start_line": 764
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: a -> l: Prims.list Prims.string -> _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"Prims.string",
"Prims.unit",
"FStar.Tactics.V2.Derived.solve_then",
"FStar.Tactics.V2.Derived.exact",
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_only",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"Prims.Nil"
] | [] | false | true | false | false | false | let specialize (#a: Type) (f: a) (l: list string) : unit -> Tac unit =
| fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.solve_then | val solve_then (#a #b: _) (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b | val solve_then (#a #b: _) (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b | let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 738,
"start_col": 0,
"start_line": 733
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> t2: (_: a -> FStar.Tactics.Effect.Tac b)
-> FStar.Tactics.Effect.Tac b | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.trefl",
"FStar.Tactics.V2.Derived.focus",
"FStar.Tactics.V2.Derived.finish_by",
"FStar.Stubs.Tactics.V2.Builtins.dup"
] | [] | false | true | false | false | false | let solve_then #a #b (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b =
| dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.finish_by | val finish_by (t: (unit -> Tac 'a)) : Tac 'a | val finish_by (t: (unit -> Tac 'a)) : Tac 'a | let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 731,
"start_col": 0,
"start_line": 728
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1]) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.or_else",
"FStar.Tactics.V2.Derived.qed",
"FStar.Tactics.V2.Derived.fail"
] | [] | false | true | false | false | false | let finish_by (t: (unit -> Tac 'a)) : Tac 'a =
| let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.guard | val guard (b: bool)
: TacH unit
(requires (fun _ -> True))
(ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) | val guard (b: bool)
: TacH unit
(requires (fun _ -> True))
(ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) | let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else () | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 444,
"start_col": 0,
"start_line": 436
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Prims.bool -> FStar.Tactics.Effect.TacH Prims.unit | FStar.Tactics.Effect.TacH | [] | [] | [
"Prims.bool",
"Prims.op_Negation",
"FStar.Tactics.V2.Derived.fail",
"Prims.unit",
"FStar.Stubs.Tactics.Types.proofstate",
"Prims.l_True",
"FStar.Stubs.Tactics.Result.__result",
"Prims.l_and",
"Prims.b2t",
"FStar.Stubs.Tactics.Result.uu___is_Success",
"Prims.eq2",
"FStar.Stubs.Tactics.Result.__proj__Success__item__ps",
"FStar.Stubs.Tactics.Result.uu___is_Failed"
] | [] | false | true | false | false | false | let guard (b: bool)
: TacH unit
(requires (fun _ -> True))
(ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) =
| if not b then fail "guard failed" | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.return | val return (#a: Type) (x: a) : possibly a | val return (#a: Type) (x: a) : possibly a | let return (#a:Type) (x:a) : possibly a =
Ok x | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 6,
"end_line": 12,
"start_col": 7,
"start_line": 11
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> Vale.Def.PossiblyMonad.possibly a | Prims.Tot | [
"total"
] | [] | [
"Vale.Def.PossiblyMonad.Ok",
"Vale.Def.PossiblyMonad.possibly"
] | [] | false | false | false | true | false | let return (#a: Type) (x: a) : possibly a =
| Ok x | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.ttrue | val ttrue:pbool | val ttrue:pbool | let ttrue : pbool = Ok () | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 53,
"start_col": 0,
"start_line": 53
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x'
unfold let fail_with (#a:Type) (s:string) : possibly a = Err s
unfold let unimplemented (#a:Type) (s:string) : possibly a = fail_with ("Unimplemented: " ^ s)
(** Allows moving to a "looser" monad type, always *)
unfold
let loosen (#t1:Type) (#t2:Type{t1 `subtype_of` t2})
(x:possibly t1) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** Allows moving to a "tighter" monad type, as long as the monad is
guaranteed statically to be within this tighter type *)
unfold
let tighten (#t1:Type) (#t2:Type{t2 `subtype_of` t1})
(x:possibly t1{Ok? x ==> Ok?.v x `has_type` t2}) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** [pbool] is a type that can be used instead of [bool] to hold on to
a reason whenever it is [false]. To convert from a [pbool] to a
bool, see [!!]. *)
unfold
type pbool = possibly unit
(** [!!x] coerces a [pbool] into a [bool] by discarding any reason it
holds on to and instead uses it solely as a boolean. *)
unfold
let (!!) (x:pbool) : bool = Ok? x
(** [ttrue] is just the same as [true] but for a [pbool] *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Def.PossiblyMonad.possibly Prims.unit | Prims.Tot | [
"total"
] | [] | [
"Vale.Def.PossiblyMonad.Ok",
"Prims.unit"
] | [] | false | false | false | true | false | let ttrue:pbool =
| Ok () | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.name_appears_in | val name_appears_in (nm: name) (t: term) : Tac bool | val name_appears_in (nm: name) (t: term) : Tac bool | let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then
raise Appears;
t
| tv -> pack tv
in
try ignore (V.visit_tm ff t); false with
| Appears -> true
| e -> raise e | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 871,
"start_col": 0,
"start_line": 860
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and
so on. *)
let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b
exception Appears
(** Decides whether a top-level name [nm] syntactically | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nm: FStar.Stubs.Reflection.Types.name -> t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac Prims.bool | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.name",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.try_with",
"Prims.bool",
"Prims.unit",
"FStar.Pervasives.ignore",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.Visit.visit_tm",
"Prims.exn",
"FStar.Tactics.Effect.raise",
"FStar.Stubs.Reflection.Types.fv",
"Prims.op_Equality",
"FStar.Stubs.Reflection.V2.Builtins.inspect_fv",
"FStar.Tactics.V2.Derived.Appears",
"FStar.Tactics.NamedView.named_term_view",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.inspect"
] | [] | false | true | false | false | false | let name_appears_in (nm: name) (t: term) : Tac bool =
| let ff (t: term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then raise Appears;
t
| tv -> pack tv
in
try
(ignore (V.visit_tm ff t);
false)
with
| Appears -> true
| e -> raise e | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.unimplemented | val unimplemented (#a: Type) (s: string) : possibly a | val unimplemented (#a: Type) (s: string) : possibly a | let unimplemented (#a:Type) (s:string) : possibly a = fail_with ("Unimplemented: " ^ s) | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 94,
"end_line": 21,
"start_col": 7,
"start_line": 21
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x'
unfold let fail_with (#a:Type) (s:string) : possibly a = Err s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> Vale.Def.PossiblyMonad.possibly a | Prims.Tot | [
"total"
] | [] | [
"Prims.string",
"Vale.Def.PossiblyMonad.fail_with",
"Prims.op_Hat",
"Vale.Def.PossiblyMonad.possibly"
] | [] | false | false | false | true | false | let unimplemented (#a: Type) (s: string) : possibly a =
| fail_with ("Unimplemented: " ^ s) | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.fail_with | val fail_with (#a: Type) (s: string) : possibly a | val fail_with (#a: Type) (s: string) : possibly a | let fail_with (#a:Type) (s:string) : possibly a = Err s | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 19,
"start_col": 7,
"start_line": 19
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> Vale.Def.PossiblyMonad.possibly a | Prims.Tot | [
"total"
] | [] | [
"Prims.string",
"Vale.Def.PossiblyMonad.Err",
"Vale.Def.PossiblyMonad.possibly"
] | [] | false | false | false | true | false | let fail_with (#a: Type) (s: string) : possibly a =
| Err s | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.repeat | val repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a) | val repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a) | let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 471,
"start_col": 0,
"start_line": 468
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac (Prims.list a) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.exn",
"Prims.Nil",
"Prims.list",
"Prims.Cons",
"FStar.Tactics.V2.Derived.repeat",
"FStar.Pervasives.either",
"FStar.Stubs.Tactics.V2.Builtins.catch"
] | [
"recursion"
] | false | true | false | false | false | let rec repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a) =
| match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.divide | val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) | val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) | let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 319,
"start_col": 0,
"start_line": 304
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.int ->
l: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) ->
r: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'b)
-> FStar.Tactics.Effect.Tac ('a * 'b) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.int",
"Prims.unit",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Tactics.V2.Builtins.set_smt_goals",
"FStar.Tactics.V2.Derived.op_At",
"FStar.Stubs.Tactics.V2.Builtins.set_goals",
"FStar.Tactics.V2.Derived.smt_goals",
"FStar.Tactics.V2.Derived.goals",
"Prims.Nil",
"FStar.List.Tot.Base.splitAt",
"Prims.op_LessThan",
"FStar.Tactics.V2.Derived.fail",
"Prims.bool"
] | [] | false | true | false | false | false | let divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) =
| if n < 0 then fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1;
set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2;
set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr);
set_smt_goals (sgs @ sgsl @ sgsr);
(x, y) | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.ffalse | val ffalse (reason: string) : pbool | val ffalse (reason: string) : pbool | let ffalse (reason:string) : pbool = Err reason | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 47,
"end_line": 57,
"start_col": 0,
"start_line": 57
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x'
unfold let fail_with (#a:Type) (s:string) : possibly a = Err s
unfold let unimplemented (#a:Type) (s:string) : possibly a = fail_with ("Unimplemented: " ^ s)
(** Allows moving to a "looser" monad type, always *)
unfold
let loosen (#t1:Type) (#t2:Type{t1 `subtype_of` t2})
(x:possibly t1) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** Allows moving to a "tighter" monad type, as long as the monad is
guaranteed statically to be within this tighter type *)
unfold
let tighten (#t1:Type) (#t2:Type{t2 `subtype_of` t1})
(x:possibly t1{Ok? x ==> Ok?.v x `has_type` t2}) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** [pbool] is a type that can be used instead of [bool] to hold on to
a reason whenever it is [false]. To convert from a [pbool] to a
bool, see [!!]. *)
unfold
type pbool = possibly unit
(** [!!x] coerces a [pbool] into a [bool] by discarding any reason it
holds on to and instead uses it solely as a boolean. *)
unfold
let (!!) (x:pbool) : bool = Ok? x
(** [ttrue] is just the same as [true] but for a [pbool] *)
unfold
let ttrue : pbool = Ok ()
(** [ffalse] is the same as [false] but is for a [pbool] and thus requires a reason for being false. *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | reason: Prims.string -> Vale.Def.PossiblyMonad.pbool | Prims.Tot | [
"total"
] | [] | [
"Prims.string",
"Vale.Def.PossiblyMonad.Err",
"Prims.unit",
"Vale.Def.PossiblyMonad.pbool"
] | [] | false | false | false | true | false | let ffalse (reason: string) : pbool =
| Err reason | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.focus_all | val focus_all: Prims.unit -> Tac unit | val focus_all: Prims.unit -> Tac unit | let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals [] | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 782,
"start_col": 0,
"start_line": 780
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V2.Builtins.set_smt_goals",
"Prims.Nil",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Stubs.Tactics.V2.Builtins.set_goals",
"Prims.list",
"FStar.Tactics.V2.Derived.op_At",
"FStar.Tactics.V2.Derived.smt_goals",
"FStar.Tactics.V2.Derived.goals"
] | [] | false | true | false | false | false | let focus_all () : Tac unit =
| set_goals (goals () @ smt_goals ());
set_smt_goals [] | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.branch_on_match | val branch_on_match: Prims.unit -> Tac unit | val branch_on_match: Prims.unit -> Tac unit | let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 841,
"start_col": 0,
"start_line": 832
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.focus",
"FStar.Tactics.V2.Derived.iterAll",
"FStar.Stubs.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.iota",
"Prims.Nil",
"FStar.Tactics.V2.Derived.grewrite_eq",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.last",
"Prims.list",
"FStar.Tactics.V2.Derived.repeat",
"FStar.Stubs.Tactics.V2.Builtins.intro",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.Types.fv",
"Prims.nat",
"FStar.Stubs.Tactics.V2.Builtins.t_destruct",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.get_match_body"
] | [] | false | true | false | false | false | let branch_on_match () : Tac unit =
| focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in
grewrite_eq b;
norm [iota])) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.__assumption_aux | val __assumption_aux (xs: list binding) : Tac unit | val __assumption_aux (xs: list binding) : Tac unit | let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 582,
"start_col": 0,
"start_line": 574
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | xs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.fail",
"Prims.unit",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Tactics.V2.Derived.exact",
"FStar.Tactics.V2.SyntaxCoercions.binding_to_term",
"Prims.exn",
"FStar.Tactics.V2.Derived.apply",
"FStar.Tactics.V2.Derived.__assumption_aux"
] | [
"recursion"
] | false | true | false | false | false | let rec __assumption_aux (xs: list binding) : Tac unit =
| match xs with
| [] -> fail "no assumption matches goal"
| b :: bs ->
try exact b
with
| _ ->
try
(apply (`FStar.Squash.return_squash);
exact b)
with
| _ -> __assumption_aux bs | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.string_to_term_with_lb | val string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string) : Tac term | val string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string) : Tac term | let string_to_term_with_lb
(letbindings: list (string * term))
(e: env) (t: string): Tac term
= let e, lb_bindings : env * list (term & binding) =
fold_left (fun (e, lb_bvs) (i, v) ->
let e, b = push_bv_dsenv e i in
e, (v, b)::lb_bvs
) (e, []) letbindings in
let t = string_to_term e t in
fold_left (fun t (i, b) ->
pack (Tv_Let false [] (binding_to_simple_binder b) i t))
t lb_bindings | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 916,
"start_col": 0,
"start_line": 905
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and
so on. *)
let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b
exception Appears
(** Decides whether a top-level name [nm] syntactically
appears in the term [t]. *)
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then
raise Appears;
t
| tv -> pack tv
in
try ignore (V.visit_tm ff t); false with
| Appears -> true
| e -> raise e
(** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *)
let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) =
match args with
| [] -> t
| a :: args' ->
let t' = mk_abs args' t in
pack (Tv_Abs a t')
// GGG Needed? delete if not
let namedv_to_simple_binder (n : namedv) : Tac simple_binder =
let nv = inspect_namedv n in
{
ppname = nv.ppname;
uniq = nv.uniq;
sort = unseal nv.sort; (* GGG USINGSORT *)
qual = Q_Explicit;
attrs = [];
}
[@@coercion]
let binding_to_simple_binder (b : binding) : Tot simple_binder =
{
ppname = b.ppname;
uniq = b.uniq;
sort = b.sort;
qual = Q_Explicit;
attrs = [];
}
(** [string_to_term_with_lb [(id1, t1); ...; (idn, tn)] e s] parses
[s] as a term in environment [e] augmented with bindings | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
letbindings: Prims.list (Prims.string * FStar.Tactics.NamedView.term) ->
e: FStar.Stubs.Reflection.Types.env ->
t: Prims.string
-> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.string",
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.Util.fold_left",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_Let",
"Prims.Nil",
"FStar.Tactics.V2.Derived.binding_to_simple_binder",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V2.Builtins.string_to_term",
"FStar.Stubs.Reflection.V2.Data.binding",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Cons",
"FStar.Stubs.Tactics.V2.Builtins.push_bv_dsenv"
