file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Steel.Effect.Common.fsti | Steel.Effect.Common.solve_return_eqs | val solve_return_eqs (fuel: nat) : Tac unit | val solve_return_eqs (fuel: nat) : Tac unit | let rec solve_return_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_return_eqs (fuel - 1)
| _ -> later(); solve_return_eqs (fuel - 1) | {
"file_name": "lib/steel/Steel.Effect.Common.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 47,
"end_line": 2738,
"start_col": 0,
"start_line": 2727
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Effect.Common
open Steel.Memory
module Mem = Steel.Memory
module FExt = FStar.FunctionalExtensionality
open FStar.Ghost
/// This module provides various predicates and functions which are common to the
/// different Steel effects.
/// It also contains the tactic responsible for frame inference through a variant of AC-unification
#set-options "--ide_id_info_off"
(* Normalization helpers *)
irreducible let framing_implicit : unit = ()
irreducible let __steel_reduce__ : unit = ()
/// An internal attribute for finer-grained normalization in framing equalities
irreducible let __inner_steel_reduce__ : unit = ()
irreducible let __reduce__ : unit = ()
irreducible let smt_fallback : unit = ()
irreducible let ite_attr : unit = ()
// Needed to avoid some logical vs prop issues during unification with no subtyping
[@@__steel_reduce__]
unfold
let true_p : prop = True
module T = FStar.Tactics.V2
let join_preserves_interp (hp:slprop) (m0:hmem hp) (m1:mem{disjoint m0 m1})
: Lemma
(interp hp (join m0 m1))
[SMTPat (interp hp (join m0 m1))]
= let open Steel.Memory in
intro_emp m1;
intro_star hp emp m0 m1;
affine_star hp emp (join m0 m1)
(* Definition of a selector for a given slprop *)
/// A selector of type `a` for a separation logic predicate hp is a function
/// from a memory where the predicate hp holds, which returns a value of type `a`.
/// The effect GTot indicates that selectors are ghost functions, used for specification
/// and proof purposes only
let selector' (a:Type0) (hp:slprop) = hmem hp -> GTot a
/// Self-framing property for selectors
let sel_depends_only_on (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp) (m1:mem{disjoint m0 m1}).
(interp_depends_only_on hp; (
sel m0 == sel (join m0 m1)))
/// Additional property that selectors must satisfy, related to internals of
/// the Steel memory model encoding
let sel_depends_only_on_core (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp). sel m0 == sel (core_mem m0)
/// Full definition of a selector, as a function which satisfies the two predicates above
let selector (a:Type) (hp:slprop) : Type =
sel:selector' a hp{sel_depends_only_on sel /\ sel_depends_only_on_core sel}
/// The basis of our selector framework: Separation logic assertions enhanced with selectors
/// Note that selectors are "optional", it is always possible to use a non-informative selector,
/// such as fun _ -> () and to rely on the standard separation logic reasoning
[@@ erasable]
noeq
type vprop' =
{ hp: slprop u#1;
t:Type0;
sel: selector t hp}
(* Lifting the star operator to an inductive type makes normalization
and implementing some later functions easier *)
[@@__steel_reduce__; erasable]
noeq
type vprop =
| VUnit : vprop' -> vprop
| VStar: vprop -> vprop -> vprop
(* A generic lift from slprop to vprop with a non-informative selector *)
[@@ __steel_reduce__]
let to_vprop' (p:slprop) = {hp = p; t = unit; sel = fun _ -> ()}
[@@ __steel_reduce__]
unfold
let to_vprop (p:slprop) = VUnit (to_vprop' p)
/// Normalization steps for norm below.
/// All functions marked as `unfold`, or with the `__steel_reduce__` attribute will be reduced,
/// as well as some functions internal to the selector framework
unfold
let normal_steps =
[delta_attr [`%__steel_reduce__; `%__inner_steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify]
/// The core normalization primitive used to simplify Verification Conditions before encoding
/// them to an SMT solver.
unfold
let normal (#a:Type) (x:a) = norm normal_steps x
/// An abbreviation for the VStar constructor, allowing to use it with infix notation
[@@ __steel_reduce__; __reduce__]
let star = VStar
/// Extracting the underlying separation logic assertion from a vprop
[@@ __steel_reduce__]
let rec hp_of (p:vprop) = match p with
| VUnit p -> p.hp
| VStar p1 p2 -> hp_of p1 `Mem.star` hp_of p2
/// Extracting the selector type from a vprop
[@@ __steel_reduce__]
let rec t_of (p:vprop) = match p with
| VUnit p -> p.t
| VStar p1 p2 -> t_of p1 * t_of p2
/// Extracting the selector from a vprop
[@@ __steel_reduce__]
let rec sel_of (p:vprop) : GTot (selector (t_of p) (hp_of p)) = match p with
| VUnit p -> fun h -> p.sel h
| VStar p1 p2 ->
let sel1 = sel_of p1 in
let sel2 = sel_of p2 in
fun h -> (sel1 h, sel2 h)
/// Type abbreviations for separation logic pre- and postconditions of the Steel effects
type pre_t = vprop
type post_t (a:Type) = a -> vprop
/// An annotation to indicate which separation logic predicates correspond to monadic computations
/// These computations are handled in a specific manner in the framing tactic; they correspond to places where
/// the context shrinks from all local variables in the computation to variables available at the toplevel
let return_pre (p:vprop) : vprop = p
noextract
let hmem (p:vprop) = hmem (hp_of p)
/// Abstract predicate for vprop implication. Currently implemented as an implication on the underlying slprop
val can_be_split (p q:pre_t) : Type0
/// Exposing the implementation of `can_be_split` when needed for proof purposes
val reveal_can_be_split (_:unit) : Lemma
(forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q))
/// A targeted version of the above
val can_be_split_interp (r r':vprop) (h:hmem r)
: Lemma (requires can_be_split r r')
(ensures interp (hp_of r') h)
/// A dependent version of can_be_split, to be applied to dependent postconditions
let can_be_split_forall (#a:Type) (p q:post_t a) = forall x. can_be_split (p x) (q x)
/// A version of can_be_split which is indexed by a proposition, which can be used for equalities abduction
let can_be_split_dep (p:prop) (t1 t2:pre_t) = p ==> can_be_split t1 t2
/// A dependent version of the above predicate
let can_be_split_forall_dep (#a:Type) (p:a -> prop) (t1 t2:post_t a) =
forall (x:a). p x ==> can_be_split (t1 x) (t2 x)
(* Some lemmas about the can_be_split* predicates,
to be used as rewriting rules for the abstract predicates *)
val can_be_split_trans (p q r:vprop)
: Lemma
(requires p `can_be_split` q /\ q `can_be_split` r)
(ensures p `can_be_split` r)
let can_be_split_trans_rev (p q r:vprop)
: Lemma
(requires q `can_be_split` r /\ p `can_be_split` q)
(ensures p `can_be_split` r)
= can_be_split_trans p q r
val can_be_split_star_l (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` p)
[SMTPat ((p `star` q) `can_be_split` p)]
val can_be_split_star_r (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` q)
[SMTPat ((p `star` q) `can_be_split` q)]
val can_be_split_refl (p:vprop)
: Lemma (p `can_be_split` p)
[SMTPat (p `can_be_split` p)]
val can_be_split_congr_l
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((p `star` r) `can_be_split` (q `star` r)))
val can_be_split_congr_r
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((r `star` p) `can_be_split` (r `star` q)))
let prop_and (p1 p2: prop) : Tot prop = p1 /\ p2
let can_be_split_forall_dep_trans_rev
(#a: Type)
(cond1 cond2: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond2 q r /\ can_be_split_forall_dep cond1 p q))
(ensures (can_be_split_forall_dep (fun x -> cond1 x `prop_and` cond2 x) p r))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_trans x y) z)
let can_be_split_forall_dep_congr_l
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> p x `star` r x) (fun x -> q x `star` r x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_l x y) z)
let can_be_split_forall_dep_congr_r
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> r x `star` p x) (fun x -> r x `star` q x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_r x y) z)
/// To simplify the implementation of the framing tactic, dependent equivalence
/// is defined as a double dependent implication
let equiv_forall (#a:Type) (t1 t2:post_t a) : Type0
= t1 `can_be_split_forall` t2 /\ t2 `can_be_split_forall` t1
/// This equivalence models a context restriction at the end of a Steel computation;
/// note that t2 does not depend on the value of type `a`, but the two vprops must be
/// equivalent
let can_be_split_post (#a #b:Type) (t1:a -> post_t b) (t2:post_t b) =
forall (x:a). equiv_forall (t1 x) t2
/// Lifting the equivalence relation to vprops. Two vprops are equivalent if the underlying slprops
/// are equivalent
val equiv (p q:vprop) : prop
/// Revealing the definition of vprop equivalence when needed for proof purposes.
/// In other cases, the predicate is abstract
val reveal_equiv (p q:vprop) : Lemma (p `equiv` q <==> hp_of p `Mem.equiv` hp_of q)
(* A restricted view of the heap,
that only allows to access selectors of the current slprop *)
let rmem' (pre:vprop) =
FExt.restricted_g_t
(r0:vprop{can_be_split pre r0})
(fun r0 -> normal (t_of r0))
/// Ensuring that rmems encapsulate the structure induced by the separation logic star
val valid_rmem (#frame:vprop) (h:rmem' frame) : prop
unfold
let rmem (pre:vprop) = h:rmem' pre{valid_rmem h}
/// Exposing the definition of mk_rmem to better normalize Steel VCs
unfold noextract
let unrestricted_mk_rmem (r:vprop) (h:hmem r) = fun (r0:vprop{r `can_be_split` r0}) ->
can_be_split_interp r r0 h;
sel_of r0 h
[@@ __inner_steel_reduce__]
noextract
let mk_rmem' (r:vprop) (h:hmem r) : Tot (rmem' r) =
FExt.on_dom_g
(r0:vprop{r `can_be_split` r0})
(unrestricted_mk_rmem r h)
val lemma_valid_mk_rmem (r:vprop) (h:hmem r) : Lemma (valid_rmem (mk_rmem' r h))
[@@ __inner_steel_reduce__]
noextract
let mk_rmem (r:vprop) (h:hmem r) : Tot (rmem r) =
lemma_valid_mk_rmem r h;
mk_rmem' r h
val reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (ensures reveal_can_be_split(); (mk_rmem r h) r0 == sel_of r0 h)
(* Logical pre and postconditions can only access the restricted view of the heap *)
type req_t (pre:pre_t) = rmem pre -> Type0
type ens_t (pre:pre_t) (a:Type) (post:post_t a) =
rmem pre -> (x:a) -> rmem (post x) -> Type0
(* Empty assertion *)
val emp : vprop
/// When needed for proof purposes, the empty assertion is a direct lift of the
/// empty assertion from Steel.Memory
val reveal_emp (_:unit) : Lemma (hp_of emp == Mem.emp /\ t_of emp == unit)
/// Lifting pure predicates to vprop
[@@__steel_reduce__]
unfold let pure (p:prop) = to_vprop (pure p)
/// Framing predicates for the Steel effect. If the current computation has already
/// been framed, then the additional frame is the empty predicate
let maybe_emp (framed:bool) (frame:pre_t) = if framed then frame == emp else True
/// Dependent version of the above predicate, usable in dependent postconditions
let maybe_emp_dep (#a:Type) (framed:bool) (frame:post_t a) =
if framed then (forall x. frame x == emp) else True
(* focus_rmem is an additional restriction of our view of memory.
We expose it here to be able to reduce through normalization;
Any valid application of focus_rmem h will be reduced to the application of h *)
[@@ __steel_reduce__]
unfold
let unrestricted_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
= fun (r':vprop{can_be_split r0 r'}) -> can_be_split_trans r r0 r'; h r'
[@@ __inner_steel_reduce__]
let focus_rmem' (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) : Tot (rmem' r0)
= FExt.on_dom_g
(r':vprop{can_be_split r0 r'})
(unrestricted_focus_rmem h r0)
val lemma_valid_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (valid_rmem (focus_rmem' h r0))
[@@ __inner_steel_reduce__]
let focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) : Tot (rmem r0) =
lemma_valid_focus_rmem h r0;
focus_rmem' h r0
/// Exposing that calling focus_rmem on the current context corresponds to an equality
let focus_rmem_refl (r:vprop) (h:rmem r)
: Lemma (focus_rmem #r h r == h)
= FStar.FunctionalExtensionality.extensionality_g _ _ (focus_rmem #r h r) h
open FStar.Tactics.V2
/// State that all "atomic" subresources have the same selectors on both views.
/// The predicate has the __steel_reduce__ attribute, ensuring that VC normalization
/// will reduce it to a conjunction of equalities on atomic subresources
/// This predicate is also marked as `strict_on_arguments` on [frame], ensuring that
/// it will not be reduced when the frame is symbolic
/// Instead, the predicate will be rewritten to an equality using `lemma_frame_equalities` below
[@@ __steel_reduce__; strict_on_arguments [0]]
let rec frame_equalities'
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : Type0
= begin match frame with
| VUnit p -> h0 frame == h1 frame
| VStar p1 p2 ->
can_be_split_star_l p1 p2;
can_be_split_star_r p1 p2;
let h01 = focus_rmem h0 p1 in
let h11 = focus_rmem h1 p1 in
let h02 = focus_rmem h0 p2 in
let h12 = focus_rmem h1 p2 in
frame_equalities' p1 h01 h11 /\
frame_equalities' p2 h02 h12
end
/// This lemma states that frame_equalities is the same as an equality on the top-level frame.
/// The uncommon formulation with an extra [p] is needed to use in `rewrite_with_tactic`,
/// where the goal is of the shape `frame_equalities frame h0 h1 == ?u`
/// The rewriting happens below, in `frame_vc_norm`
val lemma_frame_equalities (frame:vprop) (h0:rmem frame) (h1:rmem frame) (p:Type0)
: Lemma
(requires (h0 frame == h1 frame) == p)
(ensures frame_equalities' frame h0 h1 == p)
/// A special case for frames about emp.
val lemma_frame_emp (h0:rmem emp) (h1:rmem emp) (p:Type0)
: Lemma (requires True == p)
(ensures frame_equalities' emp h0 h1 == p)
/// A variant of conjunction elimination, suitable to the equality goals during rewriting
val elim_conjunction (p1 p1' p2 p2':Type0)
: Lemma (requires p1 == p1' /\ p2 == p2')
(ensures (p1 /\ p2) == (p1' /\ p2'))
/// Normalization and rewriting step for generating frame equalities.
/// The frame_equalities function has the strict_on_arguments attribute on the [frame],
/// ensuring that it is not reduced when the frame is symbolic.
/// When that happens, we want to replace frame_equalities by an equality on the frame,
/// mimicking reduction
[@@plugin]
let frame_vc_norm () : Tac unit = with_compat_pre_core 0 (fun _ ->
// Do not normalize mk_rmem/focus_rmem to simplify application of
// the reflexivity lemma on frame_equalities'
norm [delta_attr [`%__steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify];
// After reduction, the term to rewrite might be of the shape
// (frame_equalities' ... /\ frame_equalities' .. /\ ...) == ?u,
// with some frame_equalities' possibly already fully reduced
// We repeatedly split the clause and extract the term on the left
// to generate equalities on atomic subresources
ignore (repeat (fun _ ->
// Try to split the conjunction. If there is no conjunction, we exit the repeat
apply_lemma (`elim_conjunction);
// Dismiss the two uvars created for the RHS, they'll be solved by unification
dismiss ();
dismiss ();
// The first goal is the left conjunction
split ();
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// Rewrites the frame_equalities if it wasn't yet reduced
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
// Finally solve the uvar, finishing the rewriting for this clause
trefl ()
));
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// We do not have conjunctions anymore, we try to apply the frame_equalities rewriting
// If it fails, the frame was not symbolic, so there is nothing to do
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
trefl ())
[@@ __steel_reduce__]
unfold
let frame_equalities
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : prop
= rewrite_with_tactic frame_vc_norm (frame_equalities' frame h0 h1)
/// More lemmas about the abstract can_be_split predicates, to be used as
/// rewriting rules in the tactic below
val can_be_split_dep_refl (p:vprop)
: Lemma (can_be_split_dep true_p p p)
val equiv_can_be_split (p1 p2:vprop) : Lemma
(requires p1 `equiv` p2)
(ensures p1 `can_be_split` p2)
val intro_can_be_split_frame (p q:vprop) (frame:vprop)
: Lemma (requires q `equiv` (p `star` frame))
(ensures can_be_split q p /\ True)
val can_be_split_post_elim (#a #b:Type) (t1:a -> post_t b) (t2:post_t b)
: Lemma (requires (forall (x:a) (y:b). t1 x y `equiv` t2 y))
(ensures t1 `can_be_split_post` t2)
val equiv_forall_refl (#a:Type) (t:post_t a)
: Lemma (t `equiv_forall` t)
val equiv_forall_elim (#a:Type) (t1 t2:post_t a)
: Lemma (requires (forall (x:a). t1 x `equiv` t2 x))
(ensures t1 `equiv_forall` t2)
open FStar.Tactics.CanonCommMonoidSimple.Equiv
(* equiv is an equivalence relation on vprops *)
/// Lemmas establishing the equivalence properties on equiv
val equiv_refl (x:vprop) : Lemma (equiv x x)
val equiv_sym (x y:vprop) : Lemma
(requires equiv x y)
(ensures equiv y x)
val equiv_trans (x y z:vprop) : Lemma
(requires equiv x y /\ equiv y z)
(ensures equiv x z)
module CE = FStar.Algebra.CommMonoid.Equiv
/// Equiv is an equivalence relation for vprops elements
inline_for_extraction noextract let req : CE.equiv vprop =
CE.EQ equiv
equiv_refl
equiv_sym
equiv_trans
(* Star induces a commutative monoid for the equiv equivalence relation *)
/// Lemmas establishing the commutative monoid properties
val cm_identity (x:vprop) : Lemma ((emp `star` x) `equiv` x)
val star_commutative (p1 p2:vprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
val star_associative (p1 p2 p3:vprop)
: Lemma (((p1 `star` p2) `star` p3)
`equiv`
(p1 `star` (p2 `star` p3)))
val star_congruence (p1 p2 p3 p4:vprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
/// Star induces a commutative monoid on vprops
[@__steel_reduce__]
inline_for_extraction noextract let rm : CE.cm vprop req =
CE.CM emp
star
cm_identity
star_associative
star_commutative
star_congruence
(*** Vprop combinators ***)
(* Refining a vprop with a selector predicate *)
/// Separation logic predicate stating the validity of a vprop with an additional refinement on its selector
val vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: mem) : Lemma
(interp (vrefine_hp v p) m <==> (interp (hp_of v) m /\ p (sel_of v m)))
/// Selector type for a refined vprop
[@__steel_reduce__]
let vrefine_t (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot Type
= (x: t_of v {p x})
/// Selector of a refined vprop. Returns a value which satisfies the refinement predicate
val vrefine_sel (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (selector (vrefine_t v p) (vrefine_hp v p))
/// Exposing the definition of the refined selector
val vrefine_sel_eq (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: Mem.hmem (vrefine_hp v p)) : Lemma
(
interp (hp_of v) m /\
vrefine_sel v p m == sel_of v m
)
// [SMTPat ((vrefine_sel v p) m)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above pieces to define a vprop refined by a selector prediacte
[@__steel_reduce__]
let vrefine' (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot vprop' = {
hp = vrefine_hp v p;
t = vrefine_t v p;
sel = vrefine_sel v p;
}
[@__steel_reduce__]
let vrefine (v: vprop) (p: (normal (t_of v) -> Tot prop)) = VUnit (vrefine' v p)
(* Dependent star for vprops *)
/// Separation logic predicate corresponding to a dependent star,
/// where the second predicate depends on the selector value of the first
val vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: mem) : Lemma
(interp (vdep_hp v p) m <==> (interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m))
/// Helper to define the selector type of the second component of the dependent star
let vdep_payload
(v: vprop) (p: ( (t_of v) -> Tot vprop))
(x: t_of v)
: Tot Type
= t_of (p x)
/// Selector type for the dependent star: A dependent tuple, where the second component's type depends on the first vprop
let vdep_t (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot Type
= dtuple2 (t_of v) (vdep_payload v p)
/// Selector for the dependent star
val vdep_sel (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (selector (vdep_t v p) (vdep_hp v p))
/// Exposing the definition of the dependent star's selector when needed for proof purposes
val vdep_sel_eq (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: Mem.hmem (vdep_hp v p)) : Lemma
(
interp (hp_of v) m /\
begin let x = sel_of v m in
interp (hp_of (p x)) m /\
vdep_sel v p m == (| x, sel_of (p x) m |)
end
)
/// Combining the elements above to create a dependent star vprop
[@__steel_reduce__]
let vdep' (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot vprop' = {
hp = vdep_hp v p;
t = vdep_t v p;
sel = vdep_sel v p;
}
[@__steel_reduce__]
let vdep (v: vprop) (p: ( (t_of v) -> Tot vprop)) = VUnit (vdep' v p)
(* Selector rewrite combinator *)
/// The selector of a rewrite combinator applies a function `f` to the current selector of a vprop.
val vrewrite_sel (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot (selector t (normal (hp_of v)))
/// Exposing the definition of the above selector
val vrewrite_sel_eq (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) (h: Mem.hmem (normal (hp_of v))) : Lemma
((vrewrite_sel v f <: selector' _ _) h == f ((normal (sel_of v) <: selector' _ _) h))
// [SMTPat (vrewrite_sel v f h)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above elements to create a rewrite vprop
[@__steel_reduce__]
let vrewrite' (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop' = {
hp = normal (hp_of v);
t = t;
sel = vrewrite_sel v f;
}
[@__steel_reduce__]
let vrewrite (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop = VUnit (vrewrite' v f)
(*** Framing tactic ***)
(* Specialize visit_tm from the standard F* tactic library to reimplement name_appears_in.
AF: As of Jan 14, 2021, calling name_appears_in from FStar.Tactics.Derived leads to a segfault *)
exception Appears
let on_sort_binder (f : term -> Tac unit) (b:binder) : Tac unit =
f b.sort
let rec visit_tm (ff : term -> Tac unit) (t : term) : Tac unit =
let tv = inspect t in
(match tv with
| Tv_FVar _
| Tv_UInst _ _
| Tv_Var _
| Tv_BVar _ -> ()
| Tv_Type _ -> ()
| Tv_Const c -> ()
| Tv_Uvar i u -> ()
| Tv_Unsupp -> ()
| Tv_Unknown -> ()
| Tv_Arrow b c ->
on_sort_binder ff b;
visit_comp ff c
| Tv_Abs b t ->
let b = on_sort_binder (visit_tm ff) b in
visit_tm ff t
| Tv_App l (r, q) ->
visit_tm ff l;
visit_tm ff r
| Tv_Refine b r ->
on_sort_binder ff b;
visit_tm ff r
| Tv_Let r attrs b def t ->
on_sort_binder ff b;
visit_tm ff def;
visit_tm ff t
| Tv_Match sc _ brs ->
visit_tm ff sc;
iter (visit_br ff) brs
| Tv_AscribedT e t topt _ ->
visit_tm ff e;
visit_tm ff t
| Tv_AscribedC e c topt _ ->
visit_tm ff e
); ff t
and visit_br (ff : term -> Tac unit) (b:branch) : Tac unit =
let (p, t) = b in
visit_tm ff t
and visit_comp (ff : term -> Tac unit) (c : comp) : Tac unit =
let cv = inspect_comp c in
match cv with
| C_Total ret -> visit_tm ff ret
| C_GTotal ret -> visit_tm ff ret
| C_Lemma pre post pats ->
visit_tm ff pre;
visit_tm ff post;
visit_tm ff pats
| C_Eff us eff res args decrs ->
visit_tm ff res;
iter (fun (a, q) -> visit_tm ff a) args;
iter (visit_tm ff) decrs
/// Decides whether a top-level name [nm] syntactically
/// appears in the term [t].
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac unit =
match inspect t with
| Tv_FVar fv -> if inspect_fv fv = nm then raise Appears
| t -> ()
in
try ignore (visit_tm ff t); false with
| Appears -> true
| e -> raise e
/// Checks whether term [t] appears in term [i]
let term_appears_in (t:term) (i:term) : Tac bool =
name_appears_in (explode_qn (term_to_string t)) i
/// We define a small language to handle arbitrary separation logic predicates.
/// Separation logic predicates are encoded as atoms for which equality is decidable,
/// here represented as integers
let atom : eqtype = int
let rec atoms_to_string (l:list atom) = match l with
| [] -> ""
| hd::tl -> string_of_int hd ^ " " ^ atoms_to_string tl
/// Reflecting the structure of our separation logic on atmos
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
/// A map from atoms to the terms they represent.
/// The second component of the term corresponds to a default element,
/// ensuring we never raise an exception when trying to access an element in the map
let amap (a:Type) = list (atom * a) * a
/// An empty atom map: The list map is empty
let const (#a:Type) (xa:a) : amap a = ([], xa)
/// Accessing an element in the atom map
// We reimplement List.Tot.Base.assoc because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_assoc (#key: eqtype) (#value: Type) (k: key) (dict: list (key & value)) : Pure (option value)
(requires True)
(ensures (fun res -> res == List.Tot.assoc k dict))
= match dict with
| [] -> None
| (k', v') :: q -> if k = k' then Some v' else my_assoc k q
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match my_assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
/// Updating the atom map. Since select finds the first element corresponding to
/// the atom in the list and we do not have any remove function,
/// we can simply append the new element at the head without removing any possible
/// previous element
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
/// Check whether the current term is an unresolved vprop unification variable.
/// This can happen if either it is a uvar, or it is an unresolved dependent
/// vprop uvar which is applied to some argument
let is_uvar (t:term) : Tac bool = match inspect t with
| Tv_Uvar _ _ -> true
| Tv_App _ _ ->
let hd, args = collect_app t in
Tv_Uvar? (inspect hd)
| _ -> false
/// For a given term t, collect all terms in the list l with the same head symbol
let rec get_candidates (t:term) (l:list term) : Tac (list term) =
let name, _ = collect_app t in
match l with
| [] -> []
| hd::tl ->
let n, _ = collect_app hd in
if term_eq_old n name then (
hd::(get_candidates t tl)
) else get_candidates t tl
/// Try to remove a term that is exactly matching, not just that can be unified
let rec trivial_cancel (t:atom) (l:list atom) =
match l with
| [] -> false, l
| hd::tl ->
if hd = t then
// These elements match, we remove them
true, tl
else (let b, res = trivial_cancel t tl in b, hd::res)
/// Call trivial_cancel on all elements of l1.
/// The first two lists returned are the remainders of l1 and l2.
/// The last two lists are the removed parts of l1 and l2, with
/// the additional invariant that they are equal
let rec trivial_cancels (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, [], []
| hd::tl ->
let b, l2' = trivial_cancel hd l2 in
let l1', l2', l1_del, l2_del = trivial_cancels tl l2' am in
(if b then l1' else hd::l1'), l2',
(if b then hd::l1_del else l1_del), (if b then hd::l2_del else l2_del)
exception Failed
exception Success
/// Helper to print the terms corresponding to the current list of atoms
let rec print_atoms (l:list atom) (am:amap term) : Tac string =
match l with
| [] -> ""
| [hd] -> term_to_string (select hd am)
| hd::tl -> term_to_string (select hd am) ^ " * " ^ print_atoms tl am
/// For a list of candidates l, count the number that can unify with t.
/// Does not try to unify with a uvar, this will be done at the very end.
/// Tries to unify with slprops with a different head symbol, it might
/// be an abbreviation
let rec try_candidates (t:atom) (l:list atom) (am:amap term) : Tac (atom * int) =
match l with
| [] -> t, 0
| hd::tl ->
if is_uvar (select hd am) then (try_candidates t tl am)
else
// Encapsulate unify in a try/with to ensure unification is not actually performed
let res = try if unify (select t am) (select hd am) then raise Success else raise Failed
with | Success -> true | _ -> false in
let t', n' = try_candidates t tl am in
if res && hd <> t' then hd, 1 + n' else t', n'
/// Remove the given term from the list. Only to be called when
/// try_candidates succeeded
let rec remove_from_list (t:atom) (l:list atom) : Tac (list atom) =
match l with
| [] -> fail "atom in remove_from_list not found: should not happen"; []
| hd::tl -> if t = hd then tl else hd::remove_from_list t tl
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
let rec equivalent_lists_once (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, l1_del, l2_del
| hd::tl ->
let t, n = try_candidates hd l2 am in
if n = 1 then (
let l2 = remove_from_list t l2 in
equivalent_lists_once tl l2 (hd::l1_del) (t::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once tl l2 l1_del l2_del am in
hd::rem1, rem2, l1'_del, l2'_del
)
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates by iterating on l2.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
/// This is very close to equivalent_lists_once above, but helps making progress
/// when l1 contains syntactically equal candidates
let rec equivalent_lists_once_l2 (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l2 with
| [] -> l1, [], l1_del, l2_del
| hd::tl ->
if is_uvar (select hd am) then
// We do not try to match the vprop uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
else (
let t, n = try_candidates hd l1 am in
if n = 1 then (
let l1 = remove_from_list t l1 in
equivalent_lists_once_l2 l1 tl (t::l1_del) (hd::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
)
)
let get_head (l:list atom) (am:amap term) : term = match l with
| [] -> `()
| hd::_ -> select hd am
/// Checks whether the list of atoms [l] only contains one unresolved uvar
let is_only_uvar (l:list atom) (am:amap term) : Tac bool =
if List.Tot.Base.length l = 1 then is_uvar (select (List.Tot.Base.hd l) am)
else false
/// Assumes that u is a uvar, checks that all variables in l can be unified with it.
/// Later in the tactic, the uvar will be unified to a star of l *)
let rec try_unifying_remaining (l:list atom) (u:term) (am:amap term) : Tac unit =
match l with
| [] -> ()
| hd::tl ->
try if unify u (select hd am) then raise Success else raise Failed with
| Success -> try_unifying_remaining tl u am
| _ -> fail ("could not find candidate for scrutinee " ^ term_to_string (select hd am))
/// Is SMT rewriting enabled for this binder
let is_smt_binder (b:binder) : Tac bool =
let l = b.attrs in
not (List.Tot.isEmpty (filter (fun t -> is_fvar t (`%smt_fallback)) l))
/// Creates a new term, where all arguments where SMT rewriting is enabled have been replaced
/// by fresh, unconstrained unification variables
let rec new_args_for_smt_attrs (env:env) (l:list argv) (ty:typ) : Tac (list argv * list term) =
let fresh_ghost_uvar ty =
let e = cur_env () in
ghost_uvar_env e ty
in
match l, inspect_unascribe ty with
| (arg, aqualv)::tl, Tv_Arrow binder comp ->
let needs_smt = is_smt_binder binder in
let new_hd =
if needs_smt then (
let arg_ty = tc env arg in
let uvar = fresh_ghost_uvar arg_ty in
unshelve uvar;
flip ();
(uvar, aqualv)
) else (arg, aqualv)
in
begin
let ty2 =
match inspect_comp comp with
| C_Total ty2 -> ty2
| C_Eff _ eff_name ty2 _ _ ->
if eff_name = ["Prims"; "Tot"]
then ty2
else fail "computation type not supported in definition of slprops"
| _ -> fail "computation type not supported in definition of slprops" in
let tl_argv, tl_terms = new_args_for_smt_attrs env tl ty2 in
new_hd::tl_argv, (if needs_smt then arg::tl_terms else tl_terms)
end
| [], Tv_FVar fv -> [], []
| _ -> fail "should not happen. Is an slprop partially applied?"
/// Rewrites all terms in the context to enable SMT rewriting through the use of fresh, unconstrained unification variables
let rewrite_term_for_smt (env:env) (am:amap term * list term) (a:atom) : Tac (amap term * list term)
= let am, prev_uvar_terms = am in
let term = select a am in
let hd, args = collect_app term in
let t = tc env hd in
let new_args, uvar_terms = new_args_for_smt_attrs env args t in
let new_term = mk_app hd new_args in
update a new_term am, List.Tot.append uvar_terms prev_uvar_terms
/// User-facing error message when the framing tactic fails
let fail_atoms (#a:Type) (l1 l2:list atom) (am:amap term) : Tac a
= fail ("could not find a solution for unifying\n" ^ print_atoms l1 am ^ "\nand\n" ^ print_atoms l2 am)
/// Variant of equivalent_lists' below to be called once terms have been rewritten to allow SMT rewriting.
/// If unification succeeds and we have unicity of the solution, this tactic will succeed,
/// and ultimately create an SMT guard that the two terms are actually equal
let rec equivalent_lists_fallback (n:nat) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false)
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then
// Should always be smaller or equal to n
// If it is equal, no progress was made.
fail_atoms rem1 rem2 am
else equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' am
/// Iterates over all terms in [l2] to prepare them for unification with SMT rewriting
let replace_smt_uvars (l1 l2:list atom) (am:amap term) : Tac (amap term * list term)
= let env = cur_env () in
fold_left (rewrite_term_for_smt env) (am, []) l2
/// Recursively calls equivalent_lists_once.
/// Stops when we're done with unification, or when we didn't make any progress
/// If we didn't make any progress, we have too many candidates for some terms.
/// Accumulates rewritings of l1 and l2 in l1_del and l2_del, with the invariant
/// that the two lists are unifiable at any point
/// The boolean indicates if there is a leftover empty frame
let rec equivalent_lists' (n:nat) (use_smt:bool) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false, [])
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true, []))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false, []
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Try to make progress by matching non-uvars of l2 with candidates in l1
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once_l2 rem1 rem2 l1_del' l2_del' am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Should always be smaller or equal to n
// If it is equal, no progress was made.
if use_smt then
// SMT fallback is allowed
let new_am, uvar_terms = replace_smt_uvars rem1 rem2 am in
let l1_f, l2_f, b = equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' new_am in
l1_f, l2_f, b, uvar_terms
else fail_atoms rem1 rem2 am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
/// Checks if term for atom t unifies with fall uvars in l
let rec unifies_with_all_uvars (t:term) (l:list atom) (am:amap term) : Tac bool =
match l with
| [] -> true
| hd::tl ->
if unifies_with_all_uvars t tl am then (
// Unified with tail, try this term
let hd_t = select hd am in
if is_uvar hd_t then (
// The head term is a uvar, try unifying
try if unify t hd_t then raise Success else raise Failed
with | Success -> true | _ -> false
) else true // The uvar is not a head term, we do not need to try it
) else false
/// Puts all terms in l1 that cannot unify with the uvars in l2 at the top:
/// They need to be solved first
let rec most_restricted_at_top (l1 l2:list atom) (am:amap term) : Tac (list atom) =
match l1 with
| [] -> []
| hd::tl ->
if unifies_with_all_uvars (select hd am) l2 am then (most_restricted_at_top tl l2 am) `List.Tot.append` [hd]
else hd::(most_restricted_at_top tl l2 am)
/// Core AC-unification tactic.
/// First remove all trivially equal terms, then try to decide equivalence.
/// Assumes that l1 does not contain any vprop uvar.
/// If it succeeds, returns permutations of l1, l2, and a boolean indicating
/// if l2 has a trailing empty frame to be unified
let equivalent_lists (use_smt:bool) (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term)
= let l1, l2, l1_del, l2_del = trivial_cancels l1 l2 am in
let l1 = most_restricted_at_top l1 l2 am in
let n = List.Tot.length l1 in
let l1_del, l2_del, emp_frame, uvar_terms = equivalent_lists' n use_smt l1 l2 l1_del l2_del am in
l1_del, l2_del, emp_frame, uvar_terms
(* Helpers to relate the actual terms to their representation as a list of atoms *)
open FStar.Reflection.V2.Derived.Lemmas
let rec list_to_string (l:list term) : Tac string =
match l with
| [] -> "end"
| hd::tl -> term_to_string hd ^ " " ^ list_to_string tl
let rec mdenote_gen (#a:Type u#aa) (unit:a) (mult:a -> a -> a) (am:amap a) (e:exp) : a =
match e with
| Unit -> unit
| Atom x -> select x am
| Mult e1 e2 -> mult (mdenote_gen unit mult am e1) (mdenote_gen unit mult am e2)
let rec xsdenote_gen (#a:Type) (unit:a) (mult:a -> a -> a) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> unit
| [x] -> select x am
| x::xs' -> mult (select x am) (xsdenote_gen unit mult am xs')
unfold
let mdenote (#a:Type u#aa) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp) : a =
let open FStar.Algebra.CommMonoid.Equiv in
mdenote_gen (CM?.unit m) (CM?.mult m) am e
unfold
let xsdenote (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom) : a =
let open FStar.Algebra.CommMonoid.Equiv in
xsdenote_gen (CM?.unit m) (CM?.mult m) am xs
// We reimplement List.Tot.Base.append because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_append (#t: Type) (l1 l2: list t) : Pure (list t)
(requires True)
(ensures (fun res -> res == l1 `List.Tot.append` l2))
(decreases l1)
= match l1 with
| [] -> l2
| a :: q -> a :: my_append q l2
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 `my_append` flatten e2
let rec flatten_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 `my_append` xs2) `CE.EQ?.eq eq` CE.CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
let open FStar.Algebra.CommMonoid.Equiv in
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' `my_append` xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' `my_append` xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `CE.EQ?.eq eq` xsdenote eq m am (flatten e)) =
let open FStar.Algebra.CommMonoid.Equiv in
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 `my_append` flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 `my_append` flatten e2))
let monoid_reflect (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (flatten e1) `CE.EQ?.eq eq` xsdenote eq m am (flatten e2)))
: squash (mdenote eq m am e1 `CE.EQ?.eq eq` mdenote eq m am e2) =
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CE.EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (flatten e2));
CE.EQ?.transitivity eq
(xsdenote eq m am (flatten e1))
(xsdenote eq m am (flatten e2))
(mdenote eq m am e2);
CE.EQ?.transitivity eq
(mdenote eq m am e1)
(xsdenote eq m am (flatten e1))
(mdenote eq m am e2)
// Here we sort the variable numbers
// We reimplement List.Tot.Base.sortWith because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_partition (#a: Type) (f: (a -> Tot bool)) (l: list a)
: Pure (list a & list a)
(requires True)
(ensures (fun res -> res == List.Tot.partition f l))
= match l with
| [] -> [], []
| hd::tl ->
let l1, l2 = my_partition f tl in
if f hd
then hd::l1, l2
else l1, hd::l2
let rec partition_ext (#a: Type) (f1 f2: (a -> Tot bool)) (l: list a)
: Lemma
(requires (forall x . f1 x == f2 x))
(ensures (List.Tot.partition f1 l == List.Tot.partition f2 l))
= match l with
| [] -> ()
| hd::tl -> partition_ext f1 f2 tl
let my_bool_of_compare (#a: Type) (f: a -> a -> Tot int) (x: a) (y: a) : Tot bool
= f x y < 0
let rec my_sortWith (#a: Type) (f: (a -> a -> Tot int)) (l:list a)
: Pure (list a)
(requires True)
(ensures (fun res -> res == List.Tot.sortWith f l))
(decreases (List.Tot.length l))
= match l with
| [] -> []
| pivot::tl ->
let hi, lo = my_partition (my_bool_of_compare f pivot) tl in
partition_ext (my_bool_of_compare f pivot) (List.Tot.bool_of_compare f pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f pivot) tl;
my_append (my_sortWith f lo) (pivot::my_sortWith f hi)
let rec sortWith_ext (#a: Type) (f1 f2: (a -> a -> Tot int)) (l: list a)
: Lemma
(requires (forall x y . f1 x y == f2 x y))
(ensures (List.Tot.sortWith f1 l == List.Tot.sortWith f2 l))
(decreases (List.Tot.length l))
= match l with
| [] -> ()
| pivot::tl ->
partition_ext (List.Tot.bool_of_compare f1 pivot) (List.Tot.bool_of_compare f2 pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f1 pivot) tl;
let hi, lo = List.Tot.partition (List.Tot.bool_of_compare f1 pivot) tl in
sortWith_ext f1 f2 lo;
sortWith_ext f1 f2 hi
let permute = list atom -> list atom
let my_compare_of_bool (#a:eqtype) (rel: a -> a -> Tot bool) (x: a) (y: a) : Tot int
= if x `rel` y then -1
else if x = y then 0
else 1
let sort : permute = my_sortWith #int (my_compare_of_bool (<))
#push-options "--fuel 1 --ifuel 1"
let lemma_xsdenote_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (hd:atom) (tl:list atom)
: Lemma (xsdenote eq m am (hd::tl) `CE.EQ?.eq eq`
(CE.CM?.mult m (select hd am) (xsdenote eq m am tl)))
= let open FStar.Algebra.CommMonoid.Equiv in
match tl with
| [] ->
assert (xsdenote eq m am (hd::tl) == select hd am);
CM?.identity m (select hd am);
EQ?.symmetry eq (CM?.unit m `CM?.mult m` select hd am) (select hd am);
CM?.commutativity m (CM?.unit m) (select hd am);
EQ?.transitivity eq
(xsdenote eq m am (hd::tl))
(CM?.unit m `CM?.mult m` select hd am)
(CM?.mult m (select hd am) (xsdenote eq m am tl))
| _ -> EQ?.reflexivity eq (xsdenote eq m am (hd::tl))
let rec partition_equiv (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (pivot:atom) (q:list atom)
: Lemma
(let open FStar.List.Tot.Base in
let hi, lo = partition (bool_of_compare (compare_of_bool (<)) pivot) q in
CE.EQ?.eq eq
(xsdenote eq m am hi `CE.CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am q))
= let open FStar.Algebra.CommMonoid.Equiv in
let open FStar.List.Tot.Base in
let f = bool_of_compare (compare_of_bool (<)) pivot in
let hi, lo = partition f q in
match q with
| [] -> CM?.identity m (xsdenote eq m am hi)
| hd::tl ->
let l1, l2 = partition f tl in
partition_equiv eq m am pivot tl;
assert (EQ?.eq eq
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(xsdenote eq m am tl));
EQ?.reflexivity eq (xsdenote eq m am l1);
EQ?.reflexivity eq (xsdenote eq m am l2);
EQ?.reflexivity eq (xsdenote eq m am hi);
EQ?.reflexivity eq (xsdenote eq m am lo);
if f hd then begin
assert (hi == hd::l1 /\ lo == l2);
lemma_xsdenote_aux eq m am hd l1;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am l1)
(xsdenote eq m am l2);
CM?.associativity m
(select hd am)
(xsdenote eq m am l1)
(xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l1) `CM?.mult m` xsdenote eq m am l2)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end else begin
assert (hi == l1 /\ lo == hd::l2);
lemma_xsdenote_aux eq m am hd l2;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
CM?.commutativity m
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am l1 `CM?.mult m` (select hd am `CM?.mult m` xsdenote eq m am l2))
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1);
CM?.associativity m
(select hd am)
(xsdenote eq m am l2)
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1));
CM?.commutativity m (xsdenote eq m am l2) (xsdenote eq m am l1);
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1)
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1))
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end
let rec sort_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom)
: Lemma (requires True)
(ensures xsdenote eq m am xs `CE.EQ?.eq eq` xsdenote eq m am (sort xs))
(decreases (FStar.List.Tot.Base.length xs))
= let open FStar.Algebra.CommMonoid.Equiv in
match xs with
| [] -> EQ?.reflexivity eq (xsdenote eq m am [])
| pivot::q ->
let sort0 : permute = List.Tot.sortWith #int (List.Tot.compare_of_bool (<)) in
let sort_eq (l: list atom) : Lemma
(sort l == sort0 l)
[SMTPat (sort l)]
= sortWith_ext (my_compare_of_bool (<)) (List.Tot.compare_of_bool (<)) l
in
let open FStar.List.Tot.Base in
let f:int -> int -> int = compare_of_bool (<) in
let hi, lo = partition (bool_of_compare f pivot) q in
flatten_correct_aux eq m am (sort lo) (pivot::sort hi);
assert (xsdenote eq m am (sort xs) `EQ?.eq eq`
CM?.mult m (xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi)));
lemma_xsdenote_aux eq m am pivot (sort hi);
EQ?.reflexivity eq (xsdenote eq m am (sort lo));
CM?.congruence m
(xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi))));
CM?.commutativity m
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
CM?.associativity m
(select pivot am)
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo));
EQ?.transitivity eq
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
((select pivot am `CM?.mult m` xsdenote eq m am (sort hi)) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))));
partition_length (bool_of_compare f pivot) q;
sort_correct_aux eq m am hi;
sort_correct_aux eq m am lo;
EQ?.symmetry eq (xsdenote eq m am lo) (xsdenote eq m am (sort lo));
EQ?.symmetry eq (xsdenote eq m am hi) (xsdenote eq m am (sort hi));
CM?.congruence m
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo))
(xsdenote eq m am hi)
(xsdenote eq m am lo);
assert (EQ?.eq eq
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
EQ?.reflexivity eq (select pivot am);
CM?.congruence m
(select pivot am)
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)));
partition_equiv eq m am pivot q;
CM?.congruence m
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select pivot am)
(xsdenote eq m am q);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q)));
lemma_xsdenote_aux eq m am pivot q;
EQ?.symmetry eq
(xsdenote eq m am (pivot::q))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q))
(xsdenote eq m am xs);
EQ?.symmetry eq (xsdenote eq m am (sort xs)) (xsdenote eq m am xs)
#pop-options
#push-options "--fuel 0 --ifuel 0"
(* Lemmas to be called after a permutation compatible with AC-unification was found *)
let smt_reflexivity (#a:Type) (eq:CE.equiv a) (x y:a)
: Lemma (requires x == y)
(ensures CE.EQ?.eq eq x y)
= CE.EQ?.reflexivity eq x
let identity_left_smt (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a)
: Lemma
(requires x == y)
(ensures CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) y))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_left (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x:a)
: Lemma (CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) x))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_right_diff (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a) : Lemma
(requires CE.EQ?.eq eq x y)
(ensures CE.EQ?.eq eq (CE.CM?.mult m x (CE.CM?.unit m)) y)
= CE.right_identity eq m x;
CE.EQ?.transitivity eq (CE.CM?.mult m x (CE.CM?.unit m)) x y
/// Dismiss possible vprops goals that might have been created by lemma application.
/// These vprops will be instantiated at a later stage; else, Meta-F* will raise an error
let rec dismiss_slprops () : Tac unit =
match term_as_formula' (cur_goal ()) with
| App t _ -> if is_fvar t (`%squash) then () else (dismiss(); dismiss_slprops ())
| _ -> dismiss(); dismiss_slprops ()
/// Recursively removing trailing empty assertions
let rec n_identity_left (n:int) (eq m:term) : Tac unit
= if n = 0 then (
apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
// Cleaning up, in case a uvar has been generated here. It'll be solved later
set_goals [])
else (
apply_lemma (`identity_right_diff (`#eq) (`#m));
// Drop the slprops generated, they will be solved later
dismiss_slprops ();
n_identity_left (n-1) eq m
)
/// Helper lemma: If two vprops (as represented by lists of atoms) are equivalent, then their canonical forms
/// (corresponding to applying the sort function on atoms) are equivalent
let equivalent_sorted (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (l1 l2 l1' l2':list atom)
: Lemma (requires
sort l1 == sort l1' /\
sort l2 == sort l2' /\
xsdenote eq m am l1 `CE.EQ?.eq eq` xsdenote eq m am l2)
(ensures xsdenote eq m am l1' `CE.EQ?.eq eq` xsdenote eq m am l2')
= let open FStar.Algebra.CommMonoid.Equiv in
sort_correct_aux eq m am l1';
sort_correct_aux eq m am l1;
EQ?.symmetry eq (xsdenote eq m am l1) (xsdenote eq m am (sort l1));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l1'))
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l1)
(xsdenote eq m am l2);
sort_correct_aux eq m am l2;
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l2)
(xsdenote eq m am (sort l2));
sort_correct_aux eq m am l2';
EQ?.symmetry eq (xsdenote eq m am l2') (xsdenote eq m am (sort l2'));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l2))
(xsdenote eq m am l2')
#pop-options
/// Finds the position of first occurrence of x in xs.
/// This is now specialized to terms and their funny term_eq_old.
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) (decreases xs) =
match xs with
| [] -> None
| x'::xs' -> if term_eq_old x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = List.Tot.Base.length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts `List.Tot.append` [t], update vfresh t am)
/// Transforming a term into the corresponding list of atoms
/// If the atomic terms were already present in the map [am], then
/// they correspond to the same atoms
/// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app_ref t in
match inspect_unascribe hd, List.Tot.Base.list_unref tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq_old (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq_old t unit
then (Unit, ts, am)
else fatom t ts am
/// Performs the required normalization before calling the function above
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CE.CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CE.CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
/// Meta-F* internal: Transforms the atom map into a term
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
/// `am` is an amap (basically a list) of terms, each representing a value
/// of type `a` (whichever we are canonicalizing). This functions converts
/// `am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) )
/// Transforms a term representatoin into a term through quotation
let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt))
let rec quote_atoms (l:list atom) = match l with
| [] -> `[]
| hd::tl -> let nt = pack (Tv_Const (C_Int hd)) in
(`Cons (`#nt) (`#(quote_atoms tl)))
/// Some internal normalization steps to make reflection of vprops into atoms and atom permutation go smoothly.
/// We reimplemented sorting/list functions to normalize our uses without normalizing those introduced by the user.
let normal_tac_steps = [primops; iota; zeta; delta_only [
`%mdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm]]
/// The normalization function, using the above normalization steps
let normal_tac (#a:Type) (x:a) : a = FStar.Pervasives.norm normal_tac_steps x
/// Helper lemma to establish relation between normalized and initial values
let normal_elim (x:Type0) : Lemma
(requires x)
(ensures normal_tac x)
= ()
exception Result of list atom * list atom * bool * list term
/// F* equalities are typed, but the generated type sometimes is a unification variable.
/// This helper ensures that such unification variables are not left unresolved, which would lead to an error
let close_equality_typ' (t:term) : Tac unit =
let f = term_as_formula' t in
match f with
| Comp (Eq (Some u)) l _ -> if is_uvar u then (unshelve u; exact_with_ref (tc (cur_env()) l))
| _ -> ()
/// Recursively closing equality types in a given term (usually a unification constraint)
let close_equality_typ (t:term) : Tac unit =
visit_tm close_equality_typ' t
/// Core unification tactic.
/// Transforms terms into their atom representations,
/// Tries to find a solution to AC-unification, and if so,
/// soundly permutes the atom representations before calling the unifier
/// to check the validity of the provided solution.
/// In the case where SMT rewriting was needed, equalities abduction is performed by instantiating the
/// abduction prop unification variable with the corresponding guard
/// 09/24:
///
/// The tactic internally builds a map from atoms to terms
/// and uses the map for reflecting the goal to atoms representation
/// During reflection, the tactics engine typechecks the amap, and hence all
/// the terms again
/// This typechecking of terms is unnecessary, since the terms are coming
/// from the goal, and hence are already well-typed
/// Worse, re-typechecking them may generate a lot of SMT queries
/// And even worse, the SMT queries are discharged in the static context,
/// requiring various workarounds (e.g. squash variables for if conditions etc.)
///
/// To fix this, we now "name" the terms and use the amap with names
///
/// Read through the canon_l_r function for how we do this
/// The following three lemmas are helpers to manipulate the goal in canon_l_r
[@@ no_subtyping]
let inst_bv (#a:Type) (#p:a -> Type0) (#q:Type0) (x:a) (_:squash (p x ==> q))
: Lemma ((forall (x:a). p x) ==> q) = ()
let modus_ponens (#p #q:Type0) (_:squash p)
: Lemma ((p ==> q) ==> q)
= ()
let cut (p q:Type0) : Lemma (requires p /\ (p ==> q)) (ensures q) = ()
let and_true (p: Type0) : Lemma (requires (p /\ (p ==> True))) (ensures p) = ()
let solve_implies_true (p: Type0) : Lemma (p ==> True) = ()
// This exception is raised for failures that should not be considered
// hard but should allow postponing the goal instead
exception Postpone of string
(* NOTE! Redefining boolean disjunction to *not* be short-circuiting,
since we cannot use an effectful result as argument of Prims.op_BarBar *)
private
let bor = op_BarBar
private
let is_and (t:term) : bool =
is_any_fvar t [`%(/\); `%prop_and]
private
let is_squash (t:term) : bool =
is_any_fvar t [`%squash; `%auto_squash]
private
let is_star (t:term) : bool =
is_any_fvar t [`%star; `%VStar]
private
let is_star_or_unit (t:term) : bool =
is_any_fvar t [`%star; `%VStar; `%VUnit]
let rec unify_pr_with_true (pr: term) : Tac unit =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| [pr_l, _; pr_r, _] ->
unify_pr_with_true pr_l;
unify_pr_with_true pr_r
| _ -> fail "unify_pr_with_true: ill-formed /\\"
else
match inspect_unascribe hd with
| Tv_Uvar _ _ ->
if unify pr (`true_p)
then ()
else begin
fail "unify_pr_with_true: could not unify SMT prop with True"
end
| _ ->
if List.Tot.length (free_uvars pr) = 0
then ()
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "unify_pr_with_true: some uvars are still there")
let elim_and_l_squash (#a #b: Type0) (#goal: Type0) (f: (a -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash a) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash a) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let elim_and_r_squash (#a #b: Type0) (#goal: Type0) (f: (b -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash b) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash b) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let _return_squash (#a: Type) () (x: a) : Tot (squash a) =
FStar.Squash.return_squash x
let rec set_abduction_variable_term (pr: term) : Tac term =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| (pr_l, Q_Explicit) :: (pr_r, Q_Explicit) :: [] ->
if List.Tot.length (free_uvars pr_r) = 0
then
let arg = set_abduction_variable_term pr_l in
mk_app (`elim_and_l_squash) [arg, Q_Explicit]
else if List.Tot.length (free_uvars pr_l) = 0
then
let arg = set_abduction_variable_term pr_r in
mk_app (`elim_and_r_squash) [arg, Q_Explicit]
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "set_abduction_variable_term: there are still uvars on both sides of l_and")
| _ -> fail "set_abduction_variable: ill-formed /\\"
else
match inspect hd with
| Tv_Uvar _ _ ->
mk_app (`_return_squash) [`(), Q_Explicit]
| _ -> fail "set_abduction_variable: cannot unify"
let set_abduction_variable () : Tac unit =
let g = cur_goal () in
match inspect_unascribe g with
| Tv_Arrow b _ ->
let pr = b.sort in
exact (set_abduction_variable_term pr)
| _ -> fail "Not an arrow goal"
let canon_l_r (use_smt:bool)
(carrier_t:term) //e.g. vprop
(eq:term) (m:term)
(pr pr_bind:term)
(lhs rel rhs:term) : Tac unit =
let m_unit = norm_term [iota; zeta; delta] (`(CE.CM?.unit (`#m))) in
let m_mult = norm_term [iota; zeta; delta] (`(CE.CM?.mult (`#m))) in
let am = const m_unit in (* empty map *)
let (r1_raw, ts, am) = reification eq m [] am lhs in
let (r2_raw, _, am) = reification eq m ts am rhs in
// Encapsulating this in a try/with to avoid spawning uvars for smt_fallback
let l1_raw, l2_raw, emp_frame, uvar_terms =
try
let res = equivalent_lists use_smt (flatten r1_raw) (flatten r2_raw) am in
raise (Result res) with
| TacticFailure m -> fail m
| Result res -> res
| _ -> fail "uncaught exception in equivalent_lists"
in
//So now we have:
// am : amap mapping atoms to terms in lhs and rhs
// r1_raw : an expression in the atoms language for lhs
// r2_raw : an expression in the atoms language for rhs
// l1_raw : sorted list of atoms in lhs
// l2_raw : sorted list of atoms in rhs
//
//In particular, r1_raw and r2_raw capture lhs and rhs structurally
// (i.e. same associativity, emp, etc.)
//
//Whereas l1_raw and l2_raw are "canonical" representations of lhs and rhs
// (vis xsdenote)
//Build an amap where atoms are mapped to names
//The type of these names is carrier_t passed by the caller
let am_bv : list (atom & namedv & typ) = mapi (fun i (a, _) ->
let x = fresh_namedv_named ("x" ^ (string_of_int i)) in
(a, x, carrier_t)) (fst am) in
let am_bv_term : amap term = map (fun (a, bv, _sort) -> a, pack (Tv_Var bv)) am_bv, snd am in
let mdenote_tm (e:exp) : term = mdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
e in
let xsdenote_tm (l:list atom) : term = xsdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
l in
//Get the named representations of lhs, rhs, and their respective sorted versions
let lhs_named = mdenote_tm r1_raw in
let rhs_named = mdenote_tm r2_raw in
let sorted_lhs_named = xsdenote_tm l1_raw in
let sorted_rhs_named = xsdenote_tm l2_raw in
//We now build an auxiliary goal of the form:
//
// forall xs. (sorted_lhs_named `rel` sorted_rhs_names) ==> (lhs_names `rel` rhs_named)
//
// where xs are the fresh names that we introduced earlier
let mk_rel (l r:term) : term =
mk_app rel [(l, Q_Explicit); (r, Q_Explicit)] in
let imp_rhs = mk_rel lhs_named rhs_named in
let imp_lhs = mk_rel sorted_lhs_named sorted_rhs_named in
let imp =
mk_app (pack (Tv_FVar (pack_fv imp_qn))) [(imp_lhs, Q_Explicit); (imp_rhs, Q_Explicit)] in
//fold over names and quantify over them
let aux_goal = fold_right (fun (_, nv, sort) t ->
let nvv = inspect_namedv nv in
let b = {
ppname = nvv.ppname;
uniq = nvv.uniq;
qual = Q_Explicit;
attrs = [];
sort = sort;
} in
let _, t = close_term b t in
let t = pack (Tv_Abs b t) in
mk_app (pack (Tv_FVar (pack_fv forall_qn))) [t, Q_Explicit]) am_bv imp in
//Introduce a cut with the auxiliary goal
apply_lemma (`cut (`#aux_goal));
//After the cut, the goal looks like: A /\ (A ==> G)
// where A is the auxiliary goal and G is the original goal (lhs `rel` rhs)
split ();
//Solving A:
focus (fun _ ->
//The proof follows a similar structure as before naming was introduced
//
//Except that this time, the amap is in terms of names,
// and hence its typechecking is faster and (hopefully) no SMT involved
//Open the forall binders in A, and use the fresh names to build an amap
let am = fold_left (fun am (a, _, _sort) ->
let b = forall_intro () in
let v = binding_to_namedv b in
(a, pack (Tv_Var v))::am) [] am_bv, snd am in
//Introduce the lhs of implication
let b = implies_intro () in
//Now the proof is the plain old canon proof
let am = convert_am am in
let r1 = quote_exp r1_raw in
let r2 = quote_exp r2_raw in
change_sq (`(normal_tac (mdenote (`#eq) (`#m) (`#am) (`#r1)
`CE.EQ?.eq (`#eq)`
mdenote (`#eq) (`#m) (`#am) (`#r2))));
apply_lemma (`normal_elim);
apply (`monoid_reflect );
let l1 = quote_atoms l1_raw in
let l2 = quote_atoms l2_raw in
apply_lemma (`equivalent_sorted (`#eq) (`#m) (`#am) (`#l1) (`#l2));
if List.Tot.length (goals ()) = 0 then ()
else begin
norm [primops; iota; zeta; delta_only
[`%xsdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm;
`%CE.__proj__EQ__item__eq;
`%req;
`%star;]
];
//The goal is of the form G1 /\ G2 /\ G3, as in the requires of equivalent_sorted
split ();
split ();
//Solve G1 and G2 by trefl
trefl ();
trefl ();
//G3 is the lhs of the implication in the auxiliary goal
// that we have in our assumptions via b
apply (`FStar.Squash.return_squash);
exact (binding_to_term b)
end);
dismiss_slprops();
//Our goal now is A ==> G (where G is the original goal (lhs `rel` rhs))
//Open the forall binders
ignore (repeatn (List.Tot.length am_bv) (fun _ -> apply_lemma (`inst_bv)));
//And apply modus ponens
apply_lemma (`modus_ponens);
//Now our goal is sorted_lhs_named `rel` sorted_rhs_named
// where the names are replaced with fresh uvars (from the repeatn call above)
//So we just trefl
match uvar_terms with
| [] -> // Closing unneeded prop uvar
focus (fun _ ->
try
apply_lemma (`and_true);
split ();
if emp_frame then apply_lemma (`identity_left (`#eq) (`#m))
else apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
unify_pr_with_true pr; // MUST be done AFTER identity_left/reflexivity, which can unify other uvars
apply_lemma (`solve_implies_true)
with
| TacticFailure msg -> fail ("Cannot unify pr with true: " ^ msg)
| e -> raise e
)
| l ->
if emp_frame then (
apply_lemma (`identity_left_smt (`#eq) (`#m))
) else (
apply_lemma (`smt_reflexivity (`#eq))
);
t_trefl true;
close_equality_typ (cur_goal());
revert ();
set_abduction_variable ()
/// Wrapper around the tactic above
/// The constraint should be of the shape `squash (equiv lhs rhs)`
let canon_monoid (use_smt:bool) (carrier_t:term) (eq m:term) (pr pr_bind:term) : Tac unit =
norm [iota; zeta];
let t = cur_goal () in
// removing top-level squash application
let sq, rel_xy = collect_app_ref t in
// unpacking the application of the equivalence relation (lhs `EQ?.eq eq` rhs)
(match rel_xy with
| [(rel_xy,_)] -> (
let open FStar.List.Tot.Base in
let rel, xy = collect_app_ref rel_xy in
if (length xy >= 2)
then (
match index xy (length xy - 2) , index xy (length xy - 1) with
| (lhs, Q_Explicit) , (rhs, Q_Explicit) ->
canon_l_r use_smt carrier_t eq m pr pr_bind lhs rel rhs
| _ -> fail "Goal should have been an application of a binary relation to 2 explicit arguments"
)
else (
fail "Goal should have been an application of a binary relation to n implicit and 2 explicit arguments"
)
)
| _ -> fail "Goal should be squash applied to a binary relation")
/// Instantiation of the generic AC-unification tactic with the vprop commutative monoid
let canon' (use_smt:bool) (pr:term) (pr_bind:term) : Tac unit =
canon_monoid use_smt (pack (Tv_FVar (pack_fv [`%vprop]))) (`req) (`rm) pr pr_bind
/// Counts the number of unification variables corresponding to vprops in the term [t]
let rec slterm_nbr_uvars (t:term) : Tac int =
match inspect_unascribe t with
| Tv_Uvar _ _ -> 1
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
slterm_nbr_uvars_argv args
else if is_uvar hd then 1
else 0
| Tv_Abs _ t -> slterm_nbr_uvars t
| _ -> 0
and slterm_nbr_uvars_argv (args: list argv) : Tac int =
fold_left (fun n (x, _) -> n + slterm_nbr_uvars x) 0 args
let guard_vprop (v: vprop) : Tot vprop = v
let rec all_guards_solved (t: term) : Tac bool =
match inspect_unascribe t with
| Tv_Abs _ t -> all_guards_solved t
| Tv_App _ _ ->
let hd, args = collect_app t in
if hd `is_fvar` (`%guard_vprop)
then slterm_nbr_uvars_argv args = 0
else if not (all_guards_solved hd)
then false
else
List.Tot.fold_left
(fun (tac: (unit -> Tac bool)) (tm, _) ->
let f () : Tac bool =
if all_guards_solved tm
then tac ()
else false
in
f
)
(let f () : Tac bool = true in f)
args
()
| _ -> true
let unfold_guard () : Tac bool =
if all_guards_solved (cur_goal ())
then begin
focus (fun _ -> norm [delta_only [(`%guard_vprop)]]);
true
end else
false
let rec term_is_uvar (t: term) (i: int) : Tac bool = match inspect t with
| Tv_Uvar i' _ -> i = i'
| Tv_App _ _ ->
let hd, args = collect_app t in
term_is_uvar hd i
| _ -> false
val solve_can_be_split_for : string -> Tot unit
val solve_can_be_split_lookup : unit // FIXME: src/reflection/FStar.Reflection.Basic.lookup_attr only supports fvar attributes, so we cannot directly look up for (solve_can_be_split_for blabla), we need a nullary attribute to use with lookup_attr
let rec dismiss_all_but_last' (l: list goal) : Tac unit =
match l with
| [] | [_] -> set_goals l
| _ :: q -> dismiss_all_but_last' q
let dismiss_all_but_last () : Tac unit =
dismiss_all_but_last' (goals ())
let rec dismiss_non_squash_goals' (keep:list goal) (goals:list goal)
: Tac unit
= match goals with
| [] -> set_goals (List.Tot.rev keep)
| hd :: tl ->
let f = term_as_formula' (goal_type hd) in
match f with
| App hs _ ->
if is_squash hs
then dismiss_non_squash_goals' (hd::keep) tl
else dismiss_non_squash_goals' keep tl
| _ ->
dismiss_non_squash_goals' keep tl
let dismiss_non_squash_goals () =
let g = goals () in
dismiss_non_squash_goals' [] g
let rec term_mem (te: term) (l: list term) : Tac bool =
match l with
| [] -> false
| t' :: q ->
if te `term_eq_old` t' then true else term_mem te q
let rec lookup_by_term_attr' (attr: term) (e: env) (found: list fv) (l: list fv) : Tac (list fv)
=
match l with
| [] -> List.Tot.rev found
| f :: q ->
let n = inspect_fv f in
begin match lookup_typ e n with
| None -> lookup_by_term_attr' attr e found q
| Some se ->
let found' =
if attr `term_mem` sigelt_attrs se
then f :: found
else found
in
lookup_by_term_attr' attr e found' q
end
let lookup_by_term_attr (label_attr: term) (attr: term) : Tac (list fv) =
let e = cur_env () in
let candidates = lookup_attr label_attr e in
lookup_by_term_attr' attr e [] candidates
let rec bring_last_goal_on_top' (others: list goal) (goals: list goal) : Tac unit =
match goals with
| [] -> set_goals (List.Tot.rev others)
| last :: [] -> set_goals (last :: List.Tot.rev others)
| a :: q -> bring_last_goal_on_top' (a :: others) q
let bring_last_goal_on_top () =
let g = goals () in
bring_last_goal_on_top' [] g
let rec extract_contexts
(lemma_left lemma_right label_attr attr: term)
(t: term)
: Tac (option (unit -> Tac unit))
=
let hd, tl = collect_app t in
if is_star hd
then
match tl with
| (t_left, Q_Explicit) :: (t_right, Q_Explicit) :: [] ->
let extract_right () : Tac (option (unit -> Tac unit)) =
match extract_contexts lemma_left lemma_right label_attr attr t_right with
| None -> None
| Some f ->
Some (fun _ ->
apply_lemma lemma_right;
dismiss_all_but_last ();
f ()
)
in
begin match extract_contexts lemma_left lemma_right label_attr attr t_left with
| None -> extract_right ()
| Some f ->
Some (fun _ ->
try
apply_lemma lemma_left;
dismiss_all_but_last ();
f ()
with _ ->
begin match extract_right () with
| None -> fail "no context on the right either"
| Some g -> g ()
end
)
end
| _ -> None
else
let candidates =
let hd_fv = match inspect_unascribe hd with
| Tv_FVar fv -> Some fv
| Tv_UInst fv _ -> Some fv
| _ -> None
in
match hd_fv with
| None -> []
| Some hd_fv ->
let hd_s' = implode_qn (inspect_fv hd_fv) in
let hd_s = pack (Tv_Const (C_String hd_s')) in
lookup_by_term_attr label_attr (mk_app attr [hd_s, Q_Explicit])
in
if Nil? candidates
then None
else
Some (fun _ ->
first (List.Tot.map (fun candidate _ -> apply_lemma (pack (Tv_FVar candidate)) <: Tac unit) candidates);
dismiss_non_squash_goals ()
)
let extract_cbs_contexts = extract_contexts
(`can_be_split_congr_l)
(`can_be_split_congr_r)
(`solve_can_be_split_lookup)
(`solve_can_be_split_for)
let open_existentials () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [delta_attr [`%__reduce__]];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split)
then
match tl with
| _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match extract_cbs_contexts rhs with
| None -> fail "open_existentials: no context found"
| Some f ->
apply_lemma (`can_be_split_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top () // so that any preconditions for the selected lemma are scheduled for later
end
| _ -> fail "open_existentials: ill-formed can_be_split"
else
fail "open_existentials: not a can_be_split goal"
| _ -> fail "open_existentials: not a squash goal"
let try_open_existentials () : Tac bool =
focus (fun _ ->
try
open_existentials ();
true
with _ -> false
)
(* Solving the can_be_split* constraints, if they are ready to be scheduled
A constraint is deemed ready to be scheduled if it contains only one vprop unification variable
If so, constraints are stripped to their underlying definition based on vprop equivalence,
introducing universally quantified variables when needed.
Internal details of the encoding are removed through normalization, before calling the AC-unification
tactic defined above
*)
/// Solves a `can_be_split` constraint
let rec solve_can_be_split (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ -> apply_lemma (`equiv_can_be_split);
dismiss_slprops();
// If we have exactly the same term on both side,
// equiv_sl_implies would solve the goal immediately
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if rnbr = 0 then apply_lemma (`equiv_sym);
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
with
| _ ->
let opened_some = try_open_existentials () in
if opened_some then solve_can_be_split args // we only need args for their number of uvars, which has not changed
else false
) else false
| _ -> false // Ill-formed can_be_split, should not happen
/// Solves a can_be_split_dep constraint
let solve_can_be_split_dep (args:list argv) : Tac bool =
match args with
| [(p, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
dismiss_slprops ();
or_else
(fun _ ->
let b = unify p (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true p (binding_to_term p_bind)));
true
) else false
| _ -> fail "ill-formed can_be_split_dep"
/// Helper rewriting lemma
val emp_unit_variant (p:vprop) : Lemma
(ensures can_be_split p (p `star` emp))
/// Solves a can_be_split_forall constraint
let solve_can_be_split_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
ignore (forall_intro());
apply_lemma (`equiv_can_be_split);
dismiss_slprops();
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed can_be_split_forall, should not happen"
val solve_can_be_split_forall_dep_for : string -> Tot unit
val solve_can_be_split_forall_dep_lookup : unit // FIXME: same as solve_can_be_split_for above
let extract_cbs_forall_dep_contexts
=
extract_contexts
(`can_be_split_forall_dep_congr_l)
(`can_be_split_forall_dep_congr_r)
(`solve_can_be_split_forall_dep_lookup)
(`solve_can_be_split_forall_dep_for)
let open_existentials_forall_dep () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_forall_dep_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [
delta_only [
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%rm;
];
iota;
delta_attr [`%__reduce__];
];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split_forall_dep)
then
match tl with
| _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: []
| (_, Q_Implicit) (* #a *) :: _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match inspect_unascribe rhs with
| Tv_Abs _ body ->
begin match extract_cbs_forall_dep_contexts body with
| None -> fail "open_existentials_forall_dep: no candidate"
| Some f ->
apply_lemma (`can_be_split_forall_dep_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top ();
if Cons? (goals ()) then norm []
end
| _ -> fail "open_existentials_forall_dep : not an abstraction"
end
| _ -> fail "open_existentials_forall_dep : wrong number of arguments to can_be_split_forall_dep"
else
fail "open_existentials_forall_dep : not a can_be_split_forall_dep goal"
| _ ->
fail "open_existentials_forall_dep : not a squash/auto_squash goal"
let try_open_existentials_forall_dep () : Tac bool
=
focus (fun _ ->
try
open_existentials_forall_dep ();
true
with _ -> false
)
/// Solves a can_be_split_forall_dep constraint
let rec solve_can_be_split_forall_dep (args:list argv) : Tac bool =
match args with
| [_; (pr, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ ->
norm [];
let x = forall_intro () in
let pr = mk_app pr [(binding_to_term x, Q_Explicit)] in
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
or_else (fun _ -> flip()) (fun _ -> ());
let pr = norm_term [] pr in
or_else
(fun _ ->
let b = unify pr (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true pr (binding_to_term p_bind)));
true
with
| Postpone msg ->
false
| TacticFailure msg ->
let opened = try_open_existentials_forall_dep () in
if opened
then solve_can_be_split_forall_dep args // we only need args for their number of uvars, which has not changed
else fail msg
| _ -> fail "Unexpected exception in framing tactic"
) else false
| _ -> fail "Ill-formed can_be_split_forall_dep, should not happen"
/// Solves an equiv_forall constraint
let solve_equiv_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv_forall, should not happen"
/// Solves an equiv constraint
let solve_equiv (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip ()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv, should not happen"
/// Solves a can_be_split_post constraint
let solve_can_be_split_post (args:list argv) : Tac bool =
match args with
| [_; _; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> norm[];
let g = _cur_goal () in
ignore (forall_intro());
apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "ill-formed can_be_split_post"
/// Checks whether any of the two terms was introduced during a Steel monadic return
let is_return_eq (l r:term) : Tac bool =
let nl, al = collect_app l in
let nr, ar = collect_app r in
is_fvar nl (`%return_pre) || is_fvar nr (`%return_pre)
/// Solves indirection equalities introduced by the layered effects framework.
/// If these equalities were introduced during a monadic return, they need to be solved
/// at a later stage to avoid overly restricting contexts of unification variables
let rec solve_indirection_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
if is_return_eq l r then later() else trefl();
solve_indirection_eqs (fuel - 1)
| _ -> later(); solve_indirection_eqs (fuel - 1)
/// Solve all equalities in the list of goals by calling the F* unifier
let rec solve_all_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_all_eqs (fuel - 1)
| _ -> later(); solve_all_eqs (fuel - 1)
/// It is important to not normalize the return_pre eqs goals before unifying | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"FStar.String.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.Derived.Lemmas.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "Steel.Effect.Common.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Derived.Lemmas",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": false,
"full_module": "Steel.Semantics.Instantiate",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.Semantics.Hoare.MST",
"short_module": "Sem"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | fuel: Prims.nat -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.unit",
"Prims.bool",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.NamedView.term",
"Steel.Effect.Common.solve_return_eqs",
"Prims.op_Subtraction",
"FStar.Tactics.V2.Derived.trefl",
"FStar.Reflection.V2.Formula.formula",
"FStar.Tactics.V2.Derived.later",
"FStar.Reflection.V2.Formula.term_as_formula'",
"FStar.Stubs.Tactics.Types.goal_type",
"FStar.Tactics.V2.Derived.goals"
] | [
"recursion"
] | false | true | false | false | false | let rec solve_return_eqs (fuel: nat) : Tac unit =
| if fuel = 0
then ()
else
match goals () with
| [] -> ()
| hd :: _ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl ();
solve_return_eqs (fuel - 1)
| _ ->
later ();
solve_return_eqs (fuel - 1) | false |
Steel.Primitive.ForkJoin.Unix.fst | Steel.Primitive.ForkJoin.Unix.bind | val bind
(a b: Type)
(#framed_f #framed_g: eqtype_as_type bool)
(#[@@@ framing_implicit]pre_f: pre_t)
(#[@@@ framing_implicit]post_f: post_t a)
(#[@@@ framing_implicit]pre_g: (a -> pre_t))
(#[@@@ framing_implicit]post_g: post_t b)
(#[@@@ framing_implicit]frame_f #[@@@ framing_implicit]frame_g: vprop)
(#[@@@ framing_implicit]p:
squash (can_be_split_forall (fun x -> (post_f x) `star` frame_f)
(fun x -> (pre_g x) `star` frame_g)))
(#[@@@ framing_implicit]m1: squash (maybe_emp framed_f frame_f))
(#[@@@ framing_implicit]m2: squash (maybe_emp framed_g frame_g))
(f: steelK a framed_f pre_f post_f)
(g: (x: a -> steelK b framed_g (pre_g x) post_g))
: steelK b true (pre_f `star` frame_f) (fun y -> (post_g y) `star` frame_g) | val bind
(a b: Type)
(#framed_f #framed_g: eqtype_as_type bool)
(#[@@@ framing_implicit]pre_f: pre_t)
(#[@@@ framing_implicit]post_f: post_t a)
(#[@@@ framing_implicit]pre_g: (a -> pre_t))
(#[@@@ framing_implicit]post_g: post_t b)
(#[@@@ framing_implicit]frame_f #[@@@ framing_implicit]frame_g: vprop)
(#[@@@ framing_implicit]p:
squash (can_be_split_forall (fun x -> (post_f x) `star` frame_f)
(fun x -> (pre_g x) `star` frame_g)))
(#[@@@ framing_implicit]m1: squash (maybe_emp framed_f frame_f))
(#[@@@ framing_implicit]m2: squash (maybe_emp framed_g frame_g))
(f: steelK a framed_f pre_f post_f)
(g: (x: a -> steelK b framed_g (pre_g x) post_g))
: steelK b true (pre_f `star` frame_f) (fun y -> (post_g y) `star` frame_g) | let bind (a:Type) (b:Type)
(#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool)
(#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a)
(#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:post_t b)
(#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:vprop)
(#[@@@ framing_implicit] p:squash (can_be_split_forall
(fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g)))
(#[@@@ framing_implicit] m1 : squash (maybe_emp framed_f frame_f))
(#[@@@ framing_implicit] m2:squash (maybe_emp framed_g frame_g))
(f:steelK a framed_f pre_f post_f)
(g:(x:a -> steelK b framed_g (pre_g x) post_g))
: steelK b
true
(pre_f `star` frame_f)
(fun y -> post_g y `star` frame_g)
= fun #frame (#post:vprop) (k:(y:b -> SteelT unit (frame `star` (post_g y `star` frame_g)) (fun _ -> post))) ->
// Need SteelT unit (frame `star` (pre_f `star` frame_f)) (fun _ -> post)
change_slprop_equiv (frame `star` (pre_f `star` frame_f)) ((frame `star` frame_f) `star` pre_f) (rearrange3 frame frame_f pre_f;
equiv_symmetric ((frame `star` frame_f) `star` pre_f) (frame `star` (pre_f `star` frame_f)) );
f #(frame `star` frame_f) #post
((fun (x:a) ->
// Need SteelT unit ((frame `star` frame_f) `star` post_f x) (fun _ -> post)
change_slprop_imp
(frame `star` (post_f x `star` frame_f))
(frame `star` (pre_g x `star` frame_g))
(can_be_split_forall_frame (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g) frame x);
g x #(frame `star` frame_g) #post
((fun (y:b) -> k y)
<: (y:b -> SteelT unit ((frame `star` frame_g) `star` post_g y) (fun _ -> post)))
)
<: (x:a -> SteelT unit ((frame `star` frame_f) `star` post_f x) (fun _ -> post))) | {
"file_name": "lib/steel/Steel.Primitive.ForkJoin.Unix.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 87,
"end_line": 117,
"start_col": 0,
"start_line": 85
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Primitive.ForkJoin.Unix
(* This module shows that it's possible to layer continuations on top
of SteelT to get a direct style (or Unix style) fork/join. Very much a
prototype for now. *)
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.Reference
open Steel.Primitive.ForkJoin
#set-options "--warn_error -330" //turn off the experimental feature warning
#set-options "--ide_id_info_off"
// (* Some helpers *)
let change_slprop_equiv (p q : vprop)
(proof : squash (p `equiv` q))
: SteelT unit p (fun _ -> q)
= rewrite_slprop p q (fun _ -> proof; reveal_equiv p q)
let change_slprop_imp (p q : vprop)
(proof : squash (p `can_be_split` q))
: SteelT unit p (fun _ -> q)
= rewrite_slprop p q (fun _ -> proof; reveal_can_be_split ())
(* Continuations into unit, but parametrized by the final heap
* proposition and with an implicit framing. I think ideally these would
* also be parametric in the final type (instead of being hardcoded to
* unit) but that means fork needs to be extended to be polymorphic in
* at least one of the branches. *)
type steelK (t:Type u#aa) (framed:bool) (pre : vprop) (post:t->vprop) =
#frame:vprop -> #postf:vprop ->
f:(x:t -> SteelT unit (frame `star` post x) (fun _ -> postf)) ->
SteelT unit (frame `star` pre) (fun _ -> postf)
(* The classic continuation monad *)
let return_ a (x:a) (#[@@@ framing_implicit] p: a -> vprop) : steelK a true (return_pre (p x)) p =
fun k -> k x
private
let rearrange3 (p q r:vprop) : Lemma
(((p `star` q) `star` r) `equiv` (p `star` (r `star` q)))
= let open FStar.Tactics in
assert (((p `star` q) `star` r) `equiv` (p `star` (r `star` q))) by
(norm [delta_attr [`%__reduce__]]; canon' false (`true_p) (`true_p))
private
let equiv_symmetric (p1 p2:vprop)
: Lemma (requires p1 `equiv` p2) (ensures p2 `equiv` p1)
= reveal_equiv p1 p2;
equiv_symmetric (hp_of p1) (hp_of p2);
reveal_equiv p2 p1
private
let can_be_split_forall_frame (#a:Type) (p q:post_t a) (frame:vprop) (x:a)
: Lemma (requires can_be_split_forall p q)
(ensures (frame `star` p x) `can_be_split` (frame `star` q x))
= let frame = hp_of frame in
let p = hp_of (p x) in
let q = hp_of (q x) in
reveal_can_be_split ();
assert (slimp p q);
slimp_star p q frame frame;
Steel.Memory.star_commutative p frame;
Steel.Memory.star_commutative q frame | {
"checked_file": "/",
"dependencies": [
"Steel.Reference.fsti.checked",
"Steel.Primitive.ForkJoin.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Primitive.ForkJoin.Unix.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Primitive.ForkJoin",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Type ->
b: Type ->
f: Steel.Primitive.ForkJoin.Unix.steelK a framed_f pre_f post_f ->
g: (x: a -> Steel.Primitive.ForkJoin.Unix.steelK b framed_g (pre_g x) post_g)
-> Steel.Primitive.ForkJoin.Unix.steelK b
true
(Steel.Effect.Common.star pre_f frame_f)
(fun y -> Steel.Effect.Common.star (post_g y) frame_g) | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.eqtype_as_type",
"Prims.bool",
"Steel.Effect.Common.pre_t",
"Steel.Effect.Common.post_t",
"Steel.Effect.Common.vprop",
"Prims.squash",
"Steel.Effect.Common.can_be_split_forall",
"Steel.Effect.Common.star",
"Steel.Effect.Common.maybe_emp",
"Steel.Primitive.ForkJoin.Unix.steelK",
"Prims.unit",
"Steel.Primitive.ForkJoin.Unix.change_slprop_imp",
"Steel.Primitive.ForkJoin.Unix.can_be_split_forall_frame",
"Steel.Primitive.ForkJoin.Unix.change_slprop_equiv",
"Steel.Primitive.ForkJoin.Unix.equiv_symmetric",
"Steel.Primitive.ForkJoin.Unix.rearrange3"
] | [] | false | false | false | false | false | let bind
(a b: Type)
(#framed_f #framed_g: eqtype_as_type bool)
(#[@@@ framing_implicit]pre_f: pre_t)
(#[@@@ framing_implicit]post_f: post_t a)
(#[@@@ framing_implicit]pre_g: (a -> pre_t))
(#[@@@ framing_implicit]post_g: post_t b)
(#[@@@ framing_implicit]frame_f #[@@@ framing_implicit]frame_g: vprop)
(#[@@@ framing_implicit]p:
squash (can_be_split_forall (fun x -> (post_f x) `star` frame_f)
(fun x -> (pre_g x) `star` frame_g)))
(#[@@@ framing_implicit]m1: squash (maybe_emp framed_f frame_f))
(#[@@@ framing_implicit]m2: squash (maybe_emp framed_g frame_g))
(f: steelK a framed_f pre_f post_f)
(g: (x: a -> steelK b framed_g (pre_g x) post_g))
: steelK b true (pre_f `star` frame_f) (fun y -> (post_g y) `star` frame_g) =
| fun
#frame
(#post: vprop)
(k: (y: b -> SteelT unit (frame `star` ((post_g y) `star` frame_g)) (fun _ -> post)))
->
change_slprop_equiv (frame `star` (pre_f `star` frame_f))
((frame `star` frame_f) `star` pre_f)
(rearrange3 frame frame_f pre_f;
equiv_symmetric ((frame `star` frame_f) `star` pre_f) (frame `star` (pre_f `star` frame_f)));
f #(frame `star` frame_f)
#post
((fun (x: a) ->
change_slprop_imp (frame `star` ((post_f x) `star` frame_f))
(frame `star` ((pre_g x) `star` frame_g))
(can_be_split_forall_frame (fun x -> (post_f x) `star` frame_f)
(fun x -> (pre_g x) `star` frame_g)
frame
x);
g x
#(frame `star` frame_g)
#post
((fun (y: b) -> k y)
<:
(y: b -> SteelT unit ((frame `star` frame_g) `star` (post_g y)) (fun _ -> post))))
<:
(x: a -> SteelT unit ((frame `star` frame_f) `star` (post_f x)) (fun _ -> post))) | false |
Steel.Effect.Common.fsti | Steel.Effect.Common.solve_maybe_emps | val solve_maybe_emps (fuel: nat) : Tac unit | val solve_maybe_emps (fuel: nat) : Tac unit | let rec solve_maybe_emps (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| _::_ ->
let f = term_as_formula' (cur_goal ()) in (
match f with
| App hd0 t ->
if not (is_fvar hd0 (`%squash))
then later ()
else
let hd, args = collect_app t in
if hd `is_fvar` (`%maybe_emp) then
(norm [delta_only [`%maybe_emp]; iota; zeta; primops; simplify];
let g = cur_goal () in
or_else (is_true g) trefl)
else if hd `is_fvar` (`%maybe_emp_dep) then
(norm [delta_only [`%maybe_emp_dep]; iota; zeta; primops; simplify];
let g = cur_goal () in
or_else (is_true g) (fun _ -> ignore (forall_intro ()); trefl ()))
else later()
| _ -> later()
);
solve_maybe_emps (fuel - 1) | {
"file_name": "lib/steel/Steel.Effect.Common.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 3054,
"start_col": 0,
"start_line": 3030
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Effect.Common
open Steel.Memory
module Mem = Steel.Memory
module FExt = FStar.FunctionalExtensionality
open FStar.Ghost
/// This module provides various predicates and functions which are common to the
/// different Steel effects.
/// It also contains the tactic responsible for frame inference through a variant of AC-unification
#set-options "--ide_id_info_off"
(* Normalization helpers *)
irreducible let framing_implicit : unit = ()
irreducible let __steel_reduce__ : unit = ()
/// An internal attribute for finer-grained normalization in framing equalities
irreducible let __inner_steel_reduce__ : unit = ()
irreducible let __reduce__ : unit = ()
irreducible let smt_fallback : unit = ()
irreducible let ite_attr : unit = ()
// Needed to avoid some logical vs prop issues during unification with no subtyping
[@@__steel_reduce__]
unfold
let true_p : prop = True
module T = FStar.Tactics.V2
let join_preserves_interp (hp:slprop) (m0:hmem hp) (m1:mem{disjoint m0 m1})
: Lemma
(interp hp (join m0 m1))
[SMTPat (interp hp (join m0 m1))]
= let open Steel.Memory in
intro_emp m1;
intro_star hp emp m0 m1;
affine_star hp emp (join m0 m1)
(* Definition of a selector for a given slprop *)
/// A selector of type `a` for a separation logic predicate hp is a function
/// from a memory where the predicate hp holds, which returns a value of type `a`.
/// The effect GTot indicates that selectors are ghost functions, used for specification
/// and proof purposes only
let selector' (a:Type0) (hp:slprop) = hmem hp -> GTot a
/// Self-framing property for selectors
let sel_depends_only_on (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp) (m1:mem{disjoint m0 m1}).
(interp_depends_only_on hp; (
sel m0 == sel (join m0 m1)))
/// Additional property that selectors must satisfy, related to internals of
/// the Steel memory model encoding
let sel_depends_only_on_core (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp). sel m0 == sel (core_mem m0)
/// Full definition of a selector, as a function which satisfies the two predicates above
let selector (a:Type) (hp:slprop) : Type =
sel:selector' a hp{sel_depends_only_on sel /\ sel_depends_only_on_core sel}
/// The basis of our selector framework: Separation logic assertions enhanced with selectors
/// Note that selectors are "optional", it is always possible to use a non-informative selector,
/// such as fun _ -> () and to rely on the standard separation logic reasoning
[@@ erasable]
noeq
type vprop' =
{ hp: slprop u#1;
t:Type0;
sel: selector t hp}
(* Lifting the star operator to an inductive type makes normalization
and implementing some later functions easier *)
[@@__steel_reduce__; erasable]
noeq
type vprop =
| VUnit : vprop' -> vprop
| VStar: vprop -> vprop -> vprop
(* A generic lift from slprop to vprop with a non-informative selector *)
[@@ __steel_reduce__]
let to_vprop' (p:slprop) = {hp = p; t = unit; sel = fun _ -> ()}
[@@ __steel_reduce__]
unfold
let to_vprop (p:slprop) = VUnit (to_vprop' p)
/// Normalization steps for norm below.
/// All functions marked as `unfold`, or with the `__steel_reduce__` attribute will be reduced,
/// as well as some functions internal to the selector framework
unfold
let normal_steps =
[delta_attr [`%__steel_reduce__; `%__inner_steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify]
/// The core normalization primitive used to simplify Verification Conditions before encoding
/// them to an SMT solver.
unfold
let normal (#a:Type) (x:a) = norm normal_steps x
/// An abbreviation for the VStar constructor, allowing to use it with infix notation
[@@ __steel_reduce__; __reduce__]
let star = VStar
/// Extracting the underlying separation logic assertion from a vprop
[@@ __steel_reduce__]
let rec hp_of (p:vprop) = match p with
| VUnit p -> p.hp
| VStar p1 p2 -> hp_of p1 `Mem.star` hp_of p2
/// Extracting the selector type from a vprop
[@@ __steel_reduce__]
let rec t_of (p:vprop) = match p with
| VUnit p -> p.t
| VStar p1 p2 -> t_of p1 * t_of p2
/// Extracting the selector from a vprop
[@@ __steel_reduce__]
let rec sel_of (p:vprop) : GTot (selector (t_of p) (hp_of p)) = match p with
| VUnit p -> fun h -> p.sel h
| VStar p1 p2 ->
let sel1 = sel_of p1 in
let sel2 = sel_of p2 in
fun h -> (sel1 h, sel2 h)
/// Type abbreviations for separation logic pre- and postconditions of the Steel effects
type pre_t = vprop
type post_t (a:Type) = a -> vprop
/// An annotation to indicate which separation logic predicates correspond to monadic computations
/// These computations are handled in a specific manner in the framing tactic; they correspond to places where
/// the context shrinks from all local variables in the computation to variables available at the toplevel
let return_pre (p:vprop) : vprop = p
noextract
let hmem (p:vprop) = hmem (hp_of p)
/// Abstract predicate for vprop implication. Currently implemented as an implication on the underlying slprop
val can_be_split (p q:pre_t) : Type0
/// Exposing the implementation of `can_be_split` when needed for proof purposes
val reveal_can_be_split (_:unit) : Lemma
(forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q))
/// A targeted version of the above
val can_be_split_interp (r r':vprop) (h:hmem r)
: Lemma (requires can_be_split r r')
(ensures interp (hp_of r') h)
/// A dependent version of can_be_split, to be applied to dependent postconditions
let can_be_split_forall (#a:Type) (p q:post_t a) = forall x. can_be_split (p x) (q x)
/// A version of can_be_split which is indexed by a proposition, which can be used for equalities abduction
let can_be_split_dep (p:prop) (t1 t2:pre_t) = p ==> can_be_split t1 t2
/// A dependent version of the above predicate
let can_be_split_forall_dep (#a:Type) (p:a -> prop) (t1 t2:post_t a) =
forall (x:a). p x ==> can_be_split (t1 x) (t2 x)
(* Some lemmas about the can_be_split* predicates,
to be used as rewriting rules for the abstract predicates *)
val can_be_split_trans (p q r:vprop)
: Lemma
(requires p `can_be_split` q /\ q `can_be_split` r)
(ensures p `can_be_split` r)
let can_be_split_trans_rev (p q r:vprop)
: Lemma
(requires q `can_be_split` r /\ p `can_be_split` q)
(ensures p `can_be_split` r)
= can_be_split_trans p q r
val can_be_split_star_l (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` p)
[SMTPat ((p `star` q) `can_be_split` p)]
val can_be_split_star_r (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` q)
[SMTPat ((p `star` q) `can_be_split` q)]
val can_be_split_refl (p:vprop)
: Lemma (p `can_be_split` p)
[SMTPat (p `can_be_split` p)]
val can_be_split_congr_l
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((p `star` r) `can_be_split` (q `star` r)))
val can_be_split_congr_r
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((r `star` p) `can_be_split` (r `star` q)))
let prop_and (p1 p2: prop) : Tot prop = p1 /\ p2
let can_be_split_forall_dep_trans_rev
(#a: Type)
(cond1 cond2: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond2 q r /\ can_be_split_forall_dep cond1 p q))
(ensures (can_be_split_forall_dep (fun x -> cond1 x `prop_and` cond2 x) p r))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_trans x y) z)
let can_be_split_forall_dep_congr_l
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> p x `star` r x) (fun x -> q x `star` r x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_l x y) z)
let can_be_split_forall_dep_congr_r
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> r x `star` p x) (fun x -> r x `star` q x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_r x y) z)
/// To simplify the implementation of the framing tactic, dependent equivalence
/// is defined as a double dependent implication
let equiv_forall (#a:Type) (t1 t2:post_t a) : Type0
= t1 `can_be_split_forall` t2 /\ t2 `can_be_split_forall` t1
/// This equivalence models a context restriction at the end of a Steel computation;
/// note that t2 does not depend on the value of type `a`, but the two vprops must be
/// equivalent
let can_be_split_post (#a #b:Type) (t1:a -> post_t b) (t2:post_t b) =
forall (x:a). equiv_forall (t1 x) t2
/// Lifting the equivalence relation to vprops. Two vprops are equivalent if the underlying slprops
/// are equivalent
val equiv (p q:vprop) : prop
/// Revealing the definition of vprop equivalence when needed for proof purposes.
/// In other cases, the predicate is abstract
val reveal_equiv (p q:vprop) : Lemma (p `equiv` q <==> hp_of p `Mem.equiv` hp_of q)
(* A restricted view of the heap,
that only allows to access selectors of the current slprop *)
let rmem' (pre:vprop) =
FExt.restricted_g_t
(r0:vprop{can_be_split pre r0})
(fun r0 -> normal (t_of r0))
/// Ensuring that rmems encapsulate the structure induced by the separation logic star
val valid_rmem (#frame:vprop) (h:rmem' frame) : prop
unfold
let rmem (pre:vprop) = h:rmem' pre{valid_rmem h}
/// Exposing the definition of mk_rmem to better normalize Steel VCs
unfold noextract
let unrestricted_mk_rmem (r:vprop) (h:hmem r) = fun (r0:vprop{r `can_be_split` r0}) ->
can_be_split_interp r r0 h;
sel_of r0 h
[@@ __inner_steel_reduce__]
noextract
let mk_rmem' (r:vprop) (h:hmem r) : Tot (rmem' r) =
FExt.on_dom_g
(r0:vprop{r `can_be_split` r0})
(unrestricted_mk_rmem r h)
val lemma_valid_mk_rmem (r:vprop) (h:hmem r) : Lemma (valid_rmem (mk_rmem' r h))
[@@ __inner_steel_reduce__]
noextract
let mk_rmem (r:vprop) (h:hmem r) : Tot (rmem r) =
lemma_valid_mk_rmem r h;
mk_rmem' r h
val reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (ensures reveal_can_be_split(); (mk_rmem r h) r0 == sel_of r0 h)
(* Logical pre and postconditions can only access the restricted view of the heap *)
type req_t (pre:pre_t) = rmem pre -> Type0
type ens_t (pre:pre_t) (a:Type) (post:post_t a) =
rmem pre -> (x:a) -> rmem (post x) -> Type0
(* Empty assertion *)
val emp : vprop
/// When needed for proof purposes, the empty assertion is a direct lift of the
/// empty assertion from Steel.Memory
val reveal_emp (_:unit) : Lemma (hp_of emp == Mem.emp /\ t_of emp == unit)
/// Lifting pure predicates to vprop
[@@__steel_reduce__]
unfold let pure (p:prop) = to_vprop (pure p)
/// Framing predicates for the Steel effect. If the current computation has already
/// been framed, then the additional frame is the empty predicate
let maybe_emp (framed:bool) (frame:pre_t) = if framed then frame == emp else True
/// Dependent version of the above predicate, usable in dependent postconditions
let maybe_emp_dep (#a:Type) (framed:bool) (frame:post_t a) =
if framed then (forall x. frame x == emp) else True
(* focus_rmem is an additional restriction of our view of memory.
We expose it here to be able to reduce through normalization;
Any valid application of focus_rmem h will be reduced to the application of h *)
[@@ __steel_reduce__]
unfold
let unrestricted_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
= fun (r':vprop{can_be_split r0 r'}) -> can_be_split_trans r r0 r'; h r'
[@@ __inner_steel_reduce__]
let focus_rmem' (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) : Tot (rmem' r0)
= FExt.on_dom_g
(r':vprop{can_be_split r0 r'})
(unrestricted_focus_rmem h r0)
val lemma_valid_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (valid_rmem (focus_rmem' h r0))
[@@ __inner_steel_reduce__]
let focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) : Tot (rmem r0) =
lemma_valid_focus_rmem h r0;
focus_rmem' h r0
/// Exposing that calling focus_rmem on the current context corresponds to an equality
let focus_rmem_refl (r:vprop) (h:rmem r)
: Lemma (focus_rmem #r h r == h)
= FStar.FunctionalExtensionality.extensionality_g _ _ (focus_rmem #r h r) h
open FStar.Tactics.V2
/// State that all "atomic" subresources have the same selectors on both views.
/// The predicate has the __steel_reduce__ attribute, ensuring that VC normalization
/// will reduce it to a conjunction of equalities on atomic subresources
/// This predicate is also marked as `strict_on_arguments` on [frame], ensuring that
/// it will not be reduced when the frame is symbolic
/// Instead, the predicate will be rewritten to an equality using `lemma_frame_equalities` below
[@@ __steel_reduce__; strict_on_arguments [0]]
let rec frame_equalities'
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : Type0
= begin match frame with
| VUnit p -> h0 frame == h1 frame
| VStar p1 p2 ->
can_be_split_star_l p1 p2;
can_be_split_star_r p1 p2;
let h01 = focus_rmem h0 p1 in
let h11 = focus_rmem h1 p1 in
let h02 = focus_rmem h0 p2 in
let h12 = focus_rmem h1 p2 in
frame_equalities' p1 h01 h11 /\
frame_equalities' p2 h02 h12
end
/// This lemma states that frame_equalities is the same as an equality on the top-level frame.
/// The uncommon formulation with an extra [p] is needed to use in `rewrite_with_tactic`,
/// where the goal is of the shape `frame_equalities frame h0 h1 == ?u`
/// The rewriting happens below, in `frame_vc_norm`
val lemma_frame_equalities (frame:vprop) (h0:rmem frame) (h1:rmem frame) (p:Type0)
: Lemma
(requires (h0 frame == h1 frame) == p)
(ensures frame_equalities' frame h0 h1 == p)
/// A special case for frames about emp.
val lemma_frame_emp (h0:rmem emp) (h1:rmem emp) (p:Type0)
: Lemma (requires True == p)
(ensures frame_equalities' emp h0 h1 == p)
/// A variant of conjunction elimination, suitable to the equality goals during rewriting
val elim_conjunction (p1 p1' p2 p2':Type0)
: Lemma (requires p1 == p1' /\ p2 == p2')
(ensures (p1 /\ p2) == (p1' /\ p2'))
/// Normalization and rewriting step for generating frame equalities.
/// The frame_equalities function has the strict_on_arguments attribute on the [frame],
/// ensuring that it is not reduced when the frame is symbolic.
/// When that happens, we want to replace frame_equalities by an equality on the frame,
/// mimicking reduction
[@@plugin]
let frame_vc_norm () : Tac unit = with_compat_pre_core 0 (fun _ ->
// Do not normalize mk_rmem/focus_rmem to simplify application of
// the reflexivity lemma on frame_equalities'
norm [delta_attr [`%__steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify];
// After reduction, the term to rewrite might be of the shape
// (frame_equalities' ... /\ frame_equalities' .. /\ ...) == ?u,
// with some frame_equalities' possibly already fully reduced
// We repeatedly split the clause and extract the term on the left
// to generate equalities on atomic subresources
ignore (repeat (fun _ ->
// Try to split the conjunction. If there is no conjunction, we exit the repeat
apply_lemma (`elim_conjunction);
// Dismiss the two uvars created for the RHS, they'll be solved by unification
dismiss ();
dismiss ();
// The first goal is the left conjunction
split ();
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// Rewrites the frame_equalities if it wasn't yet reduced
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
// Finally solve the uvar, finishing the rewriting for this clause
trefl ()
));
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// We do not have conjunctions anymore, we try to apply the frame_equalities rewriting
// If it fails, the frame was not symbolic, so there is nothing to do
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
trefl ())
[@@ __steel_reduce__]
unfold
let frame_equalities
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : prop
= rewrite_with_tactic frame_vc_norm (frame_equalities' frame h0 h1)
/// More lemmas about the abstract can_be_split predicates, to be used as
/// rewriting rules in the tactic below
val can_be_split_dep_refl (p:vprop)
: Lemma (can_be_split_dep true_p p p)
val equiv_can_be_split (p1 p2:vprop) : Lemma
(requires p1 `equiv` p2)
(ensures p1 `can_be_split` p2)
val intro_can_be_split_frame (p q:vprop) (frame:vprop)
: Lemma (requires q `equiv` (p `star` frame))
(ensures can_be_split q p /\ True)
val can_be_split_post_elim (#a #b:Type) (t1:a -> post_t b) (t2:post_t b)
: Lemma (requires (forall (x:a) (y:b). t1 x y `equiv` t2 y))
(ensures t1 `can_be_split_post` t2)
val equiv_forall_refl (#a:Type) (t:post_t a)
: Lemma (t `equiv_forall` t)
val equiv_forall_elim (#a:Type) (t1 t2:post_t a)
: Lemma (requires (forall (x:a). t1 x `equiv` t2 x))
(ensures t1 `equiv_forall` t2)
open FStar.Tactics.CanonCommMonoidSimple.Equiv
(* equiv is an equivalence relation on vprops *)
/// Lemmas establishing the equivalence properties on equiv
val equiv_refl (x:vprop) : Lemma (equiv x x)
val equiv_sym (x y:vprop) : Lemma
(requires equiv x y)
(ensures equiv y x)
val equiv_trans (x y z:vprop) : Lemma
(requires equiv x y /\ equiv y z)
(ensures equiv x z)
module CE = FStar.Algebra.CommMonoid.Equiv
/// Equiv is an equivalence relation for vprops elements
inline_for_extraction noextract let req : CE.equiv vprop =
CE.EQ equiv
equiv_refl
equiv_sym
equiv_trans
(* Star induces a commutative monoid for the equiv equivalence relation *)
/// Lemmas establishing the commutative monoid properties
val cm_identity (x:vprop) : Lemma ((emp `star` x) `equiv` x)
val star_commutative (p1 p2:vprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
val star_associative (p1 p2 p3:vprop)
: Lemma (((p1 `star` p2) `star` p3)
`equiv`
(p1 `star` (p2 `star` p3)))
val star_congruence (p1 p2 p3 p4:vprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
/// Star induces a commutative monoid on vprops
[@__steel_reduce__]
inline_for_extraction noextract let rm : CE.cm vprop req =
CE.CM emp
star
cm_identity
star_associative
star_commutative
star_congruence
(*** Vprop combinators ***)
(* Refining a vprop with a selector predicate *)
/// Separation logic predicate stating the validity of a vprop with an additional refinement on its selector
val vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: mem) : Lemma
(interp (vrefine_hp v p) m <==> (interp (hp_of v) m /\ p (sel_of v m)))
/// Selector type for a refined vprop
[@__steel_reduce__]
let vrefine_t (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot Type
= (x: t_of v {p x})
/// Selector of a refined vprop. Returns a value which satisfies the refinement predicate
val vrefine_sel (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (selector (vrefine_t v p) (vrefine_hp v p))
/// Exposing the definition of the refined selector
val vrefine_sel_eq (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: Mem.hmem (vrefine_hp v p)) : Lemma
(
interp (hp_of v) m /\
vrefine_sel v p m == sel_of v m
)
// [SMTPat ((vrefine_sel v p) m)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above pieces to define a vprop refined by a selector prediacte
[@__steel_reduce__]
let vrefine' (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot vprop' = {
hp = vrefine_hp v p;
t = vrefine_t v p;
sel = vrefine_sel v p;
}
[@__steel_reduce__]
let vrefine (v: vprop) (p: (normal (t_of v) -> Tot prop)) = VUnit (vrefine' v p)
(* Dependent star for vprops *)
/// Separation logic predicate corresponding to a dependent star,
/// where the second predicate depends on the selector value of the first
val vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: mem) : Lemma
(interp (vdep_hp v p) m <==> (interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m))
/// Helper to define the selector type of the second component of the dependent star
let vdep_payload
(v: vprop) (p: ( (t_of v) -> Tot vprop))
(x: t_of v)
: Tot Type
= t_of (p x)
/// Selector type for the dependent star: A dependent tuple, where the second component's type depends on the first vprop
let vdep_t (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot Type
= dtuple2 (t_of v) (vdep_payload v p)
/// Selector for the dependent star
val vdep_sel (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (selector (vdep_t v p) (vdep_hp v p))
/// Exposing the definition of the dependent star's selector when needed for proof purposes
val vdep_sel_eq (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: Mem.hmem (vdep_hp v p)) : Lemma
(
interp (hp_of v) m /\
begin let x = sel_of v m in
interp (hp_of (p x)) m /\
vdep_sel v p m == (| x, sel_of (p x) m |)
end
)
/// Combining the elements above to create a dependent star vprop
[@__steel_reduce__]
let vdep' (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot vprop' = {
hp = vdep_hp v p;
t = vdep_t v p;
sel = vdep_sel v p;
}
[@__steel_reduce__]
let vdep (v: vprop) (p: ( (t_of v) -> Tot vprop)) = VUnit (vdep' v p)
(* Selector rewrite combinator *)
/// The selector of a rewrite combinator applies a function `f` to the current selector of a vprop.
val vrewrite_sel (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot (selector t (normal (hp_of v)))
/// Exposing the definition of the above selector
val vrewrite_sel_eq (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) (h: Mem.hmem (normal (hp_of v))) : Lemma
((vrewrite_sel v f <: selector' _ _) h == f ((normal (sel_of v) <: selector' _ _) h))
// [SMTPat (vrewrite_sel v f h)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above elements to create a rewrite vprop
[@__steel_reduce__]
let vrewrite' (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop' = {
hp = normal (hp_of v);
t = t;
sel = vrewrite_sel v f;
}
[@__steel_reduce__]
let vrewrite (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop = VUnit (vrewrite' v f)
(*** Framing tactic ***)
(* Specialize visit_tm from the standard F* tactic library to reimplement name_appears_in.
AF: As of Jan 14, 2021, calling name_appears_in from FStar.Tactics.Derived leads to a segfault *)
exception Appears
let on_sort_binder (f : term -> Tac unit) (b:binder) : Tac unit =
f b.sort
let rec visit_tm (ff : term -> Tac unit) (t : term) : Tac unit =
let tv = inspect t in
(match tv with
| Tv_FVar _
| Tv_UInst _ _
| Tv_Var _
| Tv_BVar _ -> ()
| Tv_Type _ -> ()
| Tv_Const c -> ()
| Tv_Uvar i u -> ()
| Tv_Unsupp -> ()
| Tv_Unknown -> ()
| Tv_Arrow b c ->
on_sort_binder ff b;
visit_comp ff c
| Tv_Abs b t ->
let b = on_sort_binder (visit_tm ff) b in
visit_tm ff t
| Tv_App l (r, q) ->
visit_tm ff l;
visit_tm ff r
| Tv_Refine b r ->
on_sort_binder ff b;
visit_tm ff r
| Tv_Let r attrs b def t ->
on_sort_binder ff b;
visit_tm ff def;
visit_tm ff t
| Tv_Match sc _ brs ->
visit_tm ff sc;
iter (visit_br ff) brs
| Tv_AscribedT e t topt _ ->
visit_tm ff e;
visit_tm ff t
| Tv_AscribedC e c topt _ ->
visit_tm ff e
); ff t
and visit_br (ff : term -> Tac unit) (b:branch) : Tac unit =
let (p, t) = b in
visit_tm ff t
and visit_comp (ff : term -> Tac unit) (c : comp) : Tac unit =
let cv = inspect_comp c in
match cv with
| C_Total ret -> visit_tm ff ret
| C_GTotal ret -> visit_tm ff ret
| C_Lemma pre post pats ->
visit_tm ff pre;
visit_tm ff post;
visit_tm ff pats
| C_Eff us eff res args decrs ->
visit_tm ff res;
iter (fun (a, q) -> visit_tm ff a) args;
iter (visit_tm ff) decrs
/// Decides whether a top-level name [nm] syntactically
/// appears in the term [t].
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac unit =
match inspect t with
| Tv_FVar fv -> if inspect_fv fv = nm then raise Appears
| t -> ()
in
try ignore (visit_tm ff t); false with
| Appears -> true
| e -> raise e
/// Checks whether term [t] appears in term [i]
let term_appears_in (t:term) (i:term) : Tac bool =
name_appears_in (explode_qn (term_to_string t)) i
/// We define a small language to handle arbitrary separation logic predicates.
/// Separation logic predicates are encoded as atoms for which equality is decidable,
/// here represented as integers
let atom : eqtype = int
let rec atoms_to_string (l:list atom) = match l with
| [] -> ""
| hd::tl -> string_of_int hd ^ " " ^ atoms_to_string tl
/// Reflecting the structure of our separation logic on atmos
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
/// A map from atoms to the terms they represent.
/// The second component of the term corresponds to a default element,
/// ensuring we never raise an exception when trying to access an element in the map
let amap (a:Type) = list (atom * a) * a
/// An empty atom map: The list map is empty
let const (#a:Type) (xa:a) : amap a = ([], xa)
/// Accessing an element in the atom map
// We reimplement List.Tot.Base.assoc because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_assoc (#key: eqtype) (#value: Type) (k: key) (dict: list (key & value)) : Pure (option value)
(requires True)
(ensures (fun res -> res == List.Tot.assoc k dict))
= match dict with
| [] -> None
| (k', v') :: q -> if k = k' then Some v' else my_assoc k q
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match my_assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
/// Updating the atom map. Since select finds the first element corresponding to
/// the atom in the list and we do not have any remove function,
/// we can simply append the new element at the head without removing any possible
/// previous element
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
/// Check whether the current term is an unresolved vprop unification variable.
/// This can happen if either it is a uvar, or it is an unresolved dependent
/// vprop uvar which is applied to some argument
let is_uvar (t:term) : Tac bool = match inspect t with
| Tv_Uvar _ _ -> true
| Tv_App _ _ ->
let hd, args = collect_app t in
Tv_Uvar? (inspect hd)
| _ -> false
/// For a given term t, collect all terms in the list l with the same head symbol
let rec get_candidates (t:term) (l:list term) : Tac (list term) =
let name, _ = collect_app t in
match l with
| [] -> []
| hd::tl ->
let n, _ = collect_app hd in
if term_eq_old n name then (
hd::(get_candidates t tl)
) else get_candidates t tl
/// Try to remove a term that is exactly matching, not just that can be unified
let rec trivial_cancel (t:atom) (l:list atom) =
match l with
| [] -> false, l
| hd::tl ->
if hd = t then
// These elements match, we remove them
true, tl
else (let b, res = trivial_cancel t tl in b, hd::res)
/// Call trivial_cancel on all elements of l1.
/// The first two lists returned are the remainders of l1 and l2.
/// The last two lists are the removed parts of l1 and l2, with
/// the additional invariant that they are equal
let rec trivial_cancels (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, [], []
| hd::tl ->
let b, l2' = trivial_cancel hd l2 in
let l1', l2', l1_del, l2_del = trivial_cancels tl l2' am in
(if b then l1' else hd::l1'), l2',
(if b then hd::l1_del else l1_del), (if b then hd::l2_del else l2_del)
exception Failed
exception Success
/// Helper to print the terms corresponding to the current list of atoms
let rec print_atoms (l:list atom) (am:amap term) : Tac string =
match l with
| [] -> ""
| [hd] -> term_to_string (select hd am)
| hd::tl -> term_to_string (select hd am) ^ " * " ^ print_atoms tl am
/// For a list of candidates l, count the number that can unify with t.
/// Does not try to unify with a uvar, this will be done at the very end.