] | [] | false | true | false | false | false | let string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string) : Tac term =
| let e, lb_bindings:env * list (term & binding) =
fold_left (fun (e, lb_bvs) (i, v) ->
let e, b = push_bv_dsenv e i in
e, (v, b) :: lb_bvs)
(e, [])
letbindings
in
let t = string_to_term e t in
fold_left (fun t (i, b) -> pack (Tv_Let false [] (binding_to_simple_binder b) i t)) t lb_bindings | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.try_with | val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a | val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a | let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 449,
"start_col": 0,
"start_line": 446
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) ->
h: (_: Prims.exn -> FStar.Tactics.Effect.Tac 'a)
-> FStar.Tactics.Effect.Tac 'a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.exn",
"FStar.Pervasives.either",
"FStar.Stubs.Tactics.V2.Builtins.catch"
] | [] | false | true | false | false | false | let try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a =
| match catch f with
| Inl e -> h e
| Inr x -> x | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.smt_sync' | val smt_sync' (fuel ifuel: nat) : Tac unit | val smt_sync' (fuel ifuel: nat) : Tac unit | let smt_sync' (fuel ifuel : nat) : Tac unit =
let vcfg = get_vconfig () in
let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel
; initial_ifuel = ifuel; max_ifuel = ifuel }
in
t_smt_sync vcfg' | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 936,
"start_col": 0,
"start_line": 931
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and
so on. *)
let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b
exception Appears
(** Decides whether a top-level name [nm] syntactically
appears in the term [t]. *)
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then
raise Appears;
t
| tv -> pack tv
in
try ignore (V.visit_tm ff t); false with
| Appears -> true
| e -> raise e
(** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *)
let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) =
match args with
| [] -> t
| a :: args' ->
let t' = mk_abs args' t in
pack (Tv_Abs a t')
// GGG Needed? delete if not
let namedv_to_simple_binder (n : namedv) : Tac simple_binder =
let nv = inspect_namedv n in
{
ppname = nv.ppname;
uniq = nv.uniq;
sort = unseal nv.sort; (* GGG USINGSORT *)
qual = Q_Explicit;
attrs = [];
}
[@@coercion]
let binding_to_simple_binder (b : binding) : Tot simple_binder =
{
ppname = b.ppname;
uniq = b.uniq;
sort = b.sort;
qual = Q_Explicit;
attrs = [];
}
(** [string_to_term_with_lb [(id1, t1); ...; (idn, tn)] e s] parses
[s] as a term in environment [e] augmented with bindings
[id1, t1], ..., [idn, tn]. *)
let string_to_term_with_lb
(letbindings: list (string * term))
(e: env) (t: string): Tac term
= let e, lb_bindings : env * list (term & binding) =
fold_left (fun (e, lb_bvs) (i, v) ->
let e, b = push_bv_dsenv e i in
e, (v, b)::lb_bvs
) (e, []) letbindings in
let t = string_to_term e t in
fold_left (fun t (i, b) ->
pack (Tv_Let false [] (binding_to_simple_binder b) i t))
t lb_bindings
private
val lem_trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) ->
squash (x == y) -> squash (y == z) -> Lemma (x == z)
private
let lem_trans #a #x #z #y e1 e2 = ()
(** Transivity of equality: reduce [x == z] to [x == ?u] and [?u == z]. *)
let trans () : Tac unit = apply_lemma (`lem_trans)
(* Alias to just use the current vconfig *)
let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | fuel: Prims.nat -> ifuel: Prims.nat -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.nat",
"FStar.Stubs.Tactics.V2.Builtins.t_smt_sync",
"Prims.unit",
"FStar.VConfig.vconfig",
"FStar.VConfig.Mkvconfig",
"FStar.VConfig.__proj__Mkvconfig__item__detail_errors",
"FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay",
"FStar.VConfig.__proj__Mkvconfig__item__no_smt",
"FStar.VConfig.__proj__Mkvconfig__item__quake_lo",
"FStar.VConfig.__proj__Mkvconfig__item__quake_hi",
"FStar.VConfig.__proj__Mkvconfig__item__quake_keep",
"FStar.VConfig.__proj__Mkvconfig__item__retry",
"FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box",
"FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr",
"FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr",
"FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro",
"FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim",
"FStar.VConfig.__proj__Mkvconfig__item__tcnorm",
"FStar.VConfig.__proj__Mkvconfig__item__no_plugins",
"FStar.VConfig.__proj__Mkvconfig__item__no_tactics",
"FStar.VConfig.__proj__Mkvconfig__item__z3cliopt",
"FStar.VConfig.__proj__Mkvconfig__item__z3smtopt",
"FStar.VConfig.__proj__Mkvconfig__item__z3refresh",
"FStar.VConfig.__proj__Mkvconfig__item__z3rlimit",
"FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor",
"FStar.VConfig.__proj__Mkvconfig__item__z3seed",
"FStar.VConfig.__proj__Mkvconfig__item__z3version",
"FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns",
"FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for",
"FStar.Stubs.Tactics.V2.Builtins.get_vconfig"
] | [] | false | true | false | false | false | let smt_sync' (fuel ifuel: nat) : Tac unit =
| let vcfg = get_vconfig () in
let vcfg' =
{ vcfg with initial_fuel = fuel; max_fuel = fuel; initial_ifuel = ifuel; max_ifuel = ifuel }
in
t_smt_sync vcfg' | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.trans | val trans: Prims.unit -> Tac unit | val trans: Prims.unit -> Tac unit | let trans () : Tac unit = apply_lemma (`lem_trans) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 925,
"start_col": 0,
"start_line": 925
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and
so on. *)
let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b
exception Appears
(** Decides whether a top-level name [nm] syntactically
appears in the term [t]. *)
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then
raise Appears;
t
| tv -> pack tv
in
try ignore (V.visit_tm ff t); false with
| Appears -> true
| e -> raise e
(** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *)
let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) =
match args with
| [] -> t
| a :: args' ->
let t' = mk_abs args' t in
pack (Tv_Abs a t')
// GGG Needed? delete if not
let namedv_to_simple_binder (n : namedv) : Tac simple_binder =
let nv = inspect_namedv n in
{
ppname = nv.ppname;
uniq = nv.uniq;
sort = unseal nv.sort; (* GGG USINGSORT *)
qual = Q_Explicit;
attrs = [];
}
[@@coercion]
let binding_to_simple_binder (b : binding) : Tot simple_binder =
{
ppname = b.ppname;
uniq = b.uniq;
sort = b.sort;
qual = Q_Explicit;
attrs = [];
}
(** [string_to_term_with_lb [(id1, t1); ...; (idn, tn)] e s] parses
[s] as a term in environment [e] augmented with bindings
[id1, t1], ..., [idn, tn]. *)
let string_to_term_with_lb
(letbindings: list (string * term))
(e: env) (t: string): Tac term
= let e, lb_bindings : env * list (term & binding) =
fold_left (fun (e, lb_bvs) (i, v) ->
let e, b = push_bv_dsenv e i in
e, (v, b)::lb_bvs
) (e, []) letbindings in
let t = string_to_term e t in
fold_left (fun t (i, b) ->
pack (Tv_Let false [] (binding_to_simple_binder b) i t))
t lb_bindings
private
val lem_trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) ->
squash (x == y) -> squash (y == z) -> Lemma (x == z)
private
let lem_trans #a #x #z #y e1 e2 = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma"
] | [] | false | true | false | false | false | let trans () : Tac unit =
| apply_lemma (`lem_trans) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.smt_sync | val smt_sync: Prims.unit -> Tac unit | val smt_sync: Prims.unit -> Tac unit | let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 56,
"end_line": 928,
"start_col": 0,
"start_line": 928
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and
so on. *)
let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b
exception Appears
(** Decides whether a top-level name [nm] syntactically
appears in the term [t]. *)
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then
raise Appears;
t
| tv -> pack tv
in
try ignore (V.visit_tm ff t); false with
| Appears -> true
| e -> raise e
(** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *)
let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) =
match args with
| [] -> t
| a :: args' ->
let t' = mk_abs args' t in
pack (Tv_Abs a t')
// GGG Needed? delete if not
let namedv_to_simple_binder (n : namedv) : Tac simple_binder =
let nv = inspect_namedv n in
{
ppname = nv.ppname;
uniq = nv.uniq;
sort = unseal nv.sort; (* GGG USINGSORT *)
qual = Q_Explicit;
attrs = [];
}
[@@coercion]
let binding_to_simple_binder (b : binding) : Tot simple_binder =
{
ppname = b.ppname;
uniq = b.uniq;
sort = b.sort;
qual = Q_Explicit;
attrs = [];
}
(** [string_to_term_with_lb [(id1, t1); ...; (idn, tn)] e s] parses
[s] as a term in environment [e] augmented with bindings
[id1, t1], ..., [idn, tn]. *)
let string_to_term_with_lb
(letbindings: list (string * term))
(e: env) (t: string): Tac term
= let e, lb_bindings : env * list (term & binding) =
fold_left (fun (e, lb_bvs) (i, v) ->
let e, b = push_bv_dsenv e i in
e, (v, b)::lb_bvs
) (e, []) letbindings in
let t = string_to_term e t in
fold_left (fun t (i, b) ->
pack (Tv_Let false [] (binding_to_simple_binder b) i t))
t lb_bindings
private
val lem_trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) ->
squash (x == y) -> squash (y == z) -> Lemma (x == z)
private
let lem_trans #a #x #z #y e1 e2 = ()
(** Transivity of equality: reduce [x == z] to [x == ?u] and [?u == z]. *)
let trans () : Tac unit = apply_lemma (`lem_trans) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V2.Builtins.t_smt_sync",
"FStar.VConfig.vconfig",
"FStar.Stubs.Tactics.V2.Builtins.get_vconfig"
] | [] | false | true | false | false | false | let smt_sync () : Tac unit =
| t_smt_sync (get_vconfig ()) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.__eq_sym | val __eq_sym (#t: _) (a b: t) : Lemma ((a == b) == (b == a)) | val __eq_sym (#t: _) (a b: t) : Lemma ((a == b) == (b == a)) | let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 55,
"end_line": 599,
"start_col": 0,
"start_line": 598
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: t -> b: t -> FStar.Pervasives.Lemma (ensures a == b == (b == a)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.PropositionalExtensionality.apply",
"Prims.eq2",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.logical",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let __eq_sym #t (a: t) (b: t) : Lemma ((a == b) == (b == a)) =
| FStar.PropositionalExtensionality.apply (a == b) (b == a) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.try_rewrite_equality | val try_rewrite_equality (x: term) (bs: list binding) : Tac unit | val try_rewrite_equality (x: term) (bs: list binding) : Tac unit | let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 621,
"start_col": 0,
"start_line": 610
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Tactics.NamedView.term -> bs: Prims.list FStar.Tactics.NamedView.binding
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"Prims.list",
"FStar.Tactics.NamedView.binding",
"Prims.unit",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Stubs.Reflection.V2.Builtins.term_eq",
"FStar.Stubs.Tactics.V2.Builtins.rewrite",
"Prims.bool",
"FStar.Tactics.V2.Derived.try_rewrite_equality",
"FStar.Reflection.V2.Formula.formula",
"FStar.Reflection.V2.Formula.term_as_formula",
"FStar.Tactics.V2.Derived.type_of_binding"
] | [
"recursion"
] | false | true | false | false | false | let rec try_rewrite_equality (x: term) (bs: list binding) : Tac unit =
| match bs with
| [] -> ()
| x_t :: bs ->
match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs
| _ -> try_rewrite_equality x bs | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.tighten | val tighten
(#t1: Type)
(#t2: Type{t2 `subtype_of` t1})
(x: possibly t1 {Ok? x ==> (Ok?.v x) `has_type` t2})
: possibly t2 | val tighten
(#t1: Type)
(#t2: Type{t2 `subtype_of` t1})
(x: possibly t1 {Ok? x ==> (Ok?.v x) `has_type` t2})
: possibly t2 | let tighten (#t1:Type) (#t2:Type{t2 `subtype_of` t1})
(x:possibly t1{Ok? x ==> Ok?.v x `has_type` t2}) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 38,
"start_col": 0,
"start_line": 34
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x'
unfold let fail_with (#a:Type) (s:string) : possibly a = Err s
unfold let unimplemented (#a:Type) (s:string) : possibly a = fail_with ("Unimplemented: " ^ s)
(** Allows moving to a "looser" monad type, always *)
unfold
let loosen (#t1:Type) (#t2:Type{t1 `subtype_of` t2})
(x:possibly t1) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** Allows moving to a "tighter" monad type, as long as the monad is
guaranteed statically to be within this tighter type *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Def.PossiblyMonad.possibly t1 {Ok? x ==> Prims.has_type (Ok?.v x) t2}
-> Vale.Def.PossiblyMonad.possibly t2 | Prims.Tot | [
"total"
] | [] | [
"Prims.subtype_of",
"Vale.Def.PossiblyMonad.possibly",
"Prims.l_imp",
"Prims.b2t",
"Vale.Def.PossiblyMonad.uu___is_Ok",
"Prims.has_type",
"Vale.Def.PossiblyMonad.__proj__Ok__item__v",
"Vale.Def.PossiblyMonad.Ok",
"Prims.string",
"Vale.Def.PossiblyMonad.Err"
] | [] | false | false | false | false | false | let tighten
(#t1: Type)
(#t2: Type{t2 `subtype_of` t1})
(x: possibly t1 {Ok? x ==> (Ok?.v x) `has_type` t2})
: possibly t2 =
| match x with
| Ok x' -> Ok x'
| Err s -> Err s | false |
Vale.X64.Stack_Sems.fst | Vale.X64.Stack_Sems.stack_from_s | val stack_from_s (s:S.machine_stack) : vale_stack | val stack_from_s (s:S.machine_stack) : vale_stack | let stack_from_s s = s | {
"file_name": "vale/code/arch/x64/Vale.X64.Stack_Sems.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 7,
"start_col": 0,
"start_line": 7
} | module Vale.X64.Stack_Sems
open FStar.Mul
friend Vale.X64.Stack_i | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Stack_i.fst.checked",
"Vale.Lib.Set.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Map.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.Stack_Sems.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Vale.X64.Machine_Semantics_s.machine_stack -> Vale.X64.Stack_i.vale_stack | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Machine_Semantics_s.machine_stack",
"Vale.X64.Stack_i.vale_stack"
] | [] | false | false | false | true | false | let stack_from_s s =
| s | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.for_all | val for_all (f: ('a -> pbool)) (l: list 'a) : pbool | val for_all (f: ('a -> pbool)) (l: list 'a) : pbool | let rec for_all (f : 'a -> pbool) (l : list 'a) : pbool =
match l with
| [] -> ttrue
| x :: xs -> f x &&. for_all f xs | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 98,
"start_col": 0,
"start_line": 95
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x'
unfold let fail_with (#a:Type) (s:string) : possibly a = Err s
unfold let unimplemented (#a:Type) (s:string) : possibly a = fail_with ("Unimplemented: " ^ s)
(** Allows moving to a "looser" monad type, always *)
unfold
let loosen (#t1:Type) (#t2:Type{t1 `subtype_of` t2})
(x:possibly t1) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** Allows moving to a "tighter" monad type, as long as the monad is
guaranteed statically to be within this tighter type *)
unfold
let tighten (#t1:Type) (#t2:Type{t2 `subtype_of` t1})
(x:possibly t1{Ok? x ==> Ok?.v x `has_type` t2}) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** [pbool] is a type that can be used instead of [bool] to hold on to
a reason whenever it is [false]. To convert from a [pbool] to a
bool, see [!!]. *)
unfold
type pbool = possibly unit
(** [!!x] coerces a [pbool] into a [bool] by discarding any reason it
holds on to and instead uses it solely as a boolean. *)
unfold
let (!!) (x:pbool) : bool = Ok? x
(** [ttrue] is just the same as [true] but for a [pbool] *)
unfold
let ttrue : pbool = Ok ()
(** [ffalse] is the same as [false] but is for a [pbool] and thus requires a reason for being false. *)
unfold
let ffalse (reason:string) : pbool = Err reason
(** [b /- r] is the same as [b] but as a [pbool] that is set to reason [r] if [b] is false. *)
unfold
let (/-) (b:bool) (reason:string) : pbool =
if b then
ttrue
else
ffalse reason
(** [p /+> r] is the same as [p] but also appends [r] to the reason if it was false. *)
unfold
let (/+>) (p:pbool) (r:string) : pbool =
match p with
| Ok () -> Ok ()
| Err rr -> Err (rr ^ r)
(** [p /+< r] is the same as [p] but also prepends [r] to the reason if it was false. *)
unfold
let (/+<) (p:pbool) (r:string) : pbool =
match p with
| Ok () -> Ok ()
| Err rr -> Err (r ^ rr)
(** [&&.] is a short-circuiting logical-and. *)
let (&&.) (x y:pbool) : pbool =
match x with
| Ok () -> y
| Err reason -> Err reason
(** [ ||. ] is a short-circuiting logical-or *)
let ( ||. ) (x y:pbool) : pbool =
match x with
| Ok () -> Ok ()
| Err rx -> y /+< (rx ^ " and ")
(** [for_all f l] runs [f] on all the elements of [l] and performs a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: 'a -> Vale.Def.PossiblyMonad.pbool) -> l: Prims.list 'a -> Vale.Def.PossiblyMonad.pbool | Prims.Tot | [
"total"
] | [] | [
"Vale.Def.PossiblyMonad.pbool",
"Prims.list",
"Vale.Def.PossiblyMonad.ttrue",
"Vale.Def.PossiblyMonad.op_Amp_Amp_Dot",