/// Tries to unify with slprops with a different head symbol, it might
/// be an abbreviation
let rec try_candidates (t:atom) (l:list atom) (am:amap term) : Tac (atom * int) =
match l with
| [] -> t, 0
| hd::tl ->
if is_uvar (select hd am) then (try_candidates t tl am)
else
// Encapsulate unify in a try/with to ensure unification is not actually performed
let res = try if unify (select t am) (select hd am) then raise Success else raise Failed
with | Success -> true | _ -> false in
let t', n' = try_candidates t tl am in
if res && hd <> t' then hd, 1 + n' else t', n'
/// Remove the given term from the list. Only to be called when
/// try_candidates succeeded
let rec remove_from_list (t:atom) (l:list atom) : Tac (list atom) =
match l with
| [] -> fail "atom in remove_from_list not found: should not happen"; []
| hd::tl -> if t = hd then tl else hd::remove_from_list t tl
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
let rec equivalent_lists_once (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, l1_del, l2_del
| hd::tl ->
let t, n = try_candidates hd l2 am in
if n = 1 then (
let l2 = remove_from_list t l2 in
equivalent_lists_once tl l2 (hd::l1_del) (t::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once tl l2 l1_del l2_del am in
hd::rem1, rem2, l1'_del, l2'_del
)
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates by iterating on l2.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
/// This is very close to equivalent_lists_once above, but helps making progress
/// when l1 contains syntactically equal candidates
let rec equivalent_lists_once_l2 (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l2 with
| [] -> l1, [], l1_del, l2_del
| hd::tl ->
if is_uvar (select hd am) then
// We do not try to match the vprop uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
else (
let t, n = try_candidates hd l1 am in
if n = 1 then (
let l1 = remove_from_list t l1 in
equivalent_lists_once_l2 l1 tl (t::l1_del) (hd::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
)
)
let get_head (l:list atom) (am:amap term) : term = match l with
| [] -> `()
| hd::_ -> select hd am
/// Checks whether the list of atoms [l] only contains one unresolved uvar
let is_only_uvar (l:list atom) (am:amap term) : Tac bool =
if List.Tot.Base.length l = 1 then is_uvar (select (List.Tot.Base.hd l) am)
else false
/// Assumes that u is a uvar, checks that all variables in l can be unified with it.
/// Later in the tactic, the uvar will be unified to a star of l *)
let rec try_unifying_remaining (l:list atom) (u:term) (am:amap term) : Tac unit =
match l with
| [] -> ()
| hd::tl ->
try if unify u (select hd am) then raise Success else raise Failed with
| Success -> try_unifying_remaining tl u am
| _ -> fail ("could not find candidate for scrutinee " ^ term_to_string (select hd am))
/// Is SMT rewriting enabled for this binder
let is_smt_binder (b:binder) : Tac bool =
let l = b.attrs in
not (List.Tot.isEmpty (filter (fun t -> is_fvar t (`%smt_fallback)) l))
/// Creates a new term, where all arguments where SMT rewriting is enabled have been replaced
/// by fresh, unconstrained unification variables
let rec new_args_for_smt_attrs (env:env) (l:list argv) (ty:typ) : Tac (list argv * list term) =
let fresh_ghost_uvar ty =
let e = cur_env () in
ghost_uvar_env e ty
in
match l, inspect_unascribe ty with
| (arg, aqualv)::tl, Tv_Arrow binder comp ->
let needs_smt = is_smt_binder binder in
let new_hd =
if needs_smt then (
let arg_ty = tc env arg in
let uvar = fresh_ghost_uvar arg_ty in
unshelve uvar;
flip ();
(uvar, aqualv)
) else (arg, aqualv)
in
begin
let ty2 =
match inspect_comp comp with
| C_Total ty2 -> ty2
| C_Eff _ eff_name ty2 _ _ ->
if eff_name = ["Prims"; "Tot"]
then ty2
else fail "computation type not supported in definition of slprops"
| _ -> fail "computation type not supported in definition of slprops" in
let tl_argv, tl_terms = new_args_for_smt_attrs env tl ty2 in
new_hd::tl_argv, (if needs_smt then arg::tl_terms else tl_terms)
end
| [], Tv_FVar fv -> [], []
| _ -> fail "should not happen. Is an slprop partially applied?"
/// Rewrites all terms in the context to enable SMT rewriting through the use of fresh, unconstrained unification variables
let rewrite_term_for_smt (env:env) (am:amap term * list term) (a:atom) : Tac (amap term * list term)
= let am, prev_uvar_terms = am in
let term = select a am in
let hd, args = collect_app term in
let t = tc env hd in
let new_args, uvar_terms = new_args_for_smt_attrs env args t in
let new_term = mk_app hd new_args in
update a new_term am, List.Tot.append uvar_terms prev_uvar_terms
/// User-facing error message when the framing tactic fails
let fail_atoms (#a:Type) (l1 l2:list atom) (am:amap term) : Tac a
= fail ("could not find a solution for unifying\n" ^ print_atoms l1 am ^ "\nand\n" ^ print_atoms l2 am)
/// Variant of equivalent_lists' below to be called once terms have been rewritten to allow SMT rewriting.
/// If unification succeeds and we have unicity of the solution, this tactic will succeed,
/// and ultimately create an SMT guard that the two terms are actually equal
let rec equivalent_lists_fallback (n:nat) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false)
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then
// Should always be smaller or equal to n
// If it is equal, no progress was made.
fail_atoms rem1 rem2 am
else equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' am
/// Iterates over all terms in [l2] to prepare them for unification with SMT rewriting
let replace_smt_uvars (l1 l2:list atom) (am:amap term) : Tac (amap term * list term)
= let env = cur_env () in
fold_left (rewrite_term_for_smt env) (am, []) l2
/// Recursively calls equivalent_lists_once.
/// Stops when we're done with unification, or when we didn't make any progress
/// If we didn't make any progress, we have too many candidates for some terms.
/// Accumulates rewritings of l1 and l2 in l1_del and l2_del, with the invariant
/// that the two lists are unifiable at any point
/// The boolean indicates if there is a leftover empty frame
let rec equivalent_lists' (n:nat) (use_smt:bool) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false, [])
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true, []))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false, []
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Try to make progress by matching non-uvars of l2 with candidates in l1
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once_l2 rem1 rem2 l1_del' l2_del' am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Should always be smaller or equal to n
// If it is equal, no progress was made.
if use_smt then
// SMT fallback is allowed
let new_am, uvar_terms = replace_smt_uvars rem1 rem2 am in
let l1_f, l2_f, b = equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' new_am in
l1_f, l2_f, b, uvar_terms
else fail_atoms rem1 rem2 am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
/// Checks if term for atom t unifies with fall uvars in l
let rec unifies_with_all_uvars (t:term) (l:list atom) (am:amap term) : Tac bool =
match l with
| [] -> true
| hd::tl ->
if unifies_with_all_uvars t tl am then (
// Unified with tail, try this term
let hd_t = select hd am in
if is_uvar hd_t then (
// The head term is a uvar, try unifying
try if unify t hd_t then raise Success else raise Failed
with | Success -> true | _ -> false
) else true // The uvar is not a head term, we do not need to try it
) else false
/// Puts all terms in l1 that cannot unify with the uvars in l2 at the top:
/// They need to be solved first
let rec most_restricted_at_top (l1 l2:list atom) (am:amap term) : Tac (list atom) =
match l1 with
| [] -> []
| hd::tl ->
if unifies_with_all_uvars (select hd am) l2 am then (most_restricted_at_top tl l2 am) `List.Tot.append` [hd]
else hd::(most_restricted_at_top tl l2 am)
/// Core AC-unification tactic.
/// First remove all trivially equal terms, then try to decide equivalence.
/// Assumes that l1 does not contain any vprop uvar.
/// If it succeeds, returns permutations of l1, l2, and a boolean indicating
/// if l2 has a trailing empty frame to be unified
let equivalent_lists (use_smt:bool) (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term)
= let l1, l2, l1_del, l2_del = trivial_cancels l1 l2 am in
let l1 = most_restricted_at_top l1 l2 am in
let n = List.Tot.length l1 in
let l1_del, l2_del, emp_frame, uvar_terms = equivalent_lists' n use_smt l1 l2 l1_del l2_del am in
l1_del, l2_del, emp_frame, uvar_terms
(* Helpers to relate the actual terms to their representation as a list of atoms *)
open FStar.Reflection.V2.Derived.Lemmas
let rec list_to_string (l:list term) : Tac string =
match l with
| [] -> "end"
| hd::tl -> term_to_string hd ^ " " ^ list_to_string tl
let rec mdenote_gen (#a:Type u#aa) (unit:a) (mult:a -> a -> a) (am:amap a) (e:exp) : a =
match e with
| Unit -> unit
| Atom x -> select x am
| Mult e1 e2 -> mult (mdenote_gen unit mult am e1) (mdenote_gen unit mult am e2)
let rec xsdenote_gen (#a:Type) (unit:a) (mult:a -> a -> a) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> unit
| [x] -> select x am
| x::xs' -> mult (select x am) (xsdenote_gen unit mult am xs')
unfold
let mdenote (#a:Type u#aa) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp) : a =
let open FStar.Algebra.CommMonoid.Equiv in
mdenote_gen (CM?.unit m) (CM?.mult m) am e
unfold
let xsdenote (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom) : a =
let open FStar.Algebra.CommMonoid.Equiv in
xsdenote_gen (CM?.unit m) (CM?.mult m) am xs
// We reimplement List.Tot.Base.append because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_append (#t: Type) (l1 l2: list t) : Pure (list t)
(requires True)
(ensures (fun res -> res == l1 `List.Tot.append` l2))
(decreases l1)
= match l1 with
| [] -> l2
| a :: q -> a :: my_append q l2
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 `my_append` flatten e2
let rec flatten_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 `my_append` xs2) `CE.EQ?.eq eq` CE.CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
let open FStar.Algebra.CommMonoid.Equiv in
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' `my_append` xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' `my_append` xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `CE.EQ?.eq eq` xsdenote eq m am (flatten e)) =
let open FStar.Algebra.CommMonoid.Equiv in
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 `my_append` flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 `my_append` flatten e2))
let monoid_reflect (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (flatten e1) `CE.EQ?.eq eq` xsdenote eq m am (flatten e2)))
: squash (mdenote eq m am e1 `CE.EQ?.eq eq` mdenote eq m am e2) =
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CE.EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (flatten e2));
CE.EQ?.transitivity eq
(xsdenote eq m am (flatten e1))
(xsdenote eq m am (flatten e2))
(mdenote eq m am e2);
CE.EQ?.transitivity eq
(mdenote eq m am e1)
(xsdenote eq m am (flatten e1))
(mdenote eq m am e2)
// Here we sort the variable numbers
// We reimplement List.Tot.Base.sortWith because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_partition (#a: Type) (f: (a -> Tot bool)) (l: list a)
: Pure (list a & list a)
(requires True)
(ensures (fun res -> res == List.Tot.partition f l))
= match l with
| [] -> [], []
| hd::tl ->
let l1, l2 = my_partition f tl in
if f hd
then hd::l1, l2
else l1, hd::l2
let rec partition_ext (#a: Type) (f1 f2: (a -> Tot bool)) (l: list a)
: Lemma
(requires (forall x . f1 x == f2 x))
(ensures (List.Tot.partition f1 l == List.Tot.partition f2 l))
= match l with
| [] -> ()
| hd::tl -> partition_ext f1 f2 tl
let my_bool_of_compare (#a: Type) (f: a -> a -> Tot int) (x: a) (y: a) : Tot bool
= f x y < 0
let rec my_sortWith (#a: Type) (f: (a -> a -> Tot int)) (l:list a)
: Pure (list a)
(requires True)
(ensures (fun res -> res == List.Tot.sortWith f l))
(decreases (List.Tot.length l))
= match l with
| [] -> []
| pivot::tl ->
let hi, lo = my_partition (my_bool_of_compare f pivot) tl in
partition_ext (my_bool_of_compare f pivot) (List.Tot.bool_of_compare f pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f pivot) tl;
my_append (my_sortWith f lo) (pivot::my_sortWith f hi)
let rec sortWith_ext (#a: Type) (f1 f2: (a -> a -> Tot int)) (l: list a)
: Lemma
(requires (forall x y . f1 x y == f2 x y))
(ensures (List.Tot.sortWith f1 l == List.Tot.sortWith f2 l))
(decreases (List.Tot.length l))
= match l with
| [] -> ()
| pivot::tl ->
partition_ext (List.Tot.bool_of_compare f1 pivot) (List.Tot.bool_of_compare f2 pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f1 pivot) tl;
let hi, lo = List.Tot.partition (List.Tot.bool_of_compare f1 pivot) tl in
sortWith_ext f1 f2 lo;
sortWith_ext f1 f2 hi
let permute = list atom -> list atom
let my_compare_of_bool (#a:eqtype) (rel: a -> a -> Tot bool) (x: a) (y: a) : Tot int
= if x `rel` y then -1
else if x = y then 0
else 1
let sort : permute = my_sortWith #int (my_compare_of_bool (<))
#push-options "--fuel 1 --ifuel 1"
let lemma_xsdenote_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (hd:atom) (tl:list atom)
: Lemma (xsdenote eq m am (hd::tl) `CE.EQ?.eq eq`
(CE.CM?.mult m (select hd am) (xsdenote eq m am tl)))
= let open FStar.Algebra.CommMonoid.Equiv in
match tl with
| [] ->
assert (xsdenote eq m am (hd::tl) == select hd am);
CM?.identity m (select hd am);
EQ?.symmetry eq (CM?.unit m `CM?.mult m` select hd am) (select hd am);
CM?.commutativity m (CM?.unit m) (select hd am);
EQ?.transitivity eq
(xsdenote eq m am (hd::tl))
(CM?.unit m `CM?.mult m` select hd am)
(CM?.mult m (select hd am) (xsdenote eq m am tl))
| _ -> EQ?.reflexivity eq (xsdenote eq m am (hd::tl))
let rec partition_equiv (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (pivot:atom) (q:list atom)
: Lemma
(let open FStar.List.Tot.Base in
let hi, lo = partition (bool_of_compare (compare_of_bool (<)) pivot) q in
CE.EQ?.eq eq
(xsdenote eq m am hi `CE.CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am q))
= let open FStar.Algebra.CommMonoid.Equiv in
let open FStar.List.Tot.Base in
let f = bool_of_compare (compare_of_bool (<)) pivot in
let hi, lo = partition f q in
match q with
| [] -> CM?.identity m (xsdenote eq m am hi)
| hd::tl ->
let l1, l2 = partition f tl in
partition_equiv eq m am pivot tl;
assert (EQ?.eq eq
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(xsdenote eq m am tl));
EQ?.reflexivity eq (xsdenote eq m am l1);
EQ?.reflexivity eq (xsdenote eq m am l2);
EQ?.reflexivity eq (xsdenote eq m am hi);
EQ?.reflexivity eq (xsdenote eq m am lo);
if f hd then begin
assert (hi == hd::l1 /\ lo == l2);
lemma_xsdenote_aux eq m am hd l1;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am l1)
(xsdenote eq m am l2);
CM?.associativity m
(select hd am)
(xsdenote eq m am l1)
(xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l1) `CM?.mult m` xsdenote eq m am l2)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end else begin
assert (hi == l1 /\ lo == hd::l2);
lemma_xsdenote_aux eq m am hd l2;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
CM?.commutativity m
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am l1 `CM?.mult m` (select hd am `CM?.mult m` xsdenote eq m am l2))
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1);
CM?.associativity m
(select hd am)
(xsdenote eq m am l2)
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1));
CM?.commutativity m (xsdenote eq m am l2) (xsdenote eq m am l1);
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1)
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1))
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end
let rec sort_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom)
: Lemma (requires True)
(ensures xsdenote eq m am xs `CE.EQ?.eq eq` xsdenote eq m am (sort xs))
(decreases (FStar.List.Tot.Base.length xs))
= let open FStar.Algebra.CommMonoid.Equiv in
match xs with
| [] -> EQ?.reflexivity eq (xsdenote eq m am [])
| pivot::q ->
let sort0 : permute = List.Tot.sortWith #int (List.Tot.compare_of_bool (<)) in
let sort_eq (l: list atom) : Lemma
(sort l == sort0 l)
[SMTPat (sort l)]
= sortWith_ext (my_compare_of_bool (<)) (List.Tot.compare_of_bool (<)) l
in
let open FStar.List.Tot.Base in
let f:int -> int -> int = compare_of_bool (<) in
let hi, lo = partition (bool_of_compare f pivot) q in
flatten_correct_aux eq m am (sort lo) (pivot::sort hi);
assert (xsdenote eq m am (sort xs) `EQ?.eq eq`
CM?.mult m (xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi)));
lemma_xsdenote_aux eq m am pivot (sort hi);
EQ?.reflexivity eq (xsdenote eq m am (sort lo));
CM?.congruence m
(xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi))));
CM?.commutativity m
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
CM?.associativity m
(select pivot am)
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo));
EQ?.transitivity eq
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
((select pivot am `CM?.mult m` xsdenote eq m am (sort hi)) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))));
partition_length (bool_of_compare f pivot) q;
sort_correct_aux eq m am hi;
sort_correct_aux eq m am lo;
EQ?.symmetry eq (xsdenote eq m am lo) (xsdenote eq m am (sort lo));
EQ?.symmetry eq (xsdenote eq m am hi) (xsdenote eq m am (sort hi));
CM?.congruence m
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo))
(xsdenote eq m am hi)
(xsdenote eq m am lo);
assert (EQ?.eq eq
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
EQ?.reflexivity eq (select pivot am);
CM?.congruence m
(select pivot am)
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)));
partition_equiv eq m am pivot q;
CM?.congruence m
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select pivot am)
(xsdenote eq m am q);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q)));
lemma_xsdenote_aux eq m am pivot q;
EQ?.symmetry eq
(xsdenote eq m am (pivot::q))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q))
(xsdenote eq m am xs);
EQ?.symmetry eq (xsdenote eq m am (sort xs)) (xsdenote eq m am xs)
#pop-options
#push-options "--fuel 0 --ifuel 0"
(* Lemmas to be called after a permutation compatible with AC-unification was found *)
let smt_reflexivity (#a:Type) (eq:CE.equiv a) (x y:a)
: Lemma (requires x == y)
(ensures CE.EQ?.eq eq x y)
= CE.EQ?.reflexivity eq x
let identity_left_smt (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a)
: Lemma
(requires x == y)
(ensures CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) y))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_left (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x:a)
: Lemma (CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) x))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_right_diff (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a) : Lemma
(requires CE.EQ?.eq eq x y)
(ensures CE.EQ?.eq eq (CE.CM?.mult m x (CE.CM?.unit m)) y)
= CE.right_identity eq m x;
CE.EQ?.transitivity eq (CE.CM?.mult m x (CE.CM?.unit m)) x y
/// Dismiss possible vprops goals that might have been created by lemma application.
/// These vprops will be instantiated at a later stage; else, Meta-F* will raise an error
let rec dismiss_slprops () : Tac unit =
match term_as_formula' (cur_goal ()) with
| App t _ -> if is_fvar t (`%squash) then () else (dismiss(); dismiss_slprops ())
| _ -> dismiss(); dismiss_slprops ()
/// Recursively removing trailing empty assertions
let rec n_identity_left (n:int) (eq m:term) : Tac unit
= if n = 0 then (
apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
// Cleaning up, in case a uvar has been generated here. It'll be solved later
set_goals [])
else (
apply_lemma (`identity_right_diff (`#eq) (`#m));
// Drop the slprops generated, they will be solved later
dismiss_slprops ();
n_identity_left (n-1) eq m
)
/// Helper lemma: If two vprops (as represented by lists of atoms) are equivalent, then their canonical forms
/// (corresponding to applying the sort function on atoms) are equivalent
let equivalent_sorted (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (l1 l2 l1' l2':list atom)
: Lemma (requires
sort l1 == sort l1' /\
sort l2 == sort l2' /\
xsdenote eq m am l1 `CE.EQ?.eq eq` xsdenote eq m am l2)
(ensures xsdenote eq m am l1' `CE.EQ?.eq eq` xsdenote eq m am l2')
= let open FStar.Algebra.CommMonoid.Equiv in
sort_correct_aux eq m am l1';
sort_correct_aux eq m am l1;
EQ?.symmetry eq (xsdenote eq m am l1) (xsdenote eq m am (sort l1));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l1'))
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l1)
(xsdenote eq m am l2);
sort_correct_aux eq m am l2;
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l2)
(xsdenote eq m am (sort l2));
sort_correct_aux eq m am l2';
EQ?.symmetry eq (xsdenote eq m am l2') (xsdenote eq m am (sort l2'));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l2))
(xsdenote eq m am l2')
#pop-options
/// Finds the position of first occurrence of x in xs.
/// This is now specialized to terms and their funny term_eq_old.
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) (decreases xs) =
match xs with
| [] -> None
| x'::xs' -> if term_eq_old x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = List.Tot.Base.length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts `List.Tot.append` [t], update vfresh t am)
/// Transforming a term into the corresponding list of atoms
/// If the atomic terms were already present in the map [am], then
/// they correspond to the same atoms
/// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app_ref t in
match inspect_unascribe hd, List.Tot.Base.list_unref tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq_old (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq_old t unit
then (Unit, ts, am)
else fatom t ts am
/// Performs the required normalization before calling the function above
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CE.CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CE.CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
/// Meta-F* internal: Transforms the atom map into a term
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
/// `am` is an amap (basically a list) of terms, each representing a value
/// of type `a` (whichever we are canonicalizing). This functions converts
/// `am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) )
/// Transforms a term representatoin into a term through quotation
let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt))
let rec quote_atoms (l:list atom) = match l with
| [] -> `[]
| hd::tl -> let nt = pack (Tv_Const (C_Int hd)) in
(`Cons (`#nt) (`#(quote_atoms tl)))
/// Some internal normalization steps to make reflection of vprops into atoms and atom permutation go smoothly.
/// We reimplemented sorting/list functions to normalize our uses without normalizing those introduced by the user.
let normal_tac_steps = [primops; iota; zeta; delta_only [
`%mdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm]]
/// The normalization function, using the above normalization steps
let normal_tac (#a:Type) (x:a) : a = FStar.Pervasives.norm normal_tac_steps x
/// Helper lemma to establish relation between normalized and initial values
let normal_elim (x:Type0) : Lemma
(requires x)
(ensures normal_tac x)
= ()
exception Result of list atom * list atom * bool * list term
/// F* equalities are typed, but the generated type sometimes is a unification variable.
/// This helper ensures that such unification variables are not left unresolved, which would lead to an error
let close_equality_typ' (t:term) : Tac unit =
let f = term_as_formula' t in
match f with
| Comp (Eq (Some u)) l _ -> if is_uvar u then (unshelve u; exact_with_ref (tc (cur_env()) l))
| _ -> ()
/// Recursively closing equality types in a given term (usually a unification constraint)
let close_equality_typ (t:term) : Tac unit =
visit_tm close_equality_typ' t
/// Core unification tactic.
/// Transforms terms into their atom representations,
/// Tries to find a solution to AC-unification, and if so,
/// soundly permutes the atom representations before calling the unifier
/// to check the validity of the provided solution.
/// In the case where SMT rewriting was needed, equalities abduction is performed by instantiating the
/// abduction prop unification variable with the corresponding guard
/// 09/24:
///
/// The tactic internally builds a map from atoms to terms
/// and uses the map for reflecting the goal to atoms representation
/// During reflection, the tactics engine typechecks the amap, and hence all
/// the terms again
/// This typechecking of terms is unnecessary, since the terms are coming
/// from the goal, and hence are already well-typed
/// Worse, re-typechecking them may generate a lot of SMT queries
/// And even worse, the SMT queries are discharged in the static context,
/// requiring various workarounds (e.g. squash variables for if conditions etc.)
///
/// To fix this, we now "name" the terms and use the amap with names
///
/// Read through the canon_l_r function for how we do this
/// The following three lemmas are helpers to manipulate the goal in canon_l_r
[@@ no_subtyping]
let inst_bv (#a:Type) (#p:a -> Type0) (#q:Type0) (x:a) (_:squash (p x ==> q))
: Lemma ((forall (x:a). p x) ==> q) = ()
let modus_ponens (#p #q:Type0) (_:squash p)
: Lemma ((p ==> q) ==> q)
= ()
let cut (p q:Type0) : Lemma (requires p /\ (p ==> q)) (ensures q) = ()
let and_true (p: Type0) : Lemma (requires (p /\ (p ==> True))) (ensures p) = ()
let solve_implies_true (p: Type0) : Lemma (p ==> True) = ()
// This exception is raised for failures that should not be considered
// hard but should allow postponing the goal instead
exception Postpone of string
(* NOTE! Redefining boolean disjunction to *not* be short-circuiting,
since we cannot use an effectful result as argument of Prims.op_BarBar *)
private
let bor = op_BarBar
private
let is_and (t:term) : bool =
is_any_fvar t [`%(/\); `%prop_and]
private
let is_squash (t:term) : bool =
is_any_fvar t [`%squash; `%auto_squash]
private
let is_star (t:term) : bool =
is_any_fvar t [`%star; `%VStar]
private
let is_star_or_unit (t:term) : bool =
is_any_fvar t [`%star; `%VStar; `%VUnit]
let rec unify_pr_with_true (pr: term) : Tac unit =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| [pr_l, _; pr_r, _] ->
unify_pr_with_true pr_l;
unify_pr_with_true pr_r
| _ -> fail "unify_pr_with_true: ill-formed /\\"
else
match inspect_unascribe hd with
| Tv_Uvar _ _ ->
if unify pr (`true_p)
then ()
else begin
fail "unify_pr_with_true: could not unify SMT prop with True"
end
| _ ->
if List.Tot.length (free_uvars pr) = 0
then ()
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "unify_pr_with_true: some uvars are still there")
let elim_and_l_squash (#a #b: Type0) (#goal: Type0) (f: (a -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash a) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash a) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let elim_and_r_squash (#a #b: Type0) (#goal: Type0) (f: (b -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash b) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash b) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let _return_squash (#a: Type) () (x: a) : Tot (squash a) =
FStar.Squash.return_squash x
let rec set_abduction_variable_term (pr: term) : Tac term =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| (pr_l, Q_Explicit) :: (pr_r, Q_Explicit) :: [] ->
if List.Tot.length (free_uvars pr_r) = 0
then
let arg = set_abduction_variable_term pr_l in
mk_app (`elim_and_l_squash) [arg, Q_Explicit]
else if List.Tot.length (free_uvars pr_l) = 0
then
let arg = set_abduction_variable_term pr_r in
mk_app (`elim_and_r_squash) [arg, Q_Explicit]
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "set_abduction_variable_term: there are still uvars on both sides of l_and")
| _ -> fail "set_abduction_variable: ill-formed /\\"
else
match inspect hd with
| Tv_Uvar _ _ ->
mk_app (`_return_squash) [`(), Q_Explicit]
| _ -> fail "set_abduction_variable: cannot unify"
let set_abduction_variable () : Tac unit =
let g = cur_goal () in
match inspect_unascribe g with
| Tv_Arrow b _ ->
let pr = b.sort in
exact (set_abduction_variable_term pr)
| _ -> fail "Not an arrow goal"
let canon_l_r (use_smt:bool)
(carrier_t:term) //e.g. vprop
(eq:term) (m:term)
(pr pr_bind:term)
(lhs rel rhs:term) : Tac unit =
let m_unit = norm_term [iota; zeta; delta] (`(CE.CM?.unit (`#m))) in
let m_mult = norm_term [iota; zeta; delta] (`(CE.CM?.mult (`#m))) in
let am = const m_unit in (* empty map *)
let (r1_raw, ts, am) = reification eq m [] am lhs in
let (r2_raw, _, am) = reification eq m ts am rhs in
// Encapsulating this in a try/with to avoid spawning uvars for smt_fallback
let l1_raw, l2_raw, emp_frame, uvar_terms =
try
let res = equivalent_lists use_smt (flatten r1_raw) (flatten r2_raw) am in
raise (Result res) with
| TacticFailure m -> fail m
| Result res -> res
| _ -> fail "uncaught exception in equivalent_lists"
in
//So now we have:
// am : amap mapping atoms to terms in lhs and rhs
// r1_raw : an expression in the atoms language for lhs
// r2_raw : an expression in the atoms language for rhs
// l1_raw : sorted list of atoms in lhs
// l2_raw : sorted list of atoms in rhs
//
//In particular, r1_raw and r2_raw capture lhs and rhs structurally
// (i.e. same associativity, emp, etc.)
//
//Whereas l1_raw and l2_raw are "canonical" representations of lhs and rhs
// (vis xsdenote)
//Build an amap where atoms are mapped to names
//The type of these names is carrier_t passed by the caller
let am_bv : list (atom & namedv & typ) = mapi (fun i (a, _) ->
let x = fresh_namedv_named ("x" ^ (string_of_int i)) in
(a, x, carrier_t)) (fst am) in
let am_bv_term : amap term = map (fun (a, bv, _sort) -> a, pack (Tv_Var bv)) am_bv, snd am in
let mdenote_tm (e:exp) : term = mdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
e in
let xsdenote_tm (l:list atom) : term = xsdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
l in
//Get the named representations of lhs, rhs, and their respective sorted versions
let lhs_named = mdenote_tm r1_raw in
let rhs_named = mdenote_tm r2_raw in
let sorted_lhs_named = xsdenote_tm l1_raw in
let sorted_rhs_named = xsdenote_tm l2_raw in
//We now build an auxiliary goal of the form:
//
// forall xs. (sorted_lhs_named `rel` sorted_rhs_names) ==> (lhs_names `rel` rhs_named)
//
// where xs are the fresh names that we introduced earlier
let mk_rel (l r:term) : term =
mk_app rel [(l, Q_Explicit); (r, Q_Explicit)] in
let imp_rhs = mk_rel lhs_named rhs_named in
let imp_lhs = mk_rel sorted_lhs_named sorted_rhs_named in
let imp =
mk_app (pack (Tv_FVar (pack_fv imp_qn))) [(imp_lhs, Q_Explicit); (imp_rhs, Q_Explicit)] in
//fold over names and quantify over them
let aux_goal = fold_right (fun (_, nv, sort) t ->
let nvv = inspect_namedv nv in
let b = {
ppname = nvv.ppname;
uniq = nvv.uniq;
qual = Q_Explicit;
attrs = [];
sort = sort;
} in
let _, t = close_term b t in
let t = pack (Tv_Abs b t) in
mk_app (pack (Tv_FVar (pack_fv forall_qn))) [t, Q_Explicit]) am_bv imp in
//Introduce a cut with the auxiliary goal
apply_lemma (`cut (`#aux_goal));
//After the cut, the goal looks like: A /\ (A ==> G)
// where A is the auxiliary goal and G is the original goal (lhs `rel` rhs)
split ();
//Solving A:
focus (fun _ ->
//The proof follows a similar structure as before naming was introduced
//
//Except that this time, the amap is in terms of names,
// and hence its typechecking is faster and (hopefully) no SMT involved
//Open the forall binders in A, and use the fresh names to build an amap
let am = fold_left (fun am (a, _, _sort) ->
let b = forall_intro () in
let v = binding_to_namedv b in
(a, pack (Tv_Var v))::am) [] am_bv, snd am in
//Introduce the lhs of implication
let b = implies_intro () in
//Now the proof is the plain old canon proof
let am = convert_am am in
let r1 = quote_exp r1_raw in
let r2 = quote_exp r2_raw in
change_sq (`(normal_tac (mdenote (`#eq) (`#m) (`#am) (`#r1)
`CE.EQ?.eq (`#eq)`
mdenote (`#eq) (`#m) (`#am) (`#r2))));
apply_lemma (`normal_elim);
apply (`monoid_reflect );
let l1 = quote_atoms l1_raw in
let l2 = quote_atoms l2_raw in
apply_lemma (`equivalent_sorted (`#eq) (`#m) (`#am) (`#l1) (`#l2));
if List.Tot.length (goals ()) = 0 then ()
else begin
norm [primops; iota; zeta; delta_only
[`%xsdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm;
`%CE.__proj__EQ__item__eq;
`%req;
`%star;]
];
//The goal is of the form G1 /\ G2 /\ G3, as in the requires of equivalent_sorted
split ();
split ();
//Solve G1 and G2 by trefl
trefl ();
trefl ();
//G3 is the lhs of the implication in the auxiliary goal
// that we have in our assumptions via b
apply (`FStar.Squash.return_squash);
exact (binding_to_term b)
end);
dismiss_slprops();
//Our goal now is A ==> G (where G is the original goal (lhs `rel` rhs))
//Open the forall binders
ignore (repeatn (List.Tot.length am_bv) (fun _ -> apply_lemma (`inst_bv)));
//And apply modus ponens
apply_lemma (`modus_ponens);
//Now our goal is sorted_lhs_named `rel` sorted_rhs_named
// where the names are replaced with fresh uvars (from the repeatn call above)
//So we just trefl
match uvar_terms with
| [] -> // Closing unneeded prop uvar
focus (fun _ ->
try
apply_lemma (`and_true);
split ();
if emp_frame then apply_lemma (`identity_left (`#eq) (`#m))
else apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
unify_pr_with_true pr; // MUST be done AFTER identity_left/reflexivity, which can unify other uvars
apply_lemma (`solve_implies_true)
with
| TacticFailure msg -> fail ("Cannot unify pr with true: " ^ msg)
| e -> raise e
)
| l ->
if emp_frame then (
apply_lemma (`identity_left_smt (`#eq) (`#m))
) else (
apply_lemma (`smt_reflexivity (`#eq))
);
t_trefl true;
close_equality_typ (cur_goal());
revert ();
set_abduction_variable ()
/// Wrapper around the tactic above
/// The constraint should be of the shape `squash (equiv lhs rhs)`
let canon_monoid (use_smt:bool) (carrier_t:term) (eq m:term) (pr pr_bind:term) : Tac unit =
norm [iota; zeta];
let t = cur_goal () in
// removing top-level squash application
let sq, rel_xy = collect_app_ref t in
// unpacking the application of the equivalence relation (lhs `EQ?.eq eq` rhs)
(match rel_xy with
| [(rel_xy,_)] -> (
let open FStar.List.Tot.Base in
let rel, xy = collect_app_ref rel_xy in
if (length xy >= 2)
then (
match index xy (length xy - 2) , index xy (length xy - 1) with
| (lhs, Q_Explicit) , (rhs, Q_Explicit) ->
canon_l_r use_smt carrier_t eq m pr pr_bind lhs rel rhs
| _ -> fail "Goal should have been an application of a binary relation to 2 explicit arguments"
)
else (
fail "Goal should have been an application of a binary relation to n implicit and 2 explicit arguments"
)
)
| _ -> fail "Goal should be squash applied to a binary relation")
/// Instantiation of the generic AC-unification tactic with the vprop commutative monoid
let canon' (use_smt:bool) (pr:term) (pr_bind:term) : Tac unit =
canon_monoid use_smt (pack (Tv_FVar (pack_fv [`%vprop]))) (`req) (`rm) pr pr_bind
/// Counts the number of unification variables corresponding to vprops in the term [t]
let rec slterm_nbr_uvars (t:term) : Tac int =
match inspect_unascribe t with
| Tv_Uvar _ _ -> 1
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
slterm_nbr_uvars_argv args
else if is_uvar hd then 1
else 0
| Tv_Abs _ t -> slterm_nbr_uvars t
| _ -> 0
and slterm_nbr_uvars_argv (args: list argv) : Tac int =
fold_left (fun n (x, _) -> n + slterm_nbr_uvars x) 0 args
let guard_vprop (v: vprop) : Tot vprop = v
let rec all_guards_solved (t: term) : Tac bool =
match inspect_unascribe t with
| Tv_Abs _ t -> all_guards_solved t
| Tv_App _ _ ->
let hd, args = collect_app t in
if hd `is_fvar` (`%guard_vprop)
then slterm_nbr_uvars_argv args = 0
else if not (all_guards_solved hd)
then false
else
List.Tot.fold_left
(fun (tac: (unit -> Tac bool)) (tm, _) ->
let f () : Tac bool =
if all_guards_solved tm
then tac ()
else false
in
f
)
(let f () : Tac bool = true in f)
args
()
| _ -> true
let unfold_guard () : Tac bool =
if all_guards_solved (cur_goal ())
then begin
focus (fun _ -> norm [delta_only [(`%guard_vprop)]]);
true
end else
false
let rec term_is_uvar (t: term) (i: int) : Tac bool = match inspect t with
| Tv_Uvar i' _ -> i = i'
| Tv_App _ _ ->
let hd, args = collect_app t in
term_is_uvar hd i
| _ -> false
val solve_can_be_split_for : string -> Tot unit
val solve_can_be_split_lookup : unit // FIXME: src/reflection/FStar.Reflection.Basic.lookup_attr only supports fvar attributes, so we cannot directly look up for (solve_can_be_split_for blabla), we need a nullary attribute to use with lookup_attr
let rec dismiss_all_but_last' (l: list goal) : Tac unit =
match l with
| [] | [_] -> set_goals l
| _ :: q -> dismiss_all_but_last' q
let dismiss_all_but_last () : Tac unit =
dismiss_all_but_last' (goals ())
let rec dismiss_non_squash_goals' (keep:list goal) (goals:list goal)
: Tac unit
= match goals with
| [] -> set_goals (List.Tot.rev keep)
| hd :: tl ->
let f = term_as_formula' (goal_type hd) in
match f with
| App hs _ ->
if is_squash hs
then dismiss_non_squash_goals' (hd::keep) tl
else dismiss_non_squash_goals' keep tl
| _ ->
dismiss_non_squash_goals' keep tl
let dismiss_non_squash_goals () =
let g = goals () in
dismiss_non_squash_goals' [] g
let rec term_mem (te: term) (l: list term) : Tac bool =
match l with
| [] -> false
| t' :: q ->
if te `term_eq_old` t' then true else term_mem te q
let rec lookup_by_term_attr' (attr: term) (e: env) (found: list fv) (l: list fv) : Tac (list fv)
=
match l with
| [] -> List.Tot.rev found
| f :: q ->
let n = inspect_fv f in
begin match lookup_typ e n with
| None -> lookup_by_term_attr' attr e found q
| Some se ->
let found' =
if attr `term_mem` sigelt_attrs se
then f :: found
else found
in
lookup_by_term_attr' attr e found' q
end
let lookup_by_term_attr (label_attr: term) (attr: term) : Tac (list fv) =
let e = cur_env () in
let candidates = lookup_attr label_attr e in
lookup_by_term_attr' attr e [] candidates
let rec bring_last_goal_on_top' (others: list goal) (goals: list goal) : Tac unit =
match goals with
| [] -> set_goals (List.Tot.rev others)
| last :: [] -> set_goals (last :: List.Tot.rev others)
| a :: q -> bring_last_goal_on_top' (a :: others) q
let bring_last_goal_on_top () =
let g = goals () in
bring_last_goal_on_top' [] g
let rec extract_contexts
(lemma_left lemma_right label_attr attr: term)
(t: term)
: Tac (option (unit -> Tac unit))
=
let hd, tl = collect_app t in
if is_star hd
then
match tl with
| (t_left, Q_Explicit) :: (t_right, Q_Explicit) :: [] ->
let extract_right () : Tac (option (unit -> Tac unit)) =
match extract_contexts lemma_left lemma_right label_attr attr t_right with
| None -> None
| Some f ->
Some (fun _ ->
apply_lemma lemma_right;
dismiss_all_but_last ();
f ()
)
in
begin match extract_contexts lemma_left lemma_right label_attr attr t_left with
| None -> extract_right ()
| Some f ->
Some (fun _ ->
try
apply_lemma lemma_left;
dismiss_all_but_last ();
f ()
with _ ->
begin match extract_right () with
| None -> fail "no context on the right either"
| Some g -> g ()
end
)
end
| _ -> None
else
let candidates =
let hd_fv = match inspect_unascribe hd with
| Tv_FVar fv -> Some fv
| Tv_UInst fv _ -> Some fv
| _ -> None
in
match hd_fv with
| None -> []
| Some hd_fv ->
let hd_s' = implode_qn (inspect_fv hd_fv) in
let hd_s = pack (Tv_Const (C_String hd_s')) in
lookup_by_term_attr label_attr (mk_app attr [hd_s, Q_Explicit])
in
if Nil? candidates
then None
else
Some (fun _ ->
first (List.Tot.map (fun candidate _ -> apply_lemma (pack (Tv_FVar candidate)) <: Tac unit) candidates);
dismiss_non_squash_goals ()
)
let extract_cbs_contexts = extract_contexts
(`can_be_split_congr_l)
(`can_be_split_congr_r)
(`solve_can_be_split_lookup)
(`solve_can_be_split_for)
let open_existentials () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [delta_attr [`%__reduce__]];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split)
then
match tl with
| _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match extract_cbs_contexts rhs with
| None -> fail "open_existentials: no context found"
| Some f ->
apply_lemma (`can_be_split_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top () // so that any preconditions for the selected lemma are scheduled for later
end
| _ -> fail "open_existentials: ill-formed can_be_split"
else
fail "open_existentials: not a can_be_split goal"
| _ -> fail "open_existentials: not a squash goal"
let try_open_existentials () : Tac bool =
focus (fun _ ->
try
open_existentials ();
true
with _ -> false
)
(* Solving the can_be_split* constraints, if they are ready to be scheduled
A constraint is deemed ready to be scheduled if it contains only one vprop unification variable
If so, constraints are stripped to their underlying definition based on vprop equivalence,
introducing universally quantified variables when needed.
Internal details of the encoding are removed through normalization, before calling the AC-unification
tactic defined above
*)
/// Solves a `can_be_split` constraint
let rec solve_can_be_split (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ -> apply_lemma (`equiv_can_be_split);
dismiss_slprops();
// If we have exactly the same term on both side,
// equiv_sl_implies would solve the goal immediately
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if rnbr = 0 then apply_lemma (`equiv_sym);
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
with
| _ ->
let opened_some = try_open_existentials () in
if opened_some then solve_can_be_split args // we only need args for their number of uvars, which has not changed
else false
) else false
| _ -> false // Ill-formed can_be_split, should not happen
/// Solves a can_be_split_dep constraint
let solve_can_be_split_dep (args:list argv) : Tac bool =
match args with
| [(p, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
dismiss_slprops ();
or_else
(fun _ ->
let b = unify p (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true p (binding_to_term p_bind)));
true
) else false
| _ -> fail "ill-formed can_be_split_dep"
/// Helper rewriting lemma
val emp_unit_variant (p:vprop) : Lemma
(ensures can_be_split p (p `star` emp))
/// Solves a can_be_split_forall constraint
let solve_can_be_split_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
ignore (forall_intro());
apply_lemma (`equiv_can_be_split);
dismiss_slprops();
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed can_be_split_forall, should not happen"
val solve_can_be_split_forall_dep_for : string -> Tot unit
val solve_can_be_split_forall_dep_lookup : unit // FIXME: same as solve_can_be_split_for above
let extract_cbs_forall_dep_contexts
=
extract_contexts
(`can_be_split_forall_dep_congr_l)
(`can_be_split_forall_dep_congr_r)
(`solve_can_be_split_forall_dep_lookup)
(`solve_can_be_split_forall_dep_for)
let open_existentials_forall_dep () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_forall_dep_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [
delta_only [
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%rm;
];
iota;
delta_attr [`%__reduce__];
];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split_forall_dep)
then
match tl with
| _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: []
| (_, Q_Implicit) (* #a *) :: _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match inspect_unascribe rhs with
| Tv_Abs _ body ->
begin match extract_cbs_forall_dep_contexts body with
| None -> fail "open_existentials_forall_dep: no candidate"
| Some f ->
apply_lemma (`can_be_split_forall_dep_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top ();
if Cons? (goals ()) then norm []
end
| _ -> fail "open_existentials_forall_dep : not an abstraction"
end
| _ -> fail "open_existentials_forall_dep : wrong number of arguments to can_be_split_forall_dep"
else
fail "open_existentials_forall_dep : not a can_be_split_forall_dep goal"
| _ ->
fail "open_existentials_forall_dep : not a squash/auto_squash goal"
let try_open_existentials_forall_dep () : Tac bool
=
focus (fun _ ->
try
open_existentials_forall_dep ();
true
with _ -> false
)
/// Solves a can_be_split_forall_dep constraint
let rec solve_can_be_split_forall_dep (args:list argv) : Tac bool =
match args with
| [_; (pr, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ ->
norm [];
let x = forall_intro () in
let pr = mk_app pr [(binding_to_term x, Q_Explicit)] in
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
or_else (fun _ -> flip()) (fun _ -> ());
let pr = norm_term [] pr in
or_else
(fun _ ->
let b = unify pr (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true pr (binding_to_term p_bind)));
true
with
| Postpone msg ->
false
| TacticFailure msg ->
let opened = try_open_existentials_forall_dep () in
if opened
then solve_can_be_split_forall_dep args // we only need args for their number of uvars, which has not changed
else fail msg
| _ -> fail "Unexpected exception in framing tactic"
) else false
| _ -> fail "Ill-formed can_be_split_forall_dep, should not happen"
/// Solves an equiv_forall constraint
let solve_equiv_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv_forall, should not happen"
/// Solves an equiv constraint
let solve_equiv (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip ()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv, should not happen"
/// Solves a can_be_split_post constraint
let solve_can_be_split_post (args:list argv) : Tac bool =
match args with
| [_; _; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> norm[];
let g = _cur_goal () in
ignore (forall_intro());
apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "ill-formed can_be_split_post"
/// Checks whether any of the two terms was introduced during a Steel monadic return
let is_return_eq (l r:term) : Tac bool =
let nl, al = collect_app l in
let nr, ar = collect_app r in
is_fvar nl (`%return_pre) || is_fvar nr (`%return_pre)
/// Solves indirection equalities introduced by the layered effects framework.
/// If these equalities were introduced during a monadic return, they need to be solved
/// at a later stage to avoid overly restricting contexts of unification variables
let rec solve_indirection_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
if is_return_eq l r then later() else trefl();
solve_indirection_eqs (fuel - 1)
| _ -> later(); solve_indirection_eqs (fuel - 1)
/// Solve all equalities in the list of goals by calling the F* unifier
let rec solve_all_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_all_eqs (fuel - 1)
| _ -> later(); solve_all_eqs (fuel - 1)
/// It is important to not normalize the return_pre eqs goals before unifying
/// See test7 in FramingTestSuite for a detailed explanation
let rec solve_return_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_return_eqs (fuel - 1)
| _ -> later(); solve_return_eqs (fuel - 1)
/// Strip annotations in a goal, to get to the underlying slprop equivalence
let goal_to_equiv (loc:string) : Tac unit
= let t = cur_goal () in
let f = term_as_formula' t in
match f with
| App hd0 t ->
if not (is_fvar hd0 (`%squash))
then fail (loc ^ " unexpected non-squash goal in goal_to_equiv");
let hd, args = collect_app t in
if hd `is_fvar` (`%can_be_split) then (
apply_lemma (`equiv_can_be_split)
) else if hd `is_fvar` (`%can_be_split_forall) then (
ignore (forall_intro ());
apply_lemma (`equiv_can_be_split)
) else if hd `is_fvar` (`%equiv_forall) then (
apply_lemma (`equiv_forall_elim);
ignore (forall_intro ())
) else if hd `is_fvar` (`%can_be_split_post) then (
apply_lemma (`can_be_split_post_elim);
dismiss_slprops();
ignore (forall_intro ());
ignore (forall_intro ())
) else if hd `is_fvar` (`%can_be_split_dep) then (
fail ("can_be_split_dep not supported in " ^ loc)
) else if hd `is_fvar` (`%can_be_split_forall_dep) then (
fail ("can_be_split_forall_dep not supported in " ^ loc)
) else
// This should never happen
fail (loc ^ " goal in unexpected position")
| _ -> fail (loc ^ " unexpected goal")
let rec term_dict_assoc
(#a: Type)
(key: term)
(l: list (term & a))
: Tac (list a)
= match l with
| [] -> []
| (k, v) :: q ->
let q' = term_dict_assoc key q in
if k `term_eq_old` key
then (v :: q')
else q'
/// Returns true if the goal has been solved, false if it should be delayed
let solve_or_delay (dict: list (term & (unit -> Tac bool))) : Tac bool =
// Beta-reduce the goal first if possible
norm [];
let f = term_as_formula' (cur_goal ()) in
match f with
| App hd0 t ->
if is_fvar hd0 (`%squash)
then
let hd, args = collect_app t in
if hd `is_fvar` (`%can_be_split) then solve_can_be_split args
else if hd `is_fvar` (`%can_be_split_forall) then solve_can_be_split_forall args
else if hd `is_fvar` (`%equiv_forall) then solve_equiv_forall args
else if hd `is_fvar` (`%can_be_split_post) then solve_can_be_split_post args
else if hd `is_fvar` (`%equiv) then solve_equiv args
else if hd `is_fvar` (`%can_be_split_dep) then solve_can_be_split_dep args
else if hd `is_fvar` (`%can_be_split_forall_dep) then solve_can_be_split_forall_dep args
else
let candidates = term_dict_assoc hd dict in
let run_tac (tac: unit -> Tac bool) () : Tac bool =
focus tac
in
begin try
first (List.Tot.map run_tac candidates)
with _ ->
(* this is a logical goal, solve it only if it has no uvars *)
if List.Tot.length (free_uvars t) = 0
then (smt (); true)
else false
end
else
// TODO: handle non-squash goals here
false
| Comp (Eq _) l r ->
let lnbr = List.Tot.length (free_uvars l) in
let rnbr = List.Tot.length (free_uvars r) in
// Only solve equality if one of the terms is completely determined
if lnbr = 0 || rnbr = 0 then (trefl (); true) else false
| _ -> false
/// Returns true if it successfully solved a goal
/// If it returns false, it means it didn't find any solvable goal,
/// which should mean only delayed goals are left
let rec vprop_term_uvars (t:term) : Tac (list int) =
match inspect_unascribe t with
| Tv_Uvar i' _ -> [i']
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
argv_uvars args
else
vprop_term_uvars hd
| Tv_Abs _ t -> vprop_term_uvars t
| _ -> []
and argv_uvars (args: list argv) : Tac (list int) =
let t : unit -> Tac (list int) =
fold_left (fun (n: unit -> Tac (list int)) (x, _) ->
let t () : Tac (list int) =
let l1 = n () in
let l2 = vprop_term_uvars x in
l1 `List.Tot.append` l2
in
t
)
(fun _ -> [])
args
in
t ()
let rec remove_dups_from_sorted (#t: eqtype) (l: list t) : Tot (list t) = match l with
| [] | [_] -> l
| a1 :: a2 :: q -> if a1 = a2 then remove_dups_from_sorted (a2 :: q) else a1 :: remove_dups_from_sorted (a2 :: q)
let simplify_list (l: list int) : Tot (list int) =
remove_dups_from_sorted (List.Tot.sortWith (List.Tot.compare_of_bool (<)) l)
let goal_term_uvars (t: term) : Tac (list int) =
let hd, tl = collect_app t in
if hd `is_fvar` (`%squash)
then
match tl with
| [tl0, Q_Explicit] ->
let _, tl1 = collect_app tl0 in
simplify_list (argv_uvars tl1)
| _ -> dump "ill-formed squash"; []
else
[]
let rec merge_sorted (l1 l2: list int) : Tot (list int)
(decreases (List.Tot.length l1 + List.Tot.length l2))
= match l1 with
| [] -> l2
| a1 :: q1 ->
begin match l2 with
| [] -> l1
| a2 :: q2 ->
if a1 < a2
then a1 :: merge_sorted q1 l2
else if a2 < a1
then a2 :: merge_sorted l1 q2
else a1 :: merge_sorted q1 q2
end
let rec sorted_lists_intersect (l1 l2: list int) : Tot bool
(decreases (List.Tot.length l1 + List.Tot.length l2))
= match l1 with
| [] -> false
| a1 :: q1 ->
begin match l2 with
| [] -> false
| a2 :: q2 ->
if a1 = a2
then true
else if a1 < a2
then sorted_lists_intersect q1 l2
else sorted_lists_intersect l1 q2
end
/// TODO: cache the list of variables for each goal, to avoid computing them several times
/// Compute the list of all vprop uvars that appear in the same goal as unsolved guard_vprop
let rec compute_guarded_uvars1 (accu: list int) (g: list goal) : Tac (list int) =
match g with
| [] -> accu
| a :: q ->
let t = goal_type a in
let accu' =
if all_guards_solved t
then accu
else merge_sorted accu (goal_term_uvars t)
in
compute_guarded_uvars1 accu' q
/// Enrich the list of vprop uvars with those that appear in the same goal
let rec compute_guarded_uvars2 (accu: list int) (g: list goal) : Tac (list int) =
match g with
| [] -> accu
| a :: q ->
let t = goal_type a in
let l = goal_term_uvars t in
let accu' =
if sorted_lists_intersect accu l
then merge_sorted accu l
else accu
in
compute_guarded_uvars2 accu' q
let rec compute_guarded_uvars3 (accu: list int) (g: list goal) : Tac (list int) =
let accu' = compute_guarded_uvars2 accu g in
if accu = accu'
then accu
else compute_guarded_uvars3 accu' g
let compute_guarded_uvars () : Tac (list int) =
let g = goals () in
let accu = compute_guarded_uvars1 [] g in
compute_guarded_uvars3 accu g
let rec pick_next (guarded_uvars: list int) (dict: _) (fuel: nat) : Tac bool =
if fuel = 0
then false
else match goals () with
| [] -> true
| a::_ ->
let t = goal_type a in
let l = goal_term_uvars t in
let next () : Tac bool =
later ();
pick_next guarded_uvars dict (fuel - 1)
in
if sorted_lists_intersect guarded_uvars l
then next ()
else if solve_or_delay dict
then true
else next ()
/// Main loop to schedule solving of goals.
/// The goals () function fetches all current goals in the context
let rec resolve_tac (dict: _) : Tac unit =
match goals () with
| [] -> ()
| g ->
norm [];
let guarded_uvars = compute_guarded_uvars () in
// TODO: If it picks a goal it cannot solve yet, try all the other ones?
if pick_next guarded_uvars dict (List.Tot.length g) then resolve_tac dict
else fail "Could not make progress, no solvable goal found"
let rec pick_next_logical (dict: _) (fuel: nat) : Tac bool =
if fuel = 0
then false
else match goals () with
| [] -> true
| _::_ -> if solve_or_delay dict then true else (later (); pick_next_logical dict (fuel - 1))
/// Special case for logical requires/ensures goals, which correspond only to equalities
let rec resolve_tac_logical (dict: _) : Tac unit =
match goals () with
| [] -> ()
| g ->
let fuel = List.Tot.length g in
if pick_next_logical dict fuel then resolve_tac_logical dict
else
// This is only for requires/ensures constraints, which are equalities
// There should always be a scheduling of constraints, but it can happen
// that some uvar for the type of an equality is not resolved.
// If we reach this point, we try to simply call the unifier instead of failing directly
solve_all_eqs fuel
/// Determining whether the type represented by term [t] corresponds to one of the logical (requires/ensures) goals
let typ_contains_req_ens (t:term) : Tac bool =
let name, _ = collect_app t in
is_any_fvar name [`%req_t; `%ens_t; `%pure_wp; `%pure_pre; `%pure_post]
/// Splits goals between separation logic goals (slgoals) and requires/ensures goals (loggoals)
let rec filter_goals (l:list goal) : Tac (list goal * list goal) =
match l with
| [] -> [], []
| hd::tl ->
let slgoals, loggoals = filter_goals tl in
match term_as_formula' (goal_type hd) with
| Comp (Eq t) _ _ ->
if Some? t then
let b = typ_contains_req_ens (Some?.v t) in
if b then (
slgoals, hd::loggoals
)
else (
hd::slgoals, loggoals
)
else (
hd::slgoals, loggoals
)
| App t _ -> if is_fvar t (`%squash) then hd::slgoals, loggoals else slgoals, loggoals
| _ -> slgoals, loggoals
let is_true (t:term) () : Tac unit =
match term_as_formula t with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
/// Solve the maybe_emp goals:
/// Normalize to unfold maybe_emp(_dep) and the reduce the if/then/else, and | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"FStar.String.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.Derived.Lemmas.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "Steel.Effect.Common.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Derived.Lemmas",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": false,
"full_module": "Steel.Semantics.Instantiate",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.Semantics.Hoare.MST",
"short_module": "Sem"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | fuel: Prims.nat -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.unit",
"Prims.bool",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"Steel.Effect.Common.solve_maybe_emps",
"Prims.op_Subtraction",
"FStar.Tactics.NamedView.term",
"Prims.op_Negation",
"FStar.Reflection.V2.Derived.is_fvar",
"FStar.Tactics.V2.Derived.later",
"FStar.Stubs.Reflection.V2.Data.argv",
"FStar.Tactics.V2.Derived.or_else",
"Steel.Effect.Common.is_true",
"FStar.Tactics.V2.Derived.trefl",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.V2.Derived.cur_goal",
"FStar.Stubs.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_only",
"Prims.string",
"Prims.Nil",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.primops",
"FStar.Pervasives.simplify",
"FStar.Pervasives.ignore",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.forall_intro",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.SyntaxHelpers.collect_app",
"FStar.Reflection.V2.Formula.formula",
"FStar.Reflection.V2.Formula.term_as_formula'",
"FStar.Tactics.V2.Derived.goals"
] | [
"recursion"
] | false | true | false | false | false | let rec solve_maybe_emps (fuel: nat) : Tac unit =
| if fuel = 0
then ()
else
match goals () with
| [] -> ()
| _ :: _ ->
let f = term_as_formula' (cur_goal ()) in
(match f with
| App hd0 t ->
if not (is_fvar hd0 (`%squash))
then later ()
else
let hd, args = collect_app t in
if hd `is_fvar` (`%maybe_emp)
then
(norm [delta_only [`%maybe_emp]; iota; zeta; primops; simplify];
let g = cur_goal () in
or_else (is_true g) trefl)
else
if hd `is_fvar` (`%maybe_emp_dep)
then
(norm [delta_only [`%maybe_emp_dep]; iota; zeta; primops; simplify];
let g = cur_goal () in
or_else (is_true g)
(fun _ ->
ignore (forall_intro ());
trefl ()))
else later ()
| _ -> later ());
solve_maybe_emps (fuel - 1) | false |
Steel.Effect.Common.fsti | Steel.Effect.Common.ite_soundness_tac | val ite_soundness_tac: Prims.unit -> Tac unit | val ite_soundness_tac: Prims.unit -> Tac unit | let ite_soundness_tac () : Tac unit =
let slgs, loggoals = filter_goals (goals ()) in
set_goals slgs;
solve_indirection_eqs (List.Tot.length slgs);
// This is the actual subcomp goal. We can only solve it
// once all uvars are solved
let subcomp_goal = _cur_goal () in
match goals () with
| [] -> fail "should not happen"
| _::tl -> set_goals tl;
or_else (fun _ -> apply_lemma (`equiv_forall_refl)) assumption;
or_else (fun _ ->
or_else (fun _ -> apply_lemma (`can_be_split_dep_refl))
(fun _ -> apply_lemma (`can_be_split_refl)) // Different formalism in Steel.ST
) assumption;
// Discharging the maybe_emp by SMT
smt ();
// Now propagating all equalities for the requires/ensures
set_goals loggoals;
resolve_tac_logical [];
// Now taking care of the actual subcomp VC
set_goals [subcomp_goal];
norm [];
smt () | {
"file_name": "lib/steel/Steel.Effect.Common.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 8,
"end_line": 3168,
"start_col": 0,
"start_line": 3143
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Effect.Common
open Steel.Memory
module Mem = Steel.Memory
module FExt = FStar.FunctionalExtensionality
open FStar.Ghost
/// This module provides various predicates and functions which are common to the
/// different Steel effects.
/// It also contains the tactic responsible for frame inference through a variant of AC-unification
#set-options "--ide_id_info_off"
(* Normalization helpers *)
irreducible let framing_implicit : unit = ()
irreducible let __steel_reduce__ : unit = ()
/// An internal attribute for finer-grained normalization in framing equalities
irreducible let __inner_steel_reduce__ : unit = ()
irreducible let __reduce__ : unit = ()
irreducible let smt_fallback : unit = ()
irreducible let ite_attr : unit = ()
// Needed to avoid some logical vs prop issues during unification with no subtyping
[@@__steel_reduce__]
unfold
let true_p : prop = True
module T = FStar.Tactics.V2
let join_preserves_interp (hp:slprop) (m0:hmem hp) (m1:mem{disjoint m0 m1})
: Lemma
(interp hp (join m0 m1))
[SMTPat (interp hp (join m0 m1))]
= let open Steel.Memory in
intro_emp m1;
intro_star hp emp m0 m1;
affine_star hp emp (join m0 m1)
(* Definition of a selector for a given slprop *)
/// A selector of type `a` for a separation logic predicate hp is a function
/// from a memory where the predicate hp holds, which returns a value of type `a`.
/// The effect GTot indicates that selectors are ghost functions, used for specification
/// and proof purposes only
let selector' (a:Type0) (hp:slprop) = hmem hp -> GTot a
/// Self-framing property for selectors
let sel_depends_only_on (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp) (m1:mem{disjoint m0 m1}).
(interp_depends_only_on hp; (
sel m0 == sel (join m0 m1)))
/// Additional property that selectors must satisfy, related to internals of
/// the Steel memory model encoding
let sel_depends_only_on_core (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp). sel m0 == sel (core_mem m0)
/// Full definition of a selector, as a function which satisfies the two predicates above
let selector (a:Type) (hp:slprop) : Type =
sel:selector' a hp{sel_depends_only_on sel /\ sel_depends_only_on_core sel}
/// The basis of our selector framework: Separation logic assertions enhanced with selectors
/// Note that selectors are "optional", it is always possible to use a non-informative selector,
/// such as fun _ -> () and to rely on the standard separation logic reasoning
[@@ erasable]
noeq
type vprop' =
{ hp: slprop u#1;
t:Type0;
sel: selector t hp}
(* Lifting the star operator to an inductive type makes normalization
and implementing some later functions easier *)
[@@__steel_reduce__; erasable]
noeq
type vprop =
| VUnit : vprop' -> vprop
| VStar: vprop -> vprop -> vprop
(* A generic lift from slprop to vprop with a non-informative selector *)
[@@ __steel_reduce__]
let to_vprop' (p:slprop) = {hp = p; t = unit; sel = fun _ -> ()}
[@@ __steel_reduce__]
unfold
let to_vprop (p:slprop) = VUnit (to_vprop' p)
/// Normalization steps for norm below.
/// All functions marked as `unfold`, or with the `__steel_reduce__` attribute will be reduced,
/// as well as some functions internal to the selector framework
unfold
let normal_steps =
[delta_attr [`%__steel_reduce__; `%__inner_steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify]
/// The core normalization primitive used to simplify Verification Conditions before encoding
/// them to an SMT solver.
unfold
let normal (#a:Type) (x:a) = norm normal_steps x
/// An abbreviation for the VStar constructor, allowing to use it with infix notation
[@@ __steel_reduce__; __reduce__]
let star = VStar
/// Extracting the underlying separation logic assertion from a vprop
[@@ __steel_reduce__]
let rec hp_of (p:vprop) = match p with
| VUnit p -> p.hp
| VStar p1 p2 -> hp_of p1 `Mem.star` hp_of p2
/// Extracting the selector type from a vprop
[@@ __steel_reduce__]
let rec t_of (p:vprop) = match p with
| VUnit p -> p.t
| VStar p1 p2 -> t_of p1 * t_of p2
/// Extracting the selector from a vprop
[@@ __steel_reduce__]
let rec sel_of (p:vprop) : GTot (selector (t_of p) (hp_of p)) = match p with
| VUnit p -> fun h -> p.sel h
| VStar p1 p2 ->
let sel1 = sel_of p1 in
let sel2 = sel_of p2 in
fun h -> (sel1 h, sel2 h)
/// Type abbreviations for separation logic pre- and postconditions of the Steel effects
type pre_t = vprop
type post_t (a:Type) = a -> vprop
/// An annotation to indicate which separation logic predicates correspond to monadic computations
/// These computations are handled in a specific manner in the framing tactic; they correspond to places where
/// the context shrinks from all local variables in the computation to variables available at the toplevel
let return_pre (p:vprop) : vprop = p
noextract
let hmem (p:vprop) = hmem (hp_of p)
/// Abstract predicate for vprop implication. Currently implemented as an implication on the underlying slprop
val can_be_split (p q:pre_t) : Type0
/// Exposing the implementation of `can_be_split` when needed for proof purposes
val reveal_can_be_split (_:unit) : Lemma
(forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q))
/// A targeted version of the above
val can_be_split_interp (r r':vprop) (h:hmem r)
: Lemma (requires can_be_split r r')
(ensures interp (hp_of r') h)
/// A dependent version of can_be_split, to be applied to dependent postconditions
let can_be_split_forall (#a:Type) (p q:post_t a) = forall x. can_be_split (p x) (q x)
/// A version of can_be_split which is indexed by a proposition, which can be used for equalities abduction
let can_be_split_dep (p:prop) (t1 t2:pre_t) = p ==> can_be_split t1 t2
/// A dependent version of the above predicate
let can_be_split_forall_dep (#a:Type) (p:a -> prop) (t1 t2:post_t a) =
forall (x:a). p x ==> can_be_split (t1 x) (t2 x)
(* Some lemmas about the can_be_split* predicates,
to be used as rewriting rules for the abstract predicates *)
val can_be_split_trans (p q r:vprop)
: Lemma
(requires p `can_be_split` q /\ q `can_be_split` r)
(ensures p `can_be_split` r)
let can_be_split_trans_rev (p q r:vprop)
: Lemma
(requires q `can_be_split` r /\ p `can_be_split` q)
(ensures p `can_be_split` r)
= can_be_split_trans p q r
val can_be_split_star_l (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` p)
[SMTPat ((p `star` q) `can_be_split` p)]
val can_be_split_star_r (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` q)
[SMTPat ((p `star` q) `can_be_split` q)]
val can_be_split_refl (p:vprop)
: Lemma (p `can_be_split` p)
[SMTPat (p `can_be_split` p)]
val can_be_split_congr_l
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((p `star` r) `can_be_split` (q `star` r)))
val can_be_split_congr_r
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((r `star` p) `can_be_split` (r `star` q)))
let prop_and (p1 p2: prop) : Tot prop = p1 /\ p2
let can_be_split_forall_dep_trans_rev
(#a: Type)
(cond1 cond2: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond2 q r /\ can_be_split_forall_dep cond1 p q))
(ensures (can_be_split_forall_dep (fun x -> cond1 x `prop_and` cond2 x) p r))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_trans x y) z)
let can_be_split_forall_dep_congr_l
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> p x `star` r x) (fun x -> q x `star` r x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_l x y) z)
let can_be_split_forall_dep_congr_r
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> r x `star` p x) (fun x -> r x `star` q x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_r x y) z)
/// To simplify the implementation of the framing tactic, dependent equivalence
/// is defined as a double dependent implication
let equiv_forall (#a:Type) (t1 t2:post_t a) : Type0
= t1 `can_be_split_forall` t2 /\ t2 `can_be_split_forall` t1
/// This equivalence models a context restriction at the end of a Steel computation;
/// note that t2 does not depend on the value of type `a`, but the two vprops must be
/// equivalent
let can_be_split_post (#a #b:Type) (t1:a -> post_t b) (t2:post_t b) =
forall (x:a). equiv_forall (t1 x) t2
/// Lifting the equivalence relation to vprops. Two vprops are equivalent if the underlying slprops
/// are equivalent
val equiv (p q:vprop) : prop
/// Revealing the definition of vprop equivalence when needed for proof purposes.
/// In other cases, the predicate is abstract
val reveal_equiv (p q:vprop) : Lemma (p `equiv` q <==> hp_of p `Mem.equiv` hp_of q)
(* A restricted view of the heap,
that only allows to access selectors of the current slprop *)
let rmem' (pre:vprop) =
FExt.restricted_g_t
(r0:vprop{can_be_split pre r0})
(fun r0 -> normal (t_of r0))
/// Ensuring that rmems encapsulate the structure induced by the separation logic star
val valid_rmem (#frame:vprop) (h:rmem' frame) : prop
unfold
let rmem (pre:vprop) = h:rmem' pre{valid_rmem h}
/// Exposing the definition of mk_rmem to better normalize Steel VCs
unfold noextract
let unrestricted_mk_rmem (r:vprop) (h:hmem r) = fun (r0:vprop{r `can_be_split` r0}) ->
can_be_split_interp r r0 h;
sel_of r0 h
[@@ __inner_steel_reduce__]
noextract
let mk_rmem' (r:vprop) (h:hmem r) : Tot (rmem' r) =
FExt.on_dom_g
(r0:vprop{r `can_be_split` r0})
(unrestricted_mk_rmem r h)
val lemma_valid_mk_rmem (r:vprop) (h:hmem r) : Lemma (valid_rmem (mk_rmem' r h))
[@@ __inner_steel_reduce__]
noextract
let mk_rmem (r:vprop) (h:hmem r) : Tot (rmem r) =
lemma_valid_mk_rmem r h;
mk_rmem' r h
val reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (ensures reveal_can_be_split(); (mk_rmem r h) r0 == sel_of r0 h)
(* Logical pre and postconditions can only access the restricted view of the heap *)
type req_t (pre:pre_t) = rmem pre -> Type0
type ens_t (pre:pre_t) (a:Type) (post:post_t a) =
rmem pre -> (x:a) -> rmem (post x) -> Type0
(* Empty assertion *)
val emp : vprop
/// When needed for proof purposes, the empty assertion is a direct lift of the
/// empty assertion from Steel.Memory
val reveal_emp (_:unit) : Lemma (hp_of emp == Mem.emp /\ t_of emp == unit)
/// Lifting pure predicates to vprop
[@@__steel_reduce__]
unfold let pure (p:prop) = to_vprop (pure p)
/// Framing predicates for the Steel effect. If the current computation has already
/// been framed, then the additional frame is the empty predicate
let maybe_emp (framed:bool) (frame:pre_t) = if framed then frame == emp else True
/// Dependent version of the above predicate, usable in dependent postconditions
let maybe_emp_dep (#a:Type) (framed:bool) (frame:post_t a) =
if framed then (forall x. frame x == emp) else True
(* focus_rmem is an additional restriction of our view of memory.
We expose it here to be able to reduce through normalization;
Any valid application of focus_rmem h will be reduced to the application of h *)
[@@ __steel_reduce__]
unfold
let unrestricted_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
= fun (r':vprop{can_be_split r0 r'}) -> can_be_split_trans r r0 r'; h r'
[@@ __inner_steel_reduce__]
let focus_rmem' (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) : Tot (rmem' r0)
= FExt.on_dom_g
(r':vprop{can_be_split r0 r'})
(unrestricted_focus_rmem h r0)
val lemma_valid_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (valid_rmem (focus_rmem' h r0))
[@@ __inner_steel_reduce__]
let focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) : Tot (rmem r0) =
lemma_valid_focus_rmem h r0;
focus_rmem' h r0
/// Exposing that calling focus_rmem on the current context corresponds to an equality
let focus_rmem_refl (r:vprop) (h:rmem r)
: Lemma (focus_rmem #r h r == h)
= FStar.FunctionalExtensionality.extensionality_g _ _ (focus_rmem #r h r) h
open FStar.Tactics.V2
/// State that all "atomic" subresources have the same selectors on both views.
/// The predicate has the __steel_reduce__ attribute, ensuring that VC normalization
/// will reduce it to a conjunction of equalities on atomic subresources
/// This predicate is also marked as `strict_on_arguments` on [frame], ensuring that
/// it will not be reduced when the frame is symbolic
/// Instead, the predicate will be rewritten to an equality using `lemma_frame_equalities` below
[@@ __steel_reduce__; strict_on_arguments [0]]
let rec frame_equalities'
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : Type0
= begin match frame with
| VUnit p -> h0 frame == h1 frame
| VStar p1 p2 ->
can_be_split_star_l p1 p2;
can_be_split_star_r p1 p2;
let h01 = focus_rmem h0 p1 in
let h11 = focus_rmem h1 p1 in
let h02 = focus_rmem h0 p2 in
let h12 = focus_rmem h1 p2 in
frame_equalities' p1 h01 h11 /\
frame_equalities' p2 h02 h12
end
/// This lemma states that frame_equalities is the same as an equality on the top-level frame.
/// The uncommon formulation with an extra [p] is needed to use in `rewrite_with_tactic`,
/// where the goal is of the shape `frame_equalities frame h0 h1 == ?u`
/// The rewriting happens below, in `frame_vc_norm`
val lemma_frame_equalities (frame:vprop) (h0:rmem frame) (h1:rmem frame) (p:Type0)
: Lemma
(requires (h0 frame == h1 frame) == p)
(ensures frame_equalities' frame h0 h1 == p)
/// A special case for frames about emp.
val lemma_frame_emp (h0:rmem emp) (h1:rmem emp) (p:Type0)
: Lemma (requires True == p)
(ensures frame_equalities' emp h0 h1 == p)
/// A variant of conjunction elimination, suitable to the equality goals during rewriting
val elim_conjunction (p1 p1' p2 p2':Type0)
: Lemma (requires p1 == p1' /\ p2 == p2')
(ensures (p1 /\ p2) == (p1' /\ p2'))
/// Normalization and rewriting step for generating frame equalities.
/// The frame_equalities function has the strict_on_arguments attribute on the [frame],
/// ensuring that it is not reduced when the frame is symbolic.
/// When that happens, we want to replace frame_equalities by an equality on the frame,
/// mimicking reduction
[@@plugin]
let frame_vc_norm () : Tac unit = with_compat_pre_core 0 (fun _ ->
// Do not normalize mk_rmem/focus_rmem to simplify application of
// the reflexivity lemma on frame_equalities'
norm [delta_attr [`%__steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify];
// After reduction, the term to rewrite might be of the shape
// (frame_equalities' ... /\ frame_equalities' .. /\ ...) == ?u,
// with some frame_equalities' possibly already fully reduced
// We repeatedly split the clause and extract the term on the left
// to generate equalities on atomic subresources
ignore (repeat (fun _ ->
// Try to split the conjunction. If there is no conjunction, we exit the repeat
apply_lemma (`elim_conjunction);
// Dismiss the two uvars created for the RHS, they'll be solved by unification
dismiss ();
dismiss ();
// The first goal is the left conjunction
split ();
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// Rewrites the frame_equalities if it wasn't yet reduced
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
// Finally solve the uvar, finishing the rewriting for this clause
trefl ()
));
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// We do not have conjunctions anymore, we try to apply the frame_equalities rewriting
// If it fails, the frame was not symbolic, so there is nothing to do
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
trefl ())
[@@ __steel_reduce__]
unfold
let frame_equalities
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : prop
= rewrite_with_tactic frame_vc_norm (frame_equalities' frame h0 h1)
/// More lemmas about the abstract can_be_split predicates, to be used as
/// rewriting rules in the tactic below
val can_be_split_dep_refl (p:vprop)
: Lemma (can_be_split_dep true_p p p)
val equiv_can_be_split (p1 p2:vprop) : Lemma
(requires p1 `equiv` p2)
(ensures p1 `can_be_split` p2)
val intro_can_be_split_frame (p q:vprop) (frame:vprop)
: Lemma (requires q `equiv` (p `star` frame))
(ensures can_be_split q p /\ True)
val can_be_split_post_elim (#a #b:Type) (t1:a -> post_t b) (t2:post_t b)
: Lemma (requires (forall (x:a) (y:b). t1 x y `equiv` t2 y))
(ensures t1 `can_be_split_post` t2)
val equiv_forall_refl (#a:Type) (t:post_t a)
: Lemma (t `equiv_forall` t)
val equiv_forall_elim (#a:Type) (t1 t2:post_t a)
: Lemma (requires (forall (x:a). t1 x `equiv` t2 x))
(ensures t1 `equiv_forall` t2)
open FStar.Tactics.CanonCommMonoidSimple.Equiv
(* equiv is an equivalence relation on vprops *)
/// Lemmas establishing the equivalence properties on equiv
val equiv_refl (x:vprop) : Lemma (equiv x x)
val equiv_sym (x y:vprop) : Lemma
(requires equiv x y)
(ensures equiv y x)
val equiv_trans (x y z:vprop) : Lemma
(requires equiv x y /\ equiv y z)
(ensures equiv x z)
module CE = FStar.Algebra.CommMonoid.Equiv
/// Equiv is an equivalence relation for vprops elements
inline_for_extraction noextract let req : CE.equiv vprop =
CE.EQ equiv
equiv_refl
equiv_sym
equiv_trans
(* Star induces a commutative monoid for the equiv equivalence relation *)
/// Lemmas establishing the commutative monoid properties
val cm_identity (x:vprop) : Lemma ((emp `star` x) `equiv` x)
val star_commutative (p1 p2:vprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
val star_associative (p1 p2 p3:vprop)
: Lemma (((p1 `star` p2) `star` p3)
`equiv`
(p1 `star` (p2 `star` p3)))
val star_congruence (p1 p2 p3 p4:vprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
/// Star induces a commutative monoid on vprops
[@__steel_reduce__]
inline_for_extraction noextract let rm : CE.cm vprop req =
CE.CM emp
star
cm_identity
star_associative
star_commutative
star_congruence
(*** Vprop combinators ***)
(* Refining a vprop with a selector predicate *)
/// Separation logic predicate stating the validity of a vprop with an additional refinement on its selector
val vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: mem) : Lemma
(interp (vrefine_hp v p) m <==> (interp (hp_of v) m /\ p (sel_of v m)))
/// Selector type for a refined vprop
[@__steel_reduce__]
let vrefine_t (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot Type
= (x: t_of v {p x})
/// Selector of a refined vprop. Returns a value which satisfies the refinement predicate
val vrefine_sel (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (selector (vrefine_t v p) (vrefine_hp v p))
/// Exposing the definition of the refined selector
val vrefine_sel_eq (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: Mem.hmem (vrefine_hp v p)) : Lemma
(
interp (hp_of v) m /\
vrefine_sel v p m == sel_of v m
)
// [SMTPat ((vrefine_sel v p) m)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above pieces to define a vprop refined by a selector prediacte
[@__steel_reduce__]
let vrefine' (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot vprop' = {
hp = vrefine_hp v p;
t = vrefine_t v p;
sel = vrefine_sel v p;
}
[@__steel_reduce__]
let vrefine (v: vprop) (p: (normal (t_of v) -> Tot prop)) = VUnit (vrefine' v p)
(* Dependent star for vprops *)
/// Separation logic predicate corresponding to a dependent star,
/// where the second predicate depends on the selector value of the first
val vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: mem) : Lemma
(interp (vdep_hp v p) m <==> (interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m))
/// Helper to define the selector type of the second component of the dependent star
let vdep_payload
(v: vprop) (p: ( (t_of v) -> Tot vprop))
(x: t_of v)
: Tot Type
= t_of (p x)
/// Selector type for the dependent star: A dependent tuple, where the second component's type depends on the first vprop
let vdep_t (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot Type
= dtuple2 (t_of v) (vdep_payload v p)
/// Selector for the dependent star
val vdep_sel (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (selector (vdep_t v p) (vdep_hp v p))
/// Exposing the definition of the dependent star's selector when needed for proof purposes
val vdep_sel_eq (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: Mem.hmem (vdep_hp v p)) : Lemma
(
interp (hp_of v) m /\
begin let x = sel_of v m in
interp (hp_of (p x)) m /\
vdep_sel v p m == (| x, sel_of (p x) m |)
end
)
/// Combining the elements above to create a dependent star vprop
[@__steel_reduce__]
let vdep' (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot vprop' = {
hp = vdep_hp v p;
t = vdep_t v p;
sel = vdep_sel v p;
}
[@__steel_reduce__]
let vdep (v: vprop) (p: ( (t_of v) -> Tot vprop)) = VUnit (vdep' v p)
(* Selector rewrite combinator *)
/// The selector of a rewrite combinator applies a function `f` to the current selector of a vprop.
val vrewrite_sel (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot (selector t (normal (hp_of v)))
/// Exposing the definition of the above selector
val vrewrite_sel_eq (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) (h: Mem.hmem (normal (hp_of v))) : Lemma
((vrewrite_sel v f <: selector' _ _) h == f ((normal (sel_of v) <: selector' _ _) h))
// [SMTPat (vrewrite_sel v f h)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above elements to create a rewrite vprop
[@__steel_reduce__]
let vrewrite' (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop' = {
hp = normal (hp_of v);
t = t;
sel = vrewrite_sel v f;
}
[@__steel_reduce__]
let vrewrite (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop = VUnit (vrewrite' v f)
(*** Framing tactic ***)
(* Specialize visit_tm from the standard F* tactic library to reimplement name_appears_in.
AF: As of Jan 14, 2021, calling name_appears_in from FStar.Tactics.Derived leads to a segfault *)
exception Appears
let on_sort_binder (f : term -> Tac unit) (b:binder) : Tac unit =
f b.sort
let rec visit_tm (ff : term -> Tac unit) (t : term) : Tac unit =
let tv = inspect t in
(match tv with
| Tv_FVar _
| Tv_UInst _ _
| Tv_Var _
| Tv_BVar _ -> ()
| Tv_Type _ -> ()
| Tv_Const c -> ()
| Tv_Uvar i u -> ()
| Tv_Unsupp -> ()
| Tv_Unknown -> ()
| Tv_Arrow b c ->
on_sort_binder ff b;
visit_comp ff c
| Tv_Abs b t ->
let b = on_sort_binder (visit_tm ff) b in
visit_tm ff t
| Tv_App l (r, q) ->
visit_tm ff l;
visit_tm ff r
| Tv_Refine b r ->
on_sort_binder ff b;
visit_tm ff r
| Tv_Let r attrs b def t ->
on_sort_binder ff b;
visit_tm ff def;
visit_tm ff t
| Tv_Match sc _ brs ->
visit_tm ff sc;
iter (visit_br ff) brs
| Tv_AscribedT e t topt _ ->
visit_tm ff e;
visit_tm ff t
| Tv_AscribedC e c topt _ ->
visit_tm ff e
); ff t
and visit_br (ff : term -> Tac unit) (b:branch) : Tac unit =
let (p, t) = b in
visit_tm ff t
and visit_comp (ff : term -> Tac unit) (c : comp) : Tac unit =
let cv = inspect_comp c in
match cv with
| C_Total ret -> visit_tm ff ret
| C_GTotal ret -> visit_tm ff ret
| C_Lemma pre post pats ->
visit_tm ff pre;
visit_tm ff post;
visit_tm ff pats
| C_Eff us eff res args decrs ->
visit_tm ff res;
iter (fun (a, q) -> visit_tm ff a) args;
iter (visit_tm ff) decrs
/// Decides whether a top-level name [nm] syntactically
/// appears in the term [t].
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac unit =
match inspect t with
| Tv_FVar fv -> if inspect_fv fv = nm then raise Appears
| t -> ()
in
try ignore (visit_tm ff t); false with
| Appears -> true
| e -> raise e
/// Checks whether term [t] appears in term [i]
let term_appears_in (t:term) (i:term) : Tac bool =
name_appears_in (explode_qn (term_to_string t)) i
/// We define a small language to handle arbitrary separation logic predicates.
/// Separation logic predicates are encoded as atoms for which equality is decidable,
/// here represented as integers
let atom : eqtype = int
let rec atoms_to_string (l:list atom) = match l with
| [] -> ""
| hd::tl -> string_of_int hd ^ " " ^ atoms_to_string tl
/// Reflecting the structure of our separation logic on atmos
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
/// A map from atoms to the terms they represent.
/// The second component of the term corresponds to a default element,
/// ensuring we never raise an exception when trying to access an element in the map
let amap (a:Type) = list (atom * a) * a
/// An empty atom map: The list map is empty
let const (#a:Type) (xa:a) : amap a = ([], xa)
/// Accessing an element in the atom map
// We reimplement List.Tot.Base.assoc because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_assoc (#key: eqtype) (#value: Type) (k: key) (dict: list (key & value)) : Pure (option value)
(requires True)
(ensures (fun res -> res == List.Tot.assoc k dict))
= match dict with
| [] -> None
| (k', v') :: q -> if k = k' then Some v' else my_assoc k q
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match my_assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
/// Updating the atom map. Since select finds the first element corresponding to
/// the atom in the list and we do not have any remove function,
/// we can simply append the new element at the head without removing any possible
/// previous element
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
/// Check whether the current term is an unresolved vprop unification variable.
/// This can happen if either it is a uvar, or it is an unresolved dependent
/// vprop uvar which is applied to some argument
let is_uvar (t:term) : Tac bool = match inspect t with
| Tv_Uvar _ _ -> true
| Tv_App _ _ ->
let hd, args = collect_app t in
Tv_Uvar? (inspect hd)
| _ -> false
/// For a given term t, collect all terms in the list l with the same head symbol
let rec get_candidates (t:term) (l:list term) : Tac (list term) =
let name, _ = collect_app t in
match l with
| [] -> []
| hd::tl ->
let n, _ = collect_app hd in
if term_eq_old n name then (
hd::(get_candidates t tl)
) else get_candidates t tl
/// Try to remove a term that is exactly matching, not just that can be unified
let rec trivial_cancel (t:atom) (l:list atom) =
match l with
| [] -> false, l
| hd::tl ->
if hd = t then
// These elements match, we remove them
true, tl
else (let b, res = trivial_cancel t tl in b, hd::res)
/// Call trivial_cancel on all elements of l1.
/// The first two lists returned are the remainders of l1 and l2.
/// The last two lists are the removed parts of l1 and l2, with
/// the additional invariant that they are equal
let rec trivial_cancels (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, [], []
| hd::tl ->
let b, l2' = trivial_cancel hd l2 in
let l1', l2', l1_del, l2_del = trivial_cancels tl l2' am in
(if b then l1' else hd::l1'), l2',
(if b then hd::l1_del else l1_del), (if b then hd::l2_del else l2_del)
exception Failed
exception Success
/// Helper to print the terms corresponding to the current list of atoms
let rec print_atoms (l:list atom) (am:amap term) : Tac string =
match l with
| [] -> ""
| [hd] -> term_to_string (select hd am)
| hd::tl -> term_to_string (select hd am) ^ " * " ^ print_atoms tl am
/// For a list of candidates l, count the number that can unify with t.
/// Does not try to unify with a uvar, this will be done at the very end.
/// Tries to unify with slprops with a different head symbol, it might
/// be an abbreviation
let rec try_candidates (t:atom) (l:list atom) (am:amap term) : Tac (atom * int) =
match l with
| [] -> t, 0
| hd::tl ->
if is_uvar (select hd am) then (try_candidates t tl am)
else
// Encapsulate unify in a try/with to ensure unification is not actually performed
let res = try if unify (select t am) (select hd am) then raise Success else raise Failed
with | Success -> true | _ -> false in
let t', n' = try_candidates t tl am in
if res && hd <> t' then hd, 1 + n' else t', n'
/// Remove the given term from the list. Only to be called when
/// try_candidates succeeded
let rec remove_from_list (t:atom) (l:list atom) : Tac (list atom) =
match l with
| [] -> fail "atom in remove_from_list not found: should not happen"; []
| hd::tl -> if t = hd then tl else hd::remove_from_list t tl
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
let rec equivalent_lists_once (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, l1_del, l2_del
| hd::tl ->
let t, n = try_candidates hd l2 am in
if n = 1 then (
let l2 = remove_from_list t l2 in
equivalent_lists_once tl l2 (hd::l1_del) (t::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once tl l2 l1_del l2_del am in
hd::rem1, rem2, l1'_del, l2'_del
)
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates by iterating on l2.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
/// This is very close to equivalent_lists_once above, but helps making progress
/// when l1 contains syntactically equal candidates
let rec equivalent_lists_once_l2 (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l2 with
| [] -> l1, [], l1_del, l2_del
| hd::tl ->
if is_uvar (select hd am) then
// We do not try to match the vprop uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
else (
let t, n = try_candidates hd l1 am in
if n = 1 then (
let l1 = remove_from_list t l1 in
equivalent_lists_once_l2 l1 tl (t::l1_del) (hd::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
)
)
let get_head (l:list atom) (am:amap term) : term = match l with
| [] -> `()
| hd::_ -> select hd am
/// Checks whether the list of atoms [l] only contains one unresolved uvar
let is_only_uvar (l:list atom) (am:amap term) : Tac bool =
if List.Tot.Base.length l = 1 then is_uvar (select (List.Tot.Base.hd l) am)
else false
/// Assumes that u is a uvar, checks that all variables in l can be unified with it.
/// Later in the tactic, the uvar will be unified to a star of l *)
let rec try_unifying_remaining (l:list atom) (u:term) (am:amap term) : Tac unit =
match l with
| [] -> ()
| hd::tl ->
try if unify u (select hd am) then raise Success else raise Failed with
| Success -> try_unifying_remaining tl u am
| _ -> fail ("could not find candidate for scrutinee " ^ term_to_string (select hd am))
/// Is SMT rewriting enabled for this binder
let is_smt_binder (b:binder) : Tac bool =
let l = b.attrs in
not (List.Tot.isEmpty (filter (fun t -> is_fvar t (`%smt_fallback)) l))
/// Creates a new term, where all arguments where SMT rewriting is enabled have been replaced
/// by fresh, unconstrained unification variables
let rec new_args_for_smt_attrs (env:env) (l:list argv) (ty:typ) : Tac (list argv * list term) =
let fresh_ghost_uvar ty =
let e = cur_env () in
ghost_uvar_env e ty
in
match l, inspect_unascribe ty with
| (arg, aqualv)::tl, Tv_Arrow binder comp ->
let needs_smt = is_smt_binder binder in
let new_hd =
if needs_smt then (
let arg_ty = tc env arg in
let uvar = fresh_ghost_uvar arg_ty in
unshelve uvar;
flip ();
(uvar, aqualv)
) else (arg, aqualv)
in
begin
let ty2 =
match inspect_comp comp with
| C_Total ty2 -> ty2
| C_Eff _ eff_name ty2 _ _ ->
if eff_name = ["Prims"; "Tot"]
then ty2
else fail "computation type not supported in definition of slprops"
| _ -> fail "computation type not supported in definition of slprops" in
let tl_argv, tl_terms = new_args_for_smt_attrs env tl ty2 in
new_hd::tl_argv, (if needs_smt then arg::tl_terms else tl_terms)
end
| [], Tv_FVar fv -> [], []
| _ -> fail "should not happen. Is an slprop partially applied?"
/// Rewrites all terms in the context to enable SMT rewriting through the use of fresh, unconstrained unification variables
let rewrite_term_for_smt (env:env) (am:amap term * list term) (a:atom) : Tac (amap term * list term)
= let am, prev_uvar_terms = am in
let term = select a am in
let hd, args = collect_app term in
let t = tc env hd in
let new_args, uvar_terms = new_args_for_smt_attrs env args t in
let new_term = mk_app hd new_args in
update a new_term am, List.Tot.append uvar_terms prev_uvar_terms
/// User-facing error message when the framing tactic fails
let fail_atoms (#a:Type) (l1 l2:list atom) (am:amap term) : Tac a
= fail ("could not find a solution for unifying\n" ^ print_atoms l1 am ^ "\nand\n" ^ print_atoms l2 am)
/// Variant of equivalent_lists' below to be called once terms have been rewritten to allow SMT rewriting.
/// If unification succeeds and we have unicity of the solution, this tactic will succeed,
/// and ultimately create an SMT guard that the two terms are actually equal
let rec equivalent_lists_fallback (n:nat) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false)
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then
// Should always be smaller or equal to n
// If it is equal, no progress was made.
fail_atoms rem1 rem2 am
else equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' am
/// Iterates over all terms in [l2] to prepare them for unification with SMT rewriting
let replace_smt_uvars (l1 l2:list atom) (am:amap term) : Tac (amap term * list term)
= let env = cur_env () in
fold_left (rewrite_term_for_smt env) (am, []) l2
/// Recursively calls equivalent_lists_once.
/// Stops when we're done with unification, or when we didn't make any progress
/// If we didn't make any progress, we have too many candidates for some terms.
/// Accumulates rewritings of l1 and l2 in l1_del and l2_del, with the invariant
/// that the two lists are unifiable at any point
/// The boolean indicates if there is a leftover empty frame
let rec equivalent_lists' (n:nat) (use_smt:bool) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false, [])
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true, []))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false, []
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Try to make progress by matching non-uvars of l2 with candidates in l1
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once_l2 rem1 rem2 l1_del' l2_del' am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Should always be smaller or equal to n
// If it is equal, no progress was made.
if use_smt then
// SMT fallback is allowed
let new_am, uvar_terms = replace_smt_uvars rem1 rem2 am in
let l1_f, l2_f, b = equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' new_am in
l1_f, l2_f, b, uvar_terms
else fail_atoms rem1 rem2 am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
/// Checks if term for atom t unifies with fall uvars in l
let rec unifies_with_all_uvars (t:term) (l:list atom) (am:amap term) : Tac bool =
match l with
| [] -> true
| hd::tl ->
if unifies_with_all_uvars t tl am then (
// Unified with tail, try this term
let hd_t = select hd am in
if is_uvar hd_t then (
// The head term is a uvar, try unifying
try if unify t hd_t then raise Success else raise Failed
with | Success -> true | _ -> false
) else true // The uvar is not a head term, we do not need to try it
) else false
/// Puts all terms in l1 that cannot unify with the uvars in l2 at the top:
/// They need to be solved first
let rec most_restricted_at_top (l1 l2:list atom) (am:amap term) : Tac (list atom) =
match l1 with
| [] -> []
| hd::tl ->
if unifies_with_all_uvars (select hd am) l2 am then (most_restricted_at_top tl l2 am) `List.Tot.append` [hd]
else hd::(most_restricted_at_top tl l2 am)
/// Core AC-unification tactic.
/// First remove all trivially equal terms, then try to decide equivalence.
/// Assumes that l1 does not contain any vprop uvar.
/// If it succeeds, returns permutations of l1, l2, and a boolean indicating
/// if l2 has a trailing empty frame to be unified
let equivalent_lists (use_smt:bool) (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term)
= let l1, l2, l1_del, l2_del = trivial_cancels l1 l2 am in
let l1 = most_restricted_at_top l1 l2 am in
let n = List.Tot.length l1 in
let l1_del, l2_del, emp_frame, uvar_terms = equivalent_lists' n use_smt l1 l2 l1_del l2_del am in
l1_del, l2_del, emp_frame, uvar_terms
(* Helpers to relate the actual terms to their representation as a list of atoms *)
open FStar.Reflection.V2.Derived.Lemmas
let rec list_to_string (l:list term) : Tac string =
match l with
| [] -> "end"
| hd::tl -> term_to_string hd ^ " " ^ list_to_string tl
let rec mdenote_gen (#a:Type u#aa) (unit:a) (mult:a -> a -> a) (am:amap a) (e:exp) : a =
match e with
| Unit -> unit
| Atom x -> select x am
| Mult e1 e2 -> mult (mdenote_gen unit mult am e1) (mdenote_gen unit mult am e2)
let rec xsdenote_gen (#a:Type) (unit:a) (mult:a -> a -> a) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> unit
| [x] -> select x am
| x::xs' -> mult (select x am) (xsdenote_gen unit mult am xs')
unfold
let mdenote (#a:Type u#aa) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp) : a =
let open FStar.Algebra.CommMonoid.Equiv in
mdenote_gen (CM?.unit m) (CM?.mult m) am e
unfold
let xsdenote (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom) : a =
let open FStar.Algebra.CommMonoid.Equiv in
xsdenote_gen (CM?.unit m) (CM?.mult m) am xs
// We reimplement List.Tot.Base.append because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_append (#t: Type) (l1 l2: list t) : Pure (list t)
(requires True)
(ensures (fun res -> res == l1 `List.Tot.append` l2))
(decreases l1)
= match l1 with
| [] -> l2
| a :: q -> a :: my_append q l2
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 `my_append` flatten e2
let rec flatten_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 `my_append` xs2) `CE.EQ?.eq eq` CE.CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
let open FStar.Algebra.CommMonoid.Equiv in
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' `my_append` xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' `my_append` xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `CE.EQ?.eq eq` xsdenote eq m am (flatten e)) =
let open FStar.Algebra.CommMonoid.Equiv in
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 `my_append` flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 `my_append` flatten e2))
let monoid_reflect (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (flatten e1) `CE.EQ?.eq eq` xsdenote eq m am (flatten e2)))
: squash (mdenote eq m am e1 `CE.EQ?.eq eq` mdenote eq m am e2) =
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CE.EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (flatten e2));
CE.EQ?.transitivity eq
(xsdenote eq m am (flatten e1))
(xsdenote eq m am (flatten e2))
(mdenote eq m am e2);
CE.EQ?.transitivity eq
(mdenote eq m am e1)
(xsdenote eq m am (flatten e1))
(mdenote eq m am e2)
// Here we sort the variable numbers
// We reimplement List.Tot.Base.sortWith because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_partition (#a: Type) (f: (a -> Tot bool)) (l: list a)
: Pure (list a & list a)
(requires True)
(ensures (fun res -> res == List.Tot.partition f l))
= match l with
| [] -> [], []
| hd::tl ->
let l1, l2 = my_partition f tl in
if f hd
then hd::l1, l2
else l1, hd::l2
let rec partition_ext (#a: Type) (f1 f2: (a -> Tot bool)) (l: list a)
: Lemma
(requires (forall x . f1 x == f2 x))
(ensures (List.Tot.partition f1 l == List.Tot.partition f2 l))
= match l with
| [] -> ()
| hd::tl -> partition_ext f1 f2 tl
let my_bool_of_compare (#a: Type) (f: a -> a -> Tot int) (x: a) (y: a) : Tot bool
= f x y < 0
let rec my_sortWith (#a: Type) (f: (a -> a -> Tot int)) (l:list a)
: Pure (list a)
(requires True)
(ensures (fun res -> res == List.Tot.sortWith f l))
(decreases (List.Tot.length l))
= match l with
| [] -> []
| pivot::tl ->
let hi, lo = my_partition (my_bool_of_compare f pivot) tl in
partition_ext (my_bool_of_compare f pivot) (List.Tot.bool_of_compare f pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f pivot) tl;
my_append (my_sortWith f lo) (pivot::my_sortWith f hi)
let rec sortWith_ext (#a: Type) (f1 f2: (a -> a -> Tot int)) (l: list a)
: Lemma
(requires (forall x y . f1 x y == f2 x y))
(ensures (List.Tot.sortWith f1 l == List.Tot.sortWith f2 l))
(decreases (List.Tot.length l))
= match l with
| [] -> ()
| pivot::tl ->
partition_ext (List.Tot.bool_of_compare f1 pivot) (List.Tot.bool_of_compare f2 pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f1 pivot) tl;
let hi, lo = List.Tot.partition (List.Tot.bool_of_compare f1 pivot) tl in
sortWith_ext f1 f2 lo;
sortWith_ext f1 f2 hi
let permute = list atom -> list atom
let my_compare_of_bool (#a:eqtype) (rel: a -> a -> Tot bool) (x: a) (y: a) : Tot int
= if x `rel` y then -1
else if x = y then 0
else 1
let sort : permute = my_sortWith #int (my_compare_of_bool (<))
#push-options "--fuel 1 --ifuel 1"
let lemma_xsdenote_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (hd:atom) (tl:list atom)
: Lemma (xsdenote eq m am (hd::tl) `CE.EQ?.eq eq`
(CE.CM?.mult m (select hd am) (xsdenote eq m am tl)))
= let open FStar.Algebra.CommMonoid.Equiv in
match tl with
| [] ->
assert (xsdenote eq m am (hd::tl) == select hd am);
CM?.identity m (select hd am);
EQ?.symmetry eq (CM?.unit m `CM?.mult m` select hd am) (select hd am);
CM?.commutativity m (CM?.unit m) (select hd am);
EQ?.transitivity eq
(xsdenote eq m am (hd::tl))
(CM?.unit m `CM?.mult m` select hd am)
(CM?.mult m (select hd am) (xsdenote eq m am tl))
| _ -> EQ?.reflexivity eq (xsdenote eq m am (hd::tl))
let rec partition_equiv (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (pivot:atom) (q:list atom)
: Lemma
(let open FStar.List.Tot.Base in
let hi, lo = partition (bool_of_compare (compare_of_bool (<)) pivot) q in
CE.EQ?.eq eq
(xsdenote eq m am hi `CE.CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am q))
= let open FStar.Algebra.CommMonoid.Equiv in
let open FStar.List.Tot.Base in
let f = bool_of_compare (compare_of_bool (<)) pivot in
let hi, lo = partition f q in
match q with
| [] -> CM?.identity m (xsdenote eq m am hi)
| hd::tl ->
let l1, l2 = partition f tl in
partition_equiv eq m am pivot tl;
assert (EQ?.eq eq
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(xsdenote eq m am tl));
EQ?.reflexivity eq (xsdenote eq m am l1);
EQ?.reflexivity eq (xsdenote eq m am l2);
EQ?.reflexivity eq (xsdenote eq m am hi);
EQ?.reflexivity eq (xsdenote eq m am lo);
if f hd then begin
assert (hi == hd::l1 /\ lo == l2);
lemma_xsdenote_aux eq m am hd l1;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am l1)
(xsdenote eq m am l2);
CM?.associativity m
(select hd am)
(xsdenote eq m am l1)
(xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l1) `CM?.mult m` xsdenote eq m am l2)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end else begin
assert (hi == l1 /\ lo == hd::l2);
lemma_xsdenote_aux eq m am hd l2;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
CM?.commutativity m
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am l1 `CM?.mult m` (select hd am `CM?.mult m` xsdenote eq m am l2))
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1);
CM?.associativity m
(select hd am)
(xsdenote eq m am l2)
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1));
CM?.commutativity m (xsdenote eq m am l2) (xsdenote eq m am l1);
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1)
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1))
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end
let rec sort_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom)
: Lemma (requires True)
(ensures xsdenote eq m am xs `CE.EQ?.eq eq` xsdenote eq m am (sort xs))
(decreases (FStar.List.Tot.Base.length xs))
= let open FStar.Algebra.CommMonoid.Equiv in
match xs with
| [] -> EQ?.reflexivity eq (xsdenote eq m am [])
| pivot::q ->
let sort0 : permute = List.Tot.sortWith #int (List.Tot.compare_of_bool (<)) in
let sort_eq (l: list atom) : Lemma
(sort l == sort0 l)
[SMTPat (sort l)]
= sortWith_ext (my_compare_of_bool (<)) (List.Tot.compare_of_bool (<)) l
in
let open FStar.List.Tot.Base in
let f:int -> int -> int = compare_of_bool (<) in
let hi, lo = partition (bool_of_compare f pivot) q in
flatten_correct_aux eq m am (sort lo) (pivot::sort hi);
assert (xsdenote eq m am (sort xs) `EQ?.eq eq`
CM?.mult m (xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi)));
lemma_xsdenote_aux eq m am pivot (sort hi);
EQ?.reflexivity eq (xsdenote eq m am (sort lo));
CM?.congruence m
(xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi))));
CM?.commutativity m
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
CM?.associativity m
(select pivot am)
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo));
EQ?.transitivity eq
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
((select pivot am `CM?.mult m` xsdenote eq m am (sort hi)) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))));
partition_length (bool_of_compare f pivot) q;
sort_correct_aux eq m am hi;
sort_correct_aux eq m am lo;
EQ?.symmetry eq (xsdenote eq m am lo) (xsdenote eq m am (sort lo));
EQ?.symmetry eq (xsdenote eq m am hi) (xsdenote eq m am (sort hi));
CM?.congruence m
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo))
(xsdenote eq m am hi)
(xsdenote eq m am lo);
assert (EQ?.eq eq
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
EQ?.reflexivity eq (select pivot am);
CM?.congruence m
(select pivot am)
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)));
partition_equiv eq m am pivot q;
CM?.congruence m
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select pivot am)
(xsdenote eq m am q);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q)));
lemma_xsdenote_aux eq m am pivot q;
EQ?.symmetry eq
(xsdenote eq m am (pivot::q))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q))
(xsdenote eq m am xs);
EQ?.symmetry eq (xsdenote eq m am (sort xs)) (xsdenote eq m am xs)
#pop-options
#push-options "--fuel 0 --ifuel 0"
(* Lemmas to be called after a permutation compatible with AC-unification was found *)
let smt_reflexivity (#a:Type) (eq:CE.equiv a) (x y:a)
: Lemma (requires x == y)
(ensures CE.EQ?.eq eq x y)
= CE.EQ?.reflexivity eq x
let identity_left_smt (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a)
: Lemma
(requires x == y)
(ensures CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) y))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_left (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x:a)
: Lemma (CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) x))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_right_diff (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a) : Lemma
(requires CE.EQ?.eq eq x y)
(ensures CE.EQ?.eq eq (CE.CM?.mult m x (CE.CM?.unit m)) y)
= CE.right_identity eq m x;
CE.EQ?.transitivity eq (CE.CM?.mult m x (CE.CM?.unit m)) x y
/// Dismiss possible vprops goals that might have been created by lemma application.
/// These vprops will be instantiated at a later stage; else, Meta-F* will raise an error
let rec dismiss_slprops () : Tac unit =
match term_as_formula' (cur_goal ()) with
| App t _ -> if is_fvar t (`%squash) then () else (dismiss(); dismiss_slprops ())
| _ -> dismiss(); dismiss_slprops ()
/// Recursively removing trailing empty assertions
let rec n_identity_left (n:int) (eq m:term) : Tac unit
= if n = 0 then (
apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
// Cleaning up, in case a uvar has been generated here. It'll be solved later
set_goals [])
else (
apply_lemma (`identity_right_diff (`#eq) (`#m));
// Drop the slprops generated, they will be solved later
dismiss_slprops ();
n_identity_left (n-1) eq m
)
/// Helper lemma: If two vprops (as represented by lists of atoms) are equivalent, then their canonical forms
/// (corresponding to applying the sort function on atoms) are equivalent
let equivalent_sorted (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (l1 l2 l1' l2':list atom)
: Lemma (requires
sort l1 == sort l1' /\
sort l2 == sort l2' /\
xsdenote eq m am l1 `CE.EQ?.eq eq` xsdenote eq m am l2)
(ensures xsdenote eq m am l1' `CE.EQ?.eq eq` xsdenote eq m am l2')
= let open FStar.Algebra.CommMonoid.Equiv in
sort_correct_aux eq m am l1';
sort_correct_aux eq m am l1;
EQ?.symmetry eq (xsdenote eq m am l1) (xsdenote eq m am (sort l1));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l1'))
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l1)
(xsdenote eq m am l2);
sort_correct_aux eq m am l2;
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l2)
(xsdenote eq m am (sort l2));
sort_correct_aux eq m am l2';
EQ?.symmetry eq (xsdenote eq m am l2') (xsdenote eq m am (sort l2'));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l2))
(xsdenote eq m am l2')
#pop-options
/// Finds the position of first occurrence of x in xs.
/// This is now specialized to terms and their funny term_eq_old.
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) (decreases xs) =
match xs with
| [] -> None
| x'::xs' -> if term_eq_old x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = List.Tot.Base.length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts `List.Tot.append` [t], update vfresh t am)
/// Transforming a term into the corresponding list of atoms
/// If the atomic terms were already present in the map [am], then
/// they correspond to the same atoms
/// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app_ref t in
match inspect_unascribe hd, List.Tot.Base.list_unref tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq_old (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq_old t unit
then (Unit, ts, am)
else fatom t ts am
/// Performs the required normalization before calling the function above
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CE.CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CE.CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
/// Meta-F* internal: Transforms the atom map into a term
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
/// `am` is an amap (basically a list) of terms, each representing a value
/// of type `a` (whichever we are canonicalizing). This functions converts
/// `am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) )
/// Transforms a term representatoin into a term through quotation
let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt))
let rec quote_atoms (l:list atom) = match l with
| [] -> `[]
| hd::tl -> let nt = pack (Tv_Const (C_Int hd)) in
(`Cons (`#nt) (`#(quote_atoms tl)))
/// Some internal normalization steps to make reflection of vprops into atoms and atom permutation go smoothly.
/// We reimplemented sorting/list functions to normalize our uses without normalizing those introduced by the user.
let normal_tac_steps = [primops; iota; zeta; delta_only [
`%mdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm]]
/// The normalization function, using the above normalization steps
let normal_tac (#a:Type) (x:a) : a = FStar.Pervasives.norm normal_tac_steps x
/// Helper lemma to establish relation between normalized and initial values
let normal_elim (x:Type0) : Lemma
(requires x)
(ensures normal_tac x)
= ()
exception Result of list atom * list atom * bool * list term
/// F* equalities are typed, but the generated type sometimes is a unification variable.
/// This helper ensures that such unification variables are not left unresolved, which would lead to an error
let close_equality_typ' (t:term) : Tac unit =
let f = term_as_formula' t in
match f with
| Comp (Eq (Some u)) l _ -> if is_uvar u then (unshelve u; exact_with_ref (tc (cur_env()) l))
| _ -> ()
/// Recursively closing equality types in a given term (usually a unification constraint)
let close_equality_typ (t:term) : Tac unit =
visit_tm close_equality_typ' t
/// Core unification tactic.
/// Transforms terms into their atom representations,
/// Tries to find a solution to AC-unification, and if so,
/// soundly permutes the atom representations before calling the unifier
/// to check the validity of the provided solution.
/// In the case where SMT rewriting was needed, equalities abduction is performed by instantiating the
/// abduction prop unification variable with the corresponding guard
/// 09/24:
///
/// The tactic internally builds a map from atoms to terms
/// and uses the map for reflecting the goal to atoms representation
/// During reflection, the tactics engine typechecks the amap, and hence all
/// the terms again
/// This typechecking of terms is unnecessary, since the terms are coming
/// from the goal, and hence are already well-typed
/// Worse, re-typechecking them may generate a lot of SMT queries
/// And even worse, the SMT queries are discharged in the static context,
/// requiring various workarounds (e.g. squash variables for if conditions etc.)
///
/// To fix this, we now "name" the terms and use the amap with names
///
/// Read through the canon_l_r function for how we do this
/// The following three lemmas are helpers to manipulate the goal in canon_l_r
[@@ no_subtyping]
let inst_bv (#a:Type) (#p:a -> Type0) (#q:Type0) (x:a) (_:squash (p x ==> q))
: Lemma ((forall (x:a). p x) ==> q) = ()
let modus_ponens (#p #q:Type0) (_:squash p)
: Lemma ((p ==> q) ==> q)
= ()
let cut (p q:Type0) : Lemma (requires p /\ (p ==> q)) (ensures q) = ()
let and_true (p: Type0) : Lemma (requires (p /\ (p ==> True))) (ensures p) = ()
let solve_implies_true (p: Type0) : Lemma (p ==> True) = ()
// This exception is raised for failures that should not be considered
// hard but should allow postponing the goal instead
exception Postpone of string
(* NOTE! Redefining boolean disjunction to *not* be short-circuiting,
since we cannot use an effectful result as argument of Prims.op_BarBar *)
private
let bor = op_BarBar
private
let is_and (t:term) : bool =
is_any_fvar t [`%(/\); `%prop_and]
private
let is_squash (t:term) : bool =
is_any_fvar t [`%squash; `%auto_squash]
private
let is_star (t:term) : bool =
is_any_fvar t [`%star; `%VStar]
private
let is_star_or_unit (t:term) : bool =
is_any_fvar t [`%star; `%VStar; `%VUnit]
let rec unify_pr_with_true (pr: term) : Tac unit =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| [pr_l, _; pr_r, _] ->
unify_pr_with_true pr_l;
unify_pr_with_true pr_r
| _ -> fail "unify_pr_with_true: ill-formed /\\"
else
match inspect_unascribe hd with
| Tv_Uvar _ _ ->
if unify pr (`true_p)
then ()
else begin
fail "unify_pr_with_true: could not unify SMT prop with True"
end
| _ ->
if List.Tot.length (free_uvars pr) = 0
then ()
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "unify_pr_with_true: some uvars are still there")
let elim_and_l_squash (#a #b: Type0) (#goal: Type0) (f: (a -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash a) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash a) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let elim_and_r_squash (#a #b: Type0) (#goal: Type0) (f: (b -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash b) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash b) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let _return_squash (#a: Type) () (x: a) : Tot (squash a) =
FStar.Squash.return_squash x
let rec set_abduction_variable_term (pr: term) : Tac term =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| (pr_l, Q_Explicit) :: (pr_r, Q_Explicit) :: [] ->
if List.Tot.length (free_uvars pr_r) = 0
then
let arg = set_abduction_variable_term pr_l in
mk_app (`elim_and_l_squash) [arg, Q_Explicit]
else if List.Tot.length (free_uvars pr_l) = 0
then
let arg = set_abduction_variable_term pr_r in
mk_app (`elim_and_r_squash) [arg, Q_Explicit]
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "set_abduction_variable_term: there are still uvars on both sides of l_and")
| _ -> fail "set_abduction_variable: ill-formed /\\"
else
match inspect hd with
| Tv_Uvar _ _ ->
mk_app (`_return_squash) [`(), Q_Explicit]
| _ -> fail "set_abduction_variable: cannot unify"
let set_abduction_variable () : Tac unit =
let g = cur_goal () in
match inspect_unascribe g with
| Tv_Arrow b _ ->
let pr = b.sort in
exact (set_abduction_variable_term pr)
| _ -> fail "Not an arrow goal"
let canon_l_r (use_smt:bool)
(carrier_t:term) //e.g. vprop
(eq:term) (m:term)
(pr pr_bind:term)
(lhs rel rhs:term) : Tac unit =
let m_unit = norm_term [iota; zeta; delta] (`(CE.CM?.unit (`#m))) in
let m_mult = norm_term [iota; zeta; delta] (`(CE.CM?.mult (`#m))) in
let am = const m_unit in (* empty map *)
let (r1_raw, ts, am) = reification eq m [] am lhs in
let (r2_raw, _, am) = reification eq m ts am rhs in
// Encapsulating this in a try/with to avoid spawning uvars for smt_fallback
let l1_raw, l2_raw, emp_frame, uvar_terms =
try
let res = equivalent_lists use_smt (flatten r1_raw) (flatten r2_raw) am in
raise (Result res) with
| TacticFailure m -> fail m
| Result res -> res
| _ -> fail "uncaught exception in equivalent_lists"
in
//So now we have:
// am : amap mapping atoms to terms in lhs and rhs
// r1_raw : an expression in the atoms language for lhs
// r2_raw : an expression in the atoms language for rhs
// l1_raw : sorted list of atoms in lhs
// l2_raw : sorted list of atoms in rhs
//
//In particular, r1_raw and r2_raw capture lhs and rhs structurally
// (i.e. same associativity, emp, etc.)