"Vale.Def.PossiblyMonad.for_all"
] | [
"recursion"
] | false | false | false | true | false | let rec for_all (f: ('a -> pbool)) (l: list 'a) : pbool =
| match l with
| [] -> ttrue
| x :: xs -> f x &&. for_all f xs | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.lemma_for_all_elim | val lemma_for_all_elim (f: ('a -> pbool)) (l: list 'a)
: Lemma (requires !!(for_all f l))
(ensures (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x))) | val lemma_for_all_elim (f: ('a -> pbool)) (l: list 'a)
: Lemma (requires !!(for_all f l))
(ensures (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x))) | let rec lemma_for_all_elim (f : 'a -> pbool) (l : list 'a) :
Lemma
(requires !!(for_all f l))
(ensures (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x))) =
match l with
| [] -> ()
| x :: xs ->
lemma_for_all_elim f xs | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 124,
"start_col": 0,
"start_line": 117
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x'
unfold let fail_with (#a:Type) (s:string) : possibly a = Err s
unfold let unimplemented (#a:Type) (s:string) : possibly a = fail_with ("Unimplemented: " ^ s)
(** Allows moving to a "looser" monad type, always *)
unfold
let loosen (#t1:Type) (#t2:Type{t1 `subtype_of` t2})
(x:possibly t1) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** Allows moving to a "tighter" monad type, as long as the monad is
guaranteed statically to be within this tighter type *)
unfold
let tighten (#t1:Type) (#t2:Type{t2 `subtype_of` t1})
(x:possibly t1{Ok? x ==> Ok?.v x `has_type` t2}) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** [pbool] is a type that can be used instead of [bool] to hold on to
a reason whenever it is [false]. To convert from a [pbool] to a
bool, see [!!]. *)
unfold
type pbool = possibly unit
(** [!!x] coerces a [pbool] into a [bool] by discarding any reason it
holds on to and instead uses it solely as a boolean. *)
unfold
let (!!) (x:pbool) : bool = Ok? x
(** [ttrue] is just the same as [true] but for a [pbool] *)
unfold
let ttrue : pbool = Ok ()
(** [ffalse] is the same as [false] but is for a [pbool] and thus requires a reason for being false. *)
unfold
let ffalse (reason:string) : pbool = Err reason
(** [b /- r] is the same as [b] but as a [pbool] that is set to reason [r] if [b] is false. *)
unfold
let (/-) (b:bool) (reason:string) : pbool =
if b then
ttrue
else
ffalse reason
(** [p /+> r] is the same as [p] but also appends [r] to the reason if it was false. *)
unfold
let (/+>) (p:pbool) (r:string) : pbool =
match p with
| Ok () -> Ok ()
| Err rr -> Err (rr ^ r)
(** [p /+< r] is the same as [p] but also prepends [r] to the reason if it was false. *)
unfold
let (/+<) (p:pbool) (r:string) : pbool =
match p with
| Ok () -> Ok ()
| Err rr -> Err (r ^ rr)
(** [&&.] is a short-circuiting logical-and. *)
let (&&.) (x y:pbool) : pbool =
match x with
| Ok () -> y
| Err reason -> Err reason
(** [ ||. ] is a short-circuiting logical-or *)
let ( ||. ) (x y:pbool) : pbool =
match x with
| Ok () -> Ok ()
| Err rx -> y /+< (rx ^ " and ")
(** [for_all f l] runs [f] on all the elements of [l] and performs a
short-circuit logical-and of all the results *)
let rec for_all (f : 'a -> pbool) (l : list 'a) : pbool =
match l with
| [] -> ttrue
| x :: xs -> f x &&. for_all f xs
(** Change from a [forall] to a [for_all] *)
let rec lemma_for_all_intro (f : 'a -> pbool) (l : list 'a) :
Lemma
(requires (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x)))
(ensures !!(for_all f l)) =
let open FStar.List.Tot in
let aux l x :
Lemma
(requires (x `memP` l ==> !!(f x)))
(ensures (Cons? l /\ x `memP` tl l ==> !!(f x))) = () in
match l with
| [] -> ()
| x :: xs ->
FStar.Classical.forall_intro (FStar.Classical.move_requires (aux l));
lemma_for_all_intro f xs | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: 'a -> Vale.Def.PossiblyMonad.pbool) -> l: Prims.list 'a
-> FStar.Pervasives.Lemma (requires !!(Vale.Def.PossiblyMonad.for_all f l))
(ensures
forall (x: 'a). {:pattern FStar.List.Tot.Base.memP x l}
FStar.List.Tot.Base.memP x l ==> !!(f x)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.PossiblyMonad.pbool",
"Prims.list",
"Vale.Def.PossiblyMonad.lemma_for_all_elim",
"Prims.unit",
"Prims.b2t",
"Vale.Def.PossiblyMonad.op_Bang_Bang",
"Vale.Def.PossiblyMonad.for_all",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"FStar.List.Tot.Base.memP",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_for_all_elim (f: ('a -> pbool)) (l: list 'a)
: Lemma (requires !!(for_all f l))
(ensures (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x))) =
| match l with
| [] -> ()
| x :: xs -> lemma_for_all_elim f xs | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.lemma_for_all_intro | val lemma_for_all_intro (f: ('a -> pbool)) (l: list 'a)
: Lemma
(requires (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x)))
(ensures !!(for_all f l)) | val lemma_for_all_intro (f: ('a -> pbool)) (l: list 'a)
: Lemma
(requires (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x)))
(ensures !!(for_all f l)) | let rec lemma_for_all_intro (f : 'a -> pbool) (l : list 'a) :
Lemma
(requires (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x)))
(ensures !!(for_all f l)) =
let open FStar.List.Tot in
let aux l x :
Lemma
(requires (x `memP` l ==> !!(f x)))
(ensures (Cons? l /\ x `memP` tl l ==> !!(f x))) = () in
match l with
| [] -> ()
| x :: xs ->
FStar.Classical.forall_intro (FStar.Classical.move_requires (aux l));
lemma_for_all_intro f xs | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 114,
"start_col": 0,
"start_line": 101
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x'
unfold let fail_with (#a:Type) (s:string) : possibly a = Err s
unfold let unimplemented (#a:Type) (s:string) : possibly a = fail_with ("Unimplemented: " ^ s)
(** Allows moving to a "looser" monad type, always *)
unfold
let loosen (#t1:Type) (#t2:Type{t1 `subtype_of` t2})
(x:possibly t1) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** Allows moving to a "tighter" monad type, as long as the monad is
guaranteed statically to be within this tighter type *)
unfold
let tighten (#t1:Type) (#t2:Type{t2 `subtype_of` t1})
(x:possibly t1{Ok? x ==> Ok?.v x `has_type` t2}) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s
(** [pbool] is a type that can be used instead of [bool] to hold on to
a reason whenever it is [false]. To convert from a [pbool] to a
bool, see [!!]. *)
unfold
type pbool = possibly unit
(** [!!x] coerces a [pbool] into a [bool] by discarding any reason it
holds on to and instead uses it solely as a boolean. *)
unfold
let (!!) (x:pbool) : bool = Ok? x
(** [ttrue] is just the same as [true] but for a [pbool] *)
unfold
let ttrue : pbool = Ok ()
(** [ffalse] is the same as [false] but is for a [pbool] and thus requires a reason for being false. *)
unfold
let ffalse (reason:string) : pbool = Err reason
(** [b /- r] is the same as [b] but as a [pbool] that is set to reason [r] if [b] is false. *)
unfold
let (/-) (b:bool) (reason:string) : pbool =
if b then
ttrue
else
ffalse reason
(** [p /+> r] is the same as [p] but also appends [r] to the reason if it was false. *)
unfold
let (/+>) (p:pbool) (r:string) : pbool =
match p with
| Ok () -> Ok ()
| Err rr -> Err (rr ^ r)
(** [p /+< r] is the same as [p] but also prepends [r] to the reason if it was false. *)
unfold
let (/+<) (p:pbool) (r:string) : pbool =
match p with
| Ok () -> Ok ()
| Err rr -> Err (r ^ rr)
(** [&&.] is a short-circuiting logical-and. *)
let (&&.) (x y:pbool) : pbool =
match x with
| Ok () -> y
| Err reason -> Err reason
(** [ ||. ] is a short-circuiting logical-or *)
let ( ||. ) (x y:pbool) : pbool =
match x with
| Ok () -> Ok ()
| Err rx -> y /+< (rx ^ " and ")
(** [for_all f l] runs [f] on all the elements of [l] and performs a
short-circuit logical-and of all the results *)
let rec for_all (f : 'a -> pbool) (l : list 'a) : pbool =
match l with
| [] -> ttrue
| x :: xs -> f x &&. for_all f xs | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: 'a -> Vale.Def.PossiblyMonad.pbool) -> l: Prims.list 'a
-> FStar.Pervasives.Lemma
(requires
forall (x: 'a). {:pattern FStar.List.Tot.Base.memP x l}
FStar.List.Tot.Base.memP x l ==> !!(f x)) (ensures !!(Vale.Def.PossiblyMonad.for_all f l)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.PossiblyMonad.pbool",
"Prims.list",
"Vale.Def.PossiblyMonad.lemma_for_all_intro",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.l_imp",
"FStar.List.Tot.Base.memP",
"Prims.b2t",
"Vale.Def.PossiblyMonad.op_Bang_Bang",
"Prims.l_and",
"Prims.uu___is_Cons",
"FStar.List.Tot.Base.tl",
"FStar.Classical.move_requires",
"Vale.Def.PossiblyMonad.uu___is_Ok",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.l_Forall",
"Vale.Def.PossiblyMonad.for_all"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_for_all_intro (f: ('a -> pbool)) (l: list 'a)
: Lemma
(requires (forall x. {:pattern (x `List.Tot.memP` l)} (x `List.Tot.memP` l) ==> !!(f x)))
(ensures !!(for_all f l)) =
| let open FStar.List.Tot in
let aux l x
: Lemma (requires (x `memP` l ==> !!(f x))) (ensures (Cons? l /\ x `memP` (tl l) ==> !!(f x))) =
()
in
match l with
| [] -> ()
| x :: xs ->
FStar.Classical.forall_intro (FStar.Classical.move_requires (aux l));
lemma_for_all_intro f xs | false |
Vale.Def.PossiblyMonad.fst | Vale.Def.PossiblyMonad.loosen | val loosen (#t1: Type) (#t2: Type{t1 `subtype_of` t2}) (x: possibly t1) : possibly t2 | val loosen (#t1: Type) (#t2: Type{t1 `subtype_of` t2}) (x: possibly t1) : possibly t2 | let loosen (#t1:Type) (#t2:Type{t1 `subtype_of` t2})
(x:possibly t1) : possibly t2 =
match x with
| Ok x' -> Ok x'
| Err s -> Err s | {
"file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 29,
"start_col": 0,
"start_line": 25
} | module Vale.Def.PossiblyMonad
/// Similar to the [maybe] monad in Haskell (which is like the
/// [option] type in F* and OCaml), but instead, we also store the
/// reason for the error when the error occurs.
type possibly 'a =
| Ok : v:'a -> possibly 'a
| Err : reason:string -> possibly 'a
unfold let return (#a:Type) (x:a) : possibly a =
Ok x
unfold let (let+) (#a #b:Type) (x:possibly a) (f:a -> possibly b) : possibly b =
match x with
| Err s -> Err s
| Ok x' -> f x'
unfold let fail_with (#a:Type) (s:string) : possibly a = Err s
unfold let unimplemented (#a:Type) (s:string) : possibly a = fail_with ("Unimplemented: " ^ s)
(** Allows moving to a "looser" monad type, always *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Def.PossiblyMonad.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Def.PossiblyMonad.possibly t1 -> Vale.Def.PossiblyMonad.possibly t2 | Prims.Tot | [
"total"
] | [] | [
"Prims.subtype_of",
"Vale.Def.PossiblyMonad.possibly",
"Vale.Def.PossiblyMonad.Ok",
"Prims.string",
"Vale.Def.PossiblyMonad.Err"
] | [] | false | false | false | false | false | let loosen (#t1: Type) (#t2: Type{t1 `subtype_of` t2}) (x: possibly t1) : possibly t2 =
| match x with
| Ok x' -> Ok x'
| Err s -> Err s | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.last | val last (x: list 'a) : Tac 'a | val last (x: list 'a) : Tac 'a | let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 827,
"start_col": 8,
"start_line": 823
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.list 'a -> FStar.Tactics.Effect.Tac 'a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.V2.Derived.last"
] | [
"recursion"
] | false | true | false | false | false | let rec last (x: list 'a) : Tac 'a =
| match x with
| [] -> fail "last: empty list"
| [x] -> x
| _ :: xs -> last xs | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.rewrite_all_context_equalities | val rewrite_all_context_equalities (bs: list binding) : Tac unit | val rewrite_all_context_equalities (bs: list binding) : Tac unit | let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 629,
"start_col": 0,
"start_line": 623
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | bs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Tactics.NamedView.binding",
"Prims.unit",
"FStar.Tactics.V2.Derived.rewrite_all_context_equalities",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Stubs.Tactics.V2.Builtins.rewrite",
"Prims.exn"
] | [
"recursion"
] | false | true | false | false | false | let rec rewrite_all_context_equalities (bs: list binding) : Tac unit =
| match bs with
| [] -> ()
| x_t :: bs ->
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.revert_all | val revert_all (bs: list binding) : Tac unit | val revert_all (bs: list binding) : Tac unit | let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 568,
"start_col": 0,
"start_line": 564
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | bs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Tactics.NamedView.binding",
"Prims.unit",
"FStar.Tactics.V2.Derived.revert_all",
"FStar.Stubs.Tactics.V2.Builtins.revert"
] | [
"recursion"
] | false | true | false | false | false | let rec revert_all (bs: list binding) : Tac unit =
| match bs with
| [] -> ()
| _ :: tl ->
revert ();
revert_all tl | false |
Vale.X64.Stack_Sems.fst | Vale.X64.Stack_Sems.stack_to_s | val stack_to_s (s:vale_stack) : S.machine_stack | val stack_to_s (s:vale_stack) : S.machine_stack | let stack_to_s s = s | {
"file_name": "vale/code/arch/x64/Vale.X64.Stack_Sems.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 20,
"end_line": 6,
"start_col": 0,
"start_line": 6
} | module Vale.X64.Stack_Sems
open FStar.Mul
friend Vale.X64.Stack_i | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Stack_i.fst.checked",
"Vale.Lib.Set.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Map.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.Stack_Sems.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Vale.X64.Stack_i.vale_stack -> Vale.X64.Machine_Semantics_s.machine_stack | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Stack_i.vale_stack",
"Vale.X64.Machine_Semantics_s.machine_stack"
] | [] | false | false | false | true | false | let stack_to_s s =
| s | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.tlabel | val tlabel : l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit | let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 771,
"start_col": 0,
"start_line": 767
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Tactics.V2.Derived.fail",
"Prims.unit",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.V2.Builtins.set_goals",
"Prims.Cons",
"FStar.Stubs.Tactics.Types.set_label",
"FStar.Tactics.V2.Derived.goals"
] | [] | false | true | false | false | false | let tlabel (l: string) =
| match goals () with
| [] -> fail "tlabel: no goals"
| h :: t -> set_goals (set_label l h :: t) | false |
|
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.extract_nth | val extract_nth (n: nat) (l: list 'a) : option ('a * list 'a) | val extract_nth (n: nat) (l: list 'a) : option ('a * list 'a) | let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 793,
"start_col": 0,
"start_line": 785
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals [] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> l: Prims.list 'a -> FStar.Pervasives.Native.option ('a * Prims.list 'a) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.list",
"FStar.Pervasives.Native.Mktuple2",
"Prims.int",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Some",
"FStar.Tactics.V2.Derived.extract_nth",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Pervasives.Native.option"
] | [
"recursion"
] | false | false | false | true | false | let rec extract_nth (n: nat) (l: list 'a) : option ('a * list 'a) =
| match n, l with
| _, [] -> None
| 0, hd :: tl -> Some (hd, tl)
| _, hd :: tl ->
match extract_nth (n - 1) tl with
| Some (hd', tl') -> Some (hd', hd :: tl')
| None -> None | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.binding_to_simple_binder | val binding_to_simple_binder (b: binding) : Tot simple_binder | val binding_to_simple_binder (b: binding) : Tot simple_binder | let binding_to_simple_binder (b : binding) : Tot simple_binder =
{
ppname = b.ppname;
uniq = b.uniq;
sort = b.sort;
qual = Q_Explicit;
attrs = [];
} | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 900,
"start_col": 0,
"start_line": 893
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and
so on. *)
let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b
exception Appears
(** Decides whether a top-level name [nm] syntactically
appears in the term [t]. *)
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then
raise Appears;
t
| tv -> pack tv
in
try ignore (V.visit_tm ff t); false with
| Appears -> true
| e -> raise e
(** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *)
let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) =
match args with
| [] -> t
| a :: args' ->
let t' = mk_abs args' t in
pack (Tv_Abs a t')
// GGG Needed? delete if not
let namedv_to_simple_binder (n : namedv) : Tac simple_binder =
let nv = inspect_namedv n in
{
ppname = nv.ppname;
uniq = nv.uniq;
sort = unseal nv.sort; (* GGG USINGSORT *)
qual = Q_Explicit;
attrs = [];
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Tactics.NamedView.binding -> FStar.Tactics.NamedView.simple_binder | Prims.Tot | [
"total"
] | [] | [
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.NamedView.Mkbinder",
"FStar.Stubs.Reflection.V2.Data.__proj__Mkbinding__item__uniq",