//
//Whereas l1_raw and l2_raw are "canonical" representations of lhs and rhs
// (vis xsdenote)
//Build an amap where atoms are mapped to names
//The type of these names is carrier_t passed by the caller
let am_bv : list (atom & namedv & typ) = mapi (fun i (a, _) ->
let x = fresh_namedv_named ("x" ^ (string_of_int i)) in
(a, x, carrier_t)) (fst am) in
let am_bv_term : amap term = map (fun (a, bv, _sort) -> a, pack (Tv_Var bv)) am_bv, snd am in
let mdenote_tm (e:exp) : term = mdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
e in
let xsdenote_tm (l:list atom) : term = xsdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
l in
//Get the named representations of lhs, rhs, and their respective sorted versions
let lhs_named = mdenote_tm r1_raw in
let rhs_named = mdenote_tm r2_raw in
let sorted_lhs_named = xsdenote_tm l1_raw in
let sorted_rhs_named = xsdenote_tm l2_raw in
//We now build an auxiliary goal of the form:
//
// forall xs. (sorted_lhs_named `rel` sorted_rhs_names) ==> (lhs_names `rel` rhs_named)
//
// where xs are the fresh names that we introduced earlier
let mk_rel (l r:term) : term =
mk_app rel [(l, Q_Explicit); (r, Q_Explicit)] in
let imp_rhs = mk_rel lhs_named rhs_named in
let imp_lhs = mk_rel sorted_lhs_named sorted_rhs_named in
let imp =
mk_app (pack (Tv_FVar (pack_fv imp_qn))) [(imp_lhs, Q_Explicit); (imp_rhs, Q_Explicit)] in
//fold over names and quantify over them
let aux_goal = fold_right (fun (_, nv, sort) t ->
let nvv = inspect_namedv nv in
let b = {
ppname = nvv.ppname;
uniq = nvv.uniq;
qual = Q_Explicit;
attrs = [];
sort = sort;
} in
let _, t = close_term b t in
let t = pack (Tv_Abs b t) in
mk_app (pack (Tv_FVar (pack_fv forall_qn))) [t, Q_Explicit]) am_bv imp in
//Introduce a cut with the auxiliary goal
apply_lemma (`cut (`#aux_goal));
//After the cut, the goal looks like: A /\ (A ==> G)
// where A is the auxiliary goal and G is the original goal (lhs `rel` rhs)
split ();
//Solving A:
focus (fun _ ->
//The proof follows a similar structure as before naming was introduced
//
//Except that this time, the amap is in terms of names,
// and hence its typechecking is faster and (hopefully) no SMT involved
//Open the forall binders in A, and use the fresh names to build an amap
let am = fold_left (fun am (a, _, _sort) ->
let b = forall_intro () in
let v = binding_to_namedv b in
(a, pack (Tv_Var v))::am) [] am_bv, snd am in
//Introduce the lhs of implication
let b = implies_intro () in
//Now the proof is the plain old canon proof
let am = convert_am am in
let r1 = quote_exp r1_raw in
let r2 = quote_exp r2_raw in
change_sq (`(normal_tac (mdenote (`#eq) (`#m) (`#am) (`#r1)
`CE.EQ?.eq (`#eq)`
mdenote (`#eq) (`#m) (`#am) (`#r2))));
apply_lemma (`normal_elim);
apply (`monoid_reflect );
let l1 = quote_atoms l1_raw in
let l2 = quote_atoms l2_raw in
apply_lemma (`equivalent_sorted (`#eq) (`#m) (`#am) (`#l1) (`#l2));
if List.Tot.length (goals ()) = 0 then ()
else begin
norm [primops; iota; zeta; delta_only
[`%xsdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm;
`%CE.__proj__EQ__item__eq;
`%req;
`%star;]
];
//The goal is of the form G1 /\ G2 /\ G3, as in the requires of equivalent_sorted
split ();
split ();
//Solve G1 and G2 by trefl
trefl ();
trefl ();
//G3 is the lhs of the implication in the auxiliary goal
// that we have in our assumptions via b
apply (`FStar.Squash.return_squash);
exact (binding_to_term b)
end);
dismiss_slprops();
//Our goal now is A ==> G (where G is the original goal (lhs `rel` rhs))
//Open the forall binders
ignore (repeatn (List.Tot.length am_bv) (fun _ -> apply_lemma (`inst_bv)));
//And apply modus ponens
apply_lemma (`modus_ponens);
//Now our goal is sorted_lhs_named `rel` sorted_rhs_named
// where the names are replaced with fresh uvars (from the repeatn call above)
//So we just trefl
match uvar_terms with
| [] -> // Closing unneeded prop uvar
focus (fun _ ->
try
apply_lemma (`and_true);
split ();
if emp_frame then apply_lemma (`identity_left (`#eq) (`#m))
else apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
unify_pr_with_true pr; // MUST be done AFTER identity_left/reflexivity, which can unify other uvars
apply_lemma (`solve_implies_true)
with
| TacticFailure msg -> fail ("Cannot unify pr with true: " ^ msg)
| e -> raise e
)
| l ->
if emp_frame then (
apply_lemma (`identity_left_smt (`#eq) (`#m))
) else (
apply_lemma (`smt_reflexivity (`#eq))
);
t_trefl true;
close_equality_typ (cur_goal());
revert ();
set_abduction_variable ()
/// Wrapper around the tactic above
/// The constraint should be of the shape `squash (equiv lhs rhs)`
let canon_monoid (use_smt:bool) (carrier_t:term) (eq m:term) (pr pr_bind:term) : Tac unit =
norm [iota; zeta];
let t = cur_goal () in
// removing top-level squash application
let sq, rel_xy = collect_app_ref t in
// unpacking the application of the equivalence relation (lhs `EQ?.eq eq` rhs)
(match rel_xy with
| [(rel_xy,_)] -> (
let open FStar.List.Tot.Base in
let rel, xy = collect_app_ref rel_xy in
if (length xy >= 2)
then (
match index xy (length xy - 2) , index xy (length xy - 1) with
| (lhs, Q_Explicit) , (rhs, Q_Explicit) ->
canon_l_r use_smt carrier_t eq m pr pr_bind lhs rel rhs
| _ -> fail "Goal should have been an application of a binary relation to 2 explicit arguments"
)
else (
fail "Goal should have been an application of a binary relation to n implicit and 2 explicit arguments"
)
)
| _ -> fail "Goal should be squash applied to a binary relation")
/// Instantiation of the generic AC-unification tactic with the vprop commutative monoid
let canon' (use_smt:bool) (pr:term) (pr_bind:term) : Tac unit =
canon_monoid use_smt (pack (Tv_FVar (pack_fv [`%vprop]))) (`req) (`rm) pr pr_bind
/// Counts the number of unification variables corresponding to vprops in the term [t]
let rec slterm_nbr_uvars (t:term) : Tac int =
match inspect_unascribe t with
| Tv_Uvar _ _ -> 1
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
slterm_nbr_uvars_argv args
else if is_uvar hd then 1
else 0
| Tv_Abs _ t -> slterm_nbr_uvars t
| _ -> 0
and slterm_nbr_uvars_argv (args: list argv) : Tac int =
fold_left (fun n (x, _) -> n + slterm_nbr_uvars x) 0 args
let guard_vprop (v: vprop) : Tot vprop = v
let rec all_guards_solved (t: term) : Tac bool =
match inspect_unascribe t with
| Tv_Abs _ t -> all_guards_solved t
| Tv_App _ _ ->
let hd, args = collect_app t in
if hd `is_fvar` (`%guard_vprop)
then slterm_nbr_uvars_argv args = 0
else if not (all_guards_solved hd)
then false
else
List.Tot.fold_left
(fun (tac: (unit -> Tac bool)) (tm, _) ->
let f () : Tac bool =
if all_guards_solved tm
then tac ()
else false
in
f
)
(let f () : Tac bool = true in f)
args
()
| _ -> true
let unfold_guard () : Tac bool =
if all_guards_solved (cur_goal ())
then begin
focus (fun _ -> norm [delta_only [(`%guard_vprop)]]);
true
end else
false
let rec term_is_uvar (t: term) (i: int) : Tac bool = match inspect t with
| Tv_Uvar i' _ -> i = i'
| Tv_App _ _ ->
let hd, args = collect_app t in
term_is_uvar hd i
| _ -> false
val solve_can_be_split_for : string -> Tot unit
val solve_can_be_split_lookup : unit // FIXME: src/reflection/FStar.Reflection.Basic.lookup_attr only supports fvar attributes, so we cannot directly look up for (solve_can_be_split_for blabla), we need a nullary attribute to use with lookup_attr
let rec dismiss_all_but_last' (l: list goal) : Tac unit =
match l with
| [] | [_] -> set_goals l
| _ :: q -> dismiss_all_but_last' q
let dismiss_all_but_last () : Tac unit =
dismiss_all_but_last' (goals ())
let rec dismiss_non_squash_goals' (keep:list goal) (goals:list goal)
: Tac unit
= match goals with
| [] -> set_goals (List.Tot.rev keep)
| hd :: tl ->
let f = term_as_formula' (goal_type hd) in
match f with
| App hs _ ->
if is_squash hs
then dismiss_non_squash_goals' (hd::keep) tl
else dismiss_non_squash_goals' keep tl
| _ ->
dismiss_non_squash_goals' keep tl
let dismiss_non_squash_goals () =
let g = goals () in
dismiss_non_squash_goals' [] g
let rec term_mem (te: term) (l: list term) : Tac bool =
match l with
| [] -> false
| t' :: q ->
if te `term_eq_old` t' then true else term_mem te q
let rec lookup_by_term_attr' (attr: term) (e: env) (found: list fv) (l: list fv) : Tac (list fv)
=
match l with
| [] -> List.Tot.rev found
| f :: q ->
let n = inspect_fv f in
begin match lookup_typ e n with
| None -> lookup_by_term_attr' attr e found q
| Some se ->
let found' =
if attr `term_mem` sigelt_attrs se
then f :: found
else found
in
lookup_by_term_attr' attr e found' q
end
let lookup_by_term_attr (label_attr: term) (attr: term) : Tac (list fv) =
let e = cur_env () in
let candidates = lookup_attr label_attr e in
lookup_by_term_attr' attr e [] candidates
let rec bring_last_goal_on_top' (others: list goal) (goals: list goal) : Tac unit =
match goals with
| [] -> set_goals (List.Tot.rev others)
| last :: [] -> set_goals (last :: List.Tot.rev others)
| a :: q -> bring_last_goal_on_top' (a :: others) q
let bring_last_goal_on_top () =
let g = goals () in
bring_last_goal_on_top' [] g
let rec extract_contexts
(lemma_left lemma_right label_attr attr: term)
(t: term)
: Tac (option (unit -> Tac unit))
=
let hd, tl = collect_app t in
if is_star hd
then
match tl with
| (t_left, Q_Explicit) :: (t_right, Q_Explicit) :: [] ->
let extract_right () : Tac (option (unit -> Tac unit)) =
match extract_contexts lemma_left lemma_right label_attr attr t_right with
| None -> None
| Some f ->
Some (fun _ ->
apply_lemma lemma_right;
dismiss_all_but_last ();
f ()
)
in
begin match extract_contexts lemma_left lemma_right label_attr attr t_left with
| None -> extract_right ()
| Some f ->
Some (fun _ ->
try
apply_lemma lemma_left;
dismiss_all_but_last ();
f ()
with _ ->
begin match extract_right () with
| None -> fail "no context on the right either"
| Some g -> g ()
end
)
end
| _ -> None
else
let candidates =
let hd_fv = match inspect_unascribe hd with
| Tv_FVar fv -> Some fv
| Tv_UInst fv _ -> Some fv
| _ -> None
in
match hd_fv with
| None -> []
| Some hd_fv ->
let hd_s' = implode_qn (inspect_fv hd_fv) in
let hd_s = pack (Tv_Const (C_String hd_s')) in
lookup_by_term_attr label_attr (mk_app attr [hd_s, Q_Explicit])
in
if Nil? candidates
then None
else
Some (fun _ ->
first (List.Tot.map (fun candidate _ -> apply_lemma (pack (Tv_FVar candidate)) <: Tac unit) candidates);
dismiss_non_squash_goals ()
)
let extract_cbs_contexts = extract_contexts
(`can_be_split_congr_l)
(`can_be_split_congr_r)
(`solve_can_be_split_lookup)
(`solve_can_be_split_for)
let open_existentials () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [delta_attr [`%__reduce__]];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split)
then
match tl with
| _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match extract_cbs_contexts rhs with
| None -> fail "open_existentials: no context found"
| Some f ->
apply_lemma (`can_be_split_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top () // so that any preconditions for the selected lemma are scheduled for later
end
| _ -> fail "open_existentials: ill-formed can_be_split"
else
fail "open_existentials: not a can_be_split goal"
| _ -> fail "open_existentials: not a squash goal"
let try_open_existentials () : Tac bool =
focus (fun _ ->
try
open_existentials ();
true
with _ -> false
)
(* Solving the can_be_split* constraints, if they are ready to be scheduled
A constraint is deemed ready to be scheduled if it contains only one vprop unification variable
If so, constraints are stripped to their underlying definition based on vprop equivalence,
introducing universally quantified variables when needed.
Internal details of the encoding are removed through normalization, before calling the AC-unification
tactic defined above
*)
/// Solves a `can_be_split` constraint
let rec solve_can_be_split (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ -> apply_lemma (`equiv_can_be_split);
dismiss_slprops();
// If we have exactly the same term on both side,
// equiv_sl_implies would solve the goal immediately
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if rnbr = 0 then apply_lemma (`equiv_sym);
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
with
| _ ->
let opened_some = try_open_existentials () in
if opened_some then solve_can_be_split args // we only need args for their number of uvars, which has not changed
else false
) else false
| _ -> false // Ill-formed can_be_split, should not happen
/// Solves a can_be_split_dep constraint
let solve_can_be_split_dep (args:list argv) : Tac bool =
match args with
| [(p, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
dismiss_slprops ();
or_else
(fun _ ->
let b = unify p (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true p (binding_to_term p_bind)));
true
) else false
| _ -> fail "ill-formed can_be_split_dep"
/// Helper rewriting lemma
val emp_unit_variant (p:vprop) : Lemma
(ensures can_be_split p (p `star` emp))
/// Solves a can_be_split_forall constraint
let solve_can_be_split_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
ignore (forall_intro());
apply_lemma (`equiv_can_be_split);
dismiss_slprops();
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed can_be_split_forall, should not happen"
val solve_can_be_split_forall_dep_for : string -> Tot unit
val solve_can_be_split_forall_dep_lookup : unit // FIXME: same as solve_can_be_split_for above
let extract_cbs_forall_dep_contexts
=
extract_contexts
(`can_be_split_forall_dep_congr_l)
(`can_be_split_forall_dep_congr_r)
(`solve_can_be_split_forall_dep_lookup)
(`solve_can_be_split_forall_dep_for)
let open_existentials_forall_dep () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_forall_dep_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [
delta_only [
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%rm;
];
iota;
delta_attr [`%__reduce__];
];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split_forall_dep)
then
match tl with
| _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: []
| (_, Q_Implicit) (* #a *) :: _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match inspect_unascribe rhs with
| Tv_Abs _ body ->
begin match extract_cbs_forall_dep_contexts body with
| None -> fail "open_existentials_forall_dep: no candidate"
| Some f ->
apply_lemma (`can_be_split_forall_dep_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top ();
if Cons? (goals ()) then norm []
end
| _ -> fail "open_existentials_forall_dep : not an abstraction"
end
| _ -> fail "open_existentials_forall_dep : wrong number of arguments to can_be_split_forall_dep"
else
fail "open_existentials_forall_dep : not a can_be_split_forall_dep goal"
| _ ->
fail "open_existentials_forall_dep : not a squash/auto_squash goal"
let try_open_existentials_forall_dep () : Tac bool
=
focus (fun _ ->
try
open_existentials_forall_dep ();
true
with _ -> false
)
/// Solves a can_be_split_forall_dep constraint
let rec solve_can_be_split_forall_dep (args:list argv) : Tac bool =
match args with
| [_; (pr, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ ->
norm [];
let x = forall_intro () in
let pr = mk_app pr [(binding_to_term x, Q_Explicit)] in
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
or_else (fun _ -> flip()) (fun _ -> ());
let pr = norm_term [] pr in
or_else
(fun _ ->
let b = unify pr (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true pr (binding_to_term p_bind)));
true
with
| Postpone msg ->
false
| TacticFailure msg ->
let opened = try_open_existentials_forall_dep () in
if opened
then solve_can_be_split_forall_dep args // we only need args for their number of uvars, which has not changed
else fail msg
| _ -> fail "Unexpected exception in framing tactic"
) else false
| _ -> fail "Ill-formed can_be_split_forall_dep, should not happen"
/// Solves an equiv_forall constraint
let solve_equiv_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv_forall, should not happen"
/// Solves an equiv constraint
let solve_equiv (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip ()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv, should not happen"
/// Solves a can_be_split_post constraint
let solve_can_be_split_post (args:list argv) : Tac bool =
match args with
| [_; _; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> norm[];
let g = _cur_goal () in
ignore (forall_intro());
apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "ill-formed can_be_split_post"
/// Checks whether any of the two terms was introduced during a Steel monadic return
let is_return_eq (l r:term) : Tac bool =
let nl, al = collect_app l in
let nr, ar = collect_app r in
is_fvar nl (`%return_pre) || is_fvar nr (`%return_pre)
/// Solves indirection equalities introduced by the layered effects framework.
/// If these equalities were introduced during a monadic return, they need to be solved
/// at a later stage to avoid overly restricting contexts of unification variables
let rec solve_indirection_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
if is_return_eq l r then later() else trefl();
solve_indirection_eqs (fuel - 1)
| _ -> later(); solve_indirection_eqs (fuel - 1)
/// Solve all equalities in the list of goals by calling the F* unifier
let rec solve_all_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_all_eqs (fuel - 1)
| _ -> later(); solve_all_eqs (fuel - 1)
/// It is important to not normalize the return_pre eqs goals before unifying
/// See test7 in FramingTestSuite for a detailed explanation
let rec solve_return_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_return_eqs (fuel - 1)
| _ -> later(); solve_return_eqs (fuel - 1)
/// Strip annotations in a goal, to get to the underlying slprop equivalence
let goal_to_equiv (loc:string) : Tac unit
= let t = cur_goal () in
let f = term_as_formula' t in
match f with
| App hd0 t ->
if not (is_fvar hd0 (`%squash))
then fail (loc ^ " unexpected non-squash goal in goal_to_equiv");
let hd, args = collect_app t in
if hd `is_fvar` (`%can_be_split) then (
apply_lemma (`equiv_can_be_split)
) else if hd `is_fvar` (`%can_be_split_forall) then (
ignore (forall_intro ());
apply_lemma (`equiv_can_be_split)
) else if hd `is_fvar` (`%equiv_forall) then (
apply_lemma (`equiv_forall_elim);
ignore (forall_intro ())
) else if hd `is_fvar` (`%can_be_split_post) then (
apply_lemma (`can_be_split_post_elim);
dismiss_slprops();
ignore (forall_intro ());
ignore (forall_intro ())
) else if hd `is_fvar` (`%can_be_split_dep) then (
fail ("can_be_split_dep not supported in " ^ loc)
) else if hd `is_fvar` (`%can_be_split_forall_dep) then (
fail ("can_be_split_forall_dep not supported in " ^ loc)
) else
// This should never happen
fail (loc ^ " goal in unexpected position")
| _ -> fail (loc ^ " unexpected goal")
let rec term_dict_assoc
(#a: Type)
(key: term)
(l: list (term & a))
: Tac (list a)
= match l with
| [] -> []
| (k, v) :: q ->
let q' = term_dict_assoc key q in
if k `term_eq_old` key
then (v :: q')
else q'
/// Returns true if the goal has been solved, false if it should be delayed
let solve_or_delay (dict: list (term & (unit -> Tac bool))) : Tac bool =
// Beta-reduce the goal first if possible
norm [];
let f = term_as_formula' (cur_goal ()) in
match f with
| App hd0 t ->
if is_fvar hd0 (`%squash)
then
let hd, args = collect_app t in
if hd `is_fvar` (`%can_be_split) then solve_can_be_split args
else if hd `is_fvar` (`%can_be_split_forall) then solve_can_be_split_forall args
else if hd `is_fvar` (`%equiv_forall) then solve_equiv_forall args
else if hd `is_fvar` (`%can_be_split_post) then solve_can_be_split_post args
else if hd `is_fvar` (`%equiv) then solve_equiv args
else if hd `is_fvar` (`%can_be_split_dep) then solve_can_be_split_dep args
else if hd `is_fvar` (`%can_be_split_forall_dep) then solve_can_be_split_forall_dep args
else
let candidates = term_dict_assoc hd dict in
let run_tac (tac: unit -> Tac bool) () : Tac bool =
focus tac
in
begin try
first (List.Tot.map run_tac candidates)
with _ ->
(* this is a logical goal, solve it only if it has no uvars *)
if List.Tot.length (free_uvars t) = 0
then (smt (); true)
else false
end
else
// TODO: handle non-squash goals here
false
| Comp (Eq _) l r ->
let lnbr = List.Tot.length (free_uvars l) in
let rnbr = List.Tot.length (free_uvars r) in
// Only solve equality if one of the terms is completely determined
if lnbr = 0 || rnbr = 0 then (trefl (); true) else false
| _ -> false
/// Returns true if it successfully solved a goal
/// If it returns false, it means it didn't find any solvable goal,
/// which should mean only delayed goals are left
let rec vprop_term_uvars (t:term) : Tac (list int) =
match inspect_unascribe t with
| Tv_Uvar i' _ -> [i']
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
argv_uvars args
else
vprop_term_uvars hd
| Tv_Abs _ t -> vprop_term_uvars t
| _ -> []
and argv_uvars (args: list argv) : Tac (list int) =
let t : unit -> Tac (list int) =
fold_left (fun (n: unit -> Tac (list int)) (x, _) ->
let t () : Tac (list int) =
let l1 = n () in
let l2 = vprop_term_uvars x in
l1 `List.Tot.append` l2
in
t
)
(fun _ -> [])
args
in
t ()
let rec remove_dups_from_sorted (#t: eqtype) (l: list t) : Tot (list t) = match l with
| [] | [_] -> l
| a1 :: a2 :: q -> if a1 = a2 then remove_dups_from_sorted (a2 :: q) else a1 :: remove_dups_from_sorted (a2 :: q)
let simplify_list (l: list int) : Tot (list int) =
remove_dups_from_sorted (List.Tot.sortWith (List.Tot.compare_of_bool (<)) l)
let goal_term_uvars (t: term) : Tac (list int) =
let hd, tl = collect_app t in
if hd `is_fvar` (`%squash)
then
match tl with
| [tl0, Q_Explicit] ->
let _, tl1 = collect_app tl0 in
simplify_list (argv_uvars tl1)
| _ -> dump "ill-formed squash"; []
else
[]
let rec merge_sorted (l1 l2: list int) : Tot (list int)
(decreases (List.Tot.length l1 + List.Tot.length l2))
= match l1 with
| [] -> l2
| a1 :: q1 ->
begin match l2 with
| [] -> l1
| a2 :: q2 ->
if a1 < a2
then a1 :: merge_sorted q1 l2
else if a2 < a1
then a2 :: merge_sorted l1 q2
else a1 :: merge_sorted q1 q2
end
let rec sorted_lists_intersect (l1 l2: list int) : Tot bool
(decreases (List.Tot.length l1 + List.Tot.length l2))
= match l1 with
| [] -> false
| a1 :: q1 ->
begin match l2 with
| [] -> false
| a2 :: q2 ->
if a1 = a2
then true
else if a1 < a2
then sorted_lists_intersect q1 l2
else sorted_lists_intersect l1 q2
end
/// TODO: cache the list of variables for each goal, to avoid computing them several times
/// Compute the list of all vprop uvars that appear in the same goal as unsolved guard_vprop
let rec compute_guarded_uvars1 (accu: list int) (g: list goal) : Tac (list int) =
match g with
| [] -> accu
| a :: q ->
let t = goal_type a in
let accu' =
if all_guards_solved t
then accu
else merge_sorted accu (goal_term_uvars t)
in
compute_guarded_uvars1 accu' q
/// Enrich the list of vprop uvars with those that appear in the same goal
let rec compute_guarded_uvars2 (accu: list int) (g: list goal) : Tac (list int) =
match g with
| [] -> accu
| a :: q ->
let t = goal_type a in
let l = goal_term_uvars t in
let accu' =
if sorted_lists_intersect accu l
then merge_sorted accu l
else accu
in
compute_guarded_uvars2 accu' q
let rec compute_guarded_uvars3 (accu: list int) (g: list goal) : Tac (list int) =
let accu' = compute_guarded_uvars2 accu g in
if accu = accu'
then accu
else compute_guarded_uvars3 accu' g
let compute_guarded_uvars () : Tac (list int) =
let g = goals () in
let accu = compute_guarded_uvars1 [] g in
compute_guarded_uvars3 accu g
let rec pick_next (guarded_uvars: list int) (dict: _) (fuel: nat) : Tac bool =
if fuel = 0
then false
else match goals () with
| [] -> true
| a::_ ->
let t = goal_type a in
let l = goal_term_uvars t in
let next () : Tac bool =
later ();
pick_next guarded_uvars dict (fuel - 1)
in
if sorted_lists_intersect guarded_uvars l
then next ()
else if solve_or_delay dict
then true
else next ()
/// Main loop to schedule solving of goals.
/// The goals () function fetches all current goals in the context
let rec resolve_tac (dict: _) : Tac unit =
match goals () with
| [] -> ()
| g ->
norm [];
let guarded_uvars = compute_guarded_uvars () in
// TODO: If it picks a goal it cannot solve yet, try all the other ones?
if pick_next guarded_uvars dict (List.Tot.length g) then resolve_tac dict
else fail "Could not make progress, no solvable goal found"
let rec pick_next_logical (dict: _) (fuel: nat) : Tac bool =
if fuel = 0
then false
else match goals () with
| [] -> true
| _::_ -> if solve_or_delay dict then true else (later (); pick_next_logical dict (fuel - 1))
/// Special case for logical requires/ensures goals, which correspond only to equalities
let rec resolve_tac_logical (dict: _) : Tac unit =
match goals () with
| [] -> ()
| g ->
let fuel = List.Tot.length g in
if pick_next_logical dict fuel then resolve_tac_logical dict
else
// This is only for requires/ensures constraints, which are equalities
// There should always be a scheduling of constraints, but it can happen
// that some uvar for the type of an equality is not resolved.
// If we reach this point, we try to simply call the unifier instead of failing directly
solve_all_eqs fuel
/// Determining whether the type represented by term [t] corresponds to one of the logical (requires/ensures) goals
let typ_contains_req_ens (t:term) : Tac bool =
let name, _ = collect_app t in
is_any_fvar name [`%req_t; `%ens_t; `%pure_wp; `%pure_pre; `%pure_post]
/// Splits goals between separation logic goals (slgoals) and requires/ensures goals (loggoals)
let rec filter_goals (l:list goal) : Tac (list goal * list goal) =
match l with
| [] -> [], []
| hd::tl ->
let slgoals, loggoals = filter_goals tl in
match term_as_formula' (goal_type hd) with
| Comp (Eq t) _ _ ->
if Some? t then
let b = typ_contains_req_ens (Some?.v t) in
if b then (
slgoals, hd::loggoals
)
else (
hd::slgoals, loggoals
)
else (
hd::slgoals, loggoals
)
| App t _ -> if is_fvar t (`%squash) then hd::slgoals, loggoals else slgoals, loggoals
| _ -> slgoals, loggoals
let is_true (t:term) () : Tac unit =
match term_as_formula t with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
/// Solve the maybe_emp goals:
/// Normalize to unfold maybe_emp(_dep) and the reduce the if/then/else, and
/// solve the goal (either an equality through trefl, or True through trivial)
let rec solve_maybe_emps (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| _::_ ->
let f = term_as_formula' (cur_goal ()) in (
match f with
| App hd0 t ->
if not (is_fvar hd0 (`%squash))
then later ()
else
let hd, args = collect_app t in
if hd `is_fvar` (`%maybe_emp) then
(norm [delta_only [`%maybe_emp]; iota; zeta; primops; simplify];
let g = cur_goal () in
or_else (is_true g) trefl)
else if hd `is_fvar` (`%maybe_emp_dep) then
(norm [delta_only [`%maybe_emp_dep]; iota; zeta; primops; simplify];
let g = cur_goal () in
or_else (is_true g) (fun _ -> ignore (forall_intro ()); trefl ()))
else later()
| _ -> later()
);
solve_maybe_emps (fuel - 1)
/// Normalizes all the return_pre annotations once they are not needed anymore
let rec norm_return_pre (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| _::_ -> norm [delta_only [`%return_pre]]; later(); norm_return_pre (fuel - 1)
let print_goal (g:goal) : Tac string =
let t = goal_type g in
term_to_string t
let print_goals (g:list goal) : Tac string =
let strs = map print_goal g in
String.concat "\n" strs
/// The entry point of the frame inference tactic:
/// The resolve_implicits; framing_implicit annotation indicates that this tactic should
/// be called by the F* typechecker to solve all implicits annotated with the `framing_implicit` attribute.
/// The `plugin` attribute ensures that this tactic is compiled, and executed natively for performance reasons
let init_resolve_tac' (dict: _) : Tac unit =
// We split goals between framing goals, about slprops (slgs)
// and goals related to requires/ensures, that depend on slprops (loggs)
let slgs, loggs = filter_goals (goals()) in
// print ("SL Goals: \n" ^ print_goals slgs);
// print ("Logical goals: \n" ^ print_goals loggs);
// We first solve the slprops
set_goals slgs;
// We solve all the maybe_emp goals first: All "extra" frames are directly set to emp
solve_maybe_emps (List.Tot.length (goals ()));
// We first solve all indirection equalities that will not lead to imprecise unification
// i.e. we can solve all equalities inserted by layered effects, except the ones corresponding
// to the preconditions of a pure return
solve_indirection_eqs (List.Tot.length (goals()));
// To debug, it is best to look at the goals at this stage. Uncomment the next line
// dump "initial goals";
// We can now solve the equalities for returns
solve_return_eqs (List.Tot.length (goals()));
// It is important to not normalize the return_pre equalities before solving them
// Else, we lose some variables dependencies, leading to the tactic being stuck
// See test7 in FramingTestSuite for more explanations of what is failing
// Once unification has been done, we can then safely normalize and remove all return_pre
norm_return_pre (List.Tot.length (goals()));
// Finally running the core of the tactic, scheduling and solving goals
resolve_tac dict;
// We now solve the requires/ensures goals, which are all equalities
// All slprops are resolved by now
set_goals loggs;
resolve_tac_logical dict
[@@ resolve_implicits; framing_implicit; plugin]
let init_resolve_tac () : Tac unit = init_resolve_tac' []
(* AF: There probably is a simpler way to get from p to squash p in a tactic, so that we can use apply_lemma *)
let squash_and p (x:squash (p /\ True)) : (p /\ True) =
let x : squash (p `Prims.pair` True) = FStar.Squash.join_squash x in
x
/// Calling into the framing tactic to ensure that the vprop whose selector we are trying to access is in the context
[@@plugin]
let selector_tactic () : Tac unit =
apply (`squash_and);
apply_lemma (`intro_can_be_split_frame);
flip ();
norm [delta_only [
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)
/// Specific tactic used during the SteelAtomicBase and SteelBase effect definitions:
/// This allows us to write more complex if_then_else combinators, while proving them
/// sound with respect to subcomp | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"FStar.String.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.Derived.Lemmas.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "Steel.Effect.Common.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Derived.Lemmas",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": false,
"full_module": "Steel.Semantics.Instantiate",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.Semantics.Hoare.MST",
"short_module": "Sem"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.V2.Derived.smt",
"FStar.Stubs.Tactics.V2.Builtins.norm",
"Prims.Nil",
"FStar.Pervasives.norm_step",
"FStar.Stubs.Tactics.V2.Builtins.set_goals",
"Prims.Cons",
"Steel.Effect.Common.resolve_tac_logical",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.NamedView.term",
"Prims.bool",
"FStar.Tactics.V2.Derived.or_else",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Tactics.V2.Derived.assumption",
"FStar.Tactics.V2.Derived.goals",
"FStar.Tactics.V2.Derived._cur_goal",
"Steel.Effect.Common.solve_indirection_eqs",
"FStar.List.Tot.Base.length",
"Steel.Effect.Common.filter_goals"
] | [] | false | true | false | false | false | let ite_soundness_tac () : Tac unit =
| let slgs, loggoals = filter_goals (goals ()) in
set_goals slgs;
solve_indirection_eqs (List.Tot.length slgs);
let subcomp_goal = _cur_goal () in
match goals () with
| [] -> fail "should not happen"
| _ :: tl ->
set_goals tl;
or_else (fun _ -> apply_lemma (`equiv_forall_refl)) assumption;
or_else (fun _ ->
or_else (fun _ -> apply_lemma (`can_be_split_dep_refl))
(fun _ -> apply_lemma (`can_be_split_refl)))
assumption;
smt ();
set_goals loggoals;
resolve_tac_logical [];
set_goals [subcomp_goal];
norm [];
smt () | false |
Steel.Effect.Common.fsti | Steel.Effect.Common.filter_goals | val filter_goals (l: list goal) : Tac (list goal * list goal) | val filter_goals (l: list goal) : Tac (list goal * list goal) | let rec filter_goals (l:list goal) : Tac (list goal * list goal) =
match l with
| [] -> [], []
| hd::tl ->
let slgoals, loggoals = filter_goals tl in
match term_as_formula' (goal_type hd) with
| Comp (Eq t) _ _ ->
if Some? t then
let b = typ_contains_req_ens (Some?.v t) in
if b then (
slgoals, hd::loggoals
)
else (
hd::slgoals, loggoals
)
else (
hd::slgoals, loggoals
)
| App t _ -> if is_fvar t (`%squash) then hd::slgoals, loggoals else slgoals, loggoals
| _ -> slgoals, loggoals | {
"file_name": "lib/steel/Steel.Effect.Common.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 30,
"end_line": 3020,
"start_col": 0,
"start_line": 3001
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Effect.Common
open Steel.Memory
module Mem = Steel.Memory
module FExt = FStar.FunctionalExtensionality
open FStar.Ghost
/// This module provides various predicates and functions which are common to the
/// different Steel effects.
/// It also contains the tactic responsible for frame inference through a variant of AC-unification
#set-options "--ide_id_info_off"
(* Normalization helpers *)
irreducible let framing_implicit : unit = ()
irreducible let __steel_reduce__ : unit = ()
/// An internal attribute for finer-grained normalization in framing equalities
irreducible let __inner_steel_reduce__ : unit = ()
irreducible let __reduce__ : unit = ()
irreducible let smt_fallback : unit = ()
irreducible let ite_attr : unit = ()
// Needed to avoid some logical vs prop issues during unification with no subtyping
[@@__steel_reduce__]
unfold
let true_p : prop = True
module T = FStar.Tactics.V2
let join_preserves_interp (hp:slprop) (m0:hmem hp) (m1:mem{disjoint m0 m1})
: Lemma
(interp hp (join m0 m1))
[SMTPat (interp hp (join m0 m1))]
= let open Steel.Memory in
intro_emp m1;
intro_star hp emp m0 m1;
affine_star hp emp (join m0 m1)
(* Definition of a selector for a given slprop *)
/// A selector of type `a` for a separation logic predicate hp is a function
/// from a memory where the predicate hp holds, which returns a value of type `a`.
/// The effect GTot indicates that selectors are ghost functions, used for specification
/// and proof purposes only
let selector' (a:Type0) (hp:slprop) = hmem hp -> GTot a
/// Self-framing property for selectors
let sel_depends_only_on (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp) (m1:mem{disjoint m0 m1}).
(interp_depends_only_on hp; (
sel m0 == sel (join m0 m1)))
/// Additional property that selectors must satisfy, related to internals of
/// the Steel memory model encoding
let sel_depends_only_on_core (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp). sel m0 == sel (core_mem m0)
/// Full definition of a selector, as a function which satisfies the two predicates above
let selector (a:Type) (hp:slprop) : Type =
sel:selector' a hp{sel_depends_only_on sel /\ sel_depends_only_on_core sel}
/// The basis of our selector framework: Separation logic assertions enhanced with selectors
/// Note that selectors are "optional", it is always possible to use a non-informative selector,
/// such as fun _ -> () and to rely on the standard separation logic reasoning
[@@ erasable]
noeq
type vprop' =
{ hp: slprop u#1;
t:Type0;
sel: selector t hp}
(* Lifting the star operator to an inductive type makes normalization
and implementing some later functions easier *)
[@@__steel_reduce__; erasable]
noeq
type vprop =
| VUnit : vprop' -> vprop
| VStar: vprop -> vprop -> vprop
(* A generic lift from slprop to vprop with a non-informative selector *)
[@@ __steel_reduce__]
let to_vprop' (p:slprop) = {hp = p; t = unit; sel = fun _ -> ()}
[@@ __steel_reduce__]
unfold
let to_vprop (p:slprop) = VUnit (to_vprop' p)
/// Normalization steps for norm below.
/// All functions marked as `unfold`, or with the `__steel_reduce__` attribute will be reduced,
/// as well as some functions internal to the selector framework
unfold
let normal_steps =
[delta_attr [`%__steel_reduce__; `%__inner_steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify]
/// The core normalization primitive used to simplify Verification Conditions before encoding
/// them to an SMT solver.
unfold
let normal (#a:Type) (x:a) = norm normal_steps x
/// An abbreviation for the VStar constructor, allowing to use it with infix notation
[@@ __steel_reduce__; __reduce__]
let star = VStar
/// Extracting the underlying separation logic assertion from a vprop
[@@ __steel_reduce__]
let rec hp_of (p:vprop) = match p with
| VUnit p -> p.hp
| VStar p1 p2 -> hp_of p1 `Mem.star` hp_of p2
/// Extracting the selector type from a vprop
[@@ __steel_reduce__]
let rec t_of (p:vprop) = match p with
| VUnit p -> p.t
| VStar p1 p2 -> t_of p1 * t_of p2
/// Extracting the selector from a vprop
[@@ __steel_reduce__]
let rec sel_of (p:vprop) : GTot (selector (t_of p) (hp_of p)) = match p with
| VUnit p -> fun h -> p.sel h
| VStar p1 p2 ->
let sel1 = sel_of p1 in
let sel2 = sel_of p2 in
fun h -> (sel1 h, sel2 h)
/// Type abbreviations for separation logic pre- and postconditions of the Steel effects
type pre_t = vprop
type post_t (a:Type) = a -> vprop
/// An annotation to indicate which separation logic predicates correspond to monadic computations
/// These computations are handled in a specific manner in the framing tactic; they correspond to places where
/// the context shrinks from all local variables in the computation to variables available at the toplevel
let return_pre (p:vprop) : vprop = p
noextract
let hmem (p:vprop) = hmem (hp_of p)
/// Abstract predicate for vprop implication. Currently implemented as an implication on the underlying slprop
val can_be_split (p q:pre_t) : Type0
/// Exposing the implementation of `can_be_split` when needed for proof purposes
val reveal_can_be_split (_:unit) : Lemma
(forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q))
/// A targeted version of the above
val can_be_split_interp (r r':vprop) (h:hmem r)
: Lemma (requires can_be_split r r')
(ensures interp (hp_of r') h)
/// A dependent version of can_be_split, to be applied to dependent postconditions
let can_be_split_forall (#a:Type) (p q:post_t a) = forall x. can_be_split (p x) (q x)
/// A version of can_be_split which is indexed by a proposition, which can be used for equalities abduction
let can_be_split_dep (p:prop) (t1 t2:pre_t) = p ==> can_be_split t1 t2
/// A dependent version of the above predicate
let can_be_split_forall_dep (#a:Type) (p:a -> prop) (t1 t2:post_t a) =
forall (x:a). p x ==> can_be_split (t1 x) (t2 x)
(* Some lemmas about the can_be_split* predicates,
to be used as rewriting rules for the abstract predicates *)
val can_be_split_trans (p q r:vprop)
: Lemma
(requires p `can_be_split` q /\ q `can_be_split` r)
(ensures p `can_be_split` r)
let can_be_split_trans_rev (p q r:vprop)
: Lemma
(requires q `can_be_split` r /\ p `can_be_split` q)
(ensures p `can_be_split` r)
= can_be_split_trans p q r
val can_be_split_star_l (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` p)
[SMTPat ((p `star` q) `can_be_split` p)]
val can_be_split_star_r (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` q)
[SMTPat ((p `star` q) `can_be_split` q)]
val can_be_split_refl (p:vprop)
: Lemma (p `can_be_split` p)
[SMTPat (p `can_be_split` p)]
val can_be_split_congr_l
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((p `star` r) `can_be_split` (q `star` r)))
val can_be_split_congr_r
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((r `star` p) `can_be_split` (r `star` q)))
let prop_and (p1 p2: prop) : Tot prop = p1 /\ p2
let can_be_split_forall_dep_trans_rev
(#a: Type)
(cond1 cond2: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond2 q r /\ can_be_split_forall_dep cond1 p q))
(ensures (can_be_split_forall_dep (fun x -> cond1 x `prop_and` cond2 x) p r))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_trans x y) z)
let can_be_split_forall_dep_congr_l
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> p x `star` r x) (fun x -> q x `star` r x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_l x y) z)
let can_be_split_forall_dep_congr_r
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> r x `star` p x) (fun x -> r x `star` q x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_r x y) z)
/// To simplify the implementation of the framing tactic, dependent equivalence
/// is defined as a double dependent implication
let equiv_forall (#a:Type) (t1 t2:post_t a) : Type0
= t1 `can_be_split_forall` t2 /\ t2 `can_be_split_forall` t1
/// This equivalence models a context restriction at the end of a Steel computation;
/// note that t2 does not depend on the value of type `a`, but the two vprops must be
/// equivalent
let can_be_split_post (#a #b:Type) (t1:a -> post_t b) (t2:post_t b) =
forall (x:a). equiv_forall (t1 x) t2
/// Lifting the equivalence relation to vprops. Two vprops are equivalent if the underlying slprops
/// are equivalent
val equiv (p q:vprop) : prop
/// Revealing the definition of vprop equivalence when needed for proof purposes.
/// In other cases, the predicate is abstract
val reveal_equiv (p q:vprop) : Lemma (p `equiv` q <==> hp_of p `Mem.equiv` hp_of q)
(* A restricted view of the heap,
that only allows to access selectors of the current slprop *)
let rmem' (pre:vprop) =
FExt.restricted_g_t
(r0:vprop{can_be_split pre r0})
(fun r0 -> normal (t_of r0))
/// Ensuring that rmems encapsulate the structure induced by the separation logic star
val valid_rmem (#frame:vprop) (h:rmem' frame) : prop
unfold
let rmem (pre:vprop) = h:rmem' pre{valid_rmem h}
/// Exposing the definition of mk_rmem to better normalize Steel VCs
unfold noextract
let unrestricted_mk_rmem (r:vprop) (h:hmem r) = fun (r0:vprop{r `can_be_split` r0}) ->
can_be_split_interp r r0 h;
sel_of r0 h
[@@ __inner_steel_reduce__]
noextract
let mk_rmem' (r:vprop) (h:hmem r) : Tot (rmem' r) =
FExt.on_dom_g
(r0:vprop{r `can_be_split` r0})
(unrestricted_mk_rmem r h)
val lemma_valid_mk_rmem (r:vprop) (h:hmem r) : Lemma (valid_rmem (mk_rmem' r h))
[@@ __inner_steel_reduce__]
noextract
let mk_rmem (r:vprop) (h:hmem r) : Tot (rmem r) =
lemma_valid_mk_rmem r h;
mk_rmem' r h
val reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (ensures reveal_can_be_split(); (mk_rmem r h) r0 == sel_of r0 h)
(* Logical pre and postconditions can only access the restricted view of the heap *)
type req_t (pre:pre_t) = rmem pre -> Type0
type ens_t (pre:pre_t) (a:Type) (post:post_t a) =
rmem pre -> (x:a) -> rmem (post x) -> Type0
(* Empty assertion *)
val emp : vprop
/// When needed for proof purposes, the empty assertion is a direct lift of the
/// empty assertion from Steel.Memory
val reveal_emp (_:unit) : Lemma (hp_of emp == Mem.emp /\ t_of emp == unit)
/// Lifting pure predicates to vprop
[@@__steel_reduce__]
unfold let pure (p:prop) = to_vprop (pure p)
/// Framing predicates for the Steel effect. If the current computation has already
/// been framed, then the additional frame is the empty predicate
let maybe_emp (framed:bool) (frame:pre_t) = if framed then frame == emp else True
/// Dependent version of the above predicate, usable in dependent postconditions
let maybe_emp_dep (#a:Type) (framed:bool) (frame:post_t a) =
if framed then (forall x. frame x == emp) else True
(* focus_rmem is an additional restriction of our view of memory.
We expose it here to be able to reduce through normalization;
Any valid application of focus_rmem h will be reduced to the application of h *)
[@@ __steel_reduce__]
unfold
let unrestricted_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
= fun (r':vprop{can_be_split r0 r'}) -> can_be_split_trans r r0 r'; h r'
[@@ __inner_steel_reduce__]
let focus_rmem' (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) : Tot (rmem' r0)
= FExt.on_dom_g
(r':vprop{can_be_split r0 r'})
(unrestricted_focus_rmem h r0)
val lemma_valid_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (valid_rmem (focus_rmem' h r0))
[@@ __inner_steel_reduce__]
let focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) : Tot (rmem r0) =
lemma_valid_focus_rmem h r0;
focus_rmem' h r0
/// Exposing that calling focus_rmem on the current context corresponds to an equality
let focus_rmem_refl (r:vprop) (h:rmem r)
: Lemma (focus_rmem #r h r == h)
= FStar.FunctionalExtensionality.extensionality_g _ _ (focus_rmem #r h r) h
open FStar.Tactics.V2
/// State that all "atomic" subresources have the same selectors on both views.
/// The predicate has the __steel_reduce__ attribute, ensuring that VC normalization
/// will reduce it to a conjunction of equalities on atomic subresources
/// This predicate is also marked as `strict_on_arguments` on [frame], ensuring that
/// it will not be reduced when the frame is symbolic
/// Instead, the predicate will be rewritten to an equality using `lemma_frame_equalities` below
[@@ __steel_reduce__; strict_on_arguments [0]]
let rec frame_equalities'
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : Type0
= begin match frame with
| VUnit p -> h0 frame == h1 frame
| VStar p1 p2 ->
can_be_split_star_l p1 p2;
can_be_split_star_r p1 p2;
let h01 = focus_rmem h0 p1 in
let h11 = focus_rmem h1 p1 in
let h02 = focus_rmem h0 p2 in
let h12 = focus_rmem h1 p2 in
frame_equalities' p1 h01 h11 /\
frame_equalities' p2 h02 h12
end
/// This lemma states that frame_equalities is the same as an equality on the top-level frame.
/// The uncommon formulation with an extra [p] is needed to use in `rewrite_with_tactic`,
/// where the goal is of the shape `frame_equalities frame h0 h1 == ?u`
/// The rewriting happens below, in `frame_vc_norm`
val lemma_frame_equalities (frame:vprop) (h0:rmem frame) (h1:rmem frame) (p:Type0)
: Lemma
(requires (h0 frame == h1 frame) == p)
(ensures frame_equalities' frame h0 h1 == p)
/// A special case for frames about emp.
val lemma_frame_emp (h0:rmem emp) (h1:rmem emp) (p:Type0)
: Lemma (requires True == p)
(ensures frame_equalities' emp h0 h1 == p)
/// A variant of conjunction elimination, suitable to the equality goals during rewriting
val elim_conjunction (p1 p1' p2 p2':Type0)
: Lemma (requires p1 == p1' /\ p2 == p2')
(ensures (p1 /\ p2) == (p1' /\ p2'))
/// Normalization and rewriting step for generating frame equalities.
/// The frame_equalities function has the strict_on_arguments attribute on the [frame],
/// ensuring that it is not reduced when the frame is symbolic.
/// When that happens, we want to replace frame_equalities by an equality on the frame,
/// mimicking reduction
[@@plugin]
let frame_vc_norm () : Tac unit = with_compat_pre_core 0 (fun _ ->
// Do not normalize mk_rmem/focus_rmem to simplify application of
// the reflexivity lemma on frame_equalities'
norm [delta_attr [`%__steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify];
// After reduction, the term to rewrite might be of the shape
// (frame_equalities' ... /\ frame_equalities' .. /\ ...) == ?u,
// with some frame_equalities' possibly already fully reduced
// We repeatedly split the clause and extract the term on the left
// to generate equalities on atomic subresources
ignore (repeat (fun _ ->
// Try to split the conjunction. If there is no conjunction, we exit the repeat
apply_lemma (`elim_conjunction);
// Dismiss the two uvars created for the RHS, they'll be solved by unification
dismiss ();
dismiss ();
// The first goal is the left conjunction
split ();
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// Rewrites the frame_equalities if it wasn't yet reduced
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
// Finally solve the uvar, finishing the rewriting for this clause
trefl ()
));
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// We do not have conjunctions anymore, we try to apply the frame_equalities rewriting
// If it fails, the frame was not symbolic, so there is nothing to do
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
trefl ())
[@@ __steel_reduce__]
unfold
let frame_equalities
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : prop
= rewrite_with_tactic frame_vc_norm (frame_equalities' frame h0 h1)
/// More lemmas about the abstract can_be_split predicates, to be used as
/// rewriting rules in the tactic below
val can_be_split_dep_refl (p:vprop)
: Lemma (can_be_split_dep true_p p p)
val equiv_can_be_split (p1 p2:vprop) : Lemma
(requires p1 `equiv` p2)
(ensures p1 `can_be_split` p2)
val intro_can_be_split_frame (p q:vprop) (frame:vprop)
: Lemma (requires q `equiv` (p `star` frame))
(ensures can_be_split q p /\ True)
val can_be_split_post_elim (#a #b:Type) (t1:a -> post_t b) (t2:post_t b)
: Lemma (requires (forall (x:a) (y:b). t1 x y `equiv` t2 y))
(ensures t1 `can_be_split_post` t2)
val equiv_forall_refl (#a:Type) (t:post_t a)
: Lemma (t `equiv_forall` t)
val equiv_forall_elim (#a:Type) (t1 t2:post_t a)
: Lemma (requires (forall (x:a). t1 x `equiv` t2 x))
(ensures t1 `equiv_forall` t2)
open FStar.Tactics.CanonCommMonoidSimple.Equiv
(* equiv is an equivalence relation on vprops *)
/// Lemmas establishing the equivalence properties on equiv
val equiv_refl (x:vprop) : Lemma (equiv x x)
val equiv_sym (x y:vprop) : Lemma
(requires equiv x y)
(ensures equiv y x)
val equiv_trans (x y z:vprop) : Lemma
(requires equiv x y /\ equiv y z)
(ensures equiv x z)
module CE = FStar.Algebra.CommMonoid.Equiv
/// Equiv is an equivalence relation for vprops elements
inline_for_extraction noextract let req : CE.equiv vprop =
CE.EQ equiv
equiv_refl
equiv_sym
equiv_trans
(* Star induces a commutative monoid for the equiv equivalence relation *)
/// Lemmas establishing the commutative monoid properties
val cm_identity (x:vprop) : Lemma ((emp `star` x) `equiv` x)
val star_commutative (p1 p2:vprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
val star_associative (p1 p2 p3:vprop)
: Lemma (((p1 `star` p2) `star` p3)
`equiv`
(p1 `star` (p2 `star` p3)))
val star_congruence (p1 p2 p3 p4:vprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
/// Star induces a commutative monoid on vprops
[@__steel_reduce__]
inline_for_extraction noextract let rm : CE.cm vprop req =
CE.CM emp
star
cm_identity
star_associative
star_commutative
star_congruence
(*** Vprop combinators ***)
(* Refining a vprop with a selector predicate *)
/// Separation logic predicate stating the validity of a vprop with an additional refinement on its selector
val vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: mem) : Lemma
(interp (vrefine_hp v p) m <==> (interp (hp_of v) m /\ p (sel_of v m)))
/// Selector type for a refined vprop
[@__steel_reduce__]
let vrefine_t (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot Type
= (x: t_of v {p x})
/// Selector of a refined vprop. Returns a value which satisfies the refinement predicate
val vrefine_sel (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (selector (vrefine_t v p) (vrefine_hp v p))
/// Exposing the definition of the refined selector
val vrefine_sel_eq (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: Mem.hmem (vrefine_hp v p)) : Lemma
(
interp (hp_of v) m /\
vrefine_sel v p m == sel_of v m
)
// [SMTPat ((vrefine_sel v p) m)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above pieces to define a vprop refined by a selector prediacte
[@__steel_reduce__]
let vrefine' (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot vprop' = {
hp = vrefine_hp v p;
t = vrefine_t v p;
sel = vrefine_sel v p;
}
[@__steel_reduce__]
let vrefine (v: vprop) (p: (normal (t_of v) -> Tot prop)) = VUnit (vrefine' v p)
(* Dependent star for vprops *)
/// Separation logic predicate corresponding to a dependent star,
/// where the second predicate depends on the selector value of the first
val vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: mem) : Lemma
(interp (vdep_hp v p) m <==> (interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m))
/// Helper to define the selector type of the second component of the dependent star
let vdep_payload
(v: vprop) (p: ( (t_of v) -> Tot vprop))
(x: t_of v)
: Tot Type
= t_of (p x)
/// Selector type for the dependent star: A dependent tuple, where the second component's type depends on the first vprop
let vdep_t (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot Type
= dtuple2 (t_of v) (vdep_payload v p)
/// Selector for the dependent star
val vdep_sel (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (selector (vdep_t v p) (vdep_hp v p))
/// Exposing the definition of the dependent star's selector when needed for proof purposes
val vdep_sel_eq (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: Mem.hmem (vdep_hp v p)) : Lemma
(
interp (hp_of v) m /\
begin let x = sel_of v m in
interp (hp_of (p x)) m /\
vdep_sel v p m == (| x, sel_of (p x) m |)
end
)
/// Combining the elements above to create a dependent star vprop
[@__steel_reduce__]
let vdep' (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot vprop' = {
hp = vdep_hp v p;
t = vdep_t v p;
sel = vdep_sel v p;
}
[@__steel_reduce__]
let vdep (v: vprop) (p: ( (t_of v) -> Tot vprop)) = VUnit (vdep' v p)
(* Selector rewrite combinator *)
/// The selector of a rewrite combinator applies a function `f` to the current selector of a vprop.
val vrewrite_sel (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot (selector t (normal (hp_of v)))
/// Exposing the definition of the above selector
val vrewrite_sel_eq (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) (h: Mem.hmem (normal (hp_of v))) : Lemma
((vrewrite_sel v f <: selector' _ _) h == f ((normal (sel_of v) <: selector' _ _) h))
// [SMTPat (vrewrite_sel v f h)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above elements to create a rewrite vprop
[@__steel_reduce__]
let vrewrite' (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop' = {
hp = normal (hp_of v);
t = t;
sel = vrewrite_sel v f;
}
[@__steel_reduce__]
let vrewrite (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop = VUnit (vrewrite' v f)
(*** Framing tactic ***)
(* Specialize visit_tm from the standard F* tactic library to reimplement name_appears_in.