"FStar.Stubs.Reflection.V2.Data.__proj__Mkbinding__item__ppname",
"FStar.Stubs.Reflection.V2.Data.__proj__Mkbinding__item__sort",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Prims.Nil",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.NamedView.simple_binder"
] | [] | false | false | false | true | false | let binding_to_simple_binder (b: binding) : Tot simple_binder =
| { ppname = b.ppname; uniq = b.uniq; sort = b.sort; qual = Q_Explicit; attrs = [] } | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.get_match_body | val get_match_body: Prims.unit -> Tac term | val get_match_body: Prims.unit -> Tac term | let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match" | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 821,
"start_col": 8,
"start_line": 816
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Reflection.Types.term",
"FStar.Pervasives.Native.option",
"FStar.Tactics.NamedView.match_returns_ascription",
"Prims.list",
"FStar.Tactics.NamedView.branch",
"FStar.Tactics.NamedView.named_term_view",
"FStar.Tactics.NamedView.term_view",
"Prims.b2t",
"FStar.Tactics.NamedView.notAscription",
"FStar.Tactics.V2.SyntaxHelpers.inspect_unascribe",
"FStar.Reflection.V2.Derived.unsquash_term",
"FStar.Tactics.V2.Derived.cur_goal",
"FStar.Stubs.Reflection.Types.typ"
] | [] | false | true | false | false | false | let get_match_body () : Tac term =
| match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t ->
match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match" | false |
ID3.fst | ID3.w0 | val w0 (a : Type u#a) : Type u#(max 1 a) | val w0 (a : Type u#a) : Type u#(max 1 a) | let w0 a = (a -> Type0) -> Type0 | {
"file_name": "examples/layeredeffects/ID3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 5,
"start_col": 0,
"start_line": 5
} | module ID3
// The base type of WPs | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked"
],
"interface_file": false,
"source_file": "ID3.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | true | let w0 a =
| (a -> Type0) -> Type0 | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.tlabel' | val tlabel' : l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit | let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 778,
"start_col": 0,
"start_line": 773
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Tactics.V2.Derived.fail",
"Prims.unit",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.V2.Builtins.set_goals",
"Prims.Cons",
"FStar.Stubs.Tactics.Types.set_label",
"Prims.op_Hat",
"FStar.Stubs.Tactics.Types.get_label",
"FStar.Tactics.V2.Derived.goals"
] | [] | false | true | false | false | false | let tlabel' (l: string) =
| match goals () with
| [] -> fail "tlabel': no goals"
| h :: t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t) | false |
|
FStar.DM4F.Heap.IntStoreFixed.fsti | FStar.DM4F.Heap.IntStoreFixed.sel | val sel : h: FStar.DM4F.Heap.IntStoreFixed.heap -> i: FStar.DM4F.Heap.IntStoreFixed.id -> Prims.int | let sel = index | {
"file_name": "examples/dm4free/FStar.DM4F.Heap.IntStoreFixed.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 28,
"start_col": 0,
"start_line": 28
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.Heap.IntStoreFixed
open FStar.Seq
let store_size = 10
val id : eqtype
val heap : eqtype
val to_id (n:nat{n < store_size}) : id | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.Heap.IntStoreFixed.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.DM4F.Heap.IntStoreFixed.heap -> i: FStar.DM4F.Heap.IntStoreFixed.id -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.index"
] | [] | false | false | false | true | false | let sel =
| index | false |
|
ID3.fst | ID3.w | val w (a : Type u#a) : Type u#(max 1 a) | val w (a : Type u#a) : Type u#(max 1 a) | let w a = pure_wp a | {
"file_name": "examples/layeredeffects/ID3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 12,
"start_col": 0,
"start_line": 12
} | module ID3
// The base type of WPs
val w0 (a : Type u#a) : Type u#(max 1 a)
let w0 a = (a -> Type0) -> Type0
// We require monotonicity of them
let monotonic (w:w0 'a) =
forall p1 p2. (forall x. p1 x ==> p2 x) ==> w p1 ==> w p2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked"
],
"interface_file": false,
"source_file": "ID3.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"Prims.pure_wp"
] | [] | false | false | false | true | true | let w a =
| pure_wp a | false |
FStar.DM4F.Heap.IntStoreFixed.fsti | FStar.DM4F.Heap.IntStoreFixed.store_size | val store_size : Prims.int | let store_size = 10 | {
"file_name": "examples/dm4free/FStar.DM4F.Heap.IntStoreFixed.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 20,
"start_col": 0,
"start_line": 20
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.Heap.IntStoreFixed
open FStar.Seq | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.Heap.IntStoreFixed.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.int | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let store_size =
| 10 | false |
|
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.nth_var | val nth_var (i: int) : Tac binding | val nth_var (i: int) : Tac binding | let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 854,
"start_col": 0,
"start_line": 848
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Prims.int -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.int",
"FStar.List.Tot.Base.nth",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.fail",
"Prims.nat",
"Prims.op_LessThan",
"Prims.bool",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Addition",
"FStar.List.Tot.Base.length",
"Prims.list",
"FStar.Tactics.V2.Derived.cur_vars"
] | [] | false | true | false | false | false | let nth_var (i: int) : Tac binding =
| let bs = cur_vars () in
let k:int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k:nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b | false |
ID3.fst | ID3.monotonic | val monotonic : w: ID3.w0 'a -> Prims.logical | let monotonic (w:w0 'a) =
forall p1 p2. (forall x. p1 x ==> p2 x) ==> w p1 ==> w p2 | {
"file_name": "examples/layeredeffects/ID3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 59,
"end_line": 9,
"start_col": 0,
"start_line": 8
} | module ID3
// The base type of WPs
val w0 (a : Type u#a) : Type u#(max 1 a)
let w0 a = (a -> Type0) -> Type0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked"
],
"interface_file": false,
"source_file": "ID3.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | w: ID3.w0 'a -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"ID3.w0",
"Prims.l_Forall",
"Prims.logical",
"Prims.l_imp"
] | [] | false | false | false | true | true | let monotonic (w: w0 'a) =
| forall p1 p2. (forall x. p1 x ==> p2 x) ==> w p1 ==> w p2 | false |
|
Hacl.Impl.P256.PointDouble.fst | Hacl.Impl.P256.PointDouble.point_double_6 | val point_double_6 (x3 z3 t0 t1 t4:felem) : Stack unit
(requires fun h ->
live h x3 /\ live h z3 /\ live h t0 /\ live h t1 /\ live h t4 /\
LowStar.Monotonic.Buffer.all_disjoint [ loc x3; loc z3; loc t0; loc t1; loc t4 ] /\
as_nat h x3 < S.prime /\ as_nat h z3 < S.prime /\
as_nat h t1 < S.prime /\ as_nat h t4 < S.prime)
(ensures fun h0 _ h1 -> modifies (loc x3 |+| loc z3 |+| loc t0) h0 h1 /\
as_nat h1 x3 < S.prime /\ as_nat h1 z3 < S.prime /\ as_nat h1 t0 < S.prime /\
(let t1_s = fmont_as_nat h0 t1 in
let t4_s = fmont_as_nat h0 t4 in
let x3_s = fmont_as_nat h0 x3 in
let z3_s = fmont_as_nat h0 z3 in
let t0_s = S.fadd t4_s t4_s in
let z3_s = S.fmul t0_s z3_s in
let x3_s = S.fsub x3_s z3_s in
let z3_s = S.fmul t0_s t1_s in
let z3_s = S.fadd z3_s z3_s in
let z3_s = S.fadd z3_s z3_s in
fmont_as_nat h1 z3 == z3_s /\ fmont_as_nat h1 x3 == x3_s /\ fmont_as_nat h1 t0 == t0_s)) | val point_double_6 (x3 z3 t0 t1 t4:felem) : Stack unit
(requires fun h ->
live h x3 /\ live h z3 /\ live h t0 /\ live h t1 /\ live h t4 /\
LowStar.Monotonic.Buffer.all_disjoint [ loc x3; loc z3; loc t0; loc t1; loc t4 ] /\
as_nat h x3 < S.prime /\ as_nat h z3 < S.prime /\
as_nat h t1 < S.prime /\ as_nat h t4 < S.prime)
(ensures fun h0 _ h1 -> modifies (loc x3 |+| loc z3 |+| loc t0) h0 h1 /\
as_nat h1 x3 < S.prime /\ as_nat h1 z3 < S.prime /\ as_nat h1 t0 < S.prime /\
(let t1_s = fmont_as_nat h0 t1 in
let t4_s = fmont_as_nat h0 t4 in
let x3_s = fmont_as_nat h0 x3 in
let z3_s = fmont_as_nat h0 z3 in
let t0_s = S.fadd t4_s t4_s in
let z3_s = S.fmul t0_s z3_s in
let x3_s = S.fsub x3_s z3_s in
let z3_s = S.fmul t0_s t1_s in
let z3_s = S.fadd z3_s z3_s in
let z3_s = S.fadd z3_s z3_s in
fmont_as_nat h1 z3 == z3_s /\ fmont_as_nat h1 x3 == x3_s /\ fmont_as_nat h1 t0 == t0_s)) | let point_double_6 x3 z3 t0 t1 t4 =
fdouble t0 t4;
fmul z3 t0 z3;
fsub x3 x3 z3;
fmul z3 t0 t1;
fdouble z3 z3;
fdouble z3 z3 | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.PointDouble.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 15,
"end_line": 191,
"start_col": 0,
"start_line": 185
} | module Hacl.Impl.P256.PointDouble
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
module ST = FStar.HyperStack.ST
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
open Hacl.Impl.P256.Field
module S = Spec.P256
#set-options "--z3rlimit 50 --ifuel 0 --fuel 0"
inline_for_extraction noextract
val point_double_1 (t0 t1 t2 t3 t4:felem) (p:point) : Stack unit
(requires fun h ->
live h t0 /\ live h t1 /\ live h t2 /\
live h t3 /\ live h t4 /\ live h p /\
LowStar.Monotonic.Buffer.all_disjoint
[loc t0; loc t1; loc t2; loc t3; loc t4; loc p ] /\
point_inv h p)
(ensures fun h0 _ h1 -> modifies (loc t0 |+| loc t1 |+| loc t2 |+| loc t3 |+| loc t4) h0 h1 /\
as_nat h1 t0 < S.prime /\ as_nat h1 t1 < S.prime /\
as_nat h1 t2 < S.prime /\ as_nat h1 t3 < S.prime /\
as_nat h1 t4 < S.prime /\
(let x, y, z = from_mont_point (as_point_nat h0 p) in
let t0_s = S.fmul x x in
let t1_s = S.fmul y y in
let t2_s = S.fmul z z in
let t3_s = S.fmul x y in
let t3_s = S.fadd t3_s t3_s in
let t4_s = S.fmul y z in
fmont_as_nat h1 t0 == t0_s /\ fmont_as_nat h1 t1 == t1_s /\
fmont_as_nat h1 t2 == t2_s /\ fmont_as_nat h1 t3 == t3_s /\
fmont_as_nat h1 t4 == t4_s))
let point_double_1 t0 t1 t2 t3 t4 p =
let x, y, z = getx p, gety p, getz p in
fsqr t0 x;
fsqr t1 y;
fsqr t2 z;
fmul t3 x y;
fdouble t3 t3;
fmul t4 y z
inline_for_extraction noextract
val point_double_2 (x3 y3 z3 t2:felem) : Stack unit
(requires fun h ->
live h x3 /\ live h y3 /\ live h z3 /\ live h t2 /\
LowStar.Monotonic.Buffer.all_disjoint [ loc x3; loc y3; loc z3; loc t2 ] /\
as_nat h z3 < S.prime /\ as_nat h t2 < S.prime)
(ensures fun h0 _ h1 -> modifies (loc x3 |+| loc y3 |+| loc z3) h0 h1 /\
as_nat h1 x3 < S.prime /\ as_nat h1 y3 < S.prime /\ as_nat h1 z3 < S.prime /\
(let z3_s = fmont_as_nat h0 z3 in
let t2_s = fmont_as_nat h0 t2 in
let z3_s = S.fadd z3_s z3_s in
let y3_s = S.fmul S.b_coeff t2_s in
let y3_s = S.fsub y3_s z3_s in
let x3_s = S.fadd y3_s y3_s in
let y3_s = S.fadd x3_s y3_s in
fmont_as_nat h1 x3 == x3_s /\ fmont_as_nat h1 y3 == y3_s /\
fmont_as_nat h1 z3 == z3_s))
let point_double_2 x3 y3 z3 t2 =
fdouble z3 z3;
fmul_by_b_coeff y3 t2;
fsub y3 y3 z3;
fdouble x3 y3;
fadd y3 x3 y3
inline_for_extraction noextract
val point_double_3 (x3 y3 t1 t2 t3:felem) : Stack unit
(requires fun h ->
live h x3 /\ live h y3 /\ live h t1 /\ live h t2 /\ live h t3 /\
LowStar.Monotonic.Buffer.all_disjoint [ loc x3; loc y3; loc t1; loc t2; loc t3 ] /\
as_nat h t1 < S.prime /\ as_nat h t2 < S.prime /\
as_nat h t3 < S.prime /\ as_nat h y3 < S.prime)
(ensures fun h0 _ h1 -> modifies (loc x3 |+| loc y3 |+| loc t2 |+| loc t3) h0 h1 /\
as_nat h1 x3 < S.prime /\ as_nat h1 y3 < S.prime /\
as_nat h1 t2 < S.prime /\ as_nat h1 t3 < S.prime /\
(let t1_s = fmont_as_nat h0 t1 in
let t2_s = fmont_as_nat h0 t2 in
let t3_s = fmont_as_nat h0 t3 in
let y3_s = fmont_as_nat h0 y3 in
let x3_s = S.fsub t1_s y3_s in
let y3_s = S.fadd t1_s y3_s in
let y3_s = S.fmul x3_s y3_s in
let x3_s = S.fmul x3_s t3_s in
let t3_s = S.fadd t2_s t2_s in
let t2_s = S.fadd t2_s t3_s in
fmont_as_nat h1 x3 == x3_s /\ fmont_as_nat h1 y3 == y3_s /\
fmont_as_nat h1 t2 == t2_s /\ fmont_as_nat h1 t3 == t3_s))
let point_double_3 x3 y3 t1 t2 t3 =
fsub x3 t1 y3;
fadd y3 t1 y3;
fmul y3 x3 y3;
fmul x3 x3 t3;
fdouble t3 t2;
fadd t2 t2 t3
inline_for_extraction noextract
val point_double_4 (z3 t0 t2 t3:felem) : Stack unit
(requires fun h ->
live h z3 /\ live h t0 /\ live h t2 /\ live h t3 /\
LowStar.Monotonic.Buffer.all_disjoint [ loc z3; loc t0; loc t2; loc t3 ] /\
as_nat h z3 < S.prime /\ as_nat h t0 < S.prime /\ as_nat h t2 < S.prime)
(ensures fun h0 _ h1 -> modifies (loc z3 |+| loc t3) h0 h1 /\
as_nat h1 z3 < S.prime /\ as_nat h1 t3 < S.prime /\
(let z3_s = fmont_as_nat h0 z3 in
let t0_s = fmont_as_nat h0 t0 in
let t2_s = fmont_as_nat h0 t2 in
let z3_s = S.fmul S.b_coeff z3_s in
let z3_s = S.fsub z3_s t2_s in
let z3_s = S.fsub z3_s t0_s in
let t3_s = S.fadd z3_s z3_s in
let z3_s = S.fadd z3_s t3_s in
fmont_as_nat h1 z3 == z3_s /\ fmont_as_nat h1 t3 == t3_s))
let point_double_4 z3 t0 t2 t3 =
fmul_by_b_coeff z3 z3;
fsub z3 z3 t2;
fsub z3 z3 t0;
fdouble t3 z3;
fadd z3 z3 t3
inline_for_extraction noextract
val point_double_5 (y3 z3 t0 t2 t3:felem) : Stack unit
(requires fun h ->
live h y3 /\ live h z3 /\ live h t0 /\ live h t2 /\ live h t3 /\
LowStar.Monotonic.Buffer.all_disjoint [ loc y3; loc z3; loc t0; loc t2; loc t3 ] /\
as_nat h y3 < S.prime /\ as_nat h z3 < S.prime /\
as_nat h t0 < S.prime /\ as_nat h t2 < S.prime)
(ensures fun h0 _ h1 -> modifies (loc y3 |+| loc t0 |+| loc t3) h0 h1 /\
as_nat h1 y3 < S.prime /\ as_nat h1 t3 < S.prime /\
(let t0_s = fmont_as_nat h0 t0 in
let t2_s = fmont_as_nat h0 t2 in
let y3_s = fmont_as_nat h0 y3 in
let z3_s = fmont_as_nat h0 z3 in
let t3_s = S.fadd t0_s t0_s in
let t0_s = S.fadd t3_s t0_s in
let t0_s = S.fsub t0_s t2_s in
let t0_s = S.fmul t0_s z3_s in
let y3_s = S.fadd y3_s t0_s in
fmont_as_nat h1 y3 == y3_s /\ fmont_as_nat h1 t0 == t0_s /\ fmont_as_nat h1 t3 == t3_s))
let point_double_5 y3 z3 t0 t2 t3 =
fdouble t3 t0;
fadd t0 t3 t0;
fsub t0 t0 t2;
fmul t0 t0 z3;
fadd y3 y3 t0
inline_for_extraction noextract
val point_double_6 (x3 z3 t0 t1 t4:felem) : Stack unit
(requires fun h ->
live h x3 /\ live h z3 /\ live h t0 /\ live h t1 /\ live h t4 /\
LowStar.Monotonic.Buffer.all_disjoint [ loc x3; loc z3; loc t0; loc t1; loc t4 ] /\
as_nat h x3 < S.prime /\ as_nat h z3 < S.prime /\
as_nat h t1 < S.prime /\ as_nat h t4 < S.prime)
(ensures fun h0 _ h1 -> modifies (loc x3 |+| loc z3 |+| loc t0) h0 h1 /\
as_nat h1 x3 < S.prime /\ as_nat h1 z3 < S.prime /\ as_nat h1 t0 < S.prime /\
(let t1_s = fmont_as_nat h0 t1 in
let t4_s = fmont_as_nat h0 t4 in
let x3_s = fmont_as_nat h0 x3 in
let z3_s = fmont_as_nat h0 z3 in
let t0_s = S.fadd t4_s t4_s in
let z3_s = S.fmul t0_s z3_s in
let x3_s = S.fsub x3_s z3_s in
let z3_s = S.fmul t0_s t1_s in
let z3_s = S.fadd z3_s z3_s in
let z3_s = S.fadd z3_s z3_s in
fmont_as_nat h1 z3 == z3_s /\ fmont_as_nat h1 x3 == x3_s /\ fmont_as_nat h1 t0 == t0_s)) | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.Field.fsti.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.P256.PointDouble.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Field",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x3: Hacl.Impl.P256.Bignum.felem ->
z3: Hacl.Impl.P256.Bignum.felem ->
t0: Hacl.Impl.P256.Bignum.felem ->
t1: Hacl.Impl.P256.Bignum.felem ->
t4: Hacl.Impl.P256.Bignum.felem
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.P256.Bignum.felem",
"Hacl.Impl.P256.Field.fdouble",
"Prims.unit",
"Hacl.Impl.P256.Field.fmul",
"Hacl.Impl.P256.Field.fsub"
] | [] | false | true | false | false | false | let point_double_6 x3 z3 t0 t1 t4 =
| fdouble t0 t4;
fmul z3 t0 z3;
fsub x3 x3 z3;
fmul z3 t0 t1;
fdouble z3 z3;
fdouble z3 z3 | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.namedv_to_simple_binder | val namedv_to_simple_binder (n: namedv) : Tac simple_binder | val namedv_to_simple_binder (n: namedv) : Tac simple_binder | let namedv_to_simple_binder (n : namedv) : Tac simple_binder =
let nv = inspect_namedv n in
{
ppname = nv.ppname;
uniq = nv.uniq;
sort = unseal nv.sort; (* GGG USINGSORT *)
qual = Q_Explicit;
attrs = [];
} | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 890,
"start_col": 0,
"start_line": 882
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and
so on. *)
let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b
exception Appears
(** Decides whether a top-level name [nm] syntactically
appears in the term [t]. *)
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then
raise Appears;
t
| tv -> pack tv
in
try ignore (V.visit_tm ff t); false with
| Appears -> true
| e -> raise e
(** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *)
let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) =
match args with
| [] -> t
| a :: args' ->
let t' = mk_abs args' t in
pack (Tv_Abs a t') | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: FStar.Tactics.NamedView.namedv -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.simple_binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.namedv",
"FStar.Tactics.NamedView.Mkbinder",
"FStar.Stubs.Reflection.V2.Data.__proj__Mknamedv_view__item__uniq",
"FStar.Stubs.Reflection.V2.Data.__proj__Mknamedv_view__item__ppname",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Prims.Nil",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.NamedView.simple_binder",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.Unseal.unseal",
"FStar.Stubs.Reflection.V2.Data.__proj__Mknamedv_view__item__sort",
"FStar.Tactics.NamedView.inspect_namedv"
] | [] | false | true | false | false | false | let namedv_to_simple_binder (n: namedv) : Tac simple_binder =
| let nv = inspect_namedv n in
{ ppname = nv.ppname; uniq = nv.uniq; sort = unseal nv.sort; qual = Q_Explicit; attrs = [] } | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.bump_nth | val bump_nth (n: pos) : Tac unit | val bump_nth (n: pos) : Tac unit | let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t) | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 799,
"start_col": 0,
"start_line": 795
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.pos",
"FStar.Tactics.V2.Derived.fail",
"Prims.unit",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.V2.Builtins.set_goals",
"Prims.Cons",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.Derived.extract_nth",
"Prims.op_Subtraction",
"FStar.Tactics.V2.Derived.goals"
] | [] | false | true | false | false | false | let bump_nth (n: pos) : Tac unit =
| match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t) | false |
EtM.AE.fst | EtM.AE.log_entry | val log_entry : Type0 | let log_entry = Plain.plain * cipher | {
"file_name": "examples/crypto/EtM.AE.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 39,
"start_col": 0,
"start_line": 39
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module EtM.AE
open FStar.Seq
open FStar.Monotonic.Seq
open FStar.HyperStack
open FStar.HyperStack.ST
module MAC = EtM.MAC
open Platform.Bytes
open CoreCrypto
module CPA = EtM.CPA
module MAC = EtM.MAC
module Ideal = EtM.Ideal
module Plain = EtM.Plain
(*** Basic types ***)
type rid = erid
/// An AE cipher includes a mac tag
type cipher = (CPA.cipher * MAC.tag) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Platform.Bytes.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Seq.fst.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EtM.Plain.fsti.checked",
"EtM.MAC.fst.checked",
"EtM.Ideal.fsti.checked",
"EtM.CPA.fst.checked",
"CoreCrypto.fst.checked"
],
"interface_file": false,
"source_file": "EtM.AE.fst"
} | [
{
"abbrev": true,
"full_module": "EtM.Plain",
"short_module": "Plain"
},
{
"abbrev": true,
"full_module": "EtM.Ideal",
"short_module": "Ideal"
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": true,
"full_module": "EtM.CPA",
"short_module": "CPA"
},
{
"abbrev": false,
"full_module": "CoreCrypto",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform.Bytes",
"short_module": null
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple2",
"EtM.Plain.plain",
"EtM.AE.cipher"
] | [] | false | false | false | true | true | let log_entry =
| Plain.plain * cipher | false |
|
ID3.fst | ID3.l | val l: Prims.unit -> int | val l: Prims.unit -> int | let l () : int =
reify (test_f ()) | {
"file_name": "examples/layeredeffects/ID3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 77,
"start_col": 0,
"start_line": 76
} | module ID3
// The base type of WPs
val w0 (a : Type u#a) : Type u#(max 1 a)
let w0 a = (a -> Type0) -> Type0
// We require monotonicity of them
let monotonic (w:w0 'a) =
forall p1 p2. (forall x. p1 x ==> p2 x) ==> w p1 ==> w p2
val w (a : Type u#a) : Type u#(max 1 a)
let w a = pure_wp a
let repr (a : Type) (wp : w a) : Type =
v:a{forall p. wp p ==> p v}
open FStar.Monotonic.Pure
let return (a : Type) (x : a) : repr a (as_pure_wp (fun p -> p x)) =
x
unfold
let bind_wp #a #b (wp_v:w a) (wp_f:a -> w b) : w b =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : w a) (wp_f: a -> w b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= f v
let subcomp (a:Type) (wp1 wp2: w a)
(f : repr a wp1)
: Pure (repr a wp2)
(requires (forall p. wp2 p ==> wp1 p))
(ensures fun _ -> True)
= f
unfold
let if_then_else_wp #a (wp1 wp2:w a) (p:bool) =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> (p ==> wp1 post) /\ ((~p) ==> wp2 post))
let if_then_else (a : Type) (wp1 wp2 : w a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (if_then_else_wp wp1 wp2 p)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_ : w a)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_nd (a:Type) (wp:pure_wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= elim_pure_wp_monotonicity_forall ();
f ()
sub_effect PURE ~> ID = lift_pure_nd
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
module T = FStar.Tactics.V2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked"
],
"interface_file": false,
"source_file": "ID3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"ID3.test_f",
"Prims.int"
] | [] | false | false | false | true | false | let l () : int =
| reify (test_f ()) | false |
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.mk_abs | val mk_abs (args: list binder) (t: term) : Tac term (decreases args) | val mk_abs (args: list binder) (t: term) : Tac term (decreases args) | let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) =
match args with
| [] -> t
| a :: args' ->
let t' = mk_abs args' t in
pack (Tv_Abs a t') | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 879,
"start_col": 0,
"start_line": 874
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t)
let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral
private let get_match_body () : Tac term =
match unsquash_term (cur_goal ()) with
| None -> fail ""
| Some t -> match inspect_unascribe t with
| Tv_Match sc _ _ -> sc
| _ -> fail "Goal is not a match"
private let rec last (x : list 'a) : Tac 'a =
match x with
| [] -> fail "last: empty list"
| [x] -> x
| _::xs -> last xs
(** When the goal is [match e with | p1 -> e1 ... | pn -> en],
destruct it into [n] goals for each possible case, including an
hypothesis for [e] matching the corresponding pattern. *)
let branch_on_match () : Tac unit =
focus (fun () ->
let x = get_match_body () in
let _ = t_destruct x in
iterAll (fun () ->
let bs = repeat intro in
let b = last bs in (* this one is the equality *)
grewrite_eq b;
norm [iota])
)
(** When the argument [i] is non-negative, [nth_var] grabs the nth
binder in the current goal. When it is negative, it grabs the (-i-1)th
binder counting from the end of the goal. That is, [nth_var (-1)]
will return the last binder, [nth_var (-2)] the second to last, and
so on. *)
let nth_var (i:int) : Tac binding =
let bs = cur_vars () in
let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in
let k : nat = if k < 0 then fail "not enough binders" else k in
match List.Tot.Base.nth bs k with
| None -> fail "not enough binders"
| Some b -> b
exception Appears
(** Decides whether a top-level name [nm] syntactically
appears in the term [t]. *)
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac term =
match inspect t with
| Tv_FVar fv ->
if inspect_fv fv = nm then
raise Appears;
t
| tv -> pack tv
in
try ignore (V.visit_tm ff t); false with
| Appears -> true
| e -> raise e | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | args: Prims.list FStar.Tactics.NamedView.binder -> t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term | FStar.Tactics.Effect.Tac | [
""
] | [] | [
"Prims.list",
"FStar.Tactics.NamedView.binder",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_Abs",
"FStar.Tactics.V2.Derived.mk_abs"
] | [
"recursion"
] | false | true | false | false | false | let rec mk_abs (args: list binder) (t: term) : Tac term (decreases args) =
| match args with
| [] -> t
| a :: args' ->
let t' = mk_abs args' t in
pack (Tv_Abs a t') | false |
Steel.Primitive.ForkJoin.Unix.fst | Steel.Primitive.ForkJoin.Unix.triv_post | val triv_post (#a: Type) (req: vprop) (ens: post_t a) : ens_t req a ens | val triv_post (#a: Type) (req: vprop) (ens: post_t a) : ens_t req a ens | let triv_post (#a:Type) (req:vprop) (ens:post_t a) : ens_t req a ens = fun _ _ _ -> True | {
"file_name": "lib/steel/Steel.Primitive.ForkJoin.Unix.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 88,
"end_line": 232,
"start_col": 0,
"start_line": 232
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Primitive.ForkJoin.Unix
(* This module shows that it's possible to layer continuations on top
of SteelT to get a direct style (or Unix style) fork/join. Very much a
prototype for now. *)
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.Reference
open Steel.Primitive.ForkJoin
#set-options "--warn_error -330" //turn off the experimental feature warning
#set-options "--ide_id_info_off"
// (* Some helpers *)
let change_slprop_equiv (p q : vprop)
(proof : squash (p `equiv` q))
: SteelT unit p (fun _ -> q)
= rewrite_slprop p q (fun _ -> proof; reveal_equiv p q)
let change_slprop_imp (p q : vprop)
(proof : squash (p `can_be_split` q))
: SteelT unit p (fun _ -> q)
= rewrite_slprop p q (fun _ -> proof; reveal_can_be_split ())
(* Continuations into unit, but parametrized by the final heap
* proposition and with an implicit framing. I think ideally these would
* also be parametric in the final type (instead of being hardcoded to
* unit) but that means fork needs to be extended to be polymorphic in
* at least one of the branches. *)
type steelK (t:Type u#aa) (framed:bool) (pre : vprop) (post:t->vprop) =
#frame:vprop -> #postf:vprop ->
f:(x:t -> SteelT unit (frame `star` post x) (fun _ -> postf)) ->
SteelT unit (frame `star` pre) (fun _ -> postf)
(* The classic continuation monad *)
let return_ a (x:a) (#[@@@ framing_implicit] p: a -> vprop) : steelK a true (return_pre (p x)) p =
fun k -> k x
private
let rearrange3 (p q r:vprop) : Lemma
(((p `star` q) `star` r) `equiv` (p `star` (r `star` q)))
= let open FStar.Tactics in
assert (((p `star` q) `star` r) `equiv` (p `star` (r `star` q))) by
(norm [delta_attr [`%__reduce__]]; canon' false (`true_p) (`true_p))
private
let equiv_symmetric (p1 p2:vprop)
: Lemma (requires p1 `equiv` p2) (ensures p2 `equiv` p1)
= reveal_equiv p1 p2;
equiv_symmetric (hp_of p1) (hp_of p2);
reveal_equiv p2 p1
private
let can_be_split_forall_frame (#a:Type) (p q:post_t a) (frame:vprop) (x:a)
: Lemma (requires can_be_split_forall p q)
(ensures (frame `star` p x) `can_be_split` (frame `star` q x))
= let frame = hp_of frame in
let p = hp_of (p x) in
let q = hp_of (q x) in
reveal_can_be_split ();
assert (slimp p q);
slimp_star p q frame frame;
Steel.Memory.star_commutative p frame;
Steel.Memory.star_commutative q frame
let bind (a:Type) (b:Type)
(#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool)
(#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a)
(#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:post_t b)
(#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:vprop)
(#[@@@ framing_implicit] p:squash (can_be_split_forall
(fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g)))
(#[@@@ framing_implicit] m1 : squash (maybe_emp framed_f frame_f))
(#[@@@ framing_implicit] m2:squash (maybe_emp framed_g frame_g))
(f:steelK a framed_f pre_f post_f)
(g:(x:a -> steelK b framed_g (pre_g x) post_g))
: steelK b
true
(pre_f `star` frame_f)
(fun y -> post_g y `star` frame_g)
= fun #frame (#post:vprop) (k:(y:b -> SteelT unit (frame `star` (post_g y `star` frame_g)) (fun _ -> post))) ->
// Need SteelT unit (frame `star` (pre_f `star` frame_f)) (fun _ -> post)
change_slprop_equiv (frame `star` (pre_f `star` frame_f)) ((frame `star` frame_f) `star` pre_f) (rearrange3 frame frame_f pre_f;
equiv_symmetric ((frame `star` frame_f) `star` pre_f) (frame `star` (pre_f `star` frame_f)) );
f #(frame `star` frame_f) #post
((fun (x:a) ->
// Need SteelT unit ((frame `star` frame_f) `star` post_f x) (fun _ -> post)
change_slprop_imp
(frame `star` (post_f x `star` frame_f))
(frame `star` (pre_g x `star` frame_g))
(can_be_split_forall_frame (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g) frame x);
g x #(frame `star` frame_g) #post
((fun (y:b) -> k y)
<: (y:b -> SteelT unit ((frame `star` frame_g) `star` post_g y) (fun _ -> post)))
)
<: (x:a -> SteelT unit ((frame `star` frame_f) `star` post_f x) (fun _ -> post)))
let subcomp (a:Type)
(#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool)
(#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a)
(#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a)
(#[@@@ framing_implicit] p1:squash (can_be_split pre_g pre_f))
(#[@@@ framing_implicit] p2:squash (can_be_split_forall post_f post_g))
(f:steelK a framed_f pre_f post_f)
: Tot (steelK a framed_g pre_g post_g)
= fun #frame #postf (k:(x:a -> SteelT unit (frame `star` post_g x) (fun _ -> postf))) ->
change_slprop_imp pre_g pre_f ();
f #frame #postf ((fun x -> change_slprop_imp (frame `star` post_f x) (frame `star` post_g x)
(can_be_split_forall_frame post_f post_g frame x);
k x) <: (x:a -> SteelT unit (frame `star` post_f x) (fun _ -> postf)))
// let if_then_else (a:Type u#aa)
// (#[@@@ framing_implicit] pre1:pre_t)
// (#[@@@ framing_implicit] post1:post_t a)
// (f : steelK a pre1 post1)
// (g : steelK a pre1 post1)
// (p:Type0) : Type =
// steelK a pre1 post1
// We did not define a bind between Div and Steel, so we indicate
// SteelKF as total to be able to reify and compose it when implementing fork
// This module is intended as proof of concept
total
reifiable
reflectable
layered_effect {
SteelKBase : a:Type -> framed:bool -> pre:vprop -> post:(a->vprop) -> Effect
with
repr = steelK;
return = return_;
bind = bind;
subcomp = subcomp
// if_then_else = if_then_else
}
effect SteelK (a:Type) (pre:pre_t) (post:post_t a) =
SteelKBase a false pre post
effect SteelKF (a:Type) (pre:pre_t) (post:post_t a) =
SteelKBase a true pre post
// We would need requires/ensures in SteelK to have a binding with Pure.
// But for our example, Tot is here sufficient
let bind_tot_steelK_ (a:Type) (b:Type)
(#framed:eqtype_as_type bool)
(#[@@@ framing_implicit] pre:pre_t) (#[@@@ framing_implicit] post:post_t b)
(f:eqtype_as_type unit -> Tot a) (g:(x:a -> steelK b framed pre post))
: steelK b
framed
pre
post
= fun #frame #postf (k:(x:b -> SteelT unit (frame `star` post x) (fun _ -> postf))) ->
let x = f () in
g x #frame #postf k
polymonadic_bind (PURE, SteelKBase) |> SteelKBase = bind_tot_steelK_
// (* Sanity check *)
let test_lift #p #q (f : unit -> SteelK unit p (fun _ -> q)) : SteelK unit p (fun _ -> q) =
();
f ();
()
(* Identity cont with frame, to eliminate a SteelK *)
let idk (#frame:vprop) (#a:Type) (x:a) : SteelT a frame (fun x -> frame)
= noop(); return x
let kfork (#p:vprop) (#q:vprop) (f : unit -> SteelK unit p (fun _ -> q))
: SteelK (thread q) p (fun _ -> emp)
=
SteelK?.reflect (
fun (#frame:vprop) (#postf:vprop)
(k : (x:(thread q) -> SteelT unit (frame `star` emp) (fun _ -> postf))) ->
noop ();
let t1 () : SteelT unit (emp `star` p) (fun _ -> q) =
let r : steelK unit false p (fun _ -> q) = reify (f ()) in
r #emp #q (fun _ -> idk())
in
let t2 (t:thread q) () : SteelT unit frame (fun _ -> postf) = k t in
let ff () : SteelT unit (p `star` frame) (fun _ -> postf) =
fork #p #q #frame #postf t1 t2
in
ff())
let kjoin (#p:vprop) (t : thread p) : SteelK unit emp (fun _ -> p)
= SteelK?.reflect (fun #f k -> join t; k ())
(* Example *)
assume val q : int -> vprop
assume val f : unit -> SteelK unit emp (fun _ -> emp)
assume val g : i:int -> SteelK unit emp (fun _ -> q i)
assume val h : unit -> SteelK unit emp (fun _ -> emp)
let example () : SteelK unit emp (fun _ -> q 1 `star` q 2) =
let p1:thread (q 1) = kfork (fun () -> g 1) in
let p2:thread (q 2) = kfork (fun () -> g 2) in
kjoin p1;
h();
kjoin p2
let as_steelk_repr' (a:Type) (pre:pre_t) (post:post_t a) (f:unit -> SteelT a pre post)
: steelK a false pre post
= fun #frame #postf (k:(x:a -> SteelT unit (frame `star` post x) (fun _ -> postf))) ->
let x = f () in
k x | {
"checked_file": "/",
"dependencies": [
"Steel.Reference.fsti.checked",
"Steel.Primitive.ForkJoin.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Primitive.ForkJoin.Unix.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | req: Steel.Effect.Common.vprop -> ens: Steel.Effect.Common.post_t a
-> Steel.Effect.Common.ens_t req a ens | Prims.Tot | [
"total"
] | [] | [
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.post_t",
"Steel.Effect.Common.rmem",
"Prims.l_True",
"Steel.Effect.Common.ens_t"
] | [] | false | false | false | false | false | let triv_post (#a: Type) (req: vprop) (ens: post_t a) : ens_t req a ens =
| fun _ _ _ -> True | false |
EtM.AE.fst | EtM.AE.mac_cpa_related | val mac_cpa_related : mac: EtM.MAC.log_entry -> cpa: EtM.CPA.log_entry -> Prims.logical | let mac_cpa_related (mac:EtM.MAC.log_entry) (cpa:EtM.CPA.log_entry) =
CPA.Entry?.c cpa == fst mac | {
"file_name": "examples/crypto/EtM.AE.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 87,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module EtM.AE
open FStar.Seq
open FStar.Monotonic.Seq
open FStar.HyperStack
open FStar.HyperStack.ST
module MAC = EtM.MAC
open Platform.Bytes
open CoreCrypto
module CPA = EtM.CPA
module MAC = EtM.MAC
module Ideal = EtM.Ideal
module Plain = EtM.Plain
(*** Basic types ***)
type rid = erid
/// An AE cipher includes a mac tag
type cipher = (CPA.cipher * MAC.tag)
/// An AE log pairs plain texts with MAC'd ciphers
let log_entry = Plain.plain * cipher
type log_t (r:rid) = m_rref r (seq log_entry) grows
/// An AE key pairs an encryption key, ke, with a MAC'ing key, km,
/// with an invariant ensuring that their memory footprints of their
/// ideal state are disjoint.