AF: As of Jan 14, 2021, calling name_appears_in from FStar.Tactics.Derived leads to a segfault *)
exception Appears
let on_sort_binder (f : term -> Tac unit) (b:binder) : Tac unit =
f b.sort
let rec visit_tm (ff : term -> Tac unit) (t : term) : Tac unit =
let tv = inspect t in
(match tv with
| Tv_FVar _
| Tv_UInst _ _
| Tv_Var _
| Tv_BVar _ -> ()
| Tv_Type _ -> ()
| Tv_Const c -> ()
| Tv_Uvar i u -> ()
| Tv_Unsupp -> ()
| Tv_Unknown -> ()
| Tv_Arrow b c ->
on_sort_binder ff b;
visit_comp ff c
| Tv_Abs b t ->
let b = on_sort_binder (visit_tm ff) b in
visit_tm ff t
| Tv_App l (r, q) ->
visit_tm ff l;
visit_tm ff r
| Tv_Refine b r ->
on_sort_binder ff b;
visit_tm ff r
| Tv_Let r attrs b def t ->
on_sort_binder ff b;
visit_tm ff def;
visit_tm ff t
| Tv_Match sc _ brs ->
visit_tm ff sc;
iter (visit_br ff) brs
| Tv_AscribedT e t topt _ ->
visit_tm ff e;
visit_tm ff t
| Tv_AscribedC e c topt _ ->
visit_tm ff e
); ff t
and visit_br (ff : term -> Tac unit) (b:branch) : Tac unit =
let (p, t) = b in
visit_tm ff t
and visit_comp (ff : term -> Tac unit) (c : comp) : Tac unit =
let cv = inspect_comp c in
match cv with
| C_Total ret -> visit_tm ff ret
| C_GTotal ret -> visit_tm ff ret
| C_Lemma pre post pats ->
visit_tm ff pre;
visit_tm ff post;
visit_tm ff pats
| C_Eff us eff res args decrs ->
visit_tm ff res;
iter (fun (a, q) -> visit_tm ff a) args;
iter (visit_tm ff) decrs
/// Decides whether a top-level name [nm] syntactically
/// appears in the term [t].
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac unit =
match inspect t with
| Tv_FVar fv -> if inspect_fv fv = nm then raise Appears
| t -> ()
in
try ignore (visit_tm ff t); false with
| Appears -> true
| e -> raise e
/// Checks whether term [t] appears in term [i]
let term_appears_in (t:term) (i:term) : Tac bool =
name_appears_in (explode_qn (term_to_string t)) i
/// We define a small language to handle arbitrary separation logic predicates.
/// Separation logic predicates are encoded as atoms for which equality is decidable,
/// here represented as integers
let atom : eqtype = int
let rec atoms_to_string (l:list atom) = match l with
| [] -> ""
| hd::tl -> string_of_int hd ^ " " ^ atoms_to_string tl
/// Reflecting the structure of our separation logic on atmos
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
/// A map from atoms to the terms they represent.
/// The second component of the term corresponds to a default element,
/// ensuring we never raise an exception when trying to access an element in the map
let amap (a:Type) = list (atom * a) * a
/// An empty atom map: The list map is empty
let const (#a:Type) (xa:a) : amap a = ([], xa)
/// Accessing an element in the atom map
// We reimplement List.Tot.Base.assoc because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_assoc (#key: eqtype) (#value: Type) (k: key) (dict: list (key & value)) : Pure (option value)
(requires True)
(ensures (fun res -> res == List.Tot.assoc k dict))
= match dict with
| [] -> None
| (k', v') :: q -> if k = k' then Some v' else my_assoc k q
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match my_assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
/// Updating the atom map. Since select finds the first element corresponding to
/// the atom in the list and we do not have any remove function,
/// we can simply append the new element at the head without removing any possible
/// previous element
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
/// Check whether the current term is an unresolved vprop unification variable.
/// This can happen if either it is a uvar, or it is an unresolved dependent
/// vprop uvar which is applied to some argument
let is_uvar (t:term) : Tac bool = match inspect t with
| Tv_Uvar _ _ -> true
| Tv_App _ _ ->
let hd, args = collect_app t in
Tv_Uvar? (inspect hd)
| _ -> false
/// For a given term t, collect all terms in the list l with the same head symbol
let rec get_candidates (t:term) (l:list term) : Tac (list term) =
let name, _ = collect_app t in
match l with
| [] -> []
| hd::tl ->
let n, _ = collect_app hd in
if term_eq_old n name then (
hd::(get_candidates t tl)
) else get_candidates t tl
/// Try to remove a term that is exactly matching, not just that can be unified
let rec trivial_cancel (t:atom) (l:list atom) =
match l with
| [] -> false, l
| hd::tl ->
if hd = t then
// These elements match, we remove them
true, tl
else (let b, res = trivial_cancel t tl in b, hd::res)
/// Call trivial_cancel on all elements of l1.
/// The first two lists returned are the remainders of l1 and l2.
/// The last two lists are the removed parts of l1 and l2, with
/// the additional invariant that they are equal
let rec trivial_cancels (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, [], []
| hd::tl ->
let b, l2' = trivial_cancel hd l2 in
let l1', l2', l1_del, l2_del = trivial_cancels tl l2' am in
(if b then l1' else hd::l1'), l2',
(if b then hd::l1_del else l1_del), (if b then hd::l2_del else l2_del)
exception Failed
exception Success
/// Helper to print the terms corresponding to the current list of atoms
let rec print_atoms (l:list atom) (am:amap term) : Tac string =
match l with
| [] -> ""
| [hd] -> term_to_string (select hd am)
| hd::tl -> term_to_string (select hd am) ^ " * " ^ print_atoms tl am
/// For a list of candidates l, count the number that can unify with t.
/// Does not try to unify with a uvar, this will be done at the very end.
/// Tries to unify with slprops with a different head symbol, it might
/// be an abbreviation
let rec try_candidates (t:atom) (l:list atom) (am:amap term) : Tac (atom * int) =
match l with
| [] -> t, 0
| hd::tl ->
if is_uvar (select hd am) then (try_candidates t tl am)
else
// Encapsulate unify in a try/with to ensure unification is not actually performed
let res = try if unify (select t am) (select hd am) then raise Success else raise Failed
with | Success -> true | _ -> false in
let t', n' = try_candidates t tl am in
if res && hd <> t' then hd, 1 + n' else t', n'
/// Remove the given term from the list. Only to be called when
/// try_candidates succeeded
let rec remove_from_list (t:atom) (l:list atom) : Tac (list atom) =
match l with
| [] -> fail "atom in remove_from_list not found: should not happen"; []
| hd::tl -> if t = hd then tl else hd::remove_from_list t tl
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
let rec equivalent_lists_once (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, l1_del, l2_del
| hd::tl ->
let t, n = try_candidates hd l2 am in
if n = 1 then (
let l2 = remove_from_list t l2 in
equivalent_lists_once tl l2 (hd::l1_del) (t::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once tl l2 l1_del l2_del am in
hd::rem1, rem2, l1'_del, l2'_del
)
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates by iterating on l2.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
/// This is very close to equivalent_lists_once above, but helps making progress
/// when l1 contains syntactically equal candidates
let rec equivalent_lists_once_l2 (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l2 with
| [] -> l1, [], l1_del, l2_del
| hd::tl ->
if is_uvar (select hd am) then
// We do not try to match the vprop uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
else (
let t, n = try_candidates hd l1 am in
if n = 1 then (
let l1 = remove_from_list t l1 in
equivalent_lists_once_l2 l1 tl (t::l1_del) (hd::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
)
)
let get_head (l:list atom) (am:amap term) : term = match l with
| [] -> `()
| hd::_ -> select hd am
/// Checks whether the list of atoms [l] only contains one unresolved uvar
let is_only_uvar (l:list atom) (am:amap term) : Tac bool =
if List.Tot.Base.length l = 1 then is_uvar (select (List.Tot.Base.hd l) am)
else false
/// Assumes that u is a uvar, checks that all variables in l can be unified with it.
/// Later in the tactic, the uvar will be unified to a star of l *)
let rec try_unifying_remaining (l:list atom) (u:term) (am:amap term) : Tac unit =
match l with
| [] -> ()
| hd::tl ->
try if unify u (select hd am) then raise Success else raise Failed with
| Success -> try_unifying_remaining tl u am
| _ -> fail ("could not find candidate for scrutinee " ^ term_to_string (select hd am))
/// Is SMT rewriting enabled for this binder
let is_smt_binder (b:binder) : Tac bool =
let l = b.attrs in
not (List.Tot.isEmpty (filter (fun t -> is_fvar t (`%smt_fallback)) l))
/// Creates a new term, where all arguments where SMT rewriting is enabled have been replaced
/// by fresh, unconstrained unification variables
let rec new_args_for_smt_attrs (env:env) (l:list argv) (ty:typ) : Tac (list argv * list term) =
let fresh_ghost_uvar ty =
let e = cur_env () in
ghost_uvar_env e ty
in
match l, inspect_unascribe ty with
| (arg, aqualv)::tl, Tv_Arrow binder comp ->
let needs_smt = is_smt_binder binder in
let new_hd =
if needs_smt then (
let arg_ty = tc env arg in
let uvar = fresh_ghost_uvar arg_ty in
unshelve uvar;
flip ();
(uvar, aqualv)
) else (arg, aqualv)
in
begin
let ty2 =
match inspect_comp comp with
| C_Total ty2 -> ty2
| C_Eff _ eff_name ty2 _ _ ->
if eff_name = ["Prims"; "Tot"]
then ty2
else fail "computation type not supported in definition of slprops"
| _ -> fail "computation type not supported in definition of slprops" in
let tl_argv, tl_terms = new_args_for_smt_attrs env tl ty2 in
new_hd::tl_argv, (if needs_smt then arg::tl_terms else tl_terms)
end
| [], Tv_FVar fv -> [], []
| _ -> fail "should not happen. Is an slprop partially applied?"
/// Rewrites all terms in the context to enable SMT rewriting through the use of fresh, unconstrained unification variables
let rewrite_term_for_smt (env:env) (am:amap term * list term) (a:atom) : Tac (amap term * list term)
= let am, prev_uvar_terms = am in
let term = select a am in
let hd, args = collect_app term in
let t = tc env hd in
let new_args, uvar_terms = new_args_for_smt_attrs env args t in
let new_term = mk_app hd new_args in
update a new_term am, List.Tot.append uvar_terms prev_uvar_terms
/// User-facing error message when the framing tactic fails
let fail_atoms (#a:Type) (l1 l2:list atom) (am:amap term) : Tac a
= fail ("could not find a solution for unifying\n" ^ print_atoms l1 am ^ "\nand\n" ^ print_atoms l2 am)
/// Variant of equivalent_lists' below to be called once terms have been rewritten to allow SMT rewriting.
/// If unification succeeds and we have unicity of the solution, this tactic will succeed,
/// and ultimately create an SMT guard that the two terms are actually equal
let rec equivalent_lists_fallback (n:nat) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false)
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then
// Should always be smaller or equal to n
// If it is equal, no progress was made.
fail_atoms rem1 rem2 am
else equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' am
/// Iterates over all terms in [l2] to prepare them for unification with SMT rewriting
let replace_smt_uvars (l1 l2:list atom) (am:amap term) : Tac (amap term * list term)
= let env = cur_env () in
fold_left (rewrite_term_for_smt env) (am, []) l2
/// Recursively calls equivalent_lists_once.
/// Stops when we're done with unification, or when we didn't make any progress
/// If we didn't make any progress, we have too many candidates for some terms.
/// Accumulates rewritings of l1 and l2 in l1_del and l2_del, with the invariant
/// that the two lists are unifiable at any point
/// The boolean indicates if there is a leftover empty frame
let rec equivalent_lists' (n:nat) (use_smt:bool) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false, [])
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true, []))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false, []
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Try to make progress by matching non-uvars of l2 with candidates in l1
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once_l2 rem1 rem2 l1_del' l2_del' am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Should always be smaller or equal to n
// If it is equal, no progress was made.
if use_smt then
// SMT fallback is allowed
let new_am, uvar_terms = replace_smt_uvars rem1 rem2 am in
let l1_f, l2_f, b = equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' new_am in
l1_f, l2_f, b, uvar_terms
else fail_atoms rem1 rem2 am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
/// Checks if term for atom t unifies with fall uvars in l
let rec unifies_with_all_uvars (t:term) (l:list atom) (am:amap term) : Tac bool =
match l with
| [] -> true
| hd::tl ->
if unifies_with_all_uvars t tl am then (
// Unified with tail, try this term
let hd_t = select hd am in
if is_uvar hd_t then (
// The head term is a uvar, try unifying
try if unify t hd_t then raise Success else raise Failed
with | Success -> true | _ -> false
) else true // The uvar is not a head term, we do not need to try it
) else false
/// Puts all terms in l1 that cannot unify with the uvars in l2 at the top:
/// They need to be solved first
let rec most_restricted_at_top (l1 l2:list atom) (am:amap term) : Tac (list atom) =
match l1 with
| [] -> []
| hd::tl ->
if unifies_with_all_uvars (select hd am) l2 am then (most_restricted_at_top tl l2 am) `List.Tot.append` [hd]
else hd::(most_restricted_at_top tl l2 am)
/// Core AC-unification tactic.
/// First remove all trivially equal terms, then try to decide equivalence.
/// Assumes that l1 does not contain any vprop uvar.
/// If it succeeds, returns permutations of l1, l2, and a boolean indicating
/// if l2 has a trailing empty frame to be unified
let equivalent_lists (use_smt:bool) (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term)
= let l1, l2, l1_del, l2_del = trivial_cancels l1 l2 am in
let l1 = most_restricted_at_top l1 l2 am in
let n = List.Tot.length l1 in
let l1_del, l2_del, emp_frame, uvar_terms = equivalent_lists' n use_smt l1 l2 l1_del l2_del am in
l1_del, l2_del, emp_frame, uvar_terms
(* Helpers to relate the actual terms to their representation as a list of atoms *)
open FStar.Reflection.V2.Derived.Lemmas
let rec list_to_string (l:list term) : Tac string =
match l with
| [] -> "end"
| hd::tl -> term_to_string hd ^ " " ^ list_to_string tl
let rec mdenote_gen (#a:Type u#aa) (unit:a) (mult:a -> a -> a) (am:amap a) (e:exp) : a =
match e with
| Unit -> unit
| Atom x -> select x am
| Mult e1 e2 -> mult (mdenote_gen unit mult am e1) (mdenote_gen unit mult am e2)
let rec xsdenote_gen (#a:Type) (unit:a) (mult:a -> a -> a) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> unit
| [x] -> select x am
| x::xs' -> mult (select x am) (xsdenote_gen unit mult am xs')
unfold
let mdenote (#a:Type u#aa) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp) : a =
let open FStar.Algebra.CommMonoid.Equiv in
mdenote_gen (CM?.unit m) (CM?.mult m) am e
unfold
let xsdenote (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom) : a =
let open FStar.Algebra.CommMonoid.Equiv in
xsdenote_gen (CM?.unit m) (CM?.mult m) am xs
// We reimplement List.Tot.Base.append because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_append (#t: Type) (l1 l2: list t) : Pure (list t)
(requires True)
(ensures (fun res -> res == l1 `List.Tot.append` l2))
(decreases l1)
= match l1 with
| [] -> l2
| a :: q -> a :: my_append q l2
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 `my_append` flatten e2
let rec flatten_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 `my_append` xs2) `CE.EQ?.eq eq` CE.CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
let open FStar.Algebra.CommMonoid.Equiv in
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' `my_append` xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' `my_append` xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `CE.EQ?.eq eq` xsdenote eq m am (flatten e)) =
let open FStar.Algebra.CommMonoid.Equiv in
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 `my_append` flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 `my_append` flatten e2))
let monoid_reflect (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (flatten e1) `CE.EQ?.eq eq` xsdenote eq m am (flatten e2)))
: squash (mdenote eq m am e1 `CE.EQ?.eq eq` mdenote eq m am e2) =
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CE.EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (flatten e2));
CE.EQ?.transitivity eq
(xsdenote eq m am (flatten e1))
(xsdenote eq m am (flatten e2))
(mdenote eq m am e2);
CE.EQ?.transitivity eq
(mdenote eq m am e1)
(xsdenote eq m am (flatten e1))
(mdenote eq m am e2)
// Here we sort the variable numbers
// We reimplement List.Tot.Base.sortWith because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_partition (#a: Type) (f: (a -> Tot bool)) (l: list a)
: Pure (list a & list a)
(requires True)
(ensures (fun res -> res == List.Tot.partition f l))
= match l with
| [] -> [], []
| hd::tl ->
let l1, l2 = my_partition f tl in
if f hd
then hd::l1, l2
else l1, hd::l2
let rec partition_ext (#a: Type) (f1 f2: (a -> Tot bool)) (l: list a)
: Lemma
(requires (forall x . f1 x == f2 x))
(ensures (List.Tot.partition f1 l == List.Tot.partition f2 l))
= match l with
| [] -> ()
| hd::tl -> partition_ext f1 f2 tl
let my_bool_of_compare (#a: Type) (f: a -> a -> Tot int) (x: a) (y: a) : Tot bool
= f x y < 0
let rec my_sortWith (#a: Type) (f: (a -> a -> Tot int)) (l:list a)
: Pure (list a)
(requires True)
(ensures (fun res -> res == List.Tot.sortWith f l))
(decreases (List.Tot.length l))
= match l with
| [] -> []
| pivot::tl ->
let hi, lo = my_partition (my_bool_of_compare f pivot) tl in
partition_ext (my_bool_of_compare f pivot) (List.Tot.bool_of_compare f pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f pivot) tl;
my_append (my_sortWith f lo) (pivot::my_sortWith f hi)
let rec sortWith_ext (#a: Type) (f1 f2: (a -> a -> Tot int)) (l: list a)
: Lemma
(requires (forall x y . f1 x y == f2 x y))
(ensures (List.Tot.sortWith f1 l == List.Tot.sortWith f2 l))
(decreases (List.Tot.length l))
= match l with
| [] -> ()
| pivot::tl ->
partition_ext (List.Tot.bool_of_compare f1 pivot) (List.Tot.bool_of_compare f2 pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f1 pivot) tl;
let hi, lo = List.Tot.partition (List.Tot.bool_of_compare f1 pivot) tl in
sortWith_ext f1 f2 lo;
sortWith_ext f1 f2 hi
let permute = list atom -> list atom
let my_compare_of_bool (#a:eqtype) (rel: a -> a -> Tot bool) (x: a) (y: a) : Tot int
= if x `rel` y then -1
else if x = y then 0
else 1
let sort : permute = my_sortWith #int (my_compare_of_bool (<))
#push-options "--fuel 1 --ifuel 1"
let lemma_xsdenote_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (hd:atom) (tl:list atom)
: Lemma (xsdenote eq m am (hd::tl) `CE.EQ?.eq eq`
(CE.CM?.mult m (select hd am) (xsdenote eq m am tl)))
= let open FStar.Algebra.CommMonoid.Equiv in
match tl with
| [] ->
assert (xsdenote eq m am (hd::tl) == select hd am);
CM?.identity m (select hd am);
EQ?.symmetry eq (CM?.unit m `CM?.mult m` select hd am) (select hd am);
CM?.commutativity m (CM?.unit m) (select hd am);
EQ?.transitivity eq
(xsdenote eq m am (hd::tl))
(CM?.unit m `CM?.mult m` select hd am)
(CM?.mult m (select hd am) (xsdenote eq m am tl))
| _ -> EQ?.reflexivity eq (xsdenote eq m am (hd::tl))
let rec partition_equiv (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (pivot:atom) (q:list atom)
: Lemma
(let open FStar.List.Tot.Base in
let hi, lo = partition (bool_of_compare (compare_of_bool (<)) pivot) q in
CE.EQ?.eq eq
(xsdenote eq m am hi `CE.CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am q))
= let open FStar.Algebra.CommMonoid.Equiv in
let open FStar.List.Tot.Base in
let f = bool_of_compare (compare_of_bool (<)) pivot in
let hi, lo = partition f q in
match q with
| [] -> CM?.identity m (xsdenote eq m am hi)
| hd::tl ->
let l1, l2 = partition f tl in
partition_equiv eq m am pivot tl;
assert (EQ?.eq eq
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(xsdenote eq m am tl));
EQ?.reflexivity eq (xsdenote eq m am l1);
EQ?.reflexivity eq (xsdenote eq m am l2);
EQ?.reflexivity eq (xsdenote eq m am hi);
EQ?.reflexivity eq (xsdenote eq m am lo);
if f hd then begin
assert (hi == hd::l1 /\ lo == l2);
lemma_xsdenote_aux eq m am hd l1;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am l1)
(xsdenote eq m am l2);
CM?.associativity m
(select hd am)
(xsdenote eq m am l1)
(xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l1) `CM?.mult m` xsdenote eq m am l2)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end else begin
assert (hi == l1 /\ lo == hd::l2);
lemma_xsdenote_aux eq m am hd l2;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
CM?.commutativity m
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am l1 `CM?.mult m` (select hd am `CM?.mult m` xsdenote eq m am l2))
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1);
CM?.associativity m
(select hd am)
(xsdenote eq m am l2)
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1));
CM?.commutativity m (xsdenote eq m am l2) (xsdenote eq m am l1);
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1)
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1))
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end
let rec sort_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom)
: Lemma (requires True)
(ensures xsdenote eq m am xs `CE.EQ?.eq eq` xsdenote eq m am (sort xs))
(decreases (FStar.List.Tot.Base.length xs))
= let open FStar.Algebra.CommMonoid.Equiv in
match xs with
| [] -> EQ?.reflexivity eq (xsdenote eq m am [])
| pivot::q ->
let sort0 : permute = List.Tot.sortWith #int (List.Tot.compare_of_bool (<)) in
let sort_eq (l: list atom) : Lemma
(sort l == sort0 l)
[SMTPat (sort l)]
= sortWith_ext (my_compare_of_bool (<)) (List.Tot.compare_of_bool (<)) l
in
let open FStar.List.Tot.Base in
let f:int -> int -> int = compare_of_bool (<) in
let hi, lo = partition (bool_of_compare f pivot) q in
flatten_correct_aux eq m am (sort lo) (pivot::sort hi);
assert (xsdenote eq m am (sort xs) `EQ?.eq eq`
CM?.mult m (xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi)));
lemma_xsdenote_aux eq m am pivot (sort hi);
EQ?.reflexivity eq (xsdenote eq m am (sort lo));
CM?.congruence m
(xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi))));
CM?.commutativity m
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
CM?.associativity m
(select pivot am)
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo));
EQ?.transitivity eq
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
((select pivot am `CM?.mult m` xsdenote eq m am (sort hi)) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))));
partition_length (bool_of_compare f pivot) q;
sort_correct_aux eq m am hi;
sort_correct_aux eq m am lo;
EQ?.symmetry eq (xsdenote eq m am lo) (xsdenote eq m am (sort lo));
EQ?.symmetry eq (xsdenote eq m am hi) (xsdenote eq m am (sort hi));
CM?.congruence m
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo))
(xsdenote eq m am hi)
(xsdenote eq m am lo);
assert (EQ?.eq eq
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
EQ?.reflexivity eq (select pivot am);
CM?.congruence m
(select pivot am)
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)));
partition_equiv eq m am pivot q;
CM?.congruence m
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select pivot am)
(xsdenote eq m am q);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q)));
lemma_xsdenote_aux eq m am pivot q;
EQ?.symmetry eq
(xsdenote eq m am (pivot::q))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q))
(xsdenote eq m am xs);
EQ?.symmetry eq (xsdenote eq m am (sort xs)) (xsdenote eq m am xs)
#pop-options
#push-options "--fuel 0 --ifuel 0"
(* Lemmas to be called after a permutation compatible with AC-unification was found *)
let smt_reflexivity (#a:Type) (eq:CE.equiv a) (x y:a)
: Lemma (requires x == y)
(ensures CE.EQ?.eq eq x y)
= CE.EQ?.reflexivity eq x
let identity_left_smt (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a)
: Lemma
(requires x == y)
(ensures CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) y))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_left (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x:a)
: Lemma (CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) x))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_right_diff (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a) : Lemma
(requires CE.EQ?.eq eq x y)
(ensures CE.EQ?.eq eq (CE.CM?.mult m x (CE.CM?.unit m)) y)
= CE.right_identity eq m x;
CE.EQ?.transitivity eq (CE.CM?.mult m x (CE.CM?.unit m)) x y
/// Dismiss possible vprops goals that might have been created by lemma application.
/// These vprops will be instantiated at a later stage; else, Meta-F* will raise an error
let rec dismiss_slprops () : Tac unit =
match term_as_formula' (cur_goal ()) with
| App t _ -> if is_fvar t (`%squash) then () else (dismiss(); dismiss_slprops ())
| _ -> dismiss(); dismiss_slprops ()
/// Recursively removing trailing empty assertions
let rec n_identity_left (n:int) (eq m:term) : Tac unit
= if n = 0 then (
apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
// Cleaning up, in case a uvar has been generated here. It'll be solved later
set_goals [])
else (
apply_lemma (`identity_right_diff (`#eq) (`#m));
// Drop the slprops generated, they will be solved later
dismiss_slprops ();
n_identity_left (n-1) eq m
)
/// Helper lemma: If two vprops (as represented by lists of atoms) are equivalent, then their canonical forms
/// (corresponding to applying the sort function on atoms) are equivalent
let equivalent_sorted (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (l1 l2 l1' l2':list atom)
: Lemma (requires
sort l1 == sort l1' /\
sort l2 == sort l2' /\
xsdenote eq m am l1 `CE.EQ?.eq eq` xsdenote eq m am l2)
(ensures xsdenote eq m am l1' `CE.EQ?.eq eq` xsdenote eq m am l2')
= let open FStar.Algebra.CommMonoid.Equiv in
sort_correct_aux eq m am l1';
sort_correct_aux eq m am l1;
EQ?.symmetry eq (xsdenote eq m am l1) (xsdenote eq m am (sort l1));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l1'))
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l1)
(xsdenote eq m am l2);
sort_correct_aux eq m am l2;
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l2)
(xsdenote eq m am (sort l2));
sort_correct_aux eq m am l2';
EQ?.symmetry eq (xsdenote eq m am l2') (xsdenote eq m am (sort l2'));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l2))
(xsdenote eq m am l2')
#pop-options
/// Finds the position of first occurrence of x in xs.
/// This is now specialized to terms and their funny term_eq_old.
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) (decreases xs) =
match xs with
| [] -> None
| x'::xs' -> if term_eq_old x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = List.Tot.Base.length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts `List.Tot.append` [t], update vfresh t am)
/// Transforming a term into the corresponding list of atoms
/// If the atomic terms were already present in the map [am], then
/// they correspond to the same atoms
/// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app_ref t in
match inspect_unascribe hd, List.Tot.Base.list_unref tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq_old (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq_old t unit
then (Unit, ts, am)
else fatom t ts am
/// Performs the required normalization before calling the function above
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CE.CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CE.CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
/// Meta-F* internal: Transforms the atom map into a term
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
/// `am` is an amap (basically a list) of terms, each representing a value
/// of type `a` (whichever we are canonicalizing). This functions converts
/// `am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) )
/// Transforms a term representatoin into a term through quotation
let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt))
let rec quote_atoms (l:list atom) = match l with
| [] -> `[]
| hd::tl -> let nt = pack (Tv_Const (C_Int hd)) in
(`Cons (`#nt) (`#(quote_atoms tl)))
/// Some internal normalization steps to make reflection of vprops into atoms and atom permutation go smoothly.
/// We reimplemented sorting/list functions to normalize our uses without normalizing those introduced by the user.
let normal_tac_steps = [primops; iota; zeta; delta_only [
`%mdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm]]
/// The normalization function, using the above normalization steps
let normal_tac (#a:Type) (x:a) : a = FStar.Pervasives.norm normal_tac_steps x
/// Helper lemma to establish relation between normalized and initial values
let normal_elim (x:Type0) : Lemma
(requires x)
(ensures normal_tac x)
= ()
exception Result of list atom * list atom * bool * list term
/// F* equalities are typed, but the generated type sometimes is a unification variable.
/// This helper ensures that such unification variables are not left unresolved, which would lead to an error
let close_equality_typ' (t:term) : Tac unit =
let f = term_as_formula' t in
match f with
| Comp (Eq (Some u)) l _ -> if is_uvar u then (unshelve u; exact_with_ref (tc (cur_env()) l))
| _ -> ()
/// Recursively closing equality types in a given term (usually a unification constraint)
let close_equality_typ (t:term) : Tac unit =
visit_tm close_equality_typ' t
/// Core unification tactic.
/// Transforms terms into their atom representations,
/// Tries to find a solution to AC-unification, and if so,
/// soundly permutes the atom representations before calling the unifier
/// to check the validity of the provided solution.
/// In the case where SMT rewriting was needed, equalities abduction is performed by instantiating the
/// abduction prop unification variable with the corresponding guard
/// 09/24:
///
/// The tactic internally builds a map from atoms to terms
/// and uses the map for reflecting the goal to atoms representation
/// During reflection, the tactics engine typechecks the amap, and hence all
/// the terms again
/// This typechecking of terms is unnecessary, since the terms are coming
/// from the goal, and hence are already well-typed
/// Worse, re-typechecking them may generate a lot of SMT queries
/// And even worse, the SMT queries are discharged in the static context,
/// requiring various workarounds (e.g. squash variables for if conditions etc.)
///
/// To fix this, we now "name" the terms and use the amap with names
///
/// Read through the canon_l_r function for how we do this
/// The following three lemmas are helpers to manipulate the goal in canon_l_r
[@@ no_subtyping]
let inst_bv (#a:Type) (#p:a -> Type0) (#q:Type0) (x:a) (_:squash (p x ==> q))
: Lemma ((forall (x:a). p x) ==> q) = ()
let modus_ponens (#p #q:Type0) (_:squash p)
: Lemma ((p ==> q) ==> q)
= ()
let cut (p q:Type0) : Lemma (requires p /\ (p ==> q)) (ensures q) = ()
let and_true (p: Type0) : Lemma (requires (p /\ (p ==> True))) (ensures p) = ()
let solve_implies_true (p: Type0) : Lemma (p ==> True) = ()
// This exception is raised for failures that should not be considered
// hard but should allow postponing the goal instead
exception Postpone of string
(* NOTE! Redefining boolean disjunction to *not* be short-circuiting,
since we cannot use an effectful result as argument of Prims.op_BarBar *)
private
let bor = op_BarBar
private
let is_and (t:term) : bool =
is_any_fvar t [`%(/\); `%prop_and]
private
let is_squash (t:term) : bool =
is_any_fvar t [`%squash; `%auto_squash]
private
let is_star (t:term) : bool =
is_any_fvar t [`%star; `%VStar]
private
let is_star_or_unit (t:term) : bool =
is_any_fvar t [`%star; `%VStar; `%VUnit]
let rec unify_pr_with_true (pr: term) : Tac unit =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| [pr_l, _; pr_r, _] ->
unify_pr_with_true pr_l;
unify_pr_with_true pr_r
| _ -> fail "unify_pr_with_true: ill-formed /\\"
else
match inspect_unascribe hd with
| Tv_Uvar _ _ ->
if unify pr (`true_p)
then ()
else begin
fail "unify_pr_with_true: could not unify SMT prop with True"
end
| _ ->
if List.Tot.length (free_uvars pr) = 0
then ()
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "unify_pr_with_true: some uvars are still there")
let elim_and_l_squash (#a #b: Type0) (#goal: Type0) (f: (a -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash a) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash a) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let elim_and_r_squash (#a #b: Type0) (#goal: Type0) (f: (b -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash b) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash b) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let _return_squash (#a: Type) () (x: a) : Tot (squash a) =
FStar.Squash.return_squash x
let rec set_abduction_variable_term (pr: term) : Tac term =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| (pr_l, Q_Explicit) :: (pr_r, Q_Explicit) :: [] ->
if List.Tot.length (free_uvars pr_r) = 0
then
let arg = set_abduction_variable_term pr_l in
mk_app (`elim_and_l_squash) [arg, Q_Explicit]
else if List.Tot.length (free_uvars pr_l) = 0
then
let arg = set_abduction_variable_term pr_r in
mk_app (`elim_and_r_squash) [arg, Q_Explicit]
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "set_abduction_variable_term: there are still uvars on both sides of l_and")
| _ -> fail "set_abduction_variable: ill-formed /\\"
else
match inspect hd with
| Tv_Uvar _ _ ->
mk_app (`_return_squash) [`(), Q_Explicit]
| _ -> fail "set_abduction_variable: cannot unify"
let set_abduction_variable () : Tac unit =
let g = cur_goal () in
match inspect_unascribe g with
| Tv_Arrow b _ ->
let pr = b.sort in
exact (set_abduction_variable_term pr)
| _ -> fail "Not an arrow goal"
let canon_l_r (use_smt:bool)
(carrier_t:term) //e.g. vprop
(eq:term) (m:term)
(pr pr_bind:term)
(lhs rel rhs:term) : Tac unit =
let m_unit = norm_term [iota; zeta; delta] (`(CE.CM?.unit (`#m))) in
let m_mult = norm_term [iota; zeta; delta] (`(CE.CM?.mult (`#m))) in
let am = const m_unit in (* empty map *)
let (r1_raw, ts, am) = reification eq m [] am lhs in
let (r2_raw, _, am) = reification eq m ts am rhs in
// Encapsulating this in a try/with to avoid spawning uvars for smt_fallback
let l1_raw, l2_raw, emp_frame, uvar_terms =
try
let res = equivalent_lists use_smt (flatten r1_raw) (flatten r2_raw) am in
raise (Result res) with
| TacticFailure m -> fail m
| Result res -> res
| _ -> fail "uncaught exception in equivalent_lists"
in
//So now we have:
// am : amap mapping atoms to terms in lhs and rhs
// r1_raw : an expression in the atoms language for lhs
// r2_raw : an expression in the atoms language for rhs
// l1_raw : sorted list of atoms in lhs
// l2_raw : sorted list of atoms in rhs
//
//In particular, r1_raw and r2_raw capture lhs and rhs structurally
// (i.e. same associativity, emp, etc.)
//
//Whereas l1_raw and l2_raw are "canonical" representations of lhs and rhs
// (vis xsdenote)
//Build an amap where atoms are mapped to names
//The type of these names is carrier_t passed by the caller
let am_bv : list (atom & namedv & typ) = mapi (fun i (a, _) ->
let x = fresh_namedv_named ("x" ^ (string_of_int i)) in
(a, x, carrier_t)) (fst am) in
let am_bv_term : amap term = map (fun (a, bv, _sort) -> a, pack (Tv_Var bv)) am_bv, snd am in
let mdenote_tm (e:exp) : term = mdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
e in
let xsdenote_tm (l:list atom) : term = xsdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
l in
//Get the named representations of lhs, rhs, and their respective sorted versions
let lhs_named = mdenote_tm r1_raw in
let rhs_named = mdenote_tm r2_raw in
let sorted_lhs_named = xsdenote_tm l1_raw in
let sorted_rhs_named = xsdenote_tm l2_raw in
//We now build an auxiliary goal of the form:
//
// forall xs. (sorted_lhs_named `rel` sorted_rhs_names) ==> (lhs_names `rel` rhs_named)
//
// where xs are the fresh names that we introduced earlier
let mk_rel (l r:term) : term =
mk_app rel [(l, Q_Explicit); (r, Q_Explicit)] in
let imp_rhs = mk_rel lhs_named rhs_named in
let imp_lhs = mk_rel sorted_lhs_named sorted_rhs_named in
let imp =
mk_app (pack (Tv_FVar (pack_fv imp_qn))) [(imp_lhs, Q_Explicit); (imp_rhs, Q_Explicit)] in
//fold over names and quantify over them
let aux_goal = fold_right (fun (_, nv, sort) t ->
let nvv = inspect_namedv nv in
let b = {
ppname = nvv.ppname;
uniq = nvv.uniq;
qual = Q_Explicit;
attrs = [];
sort = sort;
} in
let _, t = close_term b t in
let t = pack (Tv_Abs b t) in
mk_app (pack (Tv_FVar (pack_fv forall_qn))) [t, Q_Explicit]) am_bv imp in
//Introduce a cut with the auxiliary goal
apply_lemma (`cut (`#aux_goal));
//After the cut, the goal looks like: A /\ (A ==> G)
// where A is the auxiliary goal and G is the original goal (lhs `rel` rhs)
split ();
//Solving A:
focus (fun _ ->
//The proof follows a similar structure as before naming was introduced
//
//Except that this time, the amap is in terms of names,
// and hence its typechecking is faster and (hopefully) no SMT involved
//Open the forall binders in A, and use the fresh names to build an amap
let am = fold_left (fun am (a, _, _sort) ->
let b = forall_intro () in
let v = binding_to_namedv b in
(a, pack (Tv_Var v))::am) [] am_bv, snd am in
//Introduce the lhs of implication
let b = implies_intro () in
//Now the proof is the plain old canon proof
let am = convert_am am in
let r1 = quote_exp r1_raw in
let r2 = quote_exp r2_raw in
change_sq (`(normal_tac (mdenote (`#eq) (`#m) (`#am) (`#r1)
`CE.EQ?.eq (`#eq)`
mdenote (`#eq) (`#m) (`#am) (`#r2))));
apply_lemma (`normal_elim);
apply (`monoid_reflect );
let l1 = quote_atoms l1_raw in
let l2 = quote_atoms l2_raw in
apply_lemma (`equivalent_sorted (`#eq) (`#m) (`#am) (`#l1) (`#l2));
if List.Tot.length (goals ()) = 0 then ()
else begin
norm [primops; iota; zeta; delta_only
[`%xsdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm;
`%CE.__proj__EQ__item__eq;
`%req;
`%star;]
];
//The goal is of the form G1 /\ G2 /\ G3, as in the requires of equivalent_sorted
split ();
split ();
//Solve G1 and G2 by trefl
trefl ();
trefl ();
//G3 is the lhs of the implication in the auxiliary goal
// that we have in our assumptions via b
apply (`FStar.Squash.return_squash);
exact (binding_to_term b)
end);
dismiss_slprops();
//Our goal now is A ==> G (where G is the original goal (lhs `rel` rhs))
//Open the forall binders
ignore (repeatn (List.Tot.length am_bv) (fun _ -> apply_lemma (`inst_bv)));
//And apply modus ponens
apply_lemma (`modus_ponens);
//Now our goal is sorted_lhs_named `rel` sorted_rhs_named
// where the names are replaced with fresh uvars (from the repeatn call above)
//So we just trefl
match uvar_terms with
| [] -> // Closing unneeded prop uvar
focus (fun _ ->
try
apply_lemma (`and_true);
split ();
if emp_frame then apply_lemma (`identity_left (`#eq) (`#m))
else apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
unify_pr_with_true pr; // MUST be done AFTER identity_left/reflexivity, which can unify other uvars
apply_lemma (`solve_implies_true)
with
| TacticFailure msg -> fail ("Cannot unify pr with true: " ^ msg)
| e -> raise e
)
| l ->
if emp_frame then (
apply_lemma (`identity_left_smt (`#eq) (`#m))
) else (
apply_lemma (`smt_reflexivity (`#eq))
);
t_trefl true;
close_equality_typ (cur_goal());
revert ();
set_abduction_variable ()
/// Wrapper around the tactic above
/// The constraint should be of the shape `squash (equiv lhs rhs)`
let canon_monoid (use_smt:bool) (carrier_t:term) (eq m:term) (pr pr_bind:term) : Tac unit =
norm [iota; zeta];
let t = cur_goal () in
// removing top-level squash application
let sq, rel_xy = collect_app_ref t in
// unpacking the application of the equivalence relation (lhs `EQ?.eq eq` rhs)
(match rel_xy with
| [(rel_xy,_)] -> (
let open FStar.List.Tot.Base in
let rel, xy = collect_app_ref rel_xy in
if (length xy >= 2)
then (
match index xy (length xy - 2) , index xy (length xy - 1) with
| (lhs, Q_Explicit) , (rhs, Q_Explicit) ->
canon_l_r use_smt carrier_t eq m pr pr_bind lhs rel rhs
| _ -> fail "Goal should have been an application of a binary relation to 2 explicit arguments"
)
else (
fail "Goal should have been an application of a binary relation to n implicit and 2 explicit arguments"
)
)
| _ -> fail "Goal should be squash applied to a binary relation")
/// Instantiation of the generic AC-unification tactic with the vprop commutative monoid
let canon' (use_smt:bool) (pr:term) (pr_bind:term) : Tac unit =
canon_monoid use_smt (pack (Tv_FVar (pack_fv [`%vprop]))) (`req) (`rm) pr pr_bind
/// Counts the number of unification variables corresponding to vprops in the term [t]
let rec slterm_nbr_uvars (t:term) : Tac int =
match inspect_unascribe t with
| Tv_Uvar _ _ -> 1
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
slterm_nbr_uvars_argv args
else if is_uvar hd then 1
else 0
| Tv_Abs _ t -> slterm_nbr_uvars t
| _ -> 0
and slterm_nbr_uvars_argv (args: list argv) : Tac int =
fold_left (fun n (x, _) -> n + slterm_nbr_uvars x) 0 args
let guard_vprop (v: vprop) : Tot vprop = v
let rec all_guards_solved (t: term) : Tac bool =
match inspect_unascribe t with
| Tv_Abs _ t -> all_guards_solved t
| Tv_App _ _ ->
let hd, args = collect_app t in
if hd `is_fvar` (`%guard_vprop)
then slterm_nbr_uvars_argv args = 0
else if not (all_guards_solved hd)
then false
else
List.Tot.fold_left
(fun (tac: (unit -> Tac bool)) (tm, _) ->
let f () : Tac bool =
if all_guards_solved tm
then tac ()
else false
in
f
)
(let f () : Tac bool = true in f)
args
()
| _ -> true
let unfold_guard () : Tac bool =
if all_guards_solved (cur_goal ())
then begin
focus (fun _ -> norm [delta_only [(`%guard_vprop)]]);
true
end else
false
let rec term_is_uvar (t: term) (i: int) : Tac bool = match inspect t with
| Tv_Uvar i' _ -> i = i'
| Tv_App _ _ ->
let hd, args = collect_app t in
term_is_uvar hd i
| _ -> false
val solve_can_be_split_for : string -> Tot unit
val solve_can_be_split_lookup : unit // FIXME: src/reflection/FStar.Reflection.Basic.lookup_attr only supports fvar attributes, so we cannot directly look up for (solve_can_be_split_for blabla), we need a nullary attribute to use with lookup_attr
let rec dismiss_all_but_last' (l: list goal) : Tac unit =
match l with
| [] | [_] -> set_goals l
| _ :: q -> dismiss_all_but_last' q
let dismiss_all_but_last () : Tac unit =
dismiss_all_but_last' (goals ())
let rec dismiss_non_squash_goals' (keep:list goal) (goals:list goal)
: Tac unit
= match goals with
| [] -> set_goals (List.Tot.rev keep)
| hd :: tl ->
let f = term_as_formula' (goal_type hd) in
match f with
| App hs _ ->
if is_squash hs
then dismiss_non_squash_goals' (hd::keep) tl
else dismiss_non_squash_goals' keep tl
| _ ->
dismiss_non_squash_goals' keep tl
let dismiss_non_squash_goals () =
let g = goals () in
dismiss_non_squash_goals' [] g
let rec term_mem (te: term) (l: list term) : Tac bool =
match l with
| [] -> false
| t' :: q ->
if te `term_eq_old` t' then true else term_mem te q
let rec lookup_by_term_attr' (attr: term) (e: env) (found: list fv) (l: list fv) : Tac (list fv)
=
match l with
| [] -> List.Tot.rev found
| f :: q ->
let n = inspect_fv f in
begin match lookup_typ e n with
| None -> lookup_by_term_attr' attr e found q
| Some se ->
let found' =
if attr `term_mem` sigelt_attrs se
then f :: found
else found
in
lookup_by_term_attr' attr e found' q
end
let lookup_by_term_attr (label_attr: term) (attr: term) : Tac (list fv) =
let e = cur_env () in
let candidates = lookup_attr label_attr e in
lookup_by_term_attr' attr e [] candidates
let rec bring_last_goal_on_top' (others: list goal) (goals: list goal) : Tac unit =
match goals with
| [] -> set_goals (List.Tot.rev others)
| last :: [] -> set_goals (last :: List.Tot.rev others)
| a :: q -> bring_last_goal_on_top' (a :: others) q
let bring_last_goal_on_top () =
let g = goals () in
bring_last_goal_on_top' [] g
let rec extract_contexts
(lemma_left lemma_right label_attr attr: term)
(t: term)
: Tac (option (unit -> Tac unit))
=
let hd, tl = collect_app t in
if is_star hd
then
match tl with
| (t_left, Q_Explicit) :: (t_right, Q_Explicit) :: [] ->
let extract_right () : Tac (option (unit -> Tac unit)) =
match extract_contexts lemma_left lemma_right label_attr attr t_right with
| None -> None
| Some f ->
Some (fun _ ->
apply_lemma lemma_right;
dismiss_all_but_last ();
f ()
)
in
begin match extract_contexts lemma_left lemma_right label_attr attr t_left with
| None -> extract_right ()
| Some f ->
Some (fun _ ->
try
apply_lemma lemma_left;
dismiss_all_but_last ();
f ()
with _ ->
begin match extract_right () with
| None -> fail "no context on the right either"
| Some g -> g ()
end
)
end
| _ -> None
else
let candidates =
let hd_fv = match inspect_unascribe hd with
| Tv_FVar fv -> Some fv
| Tv_UInst fv _ -> Some fv
| _ -> None
in
match hd_fv with
| None -> []
| Some hd_fv ->
let hd_s' = implode_qn (inspect_fv hd_fv) in
let hd_s = pack (Tv_Const (C_String hd_s')) in
lookup_by_term_attr label_attr (mk_app attr [hd_s, Q_Explicit])
in
if Nil? candidates
then None
else
Some (fun _ ->
first (List.Tot.map (fun candidate _ -> apply_lemma (pack (Tv_FVar candidate)) <: Tac unit) candidates);
dismiss_non_squash_goals ()
)
let extract_cbs_contexts = extract_contexts
(`can_be_split_congr_l)
(`can_be_split_congr_r)
(`solve_can_be_split_lookup)
(`solve_can_be_split_for)
let open_existentials () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [delta_attr [`%__reduce__]];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split)
then
match tl with
| _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match extract_cbs_contexts rhs with
| None -> fail "open_existentials: no context found"
| Some f ->
apply_lemma (`can_be_split_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top () // so that any preconditions for the selected lemma are scheduled for later
end
| _ -> fail "open_existentials: ill-formed can_be_split"
else
fail "open_existentials: not a can_be_split goal"
| _ -> fail "open_existentials: not a squash goal"
let try_open_existentials () : Tac bool =
focus (fun _ ->
try
open_existentials ();
true
with _ -> false
)
(* Solving the can_be_split* constraints, if they are ready to be scheduled
A constraint is deemed ready to be scheduled if it contains only one vprop unification variable
If so, constraints are stripped to their underlying definition based on vprop equivalence,
introducing universally quantified variables when needed.
Internal details of the encoding are removed through normalization, before calling the AC-unification
tactic defined above
*)
/// Solves a `can_be_split` constraint
let rec solve_can_be_split (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ -> apply_lemma (`equiv_can_be_split);
dismiss_slprops();
// If we have exactly the same term on both side,
// equiv_sl_implies would solve the goal immediately
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if rnbr = 0 then apply_lemma (`equiv_sym);
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
with
| _ ->
let opened_some = try_open_existentials () in
if opened_some then solve_can_be_split args // we only need args for their number of uvars, which has not changed
else false
) else false
| _ -> false // Ill-formed can_be_split, should not happen
/// Solves a can_be_split_dep constraint
let solve_can_be_split_dep (args:list argv) : Tac bool =
match args with
| [(p, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
dismiss_slprops ();
or_else
(fun _ ->
let b = unify p (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true p (binding_to_term p_bind)));
true
) else false
| _ -> fail "ill-formed can_be_split_dep"
/// Helper rewriting lemma
val emp_unit_variant (p:vprop) : Lemma
(ensures can_be_split p (p `star` emp))
/// Solves a can_be_split_forall constraint
let solve_can_be_split_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
ignore (forall_intro());
apply_lemma (`equiv_can_be_split);
dismiss_slprops();
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed can_be_split_forall, should not happen"
val solve_can_be_split_forall_dep_for : string -> Tot unit
val solve_can_be_split_forall_dep_lookup : unit // FIXME: same as solve_can_be_split_for above
let extract_cbs_forall_dep_contexts
=
extract_contexts
(`can_be_split_forall_dep_congr_l)
(`can_be_split_forall_dep_congr_r)
(`solve_can_be_split_forall_dep_lookup)
(`solve_can_be_split_forall_dep_for)
let open_existentials_forall_dep () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_forall_dep_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [
delta_only [
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%rm;
];
iota;
delta_attr [`%__reduce__];
];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split_forall_dep)
then
match tl with
| _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: []
| (_, Q_Implicit) (* #a *) :: _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match inspect_unascribe rhs with
| Tv_Abs _ body ->
begin match extract_cbs_forall_dep_contexts body with
| None -> fail "open_existentials_forall_dep: no candidate"
| Some f ->
apply_lemma (`can_be_split_forall_dep_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top ();
if Cons? (goals ()) then norm []
end
| _ -> fail "open_existentials_forall_dep : not an abstraction"
end
| _ -> fail "open_existentials_forall_dep : wrong number of arguments to can_be_split_forall_dep"
else
fail "open_existentials_forall_dep : not a can_be_split_forall_dep goal"
| _ ->
fail "open_existentials_forall_dep : not a squash/auto_squash goal"
let try_open_existentials_forall_dep () : Tac bool
=
focus (fun _ ->
try
open_existentials_forall_dep ();
true
with _ -> false
)
/// Solves a can_be_split_forall_dep constraint
let rec solve_can_be_split_forall_dep (args:list argv) : Tac bool =
match args with
| [_; (pr, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ ->
norm [];
let x = forall_intro () in
let pr = mk_app pr [(binding_to_term x, Q_Explicit)] in
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
or_else (fun _ -> flip()) (fun _ -> ());
let pr = norm_term [] pr in
or_else
(fun _ ->
let b = unify pr (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true pr (binding_to_term p_bind)));
true
with
| Postpone msg ->
false
| TacticFailure msg ->
let opened = try_open_existentials_forall_dep () in
if opened
then solve_can_be_split_forall_dep args // we only need args for their number of uvars, which has not changed
else fail msg
| _ -> fail "Unexpected exception in framing tactic"
) else false
| _ -> fail "Ill-formed can_be_split_forall_dep, should not happen"
/// Solves an equiv_forall constraint
let solve_equiv_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv_forall, should not happen"
/// Solves an equiv constraint
let solve_equiv (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip ()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv, should not happen"
/// Solves a can_be_split_post constraint
let solve_can_be_split_post (args:list argv) : Tac bool =
match args with
| [_; _; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> norm[];
let g = _cur_goal () in
ignore (forall_intro());
apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "ill-formed can_be_split_post"
/// Checks whether any of the two terms was introduced during a Steel monadic return
let is_return_eq (l r:term) : Tac bool =
let nl, al = collect_app l in
let nr, ar = collect_app r in
is_fvar nl (`%return_pre) || is_fvar nr (`%return_pre)
/// Solves indirection equalities introduced by the layered effects framework.
/// If these equalities were introduced during a monadic return, they need to be solved
/// at a later stage to avoid overly restricting contexts of unification variables
let rec solve_indirection_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
if is_return_eq l r then later() else trefl();
solve_indirection_eqs (fuel - 1)
| _ -> later(); solve_indirection_eqs (fuel - 1)
/// Solve all equalities in the list of goals by calling the F* unifier
let rec solve_all_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_all_eqs (fuel - 1)
| _ -> later(); solve_all_eqs (fuel - 1)
/// It is important to not normalize the return_pre eqs goals before unifying
/// See test7 in FramingTestSuite for a detailed explanation
let rec solve_return_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_return_eqs (fuel - 1)
| _ -> later(); solve_return_eqs (fuel - 1)
/// Strip annotations in a goal, to get to the underlying slprop equivalence
let goal_to_equiv (loc:string) : Tac unit
= let t = cur_goal () in
let f = term_as_formula' t in
match f with
| App hd0 t ->
if not (is_fvar hd0 (`%squash))
then fail (loc ^ " unexpected non-squash goal in goal_to_equiv");
let hd, args = collect_app t in
if hd `is_fvar` (`%can_be_split) then (
apply_lemma (`equiv_can_be_split)
) else if hd `is_fvar` (`%can_be_split_forall) then (
ignore (forall_intro ());
apply_lemma (`equiv_can_be_split)
) else if hd `is_fvar` (`%equiv_forall) then (
apply_lemma (`equiv_forall_elim);
ignore (forall_intro ())
) else if hd `is_fvar` (`%can_be_split_post) then (
apply_lemma (`can_be_split_post_elim);
dismiss_slprops();
ignore (forall_intro ());
ignore (forall_intro ())
) else if hd `is_fvar` (`%can_be_split_dep) then (
fail ("can_be_split_dep not supported in " ^ loc)
) else if hd `is_fvar` (`%can_be_split_forall_dep) then (
fail ("can_be_split_forall_dep not supported in " ^ loc)
) else
// This should never happen
fail (loc ^ " goal in unexpected position")
| _ -> fail (loc ^ " unexpected goal")
let rec term_dict_assoc
(#a: Type)
(key: term)
(l: list (term & a))
: Tac (list a)
= match l with
| [] -> []
| (k, v) :: q ->
let q' = term_dict_assoc key q in
if k `term_eq_old` key
then (v :: q')
else q'
/// Returns true if the goal has been solved, false if it should be delayed
let solve_or_delay (dict: list (term & (unit -> Tac bool))) : Tac bool =
// Beta-reduce the goal first if possible
norm [];
let f = term_as_formula' (cur_goal ()) in
match f with
| App hd0 t ->
if is_fvar hd0 (`%squash)
then
let hd, args = collect_app t in
if hd `is_fvar` (`%can_be_split) then solve_can_be_split args
else if hd `is_fvar` (`%can_be_split_forall) then solve_can_be_split_forall args
else if hd `is_fvar` (`%equiv_forall) then solve_equiv_forall args
else if hd `is_fvar` (`%can_be_split_post) then solve_can_be_split_post args
else if hd `is_fvar` (`%equiv) then solve_equiv args
else if hd `is_fvar` (`%can_be_split_dep) then solve_can_be_split_dep args
else if hd `is_fvar` (`%can_be_split_forall_dep) then solve_can_be_split_forall_dep args
else
let candidates = term_dict_assoc hd dict in
let run_tac (tac: unit -> Tac bool) () : Tac bool =
focus tac
in
begin try
first (List.Tot.map run_tac candidates)
with _ ->
(* this is a logical goal, solve it only if it has no uvars *)
if List.Tot.length (free_uvars t) = 0
then (smt (); true)
else false
end
else
// TODO: handle non-squash goals here
false
| Comp (Eq _) l r ->
let lnbr = List.Tot.length (free_uvars l) in
let rnbr = List.Tot.length (free_uvars r) in
// Only solve equality if one of the terms is completely determined
if lnbr = 0 || rnbr = 0 then (trefl (); true) else false
| _ -> false
/// Returns true if it successfully solved a goal
/// If it returns false, it means it didn't find any solvable goal,
/// which should mean only delayed goals are left
let rec vprop_term_uvars (t:term) : Tac (list int) =
match inspect_unascribe t with
| Tv_Uvar i' _ -> [i']
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
argv_uvars args
else
vprop_term_uvars hd
| Tv_Abs _ t -> vprop_term_uvars t
| _ -> []
and argv_uvars (args: list argv) : Tac (list int) =
let t : unit -> Tac (list int) =
fold_left (fun (n: unit -> Tac (list int)) (x, _) ->
let t () : Tac (list int) =
let l1 = n () in
let l2 = vprop_term_uvars x in
l1 `List.Tot.append` l2
in
t
)
(fun _ -> [])
args
in
t ()
let rec remove_dups_from_sorted (#t: eqtype) (l: list t) : Tot (list t) = match l with
| [] | [_] -> l
| a1 :: a2 :: q -> if a1 = a2 then remove_dups_from_sorted (a2 :: q) else a1 :: remove_dups_from_sorted (a2 :: q)
let simplify_list (l: list int) : Tot (list int) =
remove_dups_from_sorted (List.Tot.sortWith (List.Tot.compare_of_bool (<)) l)
let goal_term_uvars (t: term) : Tac (list int) =
let hd, tl = collect_app t in
if hd `is_fvar` (`%squash)
then
match tl with
| [tl0, Q_Explicit] ->
let _, tl1 = collect_app tl0 in
simplify_list (argv_uvars tl1)
| _ -> dump "ill-formed squash"; []
else
[]
let rec merge_sorted (l1 l2: list int) : Tot (list int)
(decreases (List.Tot.length l1 + List.Tot.length l2))
= match l1 with
| [] -> l2
| a1 :: q1 ->
begin match l2 with
| [] -> l1
| a2 :: q2 ->
if a1 < a2
then a1 :: merge_sorted q1 l2
else if a2 < a1
then a2 :: merge_sorted l1 q2
else a1 :: merge_sorted q1 q2
end
let rec sorted_lists_intersect (l1 l2: list int) : Tot bool
(decreases (List.Tot.length l1 + List.Tot.length l2))
= match l1 with
| [] -> false
| a1 :: q1 ->
begin match l2 with
| [] -> false
| a2 :: q2 ->
if a1 = a2
then true
else if a1 < a2
then sorted_lists_intersect q1 l2
else sorted_lists_intersect l1 q2
end
/// TODO: cache the list of variables for each goal, to avoid computing them several times
/// Compute the list of all vprop uvars that appear in the same goal as unsolved guard_vprop
let rec compute_guarded_uvars1 (accu: list int) (g: list goal) : Tac (list int) =
match g with
| [] -> accu
| a :: q ->
let t = goal_type a in
let accu' =
if all_guards_solved t
then accu
else merge_sorted accu (goal_term_uvars t)
in
compute_guarded_uvars1 accu' q
/// Enrich the list of vprop uvars with those that appear in the same goal
let rec compute_guarded_uvars2 (accu: list int) (g: list goal) : Tac (list int) =
match g with
| [] -> accu
| a :: q ->
let t = goal_type a in
let l = goal_term_uvars t in
let accu' =
if sorted_lists_intersect accu l
then merge_sorted accu l
else accu
in
compute_guarded_uvars2 accu' q
let rec compute_guarded_uvars3 (accu: list int) (g: list goal) : Tac (list int) =
let accu' = compute_guarded_uvars2 accu g in
if accu = accu'
then accu
else compute_guarded_uvars3 accu' g
let compute_guarded_uvars () : Tac (list int) =
let g = goals () in
let accu = compute_guarded_uvars1 [] g in
compute_guarded_uvars3 accu g
let rec pick_next (guarded_uvars: list int) (dict: _) (fuel: nat) : Tac bool =
if fuel = 0
then false
else match goals () with
| [] -> true
| a::_ ->
let t = goal_type a in
let l = goal_term_uvars t in
let next () : Tac bool =
later ();
pick_next guarded_uvars dict (fuel - 1)
in
if sorted_lists_intersect guarded_uvars l
then next ()
else if solve_or_delay dict
then true
else next ()
/// Main loop to schedule solving of goals.