///
/// Aside from this, we have an AE log, which is a view of the two
/// other logs.
noeq type key =
| Key: #region:rid
-> ke:CPA.key { extends (CPA.Key?.region ke) region }
-> km:MAC.key { extends (MAC.Key?.region km) region /\
disjoint( CPA.Key?.region ke) (MAC.Key?.region km) }
-> log:log_t region
-> key
(** Accessors for the three logs **)
/// ae log
let get_log (h:mem) (k:key) =
sel h k.log
/// mac log
let get_mac_log (h:mem) (k:key) =
sel h (MAC.Key?.log k.km)
/// cpa log
let get_cpa_log (h:mem) (k:key) =
sel h (CPA.Key?.log k.ke)
(*** Main invariant on the ideal state ***)
(** There are three components to this invariant
1. The CPA invariant (pairwise distinctness of IVs, notably)
2. mac_only_cpa_ciphers:
The MAC log and CPA logs are related, in that the MAC log only
contains entries for valid ciphers recorded the CPA log
3. mac_and_cpa_refine_ae:
The AE log is a combined view of the MAC and CPA logs Each of
its entries corresponds is combination of a single entry in the
MAC log and another in the CPA log
**) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Platform.Bytes.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Seq.fst.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EtM.Plain.fsti.checked",
"EtM.MAC.fst.checked",
"EtM.Ideal.fsti.checked",
"EtM.CPA.fst.checked",
"CoreCrypto.fst.checked"
],
"interface_file": false,
"source_file": "EtM.AE.fst"
} | [
{
"abbrev": true,
"full_module": "EtM.Plain",
"short_module": "Plain"
},
{
"abbrev": true,
"full_module": "EtM.Ideal",
"short_module": "Ideal"
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": true,
"full_module": "EtM.CPA",
"short_module": "CPA"
},
{
"abbrev": false,
"full_module": "CoreCrypto",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform.Bytes",
"short_module": null
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | mac: EtM.MAC.log_entry -> cpa: EtM.CPA.log_entry -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"EtM.MAC.log_entry",
"EtM.CPA.log_entry",
"Prims.eq2",
"EtM.CPA.cipher",
"EtM.CPA.__proj__Entry__item__c",
"FStar.Pervasives.Native.fst",
"EtM.MAC.msg",
"EtM.MAC.tag",
"Prims.logical"
] | [] | false | false | false | true | true | let mac_cpa_related (mac: EtM.MAC.log_entry) (cpa: EtM.CPA.log_entry) =
| CPA.Entry?.c cpa == fst mac | false |
|
Steel.Primitive.ForkJoin.Unix.fst | Steel.Primitive.ForkJoin.Unix.triv_pre | val triv_pre (req: vprop) : req_t req | val triv_pre (req: vprop) : req_t req | let triv_pre (req:vprop) : req_t req = fun _ -> True | {
"file_name": "lib/steel/Steel.Primitive.ForkJoin.Unix.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 52,
"end_line": 231,
"start_col": 0,
"start_line": 231
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Primitive.ForkJoin.Unix
(* This module shows that it's possible to layer continuations on top
of SteelT to get a direct style (or Unix style) fork/join. Very much a
prototype for now. *)
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.Reference
open Steel.Primitive.ForkJoin
#set-options "--warn_error -330" //turn off the experimental feature warning
#set-options "--ide_id_info_off"
// (* Some helpers *)
let change_slprop_equiv (p q : vprop)
(proof : squash (p `equiv` q))
: SteelT unit p (fun _ -> q)
= rewrite_slprop p q (fun _ -> proof; reveal_equiv p q)
let change_slprop_imp (p q : vprop)
(proof : squash (p `can_be_split` q))
: SteelT unit p (fun _ -> q)
= rewrite_slprop p q (fun _ -> proof; reveal_can_be_split ())
(* Continuations into unit, but parametrized by the final heap
* proposition and with an implicit framing. I think ideally these would
* also be parametric in the final type (instead of being hardcoded to
* unit) but that means fork needs to be extended to be polymorphic in
* at least one of the branches. *)
type steelK (t:Type u#aa) (framed:bool) (pre : vprop) (post:t->vprop) =
#frame:vprop -> #postf:vprop ->
f:(x:t -> SteelT unit (frame `star` post x) (fun _ -> postf)) ->
SteelT unit (frame `star` pre) (fun _ -> postf)
(* The classic continuation monad *)
let return_ a (x:a) (#[@@@ framing_implicit] p: a -> vprop) : steelK a true (return_pre (p x)) p =
fun k -> k x
private
let rearrange3 (p q r:vprop) : Lemma
(((p `star` q) `star` r) `equiv` (p `star` (r `star` q)))
= let open FStar.Tactics in
assert (((p `star` q) `star` r) `equiv` (p `star` (r `star` q))) by
(norm [delta_attr [`%__reduce__]]; canon' false (`true_p) (`true_p))
private
let equiv_symmetric (p1 p2:vprop)
: Lemma (requires p1 `equiv` p2) (ensures p2 `equiv` p1)
= reveal_equiv p1 p2;
equiv_symmetric (hp_of p1) (hp_of p2);
reveal_equiv p2 p1
private
let can_be_split_forall_frame (#a:Type) (p q:post_t a) (frame:vprop) (x:a)
: Lemma (requires can_be_split_forall p q)
(ensures (frame `star` p x) `can_be_split` (frame `star` q x))
= let frame = hp_of frame in
let p = hp_of (p x) in
let q = hp_of (q x) in
reveal_can_be_split ();
assert (slimp p q);
slimp_star p q frame frame;
Steel.Memory.star_commutative p frame;
Steel.Memory.star_commutative q frame
let bind (a:Type) (b:Type)
(#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool)
(#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a)
(#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:post_t b)
(#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:vprop)
(#[@@@ framing_implicit] p:squash (can_be_split_forall
(fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g)))
(#[@@@ framing_implicit] m1 : squash (maybe_emp framed_f frame_f))
(#[@@@ framing_implicit] m2:squash (maybe_emp framed_g frame_g))
(f:steelK a framed_f pre_f post_f)
(g:(x:a -> steelK b framed_g (pre_g x) post_g))
: steelK b
true
(pre_f `star` frame_f)
(fun y -> post_g y `star` frame_g)
= fun #frame (#post:vprop) (k:(y:b -> SteelT unit (frame `star` (post_g y `star` frame_g)) (fun _ -> post))) ->
// Need SteelT unit (frame `star` (pre_f `star` frame_f)) (fun _ -> post)
change_slprop_equiv (frame `star` (pre_f `star` frame_f)) ((frame `star` frame_f) `star` pre_f) (rearrange3 frame frame_f pre_f;
equiv_symmetric ((frame `star` frame_f) `star` pre_f) (frame `star` (pre_f `star` frame_f)) );
f #(frame `star` frame_f) #post
((fun (x:a) ->
// Need SteelT unit ((frame `star` frame_f) `star` post_f x) (fun _ -> post)
change_slprop_imp
(frame `star` (post_f x `star` frame_f))
(frame `star` (pre_g x `star` frame_g))
(can_be_split_forall_frame (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g) frame x);
g x #(frame `star` frame_g) #post
((fun (y:b) -> k y)
<: (y:b -> SteelT unit ((frame `star` frame_g) `star` post_g y) (fun _ -> post)))
)
<: (x:a -> SteelT unit ((frame `star` frame_f) `star` post_f x) (fun _ -> post)))
let subcomp (a:Type)
(#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool)
(#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a)
(#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a)
(#[@@@ framing_implicit] p1:squash (can_be_split pre_g pre_f))
(#[@@@ framing_implicit] p2:squash (can_be_split_forall post_f post_g))
(f:steelK a framed_f pre_f post_f)
: Tot (steelK a framed_g pre_g post_g)
= fun #frame #postf (k:(x:a -> SteelT unit (frame `star` post_g x) (fun _ -> postf))) ->
change_slprop_imp pre_g pre_f ();
f #frame #postf ((fun x -> change_slprop_imp (frame `star` post_f x) (frame `star` post_g x)
(can_be_split_forall_frame post_f post_g frame x);
k x) <: (x:a -> SteelT unit (frame `star` post_f x) (fun _ -> postf)))
// let if_then_else (a:Type u#aa)
// (#[@@@ framing_implicit] pre1:pre_t)
// (#[@@@ framing_implicit] post1:post_t a)
// (f : steelK a pre1 post1)
// (g : steelK a pre1 post1)
// (p:Type0) : Type =
// steelK a pre1 post1
// We did not define a bind between Div and Steel, so we indicate
// SteelKF as total to be able to reify and compose it when implementing fork
// This module is intended as proof of concept
total
reifiable
reflectable
layered_effect {
SteelKBase : a:Type -> framed:bool -> pre:vprop -> post:(a->vprop) -> Effect
with
repr = steelK;
return = return_;
bind = bind;
subcomp = subcomp
// if_then_else = if_then_else
}
effect SteelK (a:Type) (pre:pre_t) (post:post_t a) =
SteelKBase a false pre post
effect SteelKF (a:Type) (pre:pre_t) (post:post_t a) =
SteelKBase a true pre post
// We would need requires/ensures in SteelK to have a binding with Pure.
// But for our example, Tot is here sufficient
let bind_tot_steelK_ (a:Type) (b:Type)
(#framed:eqtype_as_type bool)
(#[@@@ framing_implicit] pre:pre_t) (#[@@@ framing_implicit] post:post_t b)
(f:eqtype_as_type unit -> Tot a) (g:(x:a -> steelK b framed pre post))
: steelK b
framed
pre
post
= fun #frame #postf (k:(x:b -> SteelT unit (frame `star` post x) (fun _ -> postf))) ->
let x = f () in
g x #frame #postf k
polymonadic_bind (PURE, SteelKBase) |> SteelKBase = bind_tot_steelK_
// (* Sanity check *)
let test_lift #p #q (f : unit -> SteelK unit p (fun _ -> q)) : SteelK unit p (fun _ -> q) =
();
f ();
()
(* Identity cont with frame, to eliminate a SteelK *)
let idk (#frame:vprop) (#a:Type) (x:a) : SteelT a frame (fun x -> frame)
= noop(); return x
let kfork (#p:vprop) (#q:vprop) (f : unit -> SteelK unit p (fun _ -> q))
: SteelK (thread q) p (fun _ -> emp)
=
SteelK?.reflect (
fun (#frame:vprop) (#postf:vprop)
(k : (x:(thread q) -> SteelT unit (frame `star` emp) (fun _ -> postf))) ->
noop ();
let t1 () : SteelT unit (emp `star` p) (fun _ -> q) =
let r : steelK unit false p (fun _ -> q) = reify (f ()) in
r #emp #q (fun _ -> idk())
in
let t2 (t:thread q) () : SteelT unit frame (fun _ -> postf) = k t in
let ff () : SteelT unit (p `star` frame) (fun _ -> postf) =
fork #p #q #frame #postf t1 t2
in
ff())
let kjoin (#p:vprop) (t : thread p) : SteelK unit emp (fun _ -> p)
= SteelK?.reflect (fun #f k -> join t; k ())
(* Example *)
assume val q : int -> vprop
assume val f : unit -> SteelK unit emp (fun _ -> emp)
assume val g : i:int -> SteelK unit emp (fun _ -> q i)
assume val h : unit -> SteelK unit emp (fun _ -> emp)
let example () : SteelK unit emp (fun _ -> q 1 `star` q 2) =
let p1:thread (q 1) = kfork (fun () -> g 1) in
let p2:thread (q 2) = kfork (fun () -> g 2) in
kjoin p1;
h();
kjoin p2
let as_steelk_repr' (a:Type) (pre:pre_t) (post:post_t a) (f:unit -> SteelT a pre post)
: steelK a false pre post
= fun #frame #postf (k:(x:a -> SteelT unit (frame `star` post x) (fun _ -> postf))) ->
let x = f () in
k x | {
"checked_file": "/",
"dependencies": [
"Steel.Reference.fsti.checked",
"Steel.Primitive.ForkJoin.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Primitive.ForkJoin.Unix.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | req: Steel.Effect.Common.vprop -> Steel.Effect.Common.req_t req | Prims.Tot | [
"total"
] | [] | [
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.rmem",
"Prims.l_True",
"Steel.Effect.Common.req_t"
] | [] | false | false | false | false | false | let triv_pre (req: vprop) : req_t req =
| fun _ -> True | false |
EtM.AE.fst | EtM.AE.get_log | val get_log : h: FStar.Monotonic.HyperStack.mem -> k: EtM.AE.key
-> Prims.GTot (FStar.Seq.Base.seq EtM.AE.log_entry) | let get_log (h:mem) (k:key) =
sel h k.log | {
"file_name": "examples/crypto/EtM.AE.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 59,
"start_col": 0,
"start_line": 58
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module EtM.AE
open FStar.Seq
open FStar.Monotonic.Seq
open FStar.HyperStack
open FStar.HyperStack.ST
module MAC = EtM.MAC
open Platform.Bytes
open CoreCrypto
module CPA = EtM.CPA
module MAC = EtM.MAC
module Ideal = EtM.Ideal
module Plain = EtM.Plain
(*** Basic types ***)
type rid = erid
/// An AE cipher includes a mac tag
type cipher = (CPA.cipher * MAC.tag)
/// An AE log pairs plain texts with MAC'd ciphers
let log_entry = Plain.plain * cipher
type log_t (r:rid) = m_rref r (seq log_entry) grows
/// An AE key pairs an encryption key, ke, with a MAC'ing key, km,
/// with an invariant ensuring that their memory footprints of their
/// ideal state are disjoint.
///
/// Aside from this, we have an AE log, which is a view of the two
/// other logs.
noeq type key =
| Key: #region:rid
-> ke:CPA.key { extends (CPA.Key?.region ke) region }
-> km:MAC.key { extends (MAC.Key?.region km) region /\
disjoint( CPA.Key?.region ke) (MAC.Key?.region km) }
-> log:log_t region
-> key
(** Accessors for the three logs **) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Platform.Bytes.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Seq.fst.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EtM.Plain.fsti.checked",
"EtM.MAC.fst.checked",
"EtM.Ideal.fsti.checked",
"EtM.CPA.fst.checked",
"CoreCrypto.fst.checked"
],
"interface_file": false,
"source_file": "EtM.AE.fst"
} | [
{
"abbrev": true,
"full_module": "EtM.Plain",
"short_module": "Plain"
},
{
"abbrev": true,
"full_module": "EtM.Ideal",
"short_module": "Ideal"
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": true,
"full_module": "EtM.CPA",
"short_module": "CPA"
},
{
"abbrev": false,
"full_module": "CoreCrypto",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform.Bytes",
"short_module": null
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: EtM.AE.key
-> Prims.GTot (FStar.Seq.Base.seq EtM.AE.log_entry) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"EtM.AE.key",
"FStar.Monotonic.HyperStack.sel",
"FStar.Seq.Base.seq",
"EtM.AE.log_entry",
"FStar.Monotonic.Seq.grows",
"EtM.AE.__proj__Key__item__log"
] | [] | false | false | false | false | false | let get_log (h: mem) (k: key) =
| sel h k.log | false |
|
EtM.AE.fst | EtM.AE.get_cpa_log | val get_cpa_log : h: FStar.Monotonic.HyperStack.mem -> k: EtM.AE.key
-> Prims.GTot (FStar.Seq.Base.seq EtM.CPA.log_entry) | let get_cpa_log (h:mem) (k:key) =
sel h (CPA.Key?.log k.ke) | {
"file_name": "examples/crypto/EtM.AE.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 67,
"start_col": 0,
"start_line": 66
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module EtM.AE
open FStar.Seq
open FStar.Monotonic.Seq
open FStar.HyperStack
open FStar.HyperStack.ST
module MAC = EtM.MAC
open Platform.Bytes
open CoreCrypto
module CPA = EtM.CPA
module MAC = EtM.MAC
module Ideal = EtM.Ideal
module Plain = EtM.Plain
(*** Basic types ***)
type rid = erid
/// An AE cipher includes a mac tag
type cipher = (CPA.cipher * MAC.tag)
/// An AE log pairs plain texts with MAC'd ciphers
let log_entry = Plain.plain * cipher
type log_t (r:rid) = m_rref r (seq log_entry) grows
/// An AE key pairs an encryption key, ke, with a MAC'ing key, km,
/// with an invariant ensuring that their memory footprints of their
/// ideal state are disjoint.