/// The goals () function fetches all current goals in the context
let rec resolve_tac (dict: _) : Tac unit =
match goals () with
| [] -> ()
| g ->
norm [];
let guarded_uvars = compute_guarded_uvars () in
// TODO: If it picks a goal it cannot solve yet, try all the other ones?
if pick_next guarded_uvars dict (List.Tot.length g) then resolve_tac dict
else fail "Could not make progress, no solvable goal found"
let rec pick_next_logical (dict: _) (fuel: nat) : Tac bool =
if fuel = 0
then false
else match goals () with
| [] -> true
| _::_ -> if solve_or_delay dict then true else (later (); pick_next_logical dict (fuel - 1))
/// Special case for logical requires/ensures goals, which correspond only to equalities
let rec resolve_tac_logical (dict: _) : Tac unit =
match goals () with
| [] -> ()
| g ->
let fuel = List.Tot.length g in
if pick_next_logical dict fuel then resolve_tac_logical dict
else
// This is only for requires/ensures constraints, which are equalities
// There should always be a scheduling of constraints, but it can happen
// that some uvar for the type of an equality is not resolved.
// If we reach this point, we try to simply call the unifier instead of failing directly
solve_all_eqs fuel
/// Determining whether the type represented by term [t] corresponds to one of the logical (requires/ensures) goals
let typ_contains_req_ens (t:term) : Tac bool =
let name, _ = collect_app t in
is_any_fvar name [`%req_t; `%ens_t; `%pure_wp; `%pure_pre; `%pure_post] | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"FStar.String.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.Derived.Lemmas.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "Steel.Effect.Common.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Derived.Lemmas",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": false,
"full_module": "Steel.Semantics.Instantiate",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.Semantics.Hoare.MST",
"short_module": "Sem"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.list FStar.Stubs.Tactics.Types.goal
-> FStar.Tactics.Effect.Tac
(Prims.list FStar.Stubs.Tactics.Types.goal * Prims.list FStar.Stubs.Tactics.Types.goal) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Nil",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.NamedView.term",
"FStar.Pervasives.Native.uu___is_Some",
"Prims.Cons",
"Prims.bool",
"Steel.Effect.Common.typ_contains_req_ens",
"FStar.Pervasives.Native.__proj__Some__item__v",
"FStar.Reflection.V2.Derived.is_fvar",
"FStar.Reflection.V2.Formula.formula",
"FStar.Reflection.V2.Formula.term_as_formula'",
"FStar.Stubs.Tactics.Types.goal_type",
"Steel.Effect.Common.filter_goals"
] | [
"recursion"
] | false | true | false | false | false | let rec filter_goals (l: list goal) : Tac (list goal * list goal) =
| match l with
| [] -> [], []
| hd :: tl ->
let slgoals, loggoals = filter_goals tl in
match term_as_formula' (goal_type hd) with
| Comp (Eq t) _ _ ->
if Some? t
then
let b = typ_contains_req_ens (Some?.v t) in
if b then (slgoals, hd :: loggoals) else (hd :: slgoals, loggoals)
else (hd :: slgoals, loggoals)
| App t _ -> if is_fvar t (`%squash) then hd :: slgoals, loggoals else slgoals, loggoals
| _ -> slgoals, loggoals | false |
Steel.Effect.Common.fsti | Steel.Effect.Common.norm_return_pre | val norm_return_pre (fuel: nat) : Tac unit | val norm_return_pre (fuel: nat) : Tac unit | let rec norm_return_pre (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| _::_ -> norm [delta_only [`%return_pre]]; later(); norm_return_pre (fuel - 1) | {
"file_name": "lib/steel/Steel.Effect.Common.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 81,
"end_line": 3062,
"start_col": 0,
"start_line": 3057
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Effect.Common
open Steel.Memory
module Mem = Steel.Memory
module FExt = FStar.FunctionalExtensionality
open FStar.Ghost
/// This module provides various predicates and functions which are common to the
/// different Steel effects.
/// It also contains the tactic responsible for frame inference through a variant of AC-unification
#set-options "--ide_id_info_off"
(* Normalization helpers *)
irreducible let framing_implicit : unit = ()
irreducible let __steel_reduce__ : unit = ()
/// An internal attribute for finer-grained normalization in framing equalities
irreducible let __inner_steel_reduce__ : unit = ()
irreducible let __reduce__ : unit = ()
irreducible let smt_fallback : unit = ()
irreducible let ite_attr : unit = ()
// Needed to avoid some logical vs prop issues during unification with no subtyping
[@@__steel_reduce__]
unfold
let true_p : prop = True
module T = FStar.Tactics.V2
let join_preserves_interp (hp:slprop) (m0:hmem hp) (m1:mem{disjoint m0 m1})
: Lemma
(interp hp (join m0 m1))
[SMTPat (interp hp (join m0 m1))]
= let open Steel.Memory in
intro_emp m1;
intro_star hp emp m0 m1;
affine_star hp emp (join m0 m1)
(* Definition of a selector for a given slprop *)
/// A selector of type `a` for a separation logic predicate hp is a function
/// from a memory where the predicate hp holds, which returns a value of type `a`.
/// The effect GTot indicates that selectors are ghost functions, used for specification
/// and proof purposes only
let selector' (a:Type0) (hp:slprop) = hmem hp -> GTot a
/// Self-framing property for selectors
let sel_depends_only_on (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp) (m1:mem{disjoint m0 m1}).
(interp_depends_only_on hp; (
sel m0 == sel (join m0 m1)))
/// Additional property that selectors must satisfy, related to internals of
/// the Steel memory model encoding
let sel_depends_only_on_core (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp). sel m0 == sel (core_mem m0)
/// Full definition of a selector, as a function which satisfies the two predicates above
let selector (a:Type) (hp:slprop) : Type =
sel:selector' a hp{sel_depends_only_on sel /\ sel_depends_only_on_core sel}
/// The basis of our selector framework: Separation logic assertions enhanced with selectors
/// Note that selectors are "optional", it is always possible to use a non-informative selector,
/// such as fun _ -> () and to rely on the standard separation logic reasoning
[@@ erasable]
noeq
type vprop' =
{ hp: slprop u#1;
t:Type0;
sel: selector t hp}
(* Lifting the star operator to an inductive type makes normalization
and implementing some later functions easier *)
[@@__steel_reduce__; erasable]
noeq
type vprop =
| VUnit : vprop' -> vprop
| VStar: vprop -> vprop -> vprop
(* A generic lift from slprop to vprop with a non-informative selector *)
[@@ __steel_reduce__]
let to_vprop' (p:slprop) = {hp = p; t = unit; sel = fun _ -> ()}
[@@ __steel_reduce__]
unfold
let to_vprop (p:slprop) = VUnit (to_vprop' p)
/// Normalization steps for norm below.
/// All functions marked as `unfold`, or with the `__steel_reduce__` attribute will be reduced,
/// as well as some functions internal to the selector framework
unfold
let normal_steps =
[delta_attr [`%__steel_reduce__; `%__inner_steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify]
/// The core normalization primitive used to simplify Verification Conditions before encoding
/// them to an SMT solver.
unfold
let normal (#a:Type) (x:a) = norm normal_steps x
/// An abbreviation for the VStar constructor, allowing to use it with infix notation
[@@ __steel_reduce__; __reduce__]
let star = VStar
/// Extracting the underlying separation logic assertion from a vprop
[@@ __steel_reduce__]
let rec hp_of (p:vprop) = match p with
| VUnit p -> p.hp
| VStar p1 p2 -> hp_of p1 `Mem.star` hp_of p2
/// Extracting the selector type from a vprop
[@@ __steel_reduce__]
let rec t_of (p:vprop) = match p with
| VUnit p -> p.t
| VStar p1 p2 -> t_of p1 * t_of p2
/// Extracting the selector from a vprop
[@@ __steel_reduce__]
let rec sel_of (p:vprop) : GTot (selector (t_of p) (hp_of p)) = match p with
| VUnit p -> fun h -> p.sel h
| VStar p1 p2 ->
let sel1 = sel_of p1 in
let sel2 = sel_of p2 in
fun h -> (sel1 h, sel2 h)
/// Type abbreviations for separation logic pre- and postconditions of the Steel effects
type pre_t = vprop
type post_t (a:Type) = a -> vprop
/// An annotation to indicate which separation logic predicates correspond to monadic computations
/// These computations are handled in a specific manner in the framing tactic; they correspond to places where
/// the context shrinks from all local variables in the computation to variables available at the toplevel
let return_pre (p:vprop) : vprop = p
noextract
let hmem (p:vprop) = hmem (hp_of p)
/// Abstract predicate for vprop implication. Currently implemented as an implication on the underlying slprop
val can_be_split (p q:pre_t) : Type0
/// Exposing the implementation of `can_be_split` when needed for proof purposes
val reveal_can_be_split (_:unit) : Lemma
(forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q))
/// A targeted version of the above
val can_be_split_interp (r r':vprop) (h:hmem r)
: Lemma (requires can_be_split r r')
(ensures interp (hp_of r') h)
/// A dependent version of can_be_split, to be applied to dependent postconditions
let can_be_split_forall (#a:Type) (p q:post_t a) = forall x. can_be_split (p x) (q x)
/// A version of can_be_split which is indexed by a proposition, which can be used for equalities abduction
let can_be_split_dep (p:prop) (t1 t2:pre_t) = p ==> can_be_split t1 t2
/// A dependent version of the above predicate
let can_be_split_forall_dep (#a:Type) (p:a -> prop) (t1 t2:post_t a) =
forall (x:a). p x ==> can_be_split (t1 x) (t2 x)
(* Some lemmas about the can_be_split* predicates,
to be used as rewriting rules for the abstract predicates *)
val can_be_split_trans (p q r:vprop)
: Lemma
(requires p `can_be_split` q /\ q `can_be_split` r)
(ensures p `can_be_split` r)
let can_be_split_trans_rev (p q r:vprop)
: Lemma
(requires q `can_be_split` r /\ p `can_be_split` q)
(ensures p `can_be_split` r)
= can_be_split_trans p q r
val can_be_split_star_l (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` p)
[SMTPat ((p `star` q) `can_be_split` p)]
val can_be_split_star_r (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` q)
[SMTPat ((p `star` q) `can_be_split` q)]
val can_be_split_refl (p:vprop)
: Lemma (p `can_be_split` p)
[SMTPat (p `can_be_split` p)]
val can_be_split_congr_l
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((p `star` r) `can_be_split` (q `star` r)))
val can_be_split_congr_r
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((r `star` p) `can_be_split` (r `star` q)))
let prop_and (p1 p2: prop) : Tot prop = p1 /\ p2
let can_be_split_forall_dep_trans_rev
(#a: Type)
(cond1 cond2: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond2 q r /\ can_be_split_forall_dep cond1 p q))
(ensures (can_be_split_forall_dep (fun x -> cond1 x `prop_and` cond2 x) p r))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_trans x y) z)
let can_be_split_forall_dep_congr_l
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> p x `star` r x) (fun x -> q x `star` r x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_l x y) z)
let can_be_split_forall_dep_congr_r
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> r x `star` p x) (fun x -> r x `star` q x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_r x y) z)
/// To simplify the implementation of the framing tactic, dependent equivalence
/// is defined as a double dependent implication
let equiv_forall (#a:Type) (t1 t2:post_t a) : Type0
= t1 `can_be_split_forall` t2 /\ t2 `can_be_split_forall` t1
/// This equivalence models a context restriction at the end of a Steel computation;
/// note that t2 does not depend on the value of type `a`, but the two vprops must be
/// equivalent
let can_be_split_post (#a #b:Type) (t1:a -> post_t b) (t2:post_t b) =
forall (x:a). equiv_forall (t1 x) t2
/// Lifting the equivalence relation to vprops. Two vprops are equivalent if the underlying slprops
/// are equivalent
val equiv (p q:vprop) : prop
/// Revealing the definition of vprop equivalence when needed for proof purposes.
/// In other cases, the predicate is abstract
val reveal_equiv (p q:vprop) : Lemma (p `equiv` q <==> hp_of p `Mem.equiv` hp_of q)
(* A restricted view of the heap,
that only allows to access selectors of the current slprop *)
let rmem' (pre:vprop) =
FExt.restricted_g_t
(r0:vprop{can_be_split pre r0})
(fun r0 -> normal (t_of r0))
/// Ensuring that rmems encapsulate the structure induced by the separation logic star
val valid_rmem (#frame:vprop) (h:rmem' frame) : prop
unfold
let rmem (pre:vprop) = h:rmem' pre{valid_rmem h}
/// Exposing the definition of mk_rmem to better normalize Steel VCs
unfold noextract
let unrestricted_mk_rmem (r:vprop) (h:hmem r) = fun (r0:vprop{r `can_be_split` r0}) ->
can_be_split_interp r r0 h;
sel_of r0 h
[@@ __inner_steel_reduce__]
noextract
let mk_rmem' (r:vprop) (h:hmem r) : Tot (rmem' r) =
FExt.on_dom_g
(r0:vprop{r `can_be_split` r0})
(unrestricted_mk_rmem r h)
val lemma_valid_mk_rmem (r:vprop) (h:hmem r) : Lemma (valid_rmem (mk_rmem' r h))
[@@ __inner_steel_reduce__]
noextract
let mk_rmem (r:vprop) (h:hmem r) : Tot (rmem r) =
lemma_valid_mk_rmem r h;
mk_rmem' r h
val reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (ensures reveal_can_be_split(); (mk_rmem r h) r0 == sel_of r0 h)
(* Logical pre and postconditions can only access the restricted view of the heap *)
type req_t (pre:pre_t) = rmem pre -> Type0
type ens_t (pre:pre_t) (a:Type) (post:post_t a) =
rmem pre -> (x:a) -> rmem (post x) -> Type0
(* Empty assertion *)
val emp : vprop
/// When needed for proof purposes, the empty assertion is a direct lift of the
/// empty assertion from Steel.Memory
val reveal_emp (_:unit) : Lemma (hp_of emp == Mem.emp /\ t_of emp == unit)
/// Lifting pure predicates to vprop
[@@__steel_reduce__]
unfold let pure (p:prop) = to_vprop (pure p)
/// Framing predicates for the Steel effect. If the current computation has already
/// been framed, then the additional frame is the empty predicate
let maybe_emp (framed:bool) (frame:pre_t) = if framed then frame == emp else True
/// Dependent version of the above predicate, usable in dependent postconditions
let maybe_emp_dep (#a:Type) (framed:bool) (frame:post_t a) =
if framed then (forall x. frame x == emp) else True
(* focus_rmem is an additional restriction of our view of memory.
We expose it here to be able to reduce through normalization;
Any valid application of focus_rmem h will be reduced to the application of h *)
[@@ __steel_reduce__]
unfold
let unrestricted_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
= fun (r':vprop{can_be_split r0 r'}) -> can_be_split_trans r r0 r'; h r'
[@@ __inner_steel_reduce__]
let focus_rmem' (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) : Tot (rmem' r0)
= FExt.on_dom_g
(r':vprop{can_be_split r0 r'})
(unrestricted_focus_rmem h r0)
val lemma_valid_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (valid_rmem (focus_rmem' h r0))
[@@ __inner_steel_reduce__]
let focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) : Tot (rmem r0) =
lemma_valid_focus_rmem h r0;
focus_rmem' h r0
/// Exposing that calling focus_rmem on the current context corresponds to an equality
let focus_rmem_refl (r:vprop) (h:rmem r)
: Lemma (focus_rmem #r h r == h)
= FStar.FunctionalExtensionality.extensionality_g _ _ (focus_rmem #r h r) h
open FStar.Tactics.V2
/// State that all "atomic" subresources have the same selectors on both views.
/// The predicate has the __steel_reduce__ attribute, ensuring that VC normalization
/// will reduce it to a conjunction of equalities on atomic subresources
/// This predicate is also marked as `strict_on_arguments` on [frame], ensuring that
/// it will not be reduced when the frame is symbolic
/// Instead, the predicate will be rewritten to an equality using `lemma_frame_equalities` below
[@@ __steel_reduce__; strict_on_arguments [0]]
let rec frame_equalities'
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : Type0
= begin match frame with
| VUnit p -> h0 frame == h1 frame
| VStar p1 p2 ->
can_be_split_star_l p1 p2;
can_be_split_star_r p1 p2;
let h01 = focus_rmem h0 p1 in
let h11 = focus_rmem h1 p1 in
let h02 = focus_rmem h0 p2 in
let h12 = focus_rmem h1 p2 in
frame_equalities' p1 h01 h11 /\
frame_equalities' p2 h02 h12
end
/// This lemma states that frame_equalities is the same as an equality on the top-level frame.
/// The uncommon formulation with an extra [p] is needed to use in `rewrite_with_tactic`,
/// where the goal is of the shape `frame_equalities frame h0 h1 == ?u`
/// The rewriting happens below, in `frame_vc_norm`
val lemma_frame_equalities (frame:vprop) (h0:rmem frame) (h1:rmem frame) (p:Type0)
: Lemma
(requires (h0 frame == h1 frame) == p)
(ensures frame_equalities' frame h0 h1 == p)
/// A special case for frames about emp.
val lemma_frame_emp (h0:rmem emp) (h1:rmem emp) (p:Type0)
: Lemma (requires True == p)
(ensures frame_equalities' emp h0 h1 == p)
/// A variant of conjunction elimination, suitable to the equality goals during rewriting
val elim_conjunction (p1 p1' p2 p2':Type0)
: Lemma (requires p1 == p1' /\ p2 == p2')
(ensures (p1 /\ p2) == (p1' /\ p2'))
/// Normalization and rewriting step for generating frame equalities.
/// The frame_equalities function has the strict_on_arguments attribute on the [frame],
/// ensuring that it is not reduced when the frame is symbolic.
/// When that happens, we want to replace frame_equalities by an equality on the frame,
/// mimicking reduction
[@@plugin]
let frame_vc_norm () : Tac unit = with_compat_pre_core 0 (fun _ ->
// Do not normalize mk_rmem/focus_rmem to simplify application of
// the reflexivity lemma on frame_equalities'
norm [delta_attr [`%__steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify];
// After reduction, the term to rewrite might be of the shape
// (frame_equalities' ... /\ frame_equalities' .. /\ ...) == ?u,
// with some frame_equalities' possibly already fully reduced
// We repeatedly split the clause and extract the term on the left
// to generate equalities on atomic subresources
ignore (repeat (fun _ ->
// Try to split the conjunction. If there is no conjunction, we exit the repeat
apply_lemma (`elim_conjunction);
// Dismiss the two uvars created for the RHS, they'll be solved by unification
dismiss ();
dismiss ();
// The first goal is the left conjunction
split ();
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// Rewrites the frame_equalities if it wasn't yet reduced
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
// Finally solve the uvar, finishing the rewriting for this clause
trefl ()
));
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// We do not have conjunctions anymore, we try to apply the frame_equalities rewriting
// If it fails, the frame was not symbolic, so there is nothing to do
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
trefl ())
[@@ __steel_reduce__]
unfold
let frame_equalities
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : prop
= rewrite_with_tactic frame_vc_norm (frame_equalities' frame h0 h1)
/// More lemmas about the abstract can_be_split predicates, to be used as
/// rewriting rules in the tactic below
val can_be_split_dep_refl (p:vprop)
: Lemma (can_be_split_dep true_p p p)
val equiv_can_be_split (p1 p2:vprop) : Lemma
(requires p1 `equiv` p2)
(ensures p1 `can_be_split` p2)
val intro_can_be_split_frame (p q:vprop) (frame:vprop)
: Lemma (requires q `equiv` (p `star` frame))
(ensures can_be_split q p /\ True)
val can_be_split_post_elim (#a #b:Type) (t1:a -> post_t b) (t2:post_t b)
: Lemma (requires (forall (x:a) (y:b). t1 x y `equiv` t2 y))
(ensures t1 `can_be_split_post` t2)
val equiv_forall_refl (#a:Type) (t:post_t a)
: Lemma (t `equiv_forall` t)
val equiv_forall_elim (#a:Type) (t1 t2:post_t a)
: Lemma (requires (forall (x:a). t1 x `equiv` t2 x))
(ensures t1 `equiv_forall` t2)
open FStar.Tactics.CanonCommMonoidSimple.Equiv
(* equiv is an equivalence relation on vprops *)
/// Lemmas establishing the equivalence properties on equiv
val equiv_refl (x:vprop) : Lemma (equiv x x)
val equiv_sym (x y:vprop) : Lemma
(requires equiv x y)
(ensures equiv y x)
val equiv_trans (x y z:vprop) : Lemma
(requires equiv x y /\ equiv y z)
(ensures equiv x z)
module CE = FStar.Algebra.CommMonoid.Equiv
/// Equiv is an equivalence relation for vprops elements
inline_for_extraction noextract let req : CE.equiv vprop =
CE.EQ equiv
equiv_refl
equiv_sym
equiv_trans
(* Star induces a commutative monoid for the equiv equivalence relation *)
/// Lemmas establishing the commutative monoid properties
val cm_identity (x:vprop) : Lemma ((emp `star` x) `equiv` x)
val star_commutative (p1 p2:vprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
val star_associative (p1 p2 p3:vprop)
: Lemma (((p1 `star` p2) `star` p3)
`equiv`
(p1 `star` (p2 `star` p3)))
val star_congruence (p1 p2 p3 p4:vprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
/// Star induces a commutative monoid on vprops
[@__steel_reduce__]
inline_for_extraction noextract let rm : CE.cm vprop req =
CE.CM emp
star
cm_identity
star_associative
star_commutative
star_congruence
(*** Vprop combinators ***)
(* Refining a vprop with a selector predicate *)
/// Separation logic predicate stating the validity of a vprop with an additional refinement on its selector
val vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: mem) : Lemma
(interp (vrefine_hp v p) m <==> (interp (hp_of v) m /\ p (sel_of v m)))
/// Selector type for a refined vprop
[@__steel_reduce__]
let vrefine_t (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot Type
= (x: t_of v {p x})
/// Selector of a refined vprop. Returns a value which satisfies the refinement predicate
val vrefine_sel (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (selector (vrefine_t v p) (vrefine_hp v p))
/// Exposing the definition of the refined selector
val vrefine_sel_eq (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: Mem.hmem (vrefine_hp v p)) : Lemma
(
interp (hp_of v) m /\
vrefine_sel v p m == sel_of v m
)
// [SMTPat ((vrefine_sel v p) m)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above pieces to define a vprop refined by a selector prediacte
[@__steel_reduce__]
let vrefine' (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot vprop' = {
hp = vrefine_hp v p;
t = vrefine_t v p;
sel = vrefine_sel v p;
}
[@__steel_reduce__]
let vrefine (v: vprop) (p: (normal (t_of v) -> Tot prop)) = VUnit (vrefine' v p)
(* Dependent star for vprops *)
/// Separation logic predicate corresponding to a dependent star,
/// where the second predicate depends on the selector value of the first
val vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: mem) : Lemma
(interp (vdep_hp v p) m <==> (interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m))
/// Helper to define the selector type of the second component of the dependent star
let vdep_payload
(v: vprop) (p: ( (t_of v) -> Tot vprop))
(x: t_of v)
: Tot Type
= t_of (p x)
/// Selector type for the dependent star: A dependent tuple, where the second component's type depends on the first vprop
let vdep_t (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot Type
= dtuple2 (t_of v) (vdep_payload v p)
/// Selector for the dependent star
val vdep_sel (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (selector (vdep_t v p) (vdep_hp v p))
/// Exposing the definition of the dependent star's selector when needed for proof purposes
val vdep_sel_eq (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: Mem.hmem (vdep_hp v p)) : Lemma
(
interp (hp_of v) m /\
begin let x = sel_of v m in
interp (hp_of (p x)) m /\
vdep_sel v p m == (| x, sel_of (p x) m |)
end
)
/// Combining the elements above to create a dependent star vprop
[@__steel_reduce__]
let vdep' (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot vprop' = {
hp = vdep_hp v p;
t = vdep_t v p;
sel = vdep_sel v p;
}
[@__steel_reduce__]
let vdep (v: vprop) (p: ( (t_of v) -> Tot vprop)) = VUnit (vdep' v p)
(* Selector rewrite combinator *)
/// The selector of a rewrite combinator applies a function `f` to the current selector of a vprop.
val vrewrite_sel (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot (selector t (normal (hp_of v)))
/// Exposing the definition of the above selector
val vrewrite_sel_eq (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) (h: Mem.hmem (normal (hp_of v))) : Lemma
((vrewrite_sel v f <: selector' _ _) h == f ((normal (sel_of v) <: selector' _ _) h))
// [SMTPat (vrewrite_sel v f h)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above elements to create a rewrite vprop
[@__steel_reduce__]
let vrewrite' (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop' = {
hp = normal (hp_of v);
t = t;
sel = vrewrite_sel v f;
}
[@__steel_reduce__]
let vrewrite (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop = VUnit (vrewrite' v f)
(*** Framing tactic ***)
(* Specialize visit_tm from the standard F* tactic library to reimplement name_appears_in.
AF: As of Jan 14, 2021, calling name_appears_in from FStar.Tactics.Derived leads to a segfault *)
exception Appears
let on_sort_binder (f : term -> Tac unit) (b:binder) : Tac unit =
f b.sort
let rec visit_tm (ff : term -> Tac unit) (t : term) : Tac unit =
let tv = inspect t in
(match tv with
| Tv_FVar _
| Tv_UInst _ _
| Tv_Var _
| Tv_BVar _ -> ()
| Tv_Type _ -> ()
| Tv_Const c -> ()
| Tv_Uvar i u -> ()
| Tv_Unsupp -> ()
| Tv_Unknown -> ()
| Tv_Arrow b c ->
on_sort_binder ff b;
visit_comp ff c
| Tv_Abs b t ->
let b = on_sort_binder (visit_tm ff) b in
visit_tm ff t
| Tv_App l (r, q) ->
visit_tm ff l;
visit_tm ff r
| Tv_Refine b r ->
on_sort_binder ff b;
visit_tm ff r
| Tv_Let r attrs b def t ->
on_sort_binder ff b;
visit_tm ff def;
visit_tm ff t
| Tv_Match sc _ brs ->
visit_tm ff sc;
iter (visit_br ff) brs
| Tv_AscribedT e t topt _ ->
visit_tm ff e;
visit_tm ff t
| Tv_AscribedC e c topt _ ->
visit_tm ff e
); ff t
and visit_br (ff : term -> Tac unit) (b:branch) : Tac unit =
let (p, t) = b in
visit_tm ff t
and visit_comp (ff : term -> Tac unit) (c : comp) : Tac unit =
let cv = inspect_comp c in
match cv with
| C_Total ret -> visit_tm ff ret
| C_GTotal ret -> visit_tm ff ret
| C_Lemma pre post pats ->
visit_tm ff pre;
visit_tm ff post;
visit_tm ff pats
| C_Eff us eff res args decrs ->
visit_tm ff res;
iter (fun (a, q) -> visit_tm ff a) args;
iter (visit_tm ff) decrs
/// Decides whether a top-level name [nm] syntactically
/// appears in the term [t].
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac unit =
match inspect t with
| Tv_FVar fv -> if inspect_fv fv = nm then raise Appears
| t -> ()
in
try ignore (visit_tm ff t); false with
| Appears -> true
| e -> raise e
/// Checks whether term [t] appears in term [i]
let term_appears_in (t:term) (i:term) : Tac bool =
name_appears_in (explode_qn (term_to_string t)) i
/// We define a small language to handle arbitrary separation logic predicates.
/// Separation logic predicates are encoded as atoms for which equality is decidable,
/// here represented as integers
let atom : eqtype = int
let rec atoms_to_string (l:list atom) = match l with
| [] -> ""
| hd::tl -> string_of_int hd ^ " " ^ atoms_to_string tl
/// Reflecting the structure of our separation logic on atmos
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
/// A map from atoms to the terms they represent.
/// The second component of the term corresponds to a default element,
/// ensuring we never raise an exception when trying to access an element in the map
let amap (a:Type) = list (atom * a) * a
/// An empty atom map: The list map is empty
let const (#a:Type) (xa:a) : amap a = ([], xa)
/// Accessing an element in the atom map
// We reimplement List.Tot.Base.assoc because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_assoc (#key: eqtype) (#value: Type) (k: key) (dict: list (key & value)) : Pure (option value)
(requires True)
(ensures (fun res -> res == List.Tot.assoc k dict))
= match dict with
| [] -> None
| (k', v') :: q -> if k = k' then Some v' else my_assoc k q
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match my_assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
/// Updating the atom map. Since select finds the first element corresponding to
/// the atom in the list and we do not have any remove function,
/// we can simply append the new element at the head without removing any possible
/// previous element
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
/// Check whether the current term is an unresolved vprop unification variable.
/// This can happen if either it is a uvar, or it is an unresolved dependent
/// vprop uvar which is applied to some argument
let is_uvar (t:term) : Tac bool = match inspect t with
| Tv_Uvar _ _ -> true
| Tv_App _ _ ->
let hd, args = collect_app t in
Tv_Uvar? (inspect hd)
| _ -> false
/// For a given term t, collect all terms in the list l with the same head symbol
let rec get_candidates (t:term) (l:list term) : Tac (list term) =
let name, _ = collect_app t in
match l with
| [] -> []
| hd::tl ->
let n, _ = collect_app hd in
if term_eq_old n name then (
hd::(get_candidates t tl)
) else get_candidates t tl
/// Try to remove a term that is exactly matching, not just that can be unified
let rec trivial_cancel (t:atom) (l:list atom) =
match l with
| [] -> false, l
| hd::tl ->
if hd = t then
// These elements match, we remove them
true, tl
else (let b, res = trivial_cancel t tl in b, hd::res)
/// Call trivial_cancel on all elements of l1.
/// The first two lists returned are the remainders of l1 and l2.
/// The last two lists are the removed parts of l1 and l2, with
/// the additional invariant that they are equal
let rec trivial_cancels (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, [], []
| hd::tl ->
let b, l2' = trivial_cancel hd l2 in
let l1', l2', l1_del, l2_del = trivial_cancels tl l2' am in
(if b then l1' else hd::l1'), l2',
(if b then hd::l1_del else l1_del), (if b then hd::l2_del else l2_del)
exception Failed
exception Success
/// Helper to print the terms corresponding to the current list of atoms
let rec print_atoms (l:list atom) (am:amap term) : Tac string =
match l with
| [] -> ""
| [hd] -> term_to_string (select hd am)
| hd::tl -> term_to_string (select hd am) ^ " * " ^ print_atoms tl am
/// For a list of candidates l, count the number that can unify with t.
/// Does not try to unify with a uvar, this will be done at the very end.
/// Tries to unify with slprops with a different head symbol, it might
/// be an abbreviation
let rec try_candidates (t:atom) (l:list atom) (am:amap term) : Tac (atom * int) =
match l with
| [] -> t, 0
| hd::tl ->
if is_uvar (select hd am) then (try_candidates t tl am)
else
// Encapsulate unify in a try/with to ensure unification is not actually performed
let res = try if unify (select t am) (select hd am) then raise Success else raise Failed
with | Success -> true | _ -> false in
let t', n' = try_candidates t tl am in
if res && hd <> t' then hd, 1 + n' else t', n'
/// Remove the given term from the list. Only to be called when
/// try_candidates succeeded
let rec remove_from_list (t:atom) (l:list atom) : Tac (list atom) =
match l with
| [] -> fail "atom in remove_from_list not found: should not happen"; []
| hd::tl -> if t = hd then tl else hd::remove_from_list t tl
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
let rec equivalent_lists_once (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, l1_del, l2_del
| hd::tl ->
let t, n = try_candidates hd l2 am in
if n = 1 then (
let l2 = remove_from_list t l2 in
equivalent_lists_once tl l2 (hd::l1_del) (t::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once tl l2 l1_del l2_del am in
hd::rem1, rem2, l1'_del, l2'_del
)
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates by iterating on l2.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
/// This is very close to equivalent_lists_once above, but helps making progress
/// when l1 contains syntactically equal candidates
let rec equivalent_lists_once_l2 (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l2 with
| [] -> l1, [], l1_del, l2_del
| hd::tl ->
if is_uvar (select hd am) then
// We do not try to match the vprop uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
else (
let t, n = try_candidates hd l1 am in
if n = 1 then (
let l1 = remove_from_list t l1 in
equivalent_lists_once_l2 l1 tl (t::l1_del) (hd::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
)
)
let get_head (l:list atom) (am:amap term) : term = match l with
| [] -> `()
| hd::_ -> select hd am
/// Checks whether the list of atoms [l] only contains one unresolved uvar
let is_only_uvar (l:list atom) (am:amap term) : Tac bool =
if List.Tot.Base.length l = 1 then is_uvar (select (List.Tot.Base.hd l) am)
else false
/// Assumes that u is a uvar, checks that all variables in l can be unified with it.
/// Later in the tactic, the uvar will be unified to a star of l *)
let rec try_unifying_remaining (l:list atom) (u:term) (am:amap term) : Tac unit =
match l with
| [] -> ()
| hd::tl ->
try if unify u (select hd am) then raise Success else raise Failed with
| Success -> try_unifying_remaining tl u am
| _ -> fail ("could not find candidate for scrutinee " ^ term_to_string (select hd am))
/// Is SMT rewriting enabled for this binder
let is_smt_binder (b:binder) : Tac bool =
let l = b.attrs in
not (List.Tot.isEmpty (filter (fun t -> is_fvar t (`%smt_fallback)) l))
/// Creates a new term, where all arguments where SMT rewriting is enabled have been replaced
/// by fresh, unconstrained unification variables
let rec new_args_for_smt_attrs (env:env) (l:list argv) (ty:typ) : Tac (list argv * list term) =
let fresh_ghost_uvar ty =
let e = cur_env () in
ghost_uvar_env e ty
in
match l, inspect_unascribe ty with
| (arg, aqualv)::tl, Tv_Arrow binder comp ->
let needs_smt = is_smt_binder binder in
let new_hd =
if needs_smt then (
let arg_ty = tc env arg in
let uvar = fresh_ghost_uvar arg_ty in
unshelve uvar;
flip ();
(uvar, aqualv)
) else (arg, aqualv)
in
begin
let ty2 =
match inspect_comp comp with
| C_Total ty2 -> ty2
| C_Eff _ eff_name ty2 _ _ ->
if eff_name = ["Prims"; "Tot"]
then ty2
else fail "computation type not supported in definition of slprops"
| _ -> fail "computation type not supported in definition of slprops" in
let tl_argv, tl_terms = new_args_for_smt_attrs env tl ty2 in
new_hd::tl_argv, (if needs_smt then arg::tl_terms else tl_terms)
end
| [], Tv_FVar fv -> [], []
| _ -> fail "should not happen. Is an slprop partially applied?"
/// Rewrites all terms in the context to enable SMT rewriting through the use of fresh, unconstrained unification variables
let rewrite_term_for_smt (env:env) (am:amap term * list term) (a:atom) : Tac (amap term * list term)
= let am, prev_uvar_terms = am in
let term = select a am in
let hd, args = collect_app term in
let t = tc env hd in
let new_args, uvar_terms = new_args_for_smt_attrs env args t in
let new_term = mk_app hd new_args in
update a new_term am, List.Tot.append uvar_terms prev_uvar_terms
/// User-facing error message when the framing tactic fails
let fail_atoms (#a:Type) (l1 l2:list atom) (am:amap term) : Tac a
= fail ("could not find a solution for unifying\n" ^ print_atoms l1 am ^ "\nand\n" ^ print_atoms l2 am)
/// Variant of equivalent_lists' below to be called once terms have been rewritten to allow SMT rewriting.
/// If unification succeeds and we have unicity of the solution, this tactic will succeed,
/// and ultimately create an SMT guard that the two terms are actually equal
let rec equivalent_lists_fallback (n:nat) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false)
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then
// Should always be smaller or equal to n
// If it is equal, no progress was made.
fail_atoms rem1 rem2 am
else equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' am
/// Iterates over all terms in [l2] to prepare them for unification with SMT rewriting
let replace_smt_uvars (l1 l2:list atom) (am:amap term) : Tac (amap term * list term)
= let env = cur_env () in
fold_left (rewrite_term_for_smt env) (am, []) l2
/// Recursively calls equivalent_lists_once.
/// Stops when we're done with unification, or when we didn't make any progress
/// If we didn't make any progress, we have too many candidates for some terms.
/// Accumulates rewritings of l1 and l2 in l1_del and l2_del, with the invariant
/// that the two lists are unifiable at any point
/// The boolean indicates if there is a leftover empty frame
let rec equivalent_lists' (n:nat) (use_smt:bool) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false, [])
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true, []))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false, []
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Try to make progress by matching non-uvars of l2 with candidates in l1
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once_l2 rem1 rem2 l1_del' l2_del' am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Should always be smaller or equal to n
// If it is equal, no progress was made.
if use_smt then
// SMT fallback is allowed
let new_am, uvar_terms = replace_smt_uvars rem1 rem2 am in
let l1_f, l2_f, b = equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' new_am in
l1_f, l2_f, b, uvar_terms
else fail_atoms rem1 rem2 am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
/// Checks if term for atom t unifies with fall uvars in l
let rec unifies_with_all_uvars (t:term) (l:list atom) (am:amap term) : Tac bool =
match l with
| [] -> true
| hd::tl ->
if unifies_with_all_uvars t tl am then (
// Unified with tail, try this term
let hd_t = select hd am in
if is_uvar hd_t then (
// The head term is a uvar, try unifying
try if unify t hd_t then raise Success else raise Failed
with | Success -> true | _ -> false
) else true // The uvar is not a head term, we do not need to try it
) else false
/// Puts all terms in l1 that cannot unify with the uvars in l2 at the top:
/// They need to be solved first
let rec most_restricted_at_top (l1 l2:list atom) (am:amap term) : Tac (list atom) =
match l1 with
| [] -> []
| hd::tl ->
if unifies_with_all_uvars (select hd am) l2 am then (most_restricted_at_top tl l2 am) `List.Tot.append` [hd]
else hd::(most_restricted_at_top tl l2 am)
/// Core AC-unification tactic.
/// First remove all trivially equal terms, then try to decide equivalence.
/// Assumes that l1 does not contain any vprop uvar.
/// If it succeeds, returns permutations of l1, l2, and a boolean indicating
/// if l2 has a trailing empty frame to be unified
let equivalent_lists (use_smt:bool) (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term)
= let l1, l2, l1_del, l2_del = trivial_cancels l1 l2 am in
let l1 = most_restricted_at_top l1 l2 am in
let n = List.Tot.length l1 in
let l1_del, l2_del, emp_frame, uvar_terms = equivalent_lists' n use_smt l1 l2 l1_del l2_del am in
l1_del, l2_del, emp_frame, uvar_terms
(* Helpers to relate the actual terms to their representation as a list of atoms *)
open FStar.Reflection.V2.Derived.Lemmas
let rec list_to_string (l:list term) : Tac string =
match l with
| [] -> "end"
| hd::tl -> term_to_string hd ^ " " ^ list_to_string tl
let rec mdenote_gen (#a:Type u#aa) (unit:a) (mult:a -> a -> a) (am:amap a) (e:exp) : a =
match e with
| Unit -> unit
| Atom x -> select x am
| Mult e1 e2 -> mult (mdenote_gen unit mult am e1) (mdenote_gen unit mult am e2)
let rec xsdenote_gen (#a:Type) (unit:a) (mult:a -> a -> a) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> unit
| [x] -> select x am
| x::xs' -> mult (select x am) (xsdenote_gen unit mult am xs')
unfold
let mdenote (#a:Type u#aa) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp) : a =
let open FStar.Algebra.CommMonoid.Equiv in
mdenote_gen (CM?.unit m) (CM?.mult m) am e
unfold
let xsdenote (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom) : a =
let open FStar.Algebra.CommMonoid.Equiv in
xsdenote_gen (CM?.unit m) (CM?.mult m) am xs
// We reimplement List.Tot.Base.append because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_append (#t: Type) (l1 l2: list t) : Pure (list t)
(requires True)
(ensures (fun res -> res == l1 `List.Tot.append` l2))
(decreases l1)
= match l1 with
| [] -> l2
| a :: q -> a :: my_append q l2
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 `my_append` flatten e2
let rec flatten_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 `my_append` xs2) `CE.EQ?.eq eq` CE.CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
let open FStar.Algebra.CommMonoid.Equiv in
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' `my_append` xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' `my_append` xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `CE.EQ?.eq eq` xsdenote eq m am (flatten e)) =
let open FStar.Algebra.CommMonoid.Equiv in
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 `my_append` flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 `my_append` flatten e2))
let monoid_reflect (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (flatten e1) `CE.EQ?.eq eq` xsdenote eq m am (flatten e2)))
: squash (mdenote eq m am e1 `CE.EQ?.eq eq` mdenote eq m am e2) =
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CE.EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (flatten e2));
CE.EQ?.transitivity eq
(xsdenote eq m am (flatten e1))
(xsdenote eq m am (flatten e2))
(mdenote eq m am e2);
CE.EQ?.transitivity eq
(mdenote eq m am e1)
(xsdenote eq m am (flatten e1))
(mdenote eq m am e2)
// Here we sort the variable numbers
// We reimplement List.Tot.Base.sortWith because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_partition (#a: Type) (f: (a -> Tot bool)) (l: list a)
: Pure (list a & list a)
(requires True)
(ensures (fun res -> res == List.Tot.partition f l))
= match l with
| [] -> [], []
| hd::tl ->
let l1, l2 = my_partition f tl in
if f hd
then hd::l1, l2
else l1, hd::l2
let rec partition_ext (#a: Type) (f1 f2: (a -> Tot bool)) (l: list a)
: Lemma
(requires (forall x . f1 x == f2 x))
(ensures (List.Tot.partition f1 l == List.Tot.partition f2 l))
= match l with
| [] -> ()
| hd::tl -> partition_ext f1 f2 tl
let my_bool_of_compare (#a: Type) (f: a -> a -> Tot int) (x: a) (y: a) : Tot bool
= f x y < 0
let rec my_sortWith (#a: Type) (f: (a -> a -> Tot int)) (l:list a)
: Pure (list a)
(requires True)
(ensures (fun res -> res == List.Tot.sortWith f l))
(decreases (List.Tot.length l))
= match l with
| [] -> []
| pivot::tl ->
let hi, lo = my_partition (my_bool_of_compare f pivot) tl in
partition_ext (my_bool_of_compare f pivot) (List.Tot.bool_of_compare f pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f pivot) tl;
my_append (my_sortWith f lo) (pivot::my_sortWith f hi)
let rec sortWith_ext (#a: Type) (f1 f2: (a -> a -> Tot int)) (l: list a)
: Lemma
(requires (forall x y . f1 x y == f2 x y))
(ensures (List.Tot.sortWith f1 l == List.Tot.sortWith f2 l))
(decreases (List.Tot.length l))
= match l with
| [] -> ()
| pivot::tl ->
partition_ext (List.Tot.bool_of_compare f1 pivot) (List.Tot.bool_of_compare f2 pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f1 pivot) tl;
let hi, lo = List.Tot.partition (List.Tot.bool_of_compare f1 pivot) tl in
sortWith_ext f1 f2 lo;
sortWith_ext f1 f2 hi
let permute = list atom -> list atom
let my_compare_of_bool (#a:eqtype) (rel: a -> a -> Tot bool) (x: a) (y: a) : Tot int
= if x `rel` y then -1
else if x = y then 0
else 1
let sort : permute = my_sortWith #int (my_compare_of_bool (<))
#push-options "--fuel 1 --ifuel 1"
let lemma_xsdenote_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (hd:atom) (tl:list atom)
: Lemma (xsdenote eq m am (hd::tl) `CE.EQ?.eq eq`
(CE.CM?.mult m (select hd am) (xsdenote eq m am tl)))
= let open FStar.Algebra.CommMonoid.Equiv in
match tl with
| [] ->
assert (xsdenote eq m am (hd::tl) == select hd am);
CM?.identity m (select hd am);
EQ?.symmetry eq (CM?.unit m `CM?.mult m` select hd am) (select hd am);
CM?.commutativity m (CM?.unit m) (select hd am);
EQ?.transitivity eq
(xsdenote eq m am (hd::tl))
(CM?.unit m `CM?.mult m` select hd am)
(CM?.mult m (select hd am) (xsdenote eq m am tl))
| _ -> EQ?.reflexivity eq (xsdenote eq m am (hd::tl))
let rec partition_equiv (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (pivot:atom) (q:list atom)
: Lemma
(let open FStar.List.Tot.Base in
let hi, lo = partition (bool_of_compare (compare_of_bool (<)) pivot) q in
CE.EQ?.eq eq
(xsdenote eq m am hi `CE.CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am q))
= let open FStar.Algebra.CommMonoid.Equiv in
let open FStar.List.Tot.Base in
let f = bool_of_compare (compare_of_bool (<)) pivot in
let hi, lo = partition f q in
match q with
| [] -> CM?.identity m (xsdenote eq m am hi)
| hd::tl ->
let l1, l2 = partition f tl in
partition_equiv eq m am pivot tl;
assert (EQ?.eq eq
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(xsdenote eq m am tl));
EQ?.reflexivity eq (xsdenote eq m am l1);
EQ?.reflexivity eq (xsdenote eq m am l2);
EQ?.reflexivity eq (xsdenote eq m am hi);
EQ?.reflexivity eq (xsdenote eq m am lo);
if f hd then begin
assert (hi == hd::l1 /\ lo == l2);
lemma_xsdenote_aux eq m am hd l1;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am l1)
(xsdenote eq m am l2);
CM?.associativity m
(select hd am)
(xsdenote eq m am l1)
(xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l1) `CM?.mult m` xsdenote eq m am l2)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end else begin
assert (hi == l1 /\ lo == hd::l2);
lemma_xsdenote_aux eq m am hd l2;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
CM?.commutativity m
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am l1 `CM?.mult m` (select hd am `CM?.mult m` xsdenote eq m am l2))
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1);
CM?.associativity m
(select hd am)
(xsdenote eq m am l2)
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1));
CM?.commutativity m (xsdenote eq m am l2) (xsdenote eq m am l1);
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1)
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1))
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end
let rec sort_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom)
: Lemma (requires True)
(ensures xsdenote eq m am xs `CE.EQ?.eq eq` xsdenote eq m am (sort xs))
(decreases (FStar.List.Tot.Base.length xs))
= let open FStar.Algebra.CommMonoid.Equiv in
match xs with
| [] -> EQ?.reflexivity eq (xsdenote eq m am [])
| pivot::q ->
let sort0 : permute = List.Tot.sortWith #int (List.Tot.compare_of_bool (<)) in
let sort_eq (l: list atom) : Lemma
(sort l == sort0 l)
[SMTPat (sort l)]
= sortWith_ext (my_compare_of_bool (<)) (List.Tot.compare_of_bool (<)) l
in
let open FStar.List.Tot.Base in
let f:int -> int -> int = compare_of_bool (<) in
let hi, lo = partition (bool_of_compare f pivot) q in
flatten_correct_aux eq m am (sort lo) (pivot::sort hi);
assert (xsdenote eq m am (sort xs) `EQ?.eq eq`
CM?.mult m (xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi)));
lemma_xsdenote_aux eq m am pivot (sort hi);
EQ?.reflexivity eq (xsdenote eq m am (sort lo));
CM?.congruence m
(xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi))));
CM?.commutativity m
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
CM?.associativity m
(select pivot am)
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo));
EQ?.transitivity eq
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
((select pivot am `CM?.mult m` xsdenote eq m am (sort hi)) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))));
partition_length (bool_of_compare f pivot) q;
sort_correct_aux eq m am hi;
sort_correct_aux eq m am lo;
EQ?.symmetry eq (xsdenote eq m am lo) (xsdenote eq m am (sort lo));
EQ?.symmetry eq (xsdenote eq m am hi) (xsdenote eq m am (sort hi));
CM?.congruence m
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo))
(xsdenote eq m am hi)
(xsdenote eq m am lo);
assert (EQ?.eq eq
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
EQ?.reflexivity eq (select pivot am);
CM?.congruence m
(select pivot am)
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)));
partition_equiv eq m am pivot q;
CM?.congruence m
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select pivot am)
(xsdenote eq m am q);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q)));
lemma_xsdenote_aux eq m am pivot q;
EQ?.symmetry eq
(xsdenote eq m am (pivot::q))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q))
(xsdenote eq m am xs);
EQ?.symmetry eq (xsdenote eq m am (sort xs)) (xsdenote eq m am xs)
#pop-options
#push-options "--fuel 0 --ifuel 0"
(* Lemmas to be called after a permutation compatible with AC-unification was found *)
let smt_reflexivity (#a:Type) (eq:CE.equiv a) (x y:a)
: Lemma (requires x == y)
(ensures CE.EQ?.eq eq x y)
= CE.EQ?.reflexivity eq x
let identity_left_smt (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a)
: Lemma
(requires x == y)
(ensures CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) y))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_left (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x:a)
: Lemma (CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) x))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_right_diff (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a) : Lemma
(requires CE.EQ?.eq eq x y)
(ensures CE.EQ?.eq eq (CE.CM?.mult m x (CE.CM?.unit m)) y)
= CE.right_identity eq m x;
CE.EQ?.transitivity eq (CE.CM?.mult m x (CE.CM?.unit m)) x y
/// Dismiss possible vprops goals that might have been created by lemma application.
/// These vprops will be instantiated at a later stage; else, Meta-F* will raise an error
let rec dismiss_slprops () : Tac unit =
match term_as_formula' (cur_goal ()) with
| App t _ -> if is_fvar t (`%squash) then () else (dismiss(); dismiss_slprops ())
| _ -> dismiss(); dismiss_slprops ()
/// Recursively removing trailing empty assertions
let rec n_identity_left (n:int) (eq m:term) : Tac unit
= if n = 0 then (
apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
// Cleaning up, in case a uvar has been generated here. It'll be solved later
set_goals [])
else (
apply_lemma (`identity_right_diff (`#eq) (`#m));
// Drop the slprops generated, they will be solved later
dismiss_slprops ();
n_identity_left (n-1) eq m
)
/// Helper lemma: If two vprops (as represented by lists of atoms) are equivalent, then their canonical forms
/// (corresponding to applying the sort function on atoms) are equivalent
let equivalent_sorted (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (l1 l2 l1' l2':list atom)
: Lemma (requires
sort l1 == sort l1' /\
sort l2 == sort l2' /\
xsdenote eq m am l1 `CE.EQ?.eq eq` xsdenote eq m am l2)
(ensures xsdenote eq m am l1' `CE.EQ?.eq eq` xsdenote eq m am l2')
= let open FStar.Algebra.CommMonoid.Equiv in
sort_correct_aux eq m am l1';
sort_correct_aux eq m am l1;
EQ?.symmetry eq (xsdenote eq m am l1) (xsdenote eq m am (sort l1));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l1'))
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l1)
(xsdenote eq m am l2);
sort_correct_aux eq m am l2;
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l2)
(xsdenote eq m am (sort l2));
sort_correct_aux eq m am l2';
EQ?.symmetry eq (xsdenote eq m am l2') (xsdenote eq m am (sort l2'));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l2))
(xsdenote eq m am l2')
#pop-options
/// Finds the position of first occurrence of x in xs.
/// This is now specialized to terms and their funny term_eq_old.
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) (decreases xs) =
match xs with
| [] -> None
| x'::xs' -> if term_eq_old x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = List.Tot.Base.length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts `List.Tot.append` [t], update vfresh t am)
/// Transforming a term into the corresponding list of atoms
/// If the atomic terms were already present in the map [am], then
/// they correspond to the same atoms
/// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app_ref t in
match inspect_unascribe hd, List.Tot.Base.list_unref tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq_old (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq_old t unit
then (Unit, ts, am)
else fatom t ts am
/// Performs the required normalization before calling the function above
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CE.CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CE.CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
/// Meta-F* internal: Transforms the atom map into a term
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
/// `am` is an amap (basically a list) of terms, each representing a value
/// of type `a` (whichever we are canonicalizing). This functions converts
/// `am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) )
/// Transforms a term representatoin into a term through quotation
let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt))
let rec quote_atoms (l:list atom) = match l with
| [] -> `[]
| hd::tl -> let nt = pack (Tv_Const (C_Int hd)) in
(`Cons (`#nt) (`#(quote_atoms tl)))
/// Some internal normalization steps to make reflection of vprops into atoms and atom permutation go smoothly.
/// We reimplemented sorting/list functions to normalize our uses without normalizing those introduced by the user.
let normal_tac_steps = [primops; iota; zeta; delta_only [
`%mdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm]]
/// The normalization function, using the above normalization steps
let normal_tac (#a:Type) (x:a) : a = FStar.Pervasives.norm normal_tac_steps x
/// Helper lemma to establish relation between normalized and initial values
let normal_elim (x:Type0) : Lemma
(requires x)
(ensures normal_tac x)
= ()
exception Result of list atom * list atom * bool * list term
/// F* equalities are typed, but the generated type sometimes is a unification variable.
/// This helper ensures that such unification variables are not left unresolved, which would lead to an error
let close_equality_typ' (t:term) : Tac unit =
let f = term_as_formula' t in
match f with
| Comp (Eq (Some u)) l _ -> if is_uvar u then (unshelve u; exact_with_ref (tc (cur_env()) l))
| _ -> ()
/// Recursively closing equality types in a given term (usually a unification constraint)
let close_equality_typ (t:term) : Tac unit =
visit_tm close_equality_typ' t
/// Core unification tactic.
/// Transforms terms into their atom representations,
/// Tries to find a solution to AC-unification, and if so,
/// soundly permutes the atom representations before calling the unifier
/// to check the validity of the provided solution.