///
/// Aside from this, we have an AE log, which is a view of the two
/// other logs.
noeq type key =
| Key: #region:rid
-> ke:CPA.key { extends (CPA.Key?.region ke) region }
-> km:MAC.key { extends (MAC.Key?.region km) region /\
disjoint( CPA.Key?.region ke) (MAC.Key?.region km) }
-> log:log_t region
-> key
(** Accessors for the three logs **)
/// ae log
let get_log (h:mem) (k:key) =
sel h k.log
/// mac log
let get_mac_log (h:mem) (k:key) =
sel h (MAC.Key?.log k.km) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Platform.Bytes.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Seq.fst.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EtM.Plain.fsti.checked",
"EtM.MAC.fst.checked",
"EtM.Ideal.fsti.checked",
"EtM.CPA.fst.checked",
"CoreCrypto.fst.checked"
],
"interface_file": false,
"source_file": "EtM.AE.fst"
} | [
{
"abbrev": true,
"full_module": "EtM.Plain",
"short_module": "Plain"
},
{
"abbrev": true,
"full_module": "EtM.Ideal",
"short_module": "Ideal"
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": true,
"full_module": "EtM.CPA",
"short_module": "CPA"
},
{
"abbrev": false,
"full_module": "CoreCrypto",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform.Bytes",
"short_module": null
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: EtM.AE.key
-> Prims.GTot (FStar.Seq.Base.seq EtM.CPA.log_entry) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"EtM.AE.key",
"FStar.Monotonic.HyperStack.sel",
"FStar.Seq.Base.seq",
"EtM.CPA.log_entry",
"FStar.Monotonic.Seq.grows",
"EtM.CPA.__proj__Key__item__log",
"EtM.AE.__proj__Key__item__ke"
] | [] | false | false | false | false | false | let get_cpa_log (h: mem) (k: key) =
| sel h (CPA.Key?.log k.ke) | false |
|
EtM.AE.fst | EtM.AE.get_mac_log | val get_mac_log : h: FStar.Monotonic.HyperStack.mem -> k: EtM.AE.key
-> Prims.GTot (FStar.Seq.Base.seq EtM.MAC.log_entry) | let get_mac_log (h:mem) (k:key) =
sel h (MAC.Key?.log k.km) | {
"file_name": "examples/crypto/EtM.AE.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 63,
"start_col": 0,
"start_line": 62
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module EtM.AE
open FStar.Seq
open FStar.Monotonic.Seq
open FStar.HyperStack
open FStar.HyperStack.ST
module MAC = EtM.MAC
open Platform.Bytes
open CoreCrypto
module CPA = EtM.CPA
module MAC = EtM.MAC
module Ideal = EtM.Ideal
module Plain = EtM.Plain
(*** Basic types ***)
type rid = erid
/// An AE cipher includes a mac tag
type cipher = (CPA.cipher * MAC.tag)
/// An AE log pairs plain texts with MAC'd ciphers
let log_entry = Plain.plain * cipher
type log_t (r:rid) = m_rref r (seq log_entry) grows
/// An AE key pairs an encryption key, ke, with a MAC'ing key, km,
/// with an invariant ensuring that their memory footprints of their
/// ideal state are disjoint.
///
/// Aside from this, we have an AE log, which is a view of the two
/// other logs.
noeq type key =
| Key: #region:rid
-> ke:CPA.key { extends (CPA.Key?.region ke) region }
-> km:MAC.key { extends (MAC.Key?.region km) region /\
disjoint( CPA.Key?.region ke) (MAC.Key?.region km) }
-> log:log_t region
-> key
(** Accessors for the three logs **)
/// ae log
let get_log (h:mem) (k:key) =
sel h k.log | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Platform.Bytes.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Seq.fst.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EtM.Plain.fsti.checked",
"EtM.MAC.fst.checked",
"EtM.Ideal.fsti.checked",
"EtM.CPA.fst.checked",
"CoreCrypto.fst.checked"
],
"interface_file": false,
"source_file": "EtM.AE.fst"
} | [
{
"abbrev": true,
"full_module": "EtM.Plain",
"short_module": "Plain"
},
{
"abbrev": true,
"full_module": "EtM.Ideal",
"short_module": "Ideal"
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": true,
"full_module": "EtM.CPA",
"short_module": "CPA"
},
{
"abbrev": false,
"full_module": "CoreCrypto",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform.Bytes",
"short_module": null
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: EtM.AE.key
-> Prims.GTot (FStar.Seq.Base.seq EtM.MAC.log_entry) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"EtM.AE.key",
"FStar.Monotonic.HyperStack.sel",
"FStar.Seq.Base.seq",
"EtM.MAC.log_entry",
"FStar.Monotonic.Seq.grows",
"EtM.MAC.__proj__Key__item__log",
"EtM.AE.__proj__Key__item__km"
] | [] | false | false | false | false | false | let get_mac_log (h: mem) (k: key) =
| sel h (MAC.Key?.log k.km) | false |
|
FStar.Tactics.V2.Derived.fst | FStar.Tactics.V2.Derived.destruct_list | val destruct_list (t: term) : Tac (list term) | val destruct_list (t: term) : Tac (list term) | let rec destruct_list (t : term) : Tac (list term) =
let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)]
| Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] ->
if inspect_fv fv = cons_qn
then a1 :: destruct_list a2
else raise NotAListLiteral
| Tv_FVar fv, _ ->
if inspect_fv fv = nil_qn
then []
else raise NotAListLiteral
| _ ->
raise NotAListLiteral | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 814,
"start_col": 0,
"start_line": 801
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t)
let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals []
private
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) =
match n, l with
| _, [] -> None
| 0, hd::tl -> Some (hd, tl)
| _, hd::tl -> begin
match extract_nth (n-1) tl with
| Some (hd', tl') -> Some (hd', hd::tl')
| None -> None
end
let bump_nth (n:pos) : Tac unit =
// n-1 since goal numbering begins at 1
match extract_nth (n - 1) (goals ()) with
| None -> fail "bump_nth: not that many goals"
| Some (h, t) -> set_goals (h :: t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.term) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.argv",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Reflection.Types.term",
"Prims.op_Equality",
"Prims.string",
"FStar.Stubs.Reflection.V2.Builtins.inspect_fv",
"FStar.Reflection.Const.cons_qn",
"Prims.Cons",
"FStar.Tactics.V2.Derived.destruct_list",
"Prims.bool",
"FStar.Tactics.Effect.raise",
"FStar.Stubs.Tactics.Common.NotAListLiteral",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.V2.Data.aqualv",
"FStar.Reflection.Const.nil_qn",
"Prims.Nil",
"FStar.Tactics.NamedView.named_term_view",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.NamedView.inspect",
"FStar.Tactics.V2.SyntaxHelpers.collect_app"
] | [
"recursion"
] | false | true | false | false | false | let rec destruct_list (t: term) : Tac (list term) =
| let head, args = collect_app t in
match inspect head, args with
| Tv_FVar fv, [a1, Q_Explicit ; a2, Q_Explicit]
| Tv_FVar fv, [_, Q_Implicit ; a1, Q_Explicit ; a2, Q_Explicit] ->
if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral
| Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral
| _ -> raise NotAListLiteral | false |
Vale.X64.Stack_Sems.fst | Vale.X64.Stack_Sems.free_stack_same_load | val free_stack_same_load (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma
(requires S.valid_src_stack64 ptr h /\
(ptr >= finish \/ ptr + 8 <= start))
(ensures S.eval_stack ptr h == S.eval_stack ptr (S.free_stack' start finish h))
[SMTPat (S.eval_stack ptr (S.free_stack' start finish h))] | val free_stack_same_load (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma
(requires S.valid_src_stack64 ptr h /\
(ptr >= finish \/ ptr + 8 <= start))
(ensures S.eval_stack ptr h == S.eval_stack ptr (S.free_stack' start finish h))
[SMTPat (S.eval_stack ptr (S.free_stack' start finish h))] | let free_stack_same_load start finish ptr h =
reveal_opaque (`%S.valid_addr64) S.valid_addr64;
let S.Machine_stack _ mem = h in
let S.Machine_stack _ mem' = S.free_stack' start finish h in
Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish);
S.get_heap_val64_reveal () | {
"file_name": "vale/code/arch/x64/Vale.X64.Stack_Sems.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 21,
"start_col": 0,
"start_line": 16
} | module Vale.X64.Stack_Sems
open FStar.Mul
friend Vale.X64.Stack_i
let stack_to_s s = s
let stack_from_s s = s
let lemma_stack_from_to s = ()
let lemma_stack_to_from s = ()
let equiv_valid_src_stack64 ptr h = ()
let equiv_load_stack64 ptr h = () | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Stack_i.fst.checked",
"Vale.Lib.Set.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Map.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.Stack_Sems.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
start: Prims.int ->
finish: Prims.int ->
ptr: Prims.int ->
h: Vale.X64.Machine_Semantics_s.machine_stack
-> FStar.Pervasives.Lemma
(requires
Vale.X64.Machine_Semantics_s.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start))
(ensures
Vale.X64.Machine_Semantics_s.eval_stack ptr h ==
Vale.X64.Machine_Semantics_s.eval_stack ptr
(Vale.X64.Machine_Semantics_s.free_stack' start finish h))
[
SMTPat (Vale.X64.Machine_Semantics_s.eval_stack ptr
(Vale.X64.Machine_Semantics_s.free_stack' start finish h))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Vale.X64.Machine_Semantics_s.machine_stack",
"Vale.Def.Types_s.nat64",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Map.t",
"Vale.Def.Types_s.nat8",
"Vale.Arch.MachineHeap_s.get_heap_val64_reveal",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.l_and",
"Prims.l_imp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.op_Negation",
"FStar.Set.mem",
"Vale.Lib.Set.remove_between",
"FStar.Map.domain",
"Prims.l_or",
"Prims.op_Equality",
"Prims.bool",
"Vale.Lib.Set.remove_between_reveal",
"Vale.X64.Machine_Semantics_s.free_stack'",
"FStar.Pervasives.reveal_opaque",
"Vale.Arch.MachineHeap_s.machine_heap",
"Vale.Arch.MachineHeap_s.valid_addr64"
] | [] | false | false | true | false | false | let free_stack_same_load start finish ptr h =
| reveal_opaque (`%S.valid_addr64) S.valid_addr64;
let S.Machine_stack _ mem = h in
let S.Machine_stack _ mem' = S.free_stack' start finish h in
Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish);
S.get_heap_val64_reveal () | false |
EtM.AE.fst | EtM.AE.mac_and_cpa_refine_ae_entry | val mac_and_cpa_refine_ae_entry : ae: EtM.AE.log_entry -> mac: EtM.MAC.log_entry -> cpa: EtM.CPA.log_entry -> Prims.logical | let mac_and_cpa_refine_ae_entry (ae:log_entry)
(mac:EtM.MAC.log_entry)
(cpa:EtM.CPA.log_entry) =
let p, c = ae in
mac == c /\
CPA.Entry p (fst c) == cpa | {
"file_name": "examples/crypto/EtM.AE.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 138,
"start_col": 0,
"start_line": 133
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module EtM.AE
open FStar.Seq
open FStar.Monotonic.Seq
open FStar.HyperStack
open FStar.HyperStack.ST
module MAC = EtM.MAC
open Platform.Bytes
open CoreCrypto
module CPA = EtM.CPA
module MAC = EtM.MAC
module Ideal = EtM.Ideal
module Plain = EtM.Plain
(*** Basic types ***)
type rid = erid
/// An AE cipher includes a mac tag
type cipher = (CPA.cipher * MAC.tag)
/// An AE log pairs plain texts with MAC'd ciphers
let log_entry = Plain.plain * cipher
type log_t (r:rid) = m_rref r (seq log_entry) grows
/// An AE key pairs an encryption key, ke, with a MAC'ing key, km,
/// with an invariant ensuring that their memory footprints of their
/// ideal state are disjoint.
///
/// Aside from this, we have an AE log, which is a view of the two
/// other logs.
noeq type key =
| Key: #region:rid
-> ke:CPA.key { extends (CPA.Key?.region ke) region }
-> km:MAC.key { extends (MAC.Key?.region km) region /\
disjoint( CPA.Key?.region ke) (MAC.Key?.region km) }
-> log:log_t region
-> key
(** Accessors for the three logs **)
/// ae log
let get_log (h:mem) (k:key) =
sel h k.log
/// mac log
let get_mac_log (h:mem) (k:key) =
sel h (MAC.Key?.log k.km)
/// cpa log
let get_cpa_log (h:mem) (k:key) =
sel h (CPA.Key?.log k.ke)
(*** Main invariant on the ideal state ***)
(** There are three components to this invariant
1. The CPA invariant (pairwise distinctness of IVs, notably)
2. mac_only_cpa_ciphers:
The MAC log and CPA logs are related, in that the MAC log only
contains entries for valid ciphers recorded the CPA log
3. mac_and_cpa_refine_ae:
The AE log is a combined view of the MAC and CPA logs Each of
its entries corresponds is combination of a single entry in the
MAC log and another in the CPA log
**)
let mac_cpa_related (mac:EtM.MAC.log_entry) (cpa:EtM.CPA.log_entry) =
CPA.Entry?.c cpa == fst mac
/// See the comment above, for part 2 of the invariant
/// -- As in EtM.CPA, we state the invariant recursively
/// matching entries up pointwise
let rec mac_only_cpa_ciphers (macs:Seq.seq EtM.MAC.log_entry)
(cpas:Seq.seq EtM.CPA.log_entry)
: Tot Type0 (decreases (Seq.length macs)) =
Seq.length macs == Seq.length cpas /\
(if Seq.length macs > 0 then
let macs, mac = Seq.un_snoc macs in
let cpas, cpa = Seq.un_snoc cpas in
mac_cpa_related mac cpa /\
mac_only_cpa_ciphers macs cpas
else True)
/// A lemma to intro/elim the recursive predicate above
let mac_only_cpa_ciphers_snoc (macs:Seq.seq EtM.MAC.log_entry) (mac:EtM.MAC.log_entry)
(cpas:Seq.seq EtM.CPA.log_entry) (cpa:EtM.CPA.log_entry)
: Lemma (mac_only_cpa_ciphers (snoc macs mac) (snoc cpas cpa) <==>
(mac_only_cpa_ciphers macs cpas /\ mac_cpa_related mac cpa))
= un_snoc_snoc macs mac;
un_snoc_snoc cpas cpa
/// A lemma that shows that if an cipher is MAC'd
/// then a corresponding entry must exists in the CPA log
let rec mac_only_cpa_ciphers_mem (macs:Seq.seq EtM.MAC.log_entry)
(cpas:Seq.seq EtM.CPA.log_entry)
(c:cipher)
: Lemma (requires (mac_only_cpa_ciphers macs cpas /\
Seq.mem c macs))
(ensures (exists p. Seq.mem (CPA.Entry p (fst c)) cpas))
(decreases (Seq.length macs))
= if Seq.length macs = 0 then
()
else let macs, mac = un_snoc macs in
let cpas, cpa = un_snoc cpas in
Seq.lemma_mem_snoc macs mac;
Seq.lemma_mem_snoc cpas cpa;
if mac = c then ()
else mac_only_cpa_ciphers_mem macs cpas c
/// See part 3 of the invariant:
/// -- An AE entry is related to a MAC and CPA entry
/// if its plain text + cipher appears in the CPA entry | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Platform.Bytes.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Seq.fst.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EtM.Plain.fsti.checked",
"EtM.MAC.fst.checked",
"EtM.Ideal.fsti.checked",
"EtM.CPA.fst.checked",
"CoreCrypto.fst.checked"
],
"interface_file": false,
"source_file": "EtM.AE.fst"
} | [
{
"abbrev": true,
"full_module": "EtM.Plain",
"short_module": "Plain"
},
{
"abbrev": true,
"full_module": "EtM.Ideal",
"short_module": "Ideal"
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": true,
"full_module": "EtM.CPA",
"short_module": "CPA"
},
{
"abbrev": false,
"full_module": "CoreCrypto",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform.Bytes",
"short_module": null
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ae: EtM.AE.log_entry -> mac: EtM.MAC.log_entry -> cpa: EtM.CPA.log_entry -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"EtM.AE.log_entry",
"EtM.MAC.log_entry",
"EtM.CPA.log_entry",
"EtM.Plain.plain",
"EtM.AE.cipher",
"Prims.l_and",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"EtM.MAC.msg",
"EtM.MAC.tag",
"EtM.CPA.Entry",
"FStar.Pervasives.Native.fst",
"EtM.CPA.cipher",
"Prims.logical"
] | [] | false | false | false | true | true | let mac_and_cpa_refine_ae_entry (ae: log_entry) (mac: EtM.MAC.log_entry) (cpa: EtM.CPA.log_entry) =
| let p, c = ae in
mac == c /\ CPA.Entry p (fst c) == cpa | false |
|
EtM.AE.fst | EtM.AE.invariant | val invariant : h: FStar.Monotonic.HyperStack.mem -> k: EtM.AE.key -> Prims.GTot Prims.logical | let invariant (h:mem) (k:key) =
let log = get_log h k in
let mac_log = get_mac_log h k in
let cpa_log = get_cpa_log h k in
Map.contains (get_hmap h) k.region /\
Map.contains (get_hmap h) (MAC.Key?.region k.km) /\
Map.contains (get_hmap h) (CPA.Key?.region k.ke) /\
EtM.CPA.invariant (Key?.ke k) h /\
mac_only_cpa_ciphers (get_mac_log h k) (get_cpa_log h k) /\
mac_and_cpa_refine_ae (get_log h k) (get_mac_log h k) (get_cpa_log h k) | {
"file_name": "examples/crypto/EtM.AE.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 73,
"end_line": 184,
"start_col": 0,
"start_line": 175
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module EtM.AE
open FStar.Seq
open FStar.Monotonic.Seq
open FStar.HyperStack
open FStar.HyperStack.ST
module MAC = EtM.MAC
open Platform.Bytes
open CoreCrypto
module CPA = EtM.CPA
module MAC = EtM.MAC
module Ideal = EtM.Ideal
module Plain = EtM.Plain
(*** Basic types ***)
type rid = erid
/// An AE cipher includes a mac tag
type cipher = (CPA.cipher * MAC.tag)
/// An AE log pairs plain texts with MAC'd ciphers
let log_entry = Plain.plain * cipher
type log_t (r:rid) = m_rref r (seq log_entry) grows
/// An AE key pairs an encryption key, ke, with a MAC'ing key, km,
/// with an invariant ensuring that their memory footprints of their
/// ideal state are disjoint.
///
/// Aside from this, we have an AE log, which is a view of the two
/// other logs.
noeq type key =
| Key: #region:rid
-> ke:CPA.key { extends (CPA.Key?.region ke) region }
-> km:MAC.key { extends (MAC.Key?.region km) region /\
disjoint( CPA.Key?.region ke) (MAC.Key?.region km) }
-> log:log_t region
-> key
(** Accessors for the three logs **)
/// ae log
let get_log (h:mem) (k:key) =
sel h k.log
/// mac log
let get_mac_log (h:mem) (k:key) =
sel h (MAC.Key?.log k.km)
/// cpa log
let get_cpa_log (h:mem) (k:key) =
sel h (CPA.Key?.log k.ke)
(*** Main invariant on the ideal state ***)
(** There are three components to this invariant
1. The CPA invariant (pairwise distinctness of IVs, notably)
2. mac_only_cpa_ciphers:
The MAC log and CPA logs are related, in that the MAC log only
contains entries for valid ciphers recorded the CPA log
3. mac_and_cpa_refine_ae:
The AE log is a combined view of the MAC and CPA logs Each of
its entries corresponds is combination of a single entry in the
MAC log and another in the CPA log
**)
let mac_cpa_related (mac:EtM.MAC.log_entry) (cpa:EtM.CPA.log_entry) =
CPA.Entry?.c cpa == fst mac
/// See the comment above, for part 2 of the invariant
/// -- As in EtM.CPA, we state the invariant recursively
/// matching entries up pointwise
let rec mac_only_cpa_ciphers (macs:Seq.seq EtM.MAC.log_entry)
(cpas:Seq.seq EtM.CPA.log_entry)
: Tot Type0 (decreases (Seq.length macs)) =
Seq.length macs == Seq.length cpas /\
(if Seq.length macs > 0 then
let macs, mac = Seq.un_snoc macs in
let cpas, cpa = Seq.un_snoc cpas in
mac_cpa_related mac cpa /\
mac_only_cpa_ciphers macs cpas
else True)
/// A lemma to intro/elim the recursive predicate above
let mac_only_cpa_ciphers_snoc (macs:Seq.seq EtM.MAC.log_entry) (mac:EtM.MAC.log_entry)
(cpas:Seq.seq EtM.CPA.log_entry) (cpa:EtM.CPA.log_entry)
: Lemma (mac_only_cpa_ciphers (snoc macs mac) (snoc cpas cpa) <==>
(mac_only_cpa_ciphers macs cpas /\ mac_cpa_related mac cpa))
= un_snoc_snoc macs mac;
un_snoc_snoc cpas cpa
/// A lemma that shows that if an cipher is MAC'd
/// then a corresponding entry must exists in the CPA log
let rec mac_only_cpa_ciphers_mem (macs:Seq.seq EtM.MAC.log_entry)
(cpas:Seq.seq EtM.CPA.log_entry)
(c:cipher)
: Lemma (requires (mac_only_cpa_ciphers macs cpas /\
Seq.mem c macs))
(ensures (exists p. Seq.mem (CPA.Entry p (fst c)) cpas))
(decreases (Seq.length macs))
= if Seq.length macs = 0 then
()
else let macs, mac = un_snoc macs in
let cpas, cpa = un_snoc cpas in
Seq.lemma_mem_snoc macs mac;
Seq.lemma_mem_snoc cpas cpa;
if mac = c then ()
else mac_only_cpa_ciphers_mem macs cpas c
/// See part 3 of the invariant:
/// -- An AE entry is related to a MAC and CPA entry
/// if its plain text + cipher appears in the CPA entry
/// and its cipher+tag appear in the MAC table
let mac_and_cpa_refine_ae_entry (ae:log_entry)
(mac:EtM.MAC.log_entry)
(cpa:EtM.CPA.log_entry) =
let p, c = ae in
mac == c /\
CPA.Entry p (fst c) == cpa
/// See part 3 of the invariant:
/// -- A pointwise lifting the relation between the entries in the three logs
let rec mac_and_cpa_refine_ae (ae_entries:Seq.seq log_entry)
(mac_entries:Seq.seq EtM.MAC.log_entry)
(cpa_entries:Seq.seq EtM.CPA.log_entry)
: Tot Type0 (decreases (Seq.length ae_entries)) =
Seq.length ae_entries == Seq.length mac_entries /\
Seq.length mac_entries == Seq.length cpa_entries /\
(if Seq.length ae_entries <> 0
then let ae_prefix, ae_last = Seq.un_snoc ae_entries in
let mac_prefix, mac_last = Seq.un_snoc mac_entries in
let cpa_prefix, cpa_last = Seq.un_snoc cpa_entries in
mac_and_cpa_refine_ae_entry ae_last mac_last cpa_last /\
mac_and_cpa_refine_ae ae_prefix mac_prefix cpa_prefix
else True)
/// A lemma to intro/elim the recursive predicate above
let mac_and_cpa_refine_ae_snoc (ae_entries:Seq.seq log_entry)
(mac_entries:Seq.seq EtM.MAC.log_entry)
(cpa_entries:Seq.seq EtM.CPA.log_entry)
(ae:log_entry)
(mac:EtM.MAC.log_entry)
(cpa:EtM.CPA.log_entry)
: Lemma (mac_and_cpa_refine_ae (snoc ae_entries ae)
(snoc mac_entries mac)
(snoc cpa_entries cpa) <==>
(mac_and_cpa_refine_ae ae_entries mac_entries cpa_entries /\
mac_and_cpa_refine_ae_entry ae mac cpa))
= Seq.un_snoc_snoc ae_entries ae;
Seq.un_snoc_snoc mac_entries mac;
Seq.un_snoc_snoc cpa_entries cpa
/// The main invariant:
/// -- A conjunction of the 3 components already mentioned | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Platform.Bytes.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Seq.fst.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EtM.Plain.fsti.checked",
"EtM.MAC.fst.checked",
"EtM.Ideal.fsti.checked",
"EtM.CPA.fst.checked",
"CoreCrypto.fst.checked"
],
"interface_file": false,
"source_file": "EtM.AE.fst"
} | [
{
"abbrev": true,
"full_module": "EtM.Plain",
"short_module": "Plain"
},
{
"abbrev": true,
"full_module": "EtM.Ideal",
"short_module": "Ideal"
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": true,
"full_module": "EtM.CPA",
"short_module": "CPA"
},
{
"abbrev": false,
"full_module": "CoreCrypto",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform.Bytes",
"short_module": null
},
{
"abbrev": true,
"full_module": "EtM.MAC",
"short_module": "MAC"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "EtM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: EtM.AE.key -> Prims.GTot Prims.logical | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"EtM.AE.key",
"Prims.l_and",
"Prims.b2t",
"FStar.Map.contains",
"FStar.Monotonic.HyperHeap.rid",
"FStar.Monotonic.Heap.heap",
"FStar.Monotonic.HyperStack.get_hmap",
"EtM.AE.__proj__Key__item__region",
"EtM.MAC.__proj__Key__item__region",
"EtM.AE.__proj__Key__item__km",
"EtM.CPA.__proj__Key__item__region",
"EtM.AE.__proj__Key__item__ke",
"EtM.CPA.invariant",
"EtM.AE.mac_only_cpa_ciphers",
"EtM.AE.get_mac_log",
"EtM.AE.get_cpa_log",
"EtM.AE.mac_and_cpa_refine_ae",
"EtM.AE.get_log",
"FStar.Seq.Base.seq",
"EtM.CPA.log_entry",
"EtM.MAC.log_entry",
"EtM.AE.log_entry",
"Prims.logical"
] | [] | false | false | false | false | true | let invariant (h: mem) (k: key) =
| let log = get_log h k in
let mac_log = get_mac_log h k in
let cpa_log = get_cpa_log h k in
Map.contains (get_hmap h) k.region /\ Map.contains (get_hmap h) (MAC.Key?.region k.km) /\
Map.contains (get_hmap h) (CPA.Key?.region k.ke) /\ EtM.CPA.invariant (Key?.ke k) h /\
mac_only_cpa_ciphers (get_mac_log h k) (get_cpa_log h k) /\
mac_and_cpa_refine_ae (get_log h k) (get_mac_log h k) (get_cpa_log h k) | false |
|
Vale.X64.Stack_Sems.fst | Vale.X64.Stack_Sems.free_stack_same_load128 | val free_stack_same_load128 (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma
(requires S.valid_src_stack128 ptr h /\
(ptr >= finish \/ ptr + 16 <= start))
(ensures S.eval_stack128 ptr h == S.eval_stack128 ptr (S.free_stack' start finish h))
[SMTPat (S.eval_stack128 ptr (S.free_stack' start finish h))] | val free_stack_same_load128 (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma
(requires S.valid_src_stack128 ptr h /\
(ptr >= finish \/ ptr + 16 <= start))
(ensures S.eval_stack128 ptr h == S.eval_stack128 ptr (S.free_stack' start finish h))
[SMTPat (S.eval_stack128 ptr (S.free_stack' start finish h))] | let free_stack_same_load128 start finish ptr h =
reveal_opaque (`%S.valid_addr128) S.valid_addr128;
let S.Machine_stack _ mem = h in
let S.Machine_stack _ mem' = S.free_stack' start finish h in
Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish);
S.get_heap_val128_reveal ();
S.get_heap_val32_reveal () | {
"file_name": "vale/code/arch/x64/Vale.X64.Stack_Sems.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 41,
"start_col": 0,
"start_line": 35
} | module Vale.X64.Stack_Sems
open FStar.Mul
friend Vale.X64.Stack_i
let stack_to_s s = s
let stack_from_s s = s
let lemma_stack_from_to s = ()
let lemma_stack_to_from s = ()
let equiv_valid_src_stack64 ptr h = ()
let equiv_load_stack64 ptr h = ()
let free_stack_same_load start finish ptr h =
reveal_opaque (`%S.valid_addr64) S.valid_addr64;
let S.Machine_stack _ mem = h in
let S.Machine_stack _ mem' = S.free_stack' start finish h in
Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish);
S.get_heap_val64_reveal ()
let equiv_store_stack64 ptr v h = ()
let store64_same_init_rsp ptr v h = ()
let equiv_init_rsp h = ()
let equiv_free_stack start finish h = ()
let equiv_valid_src_stack128 ptr h = ()
let equiv_load_stack128 ptr h = () | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Stack_i.fst.checked",
"Vale.Lib.Set.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Map.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.Stack_Sems.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
start: Prims.int ->
finish: Prims.int ->
ptr: Prims.int ->
h: Vale.X64.Machine_Semantics_s.machine_stack
-> FStar.Pervasives.Lemma
(requires
Vale.X64.Machine_Semantics_s.valid_src_stack128 ptr h /\
(ptr >= finish \/ ptr + 16 <= start))
(ensures
Vale.X64.Machine_Semantics_s.eval_stack128 ptr h ==
Vale.X64.Machine_Semantics_s.eval_stack128 ptr
(Vale.X64.Machine_Semantics_s.free_stack' start finish h))
[
SMTPat (Vale.X64.Machine_Semantics_s.eval_stack128 ptr
(Vale.X64.Machine_Semantics_s.free_stack' start finish h))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Vale.X64.Machine_Semantics_s.machine_stack",
"Vale.Def.Types_s.nat64",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Map.t",
"Vale.Def.Types_s.nat8",
"Vale.Arch.MachineHeap_s.get_heap_val32_reveal",
"Prims.unit",
"Vale.Arch.MachineHeap_s.get_heap_val128_reveal",
"FStar.Classical.forall_intro",
"Prims.l_and",
"Prims.l_imp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.op_Negation",
"FStar.Set.mem",
"Vale.Lib.Set.remove_between",
"FStar.Map.domain",
"Prims.l_or",
"Prims.op_Equality",
"Prims.bool",
"Vale.Lib.Set.remove_between_reveal",
"Vale.X64.Machine_Semantics_s.free_stack'",
"FStar.Pervasives.reveal_opaque",
"Vale.Arch.MachineHeap_s.machine_heap",
"Vale.Arch.MachineHeap_s.valid_addr128"
] | [] | false | false | true | false | false | let free_stack_same_load128 start finish ptr h =
| reveal_opaque (`%S.valid_addr128) S.valid_addr128;
let S.Machine_stack _ mem = h in
let S.Machine_stack _ mem' = S.free_stack' start finish h in
Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish);
S.get_heap_val128_reveal ();
S.get_heap_val32_reveal () | false |
ID3.fst | ID3.bind_wp | val bind_wp (#a #b: _) (wp_v: w a) (wp_f: (a -> w b)) : w b | val bind_wp (#a #b: _) (wp_v: w a) (wp_f: (a -> w b)) : w b | let bind_wp #a #b (wp_v:w a) (wp_f:a -> w b) : w b =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p)) | {
"file_name": "examples/layeredeffects/ID3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 48,
"end_line": 25,
"start_col": 0,
"start_line": 23
} | module ID3
// The base type of WPs
val w0 (a : Type u#a) : Type u#(max 1 a)
let w0 a = (a -> Type0) -> Type0
// We require monotonicity of them
let monotonic (w:w0 'a) =
forall p1 p2. (forall x. p1 x ==> p2 x) ==> w p1 ==> w p2
val w (a : Type u#a) : Type u#(max 1 a)
let w a = pure_wp a
let repr (a : Type) (wp : w a) : Type =
v:a{forall p. wp p ==> p v}
open FStar.Monotonic.Pure
let return (a : Type) (x : a) : repr a (as_pure_wp (fun p -> p x)) =
x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked"
],
"interface_file": false,
"source_file": "ID3.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | wp_v: ID3.w a -> wp_f: (_: a -> ID3.w b) -> ID3.w b | Prims.Tot | [
"total"
] | [] | [
"ID3.w",
"FStar.Monotonic.Pure.as_pure_wp",
"Prims.pure_post",
"Prims.l_True",
"Prims.pure_pre",
"Prims.unit",
"FStar.Monotonic.Pure.elim_pure_wp_monotonicity_forall"
] | [] | false | false | false | true | false | let bind_wp #a #b (wp_v: w a) (wp_f: (a -> w b)) : w b =
| elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p)) | false |
ID3.fst | ID3.bind | val bind (a b: Type) (wp_v: w a) (wp_f: (a -> w b)) (v: repr a wp_v) (f: (x: a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f) | val bind (a b: Type) (wp_v: w a) (wp_f: (a -> w b)) (v: repr a wp_v) (f: (x: a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f) | let bind (a b : Type) (wp_v : w a) (wp_f: a -> w b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= f v | {
"file_name": "examples/layeredeffects/ID3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 31,
"start_col": 0,
"start_line": 27
} | module ID3
// The base type of WPs
val w0 (a : Type u#a) : Type u#(max 1 a)
let w0 a = (a -> Type0) -> Type0
// We require monotonicity of them
let monotonic (w:w0 'a) =
forall p1 p2. (forall x. p1 x ==> p2 x) ==> w p1 ==> w p2
val w (a : Type u#a) : Type u#(max 1 a)
let w a = pure_wp a
let repr (a : Type) (wp : w a) : Type =
v:a{forall p. wp p ==> p v}
open FStar.Monotonic.Pure
let return (a : Type) (x : a) : repr a (as_pure_wp (fun p -> p x)) =
x
unfold
let bind_wp #a #b (wp_v:w a) (wp_f:a -> w b) : w b =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked"
],
"interface_file": false,
"source_file": "ID3.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Type ->
b: Type ->
wp_v: ID3.w a ->
wp_f: (_: a -> ID3.w b) ->
v: ID3.repr a wp_v ->
f: (x: a -> ID3.repr b (wp_f x))
-> ID3.repr b (ID3.bind_wp wp_v wp_f) | Prims.Tot | [
"total"
] | [] | [
"ID3.w",
"ID3.repr",
"ID3.bind_wp"
] | [] | false | false | false | false | false | let bind (a b: Type) (wp_v: w a) (wp_f: (a -> w b)) (v: repr a wp_v) (f: (x: a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f) =
| f v | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.