/// In the case where SMT rewriting was needed, equalities abduction is performed by instantiating the
/// abduction prop unification variable with the corresponding guard
/// 09/24:
///
/// The tactic internally builds a map from atoms to terms
/// and uses the map for reflecting the goal to atoms representation
/// During reflection, the tactics engine typechecks the amap, and hence all
/// the terms again
/// This typechecking of terms is unnecessary, since the terms are coming
/// from the goal, and hence are already well-typed
/// Worse, re-typechecking them may generate a lot of SMT queries
/// And even worse, the SMT queries are discharged in the static context,
/// requiring various workarounds (e.g. squash variables for if conditions etc.)
///
/// To fix this, we now "name" the terms and use the amap with names
///
/// Read through the canon_l_r function for how we do this
/// The following three lemmas are helpers to manipulate the goal in canon_l_r
[@@ no_subtyping]
let inst_bv (#a:Type) (#p:a -> Type0) (#q:Type0) (x:a) (_:squash (p x ==> q))
: Lemma ((forall (x:a). p x) ==> q) = ()
let modus_ponens (#p #q:Type0) (_:squash p)
: Lemma ((p ==> q) ==> q)
= ()
let cut (p q:Type0) : Lemma (requires p /\ (p ==> q)) (ensures q) = ()
let and_true (p: Type0) : Lemma (requires (p /\ (p ==> True))) (ensures p) = ()
let solve_implies_true (p: Type0) : Lemma (p ==> True) = ()
// This exception is raised for failures that should not be considered
// hard but should allow postponing the goal instead
exception Postpone of string
(* NOTE! Redefining boolean disjunction to *not* be short-circuiting,
since we cannot use an effectful result as argument of Prims.op_BarBar *)
private
let bor = op_BarBar
private
let is_and (t:term) : bool =
is_any_fvar t [`%(/\); `%prop_and]
private
let is_squash (t:term) : bool =
is_any_fvar t [`%squash; `%auto_squash]
private
let is_star (t:term) : bool =
is_any_fvar t [`%star; `%VStar]
private
let is_star_or_unit (t:term) : bool =
is_any_fvar t [`%star; `%VStar; `%VUnit]
let rec unify_pr_with_true (pr: term) : Tac unit =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| [pr_l, _; pr_r, _] ->
unify_pr_with_true pr_l;
unify_pr_with_true pr_r
| _ -> fail "unify_pr_with_true: ill-formed /\\"
else
match inspect_unascribe hd with
| Tv_Uvar _ _ ->
if unify pr (`true_p)
then ()
else begin
fail "unify_pr_with_true: could not unify SMT prop with True"
end
| _ ->
if List.Tot.length (free_uvars pr) = 0
then ()
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "unify_pr_with_true: some uvars are still there")
let elim_and_l_squash (#a #b: Type0) (#goal: Type0) (f: (a -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash a) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash a) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let elim_and_r_squash (#a #b: Type0) (#goal: Type0) (f: (b -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash b) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash b) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let _return_squash (#a: Type) () (x: a) : Tot (squash a) =
FStar.Squash.return_squash x
let rec set_abduction_variable_term (pr: term) : Tac term =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| (pr_l, Q_Explicit) :: (pr_r, Q_Explicit) :: [] ->
if List.Tot.length (free_uvars pr_r) = 0
then
let arg = set_abduction_variable_term pr_l in
mk_app (`elim_and_l_squash) [arg, Q_Explicit]
else if List.Tot.length (free_uvars pr_l) = 0
then
let arg = set_abduction_variable_term pr_r in
mk_app (`elim_and_r_squash) [arg, Q_Explicit]
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "set_abduction_variable_term: there are still uvars on both sides of l_and")
| _ -> fail "set_abduction_variable: ill-formed /\\"
else
match inspect hd with
| Tv_Uvar _ _ ->
mk_app (`_return_squash) [`(), Q_Explicit]
| _ -> fail "set_abduction_variable: cannot unify"
let set_abduction_variable () : Tac unit =
let g = cur_goal () in
match inspect_unascribe g with
| Tv_Arrow b _ ->
let pr = b.sort in
exact (set_abduction_variable_term pr)
| _ -> fail "Not an arrow goal"
let canon_l_r (use_smt:bool)
(carrier_t:term) //e.g. vprop
(eq:term) (m:term)
(pr pr_bind:term)
(lhs rel rhs:term) : Tac unit =
let m_unit = norm_term [iota; zeta; delta] (`(CE.CM?.unit (`#m))) in
let m_mult = norm_term [iota; zeta; delta] (`(CE.CM?.mult (`#m))) in
let am = const m_unit in (* empty map *)
let (r1_raw, ts, am) = reification eq m [] am lhs in
let (r2_raw, _, am) = reification eq m ts am rhs in
// Encapsulating this in a try/with to avoid spawning uvars for smt_fallback
let l1_raw, l2_raw, emp_frame, uvar_terms =
try
let res = equivalent_lists use_smt (flatten r1_raw) (flatten r2_raw) am in
raise (Result res) with
| TacticFailure m -> fail m
| Result res -> res
| _ -> fail "uncaught exception in equivalent_lists"
in
//So now we have:
// am : amap mapping atoms to terms in lhs and rhs
// r1_raw : an expression in the atoms language for lhs
// r2_raw : an expression in the atoms language for rhs
// l1_raw : sorted list of atoms in lhs
// l2_raw : sorted list of atoms in rhs
//
//In particular, r1_raw and r2_raw capture lhs and rhs structurally
// (i.e. same associativity, emp, etc.)
//
//Whereas l1_raw and l2_raw are "canonical" representations of lhs and rhs
// (vis xsdenote)
//Build an amap where atoms are mapped to names
//The type of these names is carrier_t passed by the caller
let am_bv : list (atom & namedv & typ) = mapi (fun i (a, _) ->
let x = fresh_namedv_named ("x" ^ (string_of_int i)) in
(a, x, carrier_t)) (fst am) in
let am_bv_term : amap term = map (fun (a, bv, _sort) -> a, pack (Tv_Var bv)) am_bv, snd am in
let mdenote_tm (e:exp) : term = mdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
e in
let xsdenote_tm (l:list atom) : term = xsdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
l in
//Get the named representations of lhs, rhs, and their respective sorted versions
let lhs_named = mdenote_tm r1_raw in
let rhs_named = mdenote_tm r2_raw in
let sorted_lhs_named = xsdenote_tm l1_raw in
let sorted_rhs_named = xsdenote_tm l2_raw in
//We now build an auxiliary goal of the form:
//
// forall xs. (sorted_lhs_named `rel` sorted_rhs_names) ==> (lhs_names `rel` rhs_named)
//
// where xs are the fresh names that we introduced earlier
let mk_rel (l r:term) : term =
mk_app rel [(l, Q_Explicit); (r, Q_Explicit)] in
let imp_rhs = mk_rel lhs_named rhs_named in
let imp_lhs = mk_rel sorted_lhs_named sorted_rhs_named in
let imp =
mk_app (pack (Tv_FVar (pack_fv imp_qn))) [(imp_lhs, Q_Explicit); (imp_rhs, Q_Explicit)] in
//fold over names and quantify over them
let aux_goal = fold_right (fun (_, nv, sort) t ->
let nvv = inspect_namedv nv in
let b = {
ppname = nvv.ppname;
uniq = nvv.uniq;
qual = Q_Explicit;
attrs = [];
sort = sort;
} in
let _, t = close_term b t in
let t = pack (Tv_Abs b t) in
mk_app (pack (Tv_FVar (pack_fv forall_qn))) [t, Q_Explicit]) am_bv imp in
//Introduce a cut with the auxiliary goal
apply_lemma (`cut (`#aux_goal));
//After the cut, the goal looks like: A /\ (A ==> G)
// where A is the auxiliary goal and G is the original goal (lhs `rel` rhs)
split ();
//Solving A:
focus (fun _ ->
//The proof follows a similar structure as before naming was introduced
//
//Except that this time, the amap is in terms of names,
// and hence its typechecking is faster and (hopefully) no SMT involved
//Open the forall binders in A, and use the fresh names to build an amap
let am = fold_left (fun am (a, _, _sort) ->
let b = forall_intro () in
let v = binding_to_namedv b in
(a, pack (Tv_Var v))::am) [] am_bv, snd am in
//Introduce the lhs of implication
let b = implies_intro () in
//Now the proof is the plain old canon proof
let am = convert_am am in
let r1 = quote_exp r1_raw in
let r2 = quote_exp r2_raw in
change_sq (`(normal_tac (mdenote (`#eq) (`#m) (`#am) (`#r1)
`CE.EQ?.eq (`#eq)`
mdenote (`#eq) (`#m) (`#am) (`#r2))));
apply_lemma (`normal_elim);
apply (`monoid_reflect );
let l1 = quote_atoms l1_raw in
let l2 = quote_atoms l2_raw in
apply_lemma (`equivalent_sorted (`#eq) (`#m) (`#am) (`#l1) (`#l2));
if List.Tot.length (goals ()) = 0 then ()
else begin
norm [primops; iota; zeta; delta_only
[`%xsdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm;
`%CE.__proj__EQ__item__eq;
`%req;
`%star;]
];
//The goal is of the form G1 /\ G2 /\ G3, as in the requires of equivalent_sorted
split ();
split ();
//Solve G1 and G2 by trefl
trefl ();
trefl ();
//G3 is the lhs of the implication in the auxiliary goal
// that we have in our assumptions via b
apply (`FStar.Squash.return_squash);
exact (binding_to_term b)
end);
dismiss_slprops();
//Our goal now is A ==> G (where G is the original goal (lhs `rel` rhs))
//Open the forall binders
ignore (repeatn (List.Tot.length am_bv) (fun _ -> apply_lemma (`inst_bv)));
//And apply modus ponens
apply_lemma (`modus_ponens);
//Now our goal is sorted_lhs_named `rel` sorted_rhs_named
// where the names are replaced with fresh uvars (from the repeatn call above)
//So we just trefl
match uvar_terms with
| [] -> // Closing unneeded prop uvar
focus (fun _ ->
try
apply_lemma (`and_true);
split ();
if emp_frame then apply_lemma (`identity_left (`#eq) (`#m))
else apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
unify_pr_with_true pr; // MUST be done AFTER identity_left/reflexivity, which can unify other uvars
apply_lemma (`solve_implies_true)
with
| TacticFailure msg -> fail ("Cannot unify pr with true: " ^ msg)
| e -> raise e
)
| l ->
if emp_frame then (
apply_lemma (`identity_left_smt (`#eq) (`#m))
) else (
apply_lemma (`smt_reflexivity (`#eq))
);
t_trefl true;
close_equality_typ (cur_goal());
revert ();
set_abduction_variable ()
/// Wrapper around the tactic above
/// The constraint should be of the shape `squash (equiv lhs rhs)`
let canon_monoid (use_smt:bool) (carrier_t:term) (eq m:term) (pr pr_bind:term) : Tac unit =
norm [iota; zeta];
let t = cur_goal () in
// removing top-level squash application
let sq, rel_xy = collect_app_ref t in
// unpacking the application of the equivalence relation (lhs `EQ?.eq eq` rhs)
(match rel_xy with
| [(rel_xy,_)] -> (
let open FStar.List.Tot.Base in
let rel, xy = collect_app_ref rel_xy in
if (length xy >= 2)
then (
match index xy (length xy - 2) , index xy (length xy - 1) with
| (lhs, Q_Explicit) , (rhs, Q_Explicit) ->
canon_l_r use_smt carrier_t eq m pr pr_bind lhs rel rhs
| _ -> fail "Goal should have been an application of a binary relation to 2 explicit arguments"
)
else (
fail "Goal should have been an application of a binary relation to n implicit and 2 explicit arguments"
)
)
| _ -> fail "Goal should be squash applied to a binary relation")
/// Instantiation of the generic AC-unification tactic with the vprop commutative monoid
let canon' (use_smt:bool) (pr:term) (pr_bind:term) : Tac unit =
canon_monoid use_smt (pack (Tv_FVar (pack_fv [`%vprop]))) (`req) (`rm) pr pr_bind
/// Counts the number of unification variables corresponding to vprops in the term [t]
let rec slterm_nbr_uvars (t:term) : Tac int =
match inspect_unascribe t with
| Tv_Uvar _ _ -> 1
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
slterm_nbr_uvars_argv args
else if is_uvar hd then 1
else 0
| Tv_Abs _ t -> slterm_nbr_uvars t
| _ -> 0
and slterm_nbr_uvars_argv (args: list argv) : Tac int =
fold_left (fun n (x, _) -> n + slterm_nbr_uvars x) 0 args
let guard_vprop (v: vprop) : Tot vprop = v
let rec all_guards_solved (t: term) : Tac bool =
match inspect_unascribe t with
| Tv_Abs _ t -> all_guards_solved t
| Tv_App _ _ ->
let hd, args = collect_app t in
if hd `is_fvar` (`%guard_vprop)
then slterm_nbr_uvars_argv args = 0
else if not (all_guards_solved hd)
then false
else
List.Tot.fold_left
(fun (tac: (unit -> Tac bool)) (tm, _) ->
let f () : Tac bool =
if all_guards_solved tm
then tac ()
else false
in
f
)
(let f () : Tac bool = true in f)
args
()
| _ -> true
let unfold_guard () : Tac bool =
if all_guards_solved (cur_goal ())
then begin
focus (fun _ -> norm [delta_only [(`%guard_vprop)]]);
true
end else
false
let rec term_is_uvar (t: term) (i: int) : Tac bool = match inspect t with
| Tv_Uvar i' _ -> i = i'
| Tv_App _ _ ->
let hd, args = collect_app t in
term_is_uvar hd i
| _ -> false
val solve_can_be_split_for : string -> Tot unit
val solve_can_be_split_lookup : unit // FIXME: src/reflection/FStar.Reflection.Basic.lookup_attr only supports fvar attributes, so we cannot directly look up for (solve_can_be_split_for blabla), we need a nullary attribute to use with lookup_attr
let rec dismiss_all_but_last' (l: list goal) : Tac unit =
match l with
| [] | [_] -> set_goals l
| _ :: q -> dismiss_all_but_last' q
let dismiss_all_but_last () : Tac unit =
dismiss_all_but_last' (goals ())
let rec dismiss_non_squash_goals' (keep:list goal) (goals:list goal)
: Tac unit
= match goals with
| [] -> set_goals (List.Tot.rev keep)
| hd :: tl ->
let f = term_as_formula' (goal_type hd) in
match f with
| App hs _ ->
if is_squash hs
then dismiss_non_squash_goals' (hd::keep) tl
else dismiss_non_squash_goals' keep tl
| _ ->
dismiss_non_squash_goals' keep tl
let dismiss_non_squash_goals () =
let g = goals () in
dismiss_non_squash_goals' [] g
let rec term_mem (te: term) (l: list term) : Tac bool =
match l with
| [] -> false
| t' :: q ->
if te `term_eq_old` t' then true else term_mem te q
let rec lookup_by_term_attr' (attr: term) (e: env) (found: list fv) (l: list fv) : Tac (list fv)
=
match l with
| [] -> List.Tot.rev found
| f :: q ->
let n = inspect_fv f in
begin match lookup_typ e n with
| None -> lookup_by_term_attr' attr e found q
| Some se ->
let found' =
if attr `term_mem` sigelt_attrs se
then f :: found
else found
in
lookup_by_term_attr' attr e found' q
end
let lookup_by_term_attr (label_attr: term) (attr: term) : Tac (list fv) =
let e = cur_env () in
let candidates = lookup_attr label_attr e in
lookup_by_term_attr' attr e [] candidates
let rec bring_last_goal_on_top' (others: list goal) (goals: list goal) : Tac unit =
match goals with
| [] -> set_goals (List.Tot.rev others)
| last :: [] -> set_goals (last :: List.Tot.rev others)
| a :: q -> bring_last_goal_on_top' (a :: others) q
let bring_last_goal_on_top () =
let g = goals () in
bring_last_goal_on_top' [] g
let rec extract_contexts
(lemma_left lemma_right label_attr attr: term)
(t: term)
: Tac (option (unit -> Tac unit))
=
let hd, tl = collect_app t in
if is_star hd
then
match tl with
| (t_left, Q_Explicit) :: (t_right, Q_Explicit) :: [] ->
let extract_right () : Tac (option (unit -> Tac unit)) =
match extract_contexts lemma_left lemma_right label_attr attr t_right with
| None -> None
| Some f ->
Some (fun _ ->
apply_lemma lemma_right;
dismiss_all_but_last ();
f ()
)
in
begin match extract_contexts lemma_left lemma_right label_attr attr t_left with
| None -> extract_right ()
| Some f ->
Some (fun _ ->
try
apply_lemma lemma_left;
dismiss_all_but_last ();
f ()
with _ ->
begin match extract_right () with
| None -> fail "no context on the right either"
| Some g -> g ()
end
)
end
| _ -> None
else
let candidates =
let hd_fv = match inspect_unascribe hd with
| Tv_FVar fv -> Some fv
| Tv_UInst fv _ -> Some fv
| _ -> None
in
match hd_fv with
| None -> []
| Some hd_fv ->
let hd_s' = implode_qn (inspect_fv hd_fv) in
let hd_s = pack (Tv_Const (C_String hd_s')) in
lookup_by_term_attr label_attr (mk_app attr [hd_s, Q_Explicit])
in
if Nil? candidates
then None
else
Some (fun _ ->
first (List.Tot.map (fun candidate _ -> apply_lemma (pack (Tv_FVar candidate)) <: Tac unit) candidates);
dismiss_non_squash_goals ()
)
let extract_cbs_contexts = extract_contexts
(`can_be_split_congr_l)
(`can_be_split_congr_r)
(`solve_can_be_split_lookup)
(`solve_can_be_split_for)
let open_existentials () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [delta_attr [`%__reduce__]];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split)
then
match tl with
| _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match extract_cbs_contexts rhs with
| None -> fail "open_existentials: no context found"
| Some f ->
apply_lemma (`can_be_split_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top () // so that any preconditions for the selected lemma are scheduled for later
end
| _ -> fail "open_existentials: ill-formed can_be_split"
else
fail "open_existentials: not a can_be_split goal"
| _ -> fail "open_existentials: not a squash goal"
let try_open_existentials () : Tac bool =
focus (fun _ ->
try
open_existentials ();
true
with _ -> false
)
(* Solving the can_be_split* constraints, if they are ready to be scheduled
A constraint is deemed ready to be scheduled if it contains only one vprop unification variable
If so, constraints are stripped to their underlying definition based on vprop equivalence,
introducing universally quantified variables when needed.
Internal details of the encoding are removed through normalization, before calling the AC-unification
tactic defined above
*)
/// Solves a `can_be_split` constraint
let rec solve_can_be_split (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ -> apply_lemma (`equiv_can_be_split);
dismiss_slprops();
// If we have exactly the same term on both side,
// equiv_sl_implies would solve the goal immediately
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if rnbr = 0 then apply_lemma (`equiv_sym);
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
with
| _ ->
let opened_some = try_open_existentials () in
if opened_some then solve_can_be_split args // we only need args for their number of uvars, which has not changed
else false
) else false
| _ -> false // Ill-formed can_be_split, should not happen
/// Solves a can_be_split_dep constraint
let solve_can_be_split_dep (args:list argv) : Tac bool =
match args with
| [(p, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
dismiss_slprops ();
or_else
(fun _ ->
let b = unify p (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true p (binding_to_term p_bind)));
true
) else false
| _ -> fail "ill-formed can_be_split_dep"
/// Helper rewriting lemma
val emp_unit_variant (p:vprop) : Lemma
(ensures can_be_split p (p `star` emp))
/// Solves a can_be_split_forall constraint
let solve_can_be_split_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
ignore (forall_intro());
apply_lemma (`equiv_can_be_split);
dismiss_slprops();
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed can_be_split_forall, should not happen"
val solve_can_be_split_forall_dep_for : string -> Tot unit
val solve_can_be_split_forall_dep_lookup : unit // FIXME: same as solve_can_be_split_for above
let extract_cbs_forall_dep_contexts
=
extract_contexts
(`can_be_split_forall_dep_congr_l)
(`can_be_split_forall_dep_congr_r)
(`solve_can_be_split_forall_dep_lookup)
(`solve_can_be_split_forall_dep_for)
let open_existentials_forall_dep () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_forall_dep_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [
delta_only [
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%rm;
];
iota;
delta_attr [`%__reduce__];
];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split_forall_dep)
then
match tl with
| _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: []
| (_, Q_Implicit) (* #a *) :: _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match inspect_unascribe rhs with
| Tv_Abs _ body ->
begin match extract_cbs_forall_dep_contexts body with
| None -> fail "open_existentials_forall_dep: no candidate"
| Some f ->
apply_lemma (`can_be_split_forall_dep_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top ();
if Cons? (goals ()) then norm []
end
| _ -> fail "open_existentials_forall_dep : not an abstraction"
end
| _ -> fail "open_existentials_forall_dep : wrong number of arguments to can_be_split_forall_dep"
else
fail "open_existentials_forall_dep : not a can_be_split_forall_dep goal"
| _ ->
fail "open_existentials_forall_dep : not a squash/auto_squash goal"
let try_open_existentials_forall_dep () : Tac bool
=
focus (fun _ ->
try
open_existentials_forall_dep ();
true
with _ -> false
)
/// Solves a can_be_split_forall_dep constraint
let rec solve_can_be_split_forall_dep (args:list argv) : Tac bool =
match args with
| [_; (pr, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ ->
norm [];
let x = forall_intro () in
let pr = mk_app pr [(binding_to_term x, Q_Explicit)] in
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
or_else (fun _ -> flip()) (fun _ -> ());
let pr = norm_term [] pr in
or_else
(fun _ ->
let b = unify pr (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true pr (binding_to_term p_bind)));
true
with
| Postpone msg ->
false
| TacticFailure msg ->
let opened = try_open_existentials_forall_dep () in
if opened
then solve_can_be_split_forall_dep args // we only need args for their number of uvars, which has not changed
else fail msg
| _ -> fail "Unexpected exception in framing tactic"
) else false
| _ -> fail "Ill-formed can_be_split_forall_dep, should not happen"
/// Solves an equiv_forall constraint
let solve_equiv_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv_forall, should not happen"
/// Solves an equiv constraint
let solve_equiv (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip ()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed equiv, should not happen"
/// Solves a can_be_split_post constraint
let solve_can_be_split_post (args:list argv) : Tac bool =
match args with
| [_; _; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ -> norm[];
let g = _cur_goal () in
ignore (forall_intro());
apply_lemma (`equiv_forall_elim);
match goals () with
| [] -> ()
| _ ->
dismiss_slprops ();
ignore (forall_intro());
or_else
(fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "ill-formed can_be_split_post"
/// Checks whether any of the two terms was introduced during a Steel monadic return
let is_return_eq (l r:term) : Tac bool =
let nl, al = collect_app l in
let nr, ar = collect_app r in
is_fvar nl (`%return_pre) || is_fvar nr (`%return_pre)
/// Solves indirection equalities introduced by the layered effects framework.
/// If these equalities were introduced during a monadic return, they need to be solved
/// at a later stage to avoid overly restricting contexts of unification variables
let rec solve_indirection_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
if is_return_eq l r then later() else trefl();
solve_indirection_eqs (fuel - 1)
| _ -> later(); solve_indirection_eqs (fuel - 1)
/// Solve all equalities in the list of goals by calling the F* unifier
let rec solve_all_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_all_eqs (fuel - 1)
| _ -> later(); solve_all_eqs (fuel - 1)
/// It is important to not normalize the return_pre eqs goals before unifying
/// See test7 in FramingTestSuite for a detailed explanation
let rec solve_return_eqs (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| hd::_ ->
let f = term_as_formula' (goal_type hd) in
match f with
| Comp (Eq _) l r ->
trefl();
solve_return_eqs (fuel - 1)
| _ -> later(); solve_return_eqs (fuel - 1)
/// Strip annotations in a goal, to get to the underlying slprop equivalence
let goal_to_equiv (loc:string) : Tac unit
= let t = cur_goal () in
let f = term_as_formula' t in
match f with
| App hd0 t ->
if not (is_fvar hd0 (`%squash))
then fail (loc ^ " unexpected non-squash goal in goal_to_equiv");
let hd, args = collect_app t in
if hd `is_fvar` (`%can_be_split) then (
apply_lemma (`equiv_can_be_split)
) else if hd `is_fvar` (`%can_be_split_forall) then (
ignore (forall_intro ());
apply_lemma (`equiv_can_be_split)
) else if hd `is_fvar` (`%equiv_forall) then (
apply_lemma (`equiv_forall_elim);
ignore (forall_intro ())
) else if hd `is_fvar` (`%can_be_split_post) then (
apply_lemma (`can_be_split_post_elim);
dismiss_slprops();
ignore (forall_intro ());
ignore (forall_intro ())
) else if hd `is_fvar` (`%can_be_split_dep) then (
fail ("can_be_split_dep not supported in " ^ loc)
) else if hd `is_fvar` (`%can_be_split_forall_dep) then (
fail ("can_be_split_forall_dep not supported in " ^ loc)
) else
// This should never happen
fail (loc ^ " goal in unexpected position")
| _ -> fail (loc ^ " unexpected goal")
let rec term_dict_assoc
(#a: Type)
(key: term)
(l: list (term & a))
: Tac (list a)
= match l with
| [] -> []
| (k, v) :: q ->
let q' = term_dict_assoc key q in
if k `term_eq_old` key
then (v :: q')
else q'
/// Returns true if the goal has been solved, false if it should be delayed
let solve_or_delay (dict: list (term & (unit -> Tac bool))) : Tac bool =
// Beta-reduce the goal first if possible
norm [];
let f = term_as_formula' (cur_goal ()) in
match f with
| App hd0 t ->
if is_fvar hd0 (`%squash)
then
let hd, args = collect_app t in
if hd `is_fvar` (`%can_be_split) then solve_can_be_split args
else if hd `is_fvar` (`%can_be_split_forall) then solve_can_be_split_forall args
else if hd `is_fvar` (`%equiv_forall) then solve_equiv_forall args
else if hd `is_fvar` (`%can_be_split_post) then solve_can_be_split_post args
else if hd `is_fvar` (`%equiv) then solve_equiv args
else if hd `is_fvar` (`%can_be_split_dep) then solve_can_be_split_dep args
else if hd `is_fvar` (`%can_be_split_forall_dep) then solve_can_be_split_forall_dep args
else
let candidates = term_dict_assoc hd dict in
let run_tac (tac: unit -> Tac bool) () : Tac bool =
focus tac
in
begin try
first (List.Tot.map run_tac candidates)
with _ ->
(* this is a logical goal, solve it only if it has no uvars *)
if List.Tot.length (free_uvars t) = 0
then (smt (); true)
else false
end
else
// TODO: handle non-squash goals here
false
| Comp (Eq _) l r ->
let lnbr = List.Tot.length (free_uvars l) in
let rnbr = List.Tot.length (free_uvars r) in
// Only solve equality if one of the terms is completely determined
if lnbr = 0 || rnbr = 0 then (trefl (); true) else false
| _ -> false
/// Returns true if it successfully solved a goal
/// If it returns false, it means it didn't find any solvable goal,
/// which should mean only delayed goals are left
let rec vprop_term_uvars (t:term) : Tac (list int) =
match inspect_unascribe t with
| Tv_Uvar i' _ -> [i']
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
argv_uvars args
else
vprop_term_uvars hd
| Tv_Abs _ t -> vprop_term_uvars t
| _ -> []
and argv_uvars (args: list argv) : Tac (list int) =
let t : unit -> Tac (list int) =
fold_left (fun (n: unit -> Tac (list int)) (x, _) ->
let t () : Tac (list int) =
let l1 = n () in
let l2 = vprop_term_uvars x in
l1 `List.Tot.append` l2
in
t
)
(fun _ -> [])
args
in
t ()
let rec remove_dups_from_sorted (#t: eqtype) (l: list t) : Tot (list t) = match l with
| [] | [_] -> l
| a1 :: a2 :: q -> if a1 = a2 then remove_dups_from_sorted (a2 :: q) else a1 :: remove_dups_from_sorted (a2 :: q)
let simplify_list (l: list int) : Tot (list int) =
remove_dups_from_sorted (List.Tot.sortWith (List.Tot.compare_of_bool (<)) l)
let goal_term_uvars (t: term) : Tac (list int) =
let hd, tl = collect_app t in
if hd `is_fvar` (`%squash)
then
match tl with
| [tl0, Q_Explicit] ->
let _, tl1 = collect_app tl0 in
simplify_list (argv_uvars tl1)
| _ -> dump "ill-formed squash"; []
else
[]
let rec merge_sorted (l1 l2: list int) : Tot (list int)
(decreases (List.Tot.length l1 + List.Tot.length l2))
= match l1 with
| [] -> l2
| a1 :: q1 ->
begin match l2 with
| [] -> l1
| a2 :: q2 ->
if a1 < a2
then a1 :: merge_sorted q1 l2
else if a2 < a1
then a2 :: merge_sorted l1 q2
else a1 :: merge_sorted q1 q2
end
let rec sorted_lists_intersect (l1 l2: list int) : Tot bool
(decreases (List.Tot.length l1 + List.Tot.length l2))
= match l1 with
| [] -> false
| a1 :: q1 ->
begin match l2 with
| [] -> false
| a2 :: q2 ->
if a1 = a2
then true
else if a1 < a2
then sorted_lists_intersect q1 l2
else sorted_lists_intersect l1 q2
end
/// TODO: cache the list of variables for each goal, to avoid computing them several times
/// Compute the list of all vprop uvars that appear in the same goal as unsolved guard_vprop
let rec compute_guarded_uvars1 (accu: list int) (g: list goal) : Tac (list int) =
match g with
| [] -> accu
| a :: q ->
let t = goal_type a in
let accu' =
if all_guards_solved t
then accu
else merge_sorted accu (goal_term_uvars t)
in
compute_guarded_uvars1 accu' q
/// Enrich the list of vprop uvars with those that appear in the same goal
let rec compute_guarded_uvars2 (accu: list int) (g: list goal) : Tac (list int) =
match g with
| [] -> accu
| a :: q ->
let t = goal_type a in
let l = goal_term_uvars t in
let accu' =
if sorted_lists_intersect accu l
then merge_sorted accu l
else accu
in
compute_guarded_uvars2 accu' q
let rec compute_guarded_uvars3 (accu: list int) (g: list goal) : Tac (list int) =
let accu' = compute_guarded_uvars2 accu g in
if accu = accu'
then accu
else compute_guarded_uvars3 accu' g
let compute_guarded_uvars () : Tac (list int) =
let g = goals () in
let accu = compute_guarded_uvars1 [] g in
compute_guarded_uvars3 accu g
let rec pick_next (guarded_uvars: list int) (dict: _) (fuel: nat) : Tac bool =
if fuel = 0
then false
else match goals () with
| [] -> true
| a::_ ->
let t = goal_type a in
let l = goal_term_uvars t in
let next () : Tac bool =
later ();
pick_next guarded_uvars dict (fuel - 1)
in
if sorted_lists_intersect guarded_uvars l
then next ()
else if solve_or_delay dict
then true
else next ()
/// Main loop to schedule solving of goals.
/// The goals () function fetches all current goals in the context
let rec resolve_tac (dict: _) : Tac unit =
match goals () with
| [] -> ()
| g ->
norm [];
let guarded_uvars = compute_guarded_uvars () in
// TODO: If it picks a goal it cannot solve yet, try all the other ones?
if pick_next guarded_uvars dict (List.Tot.length g) then resolve_tac dict
else fail "Could not make progress, no solvable goal found"
let rec pick_next_logical (dict: _) (fuel: nat) : Tac bool =
if fuel = 0
then false
else match goals () with
| [] -> true
| _::_ -> if solve_or_delay dict then true else (later (); pick_next_logical dict (fuel - 1))
/// Special case for logical requires/ensures goals, which correspond only to equalities
let rec resolve_tac_logical (dict: _) : Tac unit =
match goals () with
| [] -> ()
| g ->
let fuel = List.Tot.length g in
if pick_next_logical dict fuel then resolve_tac_logical dict
else
// This is only for requires/ensures constraints, which are equalities
// There should always be a scheduling of constraints, but it can happen
// that some uvar for the type of an equality is not resolved.
// If we reach this point, we try to simply call the unifier instead of failing directly
solve_all_eqs fuel
/// Determining whether the type represented by term [t] corresponds to one of the logical (requires/ensures) goals
let typ_contains_req_ens (t:term) : Tac bool =
let name, _ = collect_app t in
is_any_fvar name [`%req_t; `%ens_t; `%pure_wp; `%pure_pre; `%pure_post]
/// Splits goals between separation logic goals (slgoals) and requires/ensures goals (loggoals)
let rec filter_goals (l:list goal) : Tac (list goal * list goal) =
match l with
| [] -> [], []
| hd::tl ->
let slgoals, loggoals = filter_goals tl in
match term_as_formula' (goal_type hd) with
| Comp (Eq t) _ _ ->
if Some? t then
let b = typ_contains_req_ens (Some?.v t) in
if b then (
slgoals, hd::loggoals
)
else (
hd::slgoals, loggoals
)
else (
hd::slgoals, loggoals
)
| App t _ -> if is_fvar t (`%squash) then hd::slgoals, loggoals else slgoals, loggoals
| _ -> slgoals, loggoals
let is_true (t:term) () : Tac unit =
match term_as_formula t with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
/// Solve the maybe_emp goals:
/// Normalize to unfold maybe_emp(_dep) and the reduce the if/then/else, and
/// solve the goal (either an equality through trefl, or True through trivial)
let rec solve_maybe_emps (fuel: nat) : Tac unit =
if fuel = 0
then ()
else match goals () with
| [] -> ()
| _::_ ->
let f = term_as_formula' (cur_goal ()) in (
match f with
| App hd0 t ->
if not (is_fvar hd0 (`%squash))
then later ()
else
let hd, args = collect_app t in
if hd `is_fvar` (`%maybe_emp) then
(norm [delta_only [`%maybe_emp]; iota; zeta; primops; simplify];
let g = cur_goal () in
or_else (is_true g) trefl)
else if hd `is_fvar` (`%maybe_emp_dep) then
(norm [delta_only [`%maybe_emp_dep]; iota; zeta; primops; simplify];
let g = cur_goal () in
or_else (is_true g) (fun _ -> ignore (forall_intro ()); trefl ()))
else later()
| _ -> later()
);
solve_maybe_emps (fuel - 1) | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"FStar.String.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.Derived.Lemmas.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "Steel.Effect.Common.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Derived.Lemmas",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": false,
"full_module": "Steel.Semantics.Instantiate",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.Semantics.Hoare.MST",
"short_module": "Sem"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | fuel: Prims.nat -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.unit",
"Prims.bool",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"Steel.Effect.Common.norm_return_pre",
"Prims.op_Subtraction",
"FStar.Tactics.V2.Derived.later",
"FStar.Stubs.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_only",
"Prims.string",
"Prims.Nil",
"FStar.Tactics.V2.Derived.goals"
] | [
"recursion"
] | false | true | false | false | false | let rec norm_return_pre (fuel: nat) : Tac unit =
| if fuel = 0
then ()
else
match goals () with
| [] -> ()
| _ :: _ ->
norm [delta_only [`%return_pre]];
later ();
norm_return_pre (fuel - 1) | false |
Example.fst | Example.main | val main: Prims.unit -> HST.Stack (unit) (fun _ -> True) (fun _ _ _ -> True) | val main: Prims.unit -> HST.Stack (unit) (fun _ -> True) (fun _ _ _ -> True) | let main () : HST.Stack (unit) (fun _ -> True) (fun _ _ _ -> True) =
HST.push_frame ();
let d : dll UInt32.t = dll_new () in
let n1 = node_of 1ul in
let n2 = node_of 2ul in
dll_insert_at_head d n1;
dll_insert_at_tail d n2;
let h0 = HST.get () in
reverse d;
let h1 = HST.get () in
assert (n2 `L.memP` as_list h1 d); // OBSERVE. TODO: WHY????!???
let n1' = dll_head d in
let t = node_val n1' in
assert (t == 2ul); // Yay!
HST.pop_frame () | {
"file_name": "examples/doublylinkedlist/Example.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 67,
"start_col": 0,
"start_line": 53
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Example
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module DLL = DoublyLinkedListIface
module L = FStar.List.Tot
open DoublyLinkedListIface
let rec l_reverse (l:list 'a) : GTot (list 'a) =
match l with
| [] -> []
| hd :: tl ->
L.snoc ((l_reverse tl), hd)
let rec reverse (d:dll 'a) :
HST.Stack (unit)
(fun h0 -> dll_valid h0 d)
(fun h0 () h1 ->
dll_valid h1 d /\
as_list h1 d == l_reverse (as_list h0 d) /\
as_payload_list h1 d == l_reverse (as_payload_list h0 d) /\
B.modifies (fp_dll h0 d) h0 h1 /\
fp_dll h0 d `loc_equiv` fp_dll h1 d) =
HST.push_frame ();
if is_empty d then (
()
) else (
let n = dll_head d in
dll_remove_head d;
reverse d;
dll_insert_at_tail d n
);
HST.pop_frame () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"DoublyLinkedListIface.fsti.checked"
],
"interface_file": false,
"source_file": "Example.fst"
} | [
{
"abbrev": false,
"full_module": "DoublyLinkedListIface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "DoublyLinkedListIface",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Prims._assert",
"Prims.eq2",
"FStar.UInt32.t",
"FStar.UInt32.__uint_to_t",
"DoublyLinkedListIface.node_val",
"DoublyLinkedListIface.node",
"DoublyLinkedListIface.dll_head",
"FStar.List.Tot.Base.memP",
"DoublyLinkedListIface.as_list",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Example.reverse",
"DoublyLinkedListIface.dll_insert_at_tail",
"DoublyLinkedListIface.dll_insert_at_head",
"DoublyLinkedListIface.node_of",
"DoublyLinkedListIface.dll",
"DoublyLinkedListIface.dll_new",
"FStar.HyperStack.ST.push_frame",
"Prims.l_True"
] | [] | false | true | false | false | false | let main () : HST.Stack (unit) (fun _ -> True) (fun _ _ _ -> True) =
| HST.push_frame ();
let d:dll UInt32.t = dll_new () in
let n1 = node_of 1ul in
let n2 = node_of 2ul in
dll_insert_at_head d n1;
dll_insert_at_tail d n2;
let h0 = HST.get () in
reverse d;
let h1 = HST.get () in
assert (n2 `L.memP` (as_list h1 d));
let n1' = dll_head d in
let t = node_val n1' in
assert (t == 2ul);
HST.pop_frame () | false |
Steel.Effect.Common.fsti | Steel.Effect.Common.open_existentials_forall_dep | val open_existentials_forall_dep: Prims.unit -> Tac unit | val open_existentials_forall_dep: Prims.unit -> Tac unit | let open_existentials_forall_dep () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_forall_dep_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [
delta_only [
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%rm;
];
iota;
delta_attr [`%__reduce__];
];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split_forall_dep)
then
match tl with
| _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: []
| (_, Q_Implicit) (* #a *) :: _ (* cond *) :: _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match inspect_unascribe rhs with
| Tv_Abs _ body ->
begin match extract_cbs_forall_dep_contexts body with
| None -> fail "open_existentials_forall_dep: no candidate"
| Some f ->
apply_lemma (`can_be_split_forall_dep_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top ();
if Cons? (goals ()) then norm []
end
| _ -> fail "open_existentials_forall_dep : not an abstraction"
end
| _ -> fail "open_existentials_forall_dep : wrong number of arguments to can_be_split_forall_dep"
else
fail "open_existentials_forall_dep : not a can_be_split_forall_dep goal"
| _ ->
fail "open_existentials_forall_dep : not a squash/auto_squash goal" | {
"file_name": "lib/steel/Steel.Effect.Common.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 71,
"end_line": 2515,
"start_col": 0,
"start_line": 2474
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Effect.Common
open Steel.Memory
module Mem = Steel.Memory
module FExt = FStar.FunctionalExtensionality
open FStar.Ghost
/// This module provides various predicates and functions which are common to the
/// different Steel effects.
/// It also contains the tactic responsible for frame inference through a variant of AC-unification
#set-options "--ide_id_info_off"
(* Normalization helpers *)
irreducible let framing_implicit : unit = ()
irreducible let __steel_reduce__ : unit = ()
/// An internal attribute for finer-grained normalization in framing equalities
irreducible let __inner_steel_reduce__ : unit = ()
irreducible let __reduce__ : unit = ()
irreducible let smt_fallback : unit = ()
irreducible let ite_attr : unit = ()
// Needed to avoid some logical vs prop issues during unification with no subtyping
[@@__steel_reduce__]
unfold
let true_p : prop = True
module T = FStar.Tactics.V2
let join_preserves_interp (hp:slprop) (m0:hmem hp) (m1:mem{disjoint m0 m1})
: Lemma
(interp hp (join m0 m1))
[SMTPat (interp hp (join m0 m1))]
= let open Steel.Memory in
intro_emp m1;
intro_star hp emp m0 m1;
affine_star hp emp (join m0 m1)
(* Definition of a selector for a given slprop *)
/// A selector of type `a` for a separation logic predicate hp is a function
/// from a memory where the predicate hp holds, which returns a value of type `a`.
/// The effect GTot indicates that selectors are ghost functions, used for specification
/// and proof purposes only
let selector' (a:Type0) (hp:slprop) = hmem hp -> GTot a
/// Self-framing property for selectors
let sel_depends_only_on (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp) (m1:mem{disjoint m0 m1}).
(interp_depends_only_on hp; (
sel m0 == sel (join m0 m1)))
/// Additional property that selectors must satisfy, related to internals of
/// the Steel memory model encoding
let sel_depends_only_on_core (#a:Type) (#hp:slprop) (sel:selector' a hp) =
forall (m0:hmem hp). sel m0 == sel (core_mem m0)
/// Full definition of a selector, as a function which satisfies the two predicates above
let selector (a:Type) (hp:slprop) : Type =
sel:selector' a hp{sel_depends_only_on sel /\ sel_depends_only_on_core sel}
/// The basis of our selector framework: Separation logic assertions enhanced with selectors
/// Note that selectors are "optional", it is always possible to use a non-informative selector,
/// such as fun _ -> () and to rely on the standard separation logic reasoning
[@@ erasable]
noeq
type vprop' =
{ hp: slprop u#1;
t:Type0;
sel: selector t hp}
(* Lifting the star operator to an inductive type makes normalization
and implementing some later functions easier *)
[@@__steel_reduce__; erasable]
noeq
type vprop =
| VUnit : vprop' -> vprop
| VStar: vprop -> vprop -> vprop
(* A generic lift from slprop to vprop with a non-informative selector *)
[@@ __steel_reduce__]
let to_vprop' (p:slprop) = {hp = p; t = unit; sel = fun _ -> ()}
[@@ __steel_reduce__]
unfold
let to_vprop (p:slprop) = VUnit (to_vprop' p)
/// Normalization steps for norm below.
/// All functions marked as `unfold`, or with the `__steel_reduce__` attribute will be reduced,
/// as well as some functions internal to the selector framework
unfold
let normal_steps =
[delta_attr [`%__steel_reduce__; `%__inner_steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify]
/// The core normalization primitive used to simplify Verification Conditions before encoding
/// them to an SMT solver.
unfold
let normal (#a:Type) (x:a) = norm normal_steps x
/// An abbreviation for the VStar constructor, allowing to use it with infix notation
[@@ __steel_reduce__; __reduce__]
let star = VStar
/// Extracting the underlying separation logic assertion from a vprop
[@@ __steel_reduce__]
let rec hp_of (p:vprop) = match p with
| VUnit p -> p.hp
| VStar p1 p2 -> hp_of p1 `Mem.star` hp_of p2
/// Extracting the selector type from a vprop
[@@ __steel_reduce__]
let rec t_of (p:vprop) = match p with
| VUnit p -> p.t
| VStar p1 p2 -> t_of p1 * t_of p2
/// Extracting the selector from a vprop
[@@ __steel_reduce__]
let rec sel_of (p:vprop) : GTot (selector (t_of p) (hp_of p)) = match p with
| VUnit p -> fun h -> p.sel h
| VStar p1 p2 ->
let sel1 = sel_of p1 in
let sel2 = sel_of p2 in
fun h -> (sel1 h, sel2 h)
/// Type abbreviations for separation logic pre- and postconditions of the Steel effects
type pre_t = vprop
type post_t (a:Type) = a -> vprop
/// An annotation to indicate which separation logic predicates correspond to monadic computations
/// These computations are handled in a specific manner in the framing tactic; they correspond to places where
/// the context shrinks from all local variables in the computation to variables available at the toplevel
let return_pre (p:vprop) : vprop = p
noextract
let hmem (p:vprop) = hmem (hp_of p)
/// Abstract predicate for vprop implication. Currently implemented as an implication on the underlying slprop
val can_be_split (p q:pre_t) : Type0
/// Exposing the implementation of `can_be_split` when needed for proof purposes
val reveal_can_be_split (_:unit) : Lemma
(forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q))
/// A targeted version of the above
val can_be_split_interp (r r':vprop) (h:hmem r)
: Lemma (requires can_be_split r r')
(ensures interp (hp_of r') h)
/// A dependent version of can_be_split, to be applied to dependent postconditions
let can_be_split_forall (#a:Type) (p q:post_t a) = forall x. can_be_split (p x) (q x)
/// A version of can_be_split which is indexed by a proposition, which can be used for equalities abduction
let can_be_split_dep (p:prop) (t1 t2:pre_t) = p ==> can_be_split t1 t2
/// A dependent version of the above predicate
let can_be_split_forall_dep (#a:Type) (p:a -> prop) (t1 t2:post_t a) =
forall (x:a). p x ==> can_be_split (t1 x) (t2 x)
(* Some lemmas about the can_be_split* predicates,
to be used as rewriting rules for the abstract predicates *)
val can_be_split_trans (p q r:vprop)
: Lemma
(requires p `can_be_split` q /\ q `can_be_split` r)
(ensures p `can_be_split` r)
let can_be_split_trans_rev (p q r:vprop)
: Lemma
(requires q `can_be_split` r /\ p `can_be_split` q)
(ensures p `can_be_split` r)
= can_be_split_trans p q r
val can_be_split_star_l (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` p)
[SMTPat ((p `star` q) `can_be_split` p)]
val can_be_split_star_r (p q:vprop)
: Lemma
(ensures (p `star` q) `can_be_split` q)
[SMTPat ((p `star` q) `can_be_split` q)]
val can_be_split_refl (p:vprop)
: Lemma (p `can_be_split` p)
[SMTPat (p `can_be_split` p)]
val can_be_split_congr_l
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((p `star` r) `can_be_split` (q `star` r)))
val can_be_split_congr_r
(p q r: vprop)
: Lemma
(requires (p `can_be_split` q))
(ensures ((r `star` p) `can_be_split` (r `star` q)))
let prop_and (p1 p2: prop) : Tot prop = p1 /\ p2
let can_be_split_forall_dep_trans_rev
(#a: Type)
(cond1 cond2: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond2 q r /\ can_be_split_forall_dep cond1 p q))
(ensures (can_be_split_forall_dep (fun x -> cond1 x `prop_and` cond2 x) p r))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_trans x y) z)
let can_be_split_forall_dep_congr_l
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> p x `star` r x) (fun x -> q x `star` r x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_l x y) z)
let can_be_split_forall_dep_congr_r
(#a: Type)
(cond: a -> prop)
(p q r: post_t a)
: Lemma
(requires (can_be_split_forall_dep cond p q))
(ensures (can_be_split_forall_dep cond (fun x -> r x `star` p x) (fun x -> r x `star` q x)))
=
Classical.forall_intro_3 (fun x y z -> Classical.move_requires (can_be_split_congr_r x y) z)
/// To simplify the implementation of the framing tactic, dependent equivalence
/// is defined as a double dependent implication
let equiv_forall (#a:Type) (t1 t2:post_t a) : Type0
= t1 `can_be_split_forall` t2 /\ t2 `can_be_split_forall` t1
/// This equivalence models a context restriction at the end of a Steel computation;
/// note that t2 does not depend on the value of type `a`, but the two vprops must be
/// equivalent
let can_be_split_post (#a #b:Type) (t1:a -> post_t b) (t2:post_t b) =
forall (x:a). equiv_forall (t1 x) t2
/// Lifting the equivalence relation to vprops. Two vprops are equivalent if the underlying slprops
/// are equivalent
val equiv (p q:vprop) : prop
/// Revealing the definition of vprop equivalence when needed for proof purposes.
/// In other cases, the predicate is abstract
val reveal_equiv (p q:vprop) : Lemma (p `equiv` q <==> hp_of p `Mem.equiv` hp_of q)
(* A restricted view of the heap,
that only allows to access selectors of the current slprop *)
let rmem' (pre:vprop) =
FExt.restricted_g_t
(r0:vprop{can_be_split pre r0})
(fun r0 -> normal (t_of r0))
/// Ensuring that rmems encapsulate the structure induced by the separation logic star
val valid_rmem (#frame:vprop) (h:rmem' frame) : prop
unfold
let rmem (pre:vprop) = h:rmem' pre{valid_rmem h}
/// Exposing the definition of mk_rmem to better normalize Steel VCs
unfold noextract
let unrestricted_mk_rmem (r:vprop) (h:hmem r) = fun (r0:vprop{r `can_be_split` r0}) ->
can_be_split_interp r r0 h;
sel_of r0 h
[@@ __inner_steel_reduce__]
noextract
let mk_rmem' (r:vprop) (h:hmem r) : Tot (rmem' r) =
FExt.on_dom_g
(r0:vprop{r `can_be_split` r0})
(unrestricted_mk_rmem r h)
val lemma_valid_mk_rmem (r:vprop) (h:hmem r) : Lemma (valid_rmem (mk_rmem' r h))
[@@ __inner_steel_reduce__]
noextract
let mk_rmem (r:vprop) (h:hmem r) : Tot (rmem r) =
lemma_valid_mk_rmem r h;
mk_rmem' r h
val reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (ensures reveal_can_be_split(); (mk_rmem r h) r0 == sel_of r0 h)
(* Logical pre and postconditions can only access the restricted view of the heap *)
type req_t (pre:pre_t) = rmem pre -> Type0
type ens_t (pre:pre_t) (a:Type) (post:post_t a) =
rmem pre -> (x:a) -> rmem (post x) -> Type0
(* Empty assertion *)
val emp : vprop
/// When needed for proof purposes, the empty assertion is a direct lift of the
/// empty assertion from Steel.Memory
val reveal_emp (_:unit) : Lemma (hp_of emp == Mem.emp /\ t_of emp == unit)
/// Lifting pure predicates to vprop
[@@__steel_reduce__]
unfold let pure (p:prop) = to_vprop (pure p)
/// Framing predicates for the Steel effect. If the current computation has already
/// been framed, then the additional frame is the empty predicate
let maybe_emp (framed:bool) (frame:pre_t) = if framed then frame == emp else True
/// Dependent version of the above predicate, usable in dependent postconditions
let maybe_emp_dep (#a:Type) (framed:bool) (frame:post_t a) =
if framed then (forall x. frame x == emp) else True
(* focus_rmem is an additional restriction of our view of memory.
We expose it here to be able to reduce through normalization;
Any valid application of focus_rmem h will be reduced to the application of h *)
[@@ __steel_reduce__]
unfold
let unrestricted_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
= fun (r':vprop{can_be_split r0 r'}) -> can_be_split_trans r r0 r'; h r'
[@@ __inner_steel_reduce__]
let focus_rmem' (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) : Tot (rmem' r0)
= FExt.on_dom_g
(r':vprop{can_be_split r0 r'})
(unrestricted_focus_rmem h r0)
val lemma_valid_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0})
: Lemma (valid_rmem (focus_rmem' h r0))
[@@ __inner_steel_reduce__]
let focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) : Tot (rmem r0) =
lemma_valid_focus_rmem h r0;
focus_rmem' h r0
/// Exposing that calling focus_rmem on the current context corresponds to an equality
let focus_rmem_refl (r:vprop) (h:rmem r)
: Lemma (focus_rmem #r h r == h)
= FStar.FunctionalExtensionality.extensionality_g _ _ (focus_rmem #r h r) h
open FStar.Tactics.V2
/// State that all "atomic" subresources have the same selectors on both views.
/// The predicate has the __steel_reduce__ attribute, ensuring that VC normalization
/// will reduce it to a conjunction of equalities on atomic subresources
/// This predicate is also marked as `strict_on_arguments` on [frame], ensuring that
/// it will not be reduced when the frame is symbolic
/// Instead, the predicate will be rewritten to an equality using `lemma_frame_equalities` below
[@@ __steel_reduce__; strict_on_arguments [0]]
let rec frame_equalities'
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : Type0
= begin match frame with
| VUnit p -> h0 frame == h1 frame
| VStar p1 p2 ->
can_be_split_star_l p1 p2;
can_be_split_star_r p1 p2;
let h01 = focus_rmem h0 p1 in
let h11 = focus_rmem h1 p1 in
let h02 = focus_rmem h0 p2 in
let h12 = focus_rmem h1 p2 in
frame_equalities' p1 h01 h11 /\
frame_equalities' p2 h02 h12
end
/// This lemma states that frame_equalities is the same as an equality on the top-level frame.
/// The uncommon formulation with an extra [p] is needed to use in `rewrite_with_tactic`,
/// where the goal is of the shape `frame_equalities frame h0 h1 == ?u`
/// The rewriting happens below, in `frame_vc_norm`
val lemma_frame_equalities (frame:vprop) (h0:rmem frame) (h1:rmem frame) (p:Type0)
: Lemma
(requires (h0 frame == h1 frame) == p)
(ensures frame_equalities' frame h0 h1 == p)
/// A special case for frames about emp.
val lemma_frame_emp (h0:rmem emp) (h1:rmem emp) (p:Type0)
: Lemma (requires True == p)
(ensures frame_equalities' emp h0 h1 == p)
/// A variant of conjunction elimination, suitable to the equality goals during rewriting
val elim_conjunction (p1 p1' p2 p2':Type0)
: Lemma (requires p1 == p1' /\ p2 == p2')
(ensures (p1 /\ p2) == (p1' /\ p2'))
/// Normalization and rewriting step for generating frame equalities.
/// The frame_equalities function has the strict_on_arguments attribute on the [frame],
/// ensuring that it is not reduced when the frame is symbolic.
/// When that happens, we want to replace frame_equalities by an equality on the frame,
/// mimicking reduction
[@@plugin]
let frame_vc_norm () : Tac unit = with_compat_pre_core 0 (fun _ ->
// Do not normalize mk_rmem/focus_rmem to simplify application of
// the reflexivity lemma on frame_equalities'
norm [delta_attr [`%__steel_reduce__];
delta_only [`%Mkvprop'?.t; `%Mkvprop'?.hp; `%Mkvprop'?.sel;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit];
delta_qualifier ["unfold"];
iota;zeta;primops; simplify];
// After reduction, the term to rewrite might be of the shape
// (frame_equalities' ... /\ frame_equalities' .. /\ ...) == ?u,
// with some frame_equalities' possibly already fully reduced
// We repeatedly split the clause and extract the term on the left
// to generate equalities on atomic subresources
ignore (repeat (fun _ ->
// Try to split the conjunction. If there is no conjunction, we exit the repeat
apply_lemma (`elim_conjunction);
// Dismiss the two uvars created for the RHS, they'll be solved by unification
dismiss ();
dismiss ();
// The first goal is the left conjunction
split ();
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// Rewrites the frame_equalities if it wasn't yet reduced
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
// Finally solve the uvar, finishing the rewriting for this clause
trefl ()
));
// Removes the frame equality if it is about emp
or_else (fun _ -> apply_lemma (`lemma_frame_emp); dismiss()) (fun _ -> ());
// We do not have conjunctions anymore, we try to apply the frame_equalities rewriting
// If it fails, the frame was not symbolic, so there is nothing to do
or_else (fun _ -> apply_lemma (`lemma_frame_equalities); dismiss ()) (fun _ -> ());
norm normal_steps;
trefl ())
[@@ __steel_reduce__]
unfold
let frame_equalities
(frame:vprop)
(h0:rmem frame) (h1:rmem frame) : prop
= rewrite_with_tactic frame_vc_norm (frame_equalities' frame h0 h1)
/// More lemmas about the abstract can_be_split predicates, to be used as
/// rewriting rules in the tactic below
val can_be_split_dep_refl (p:vprop)
: Lemma (can_be_split_dep true_p p p)
val equiv_can_be_split (p1 p2:vprop) : Lemma
(requires p1 `equiv` p2)
(ensures p1 `can_be_split` p2)
val intro_can_be_split_frame (p q:vprop) (frame:vprop)
: Lemma (requires q `equiv` (p `star` frame))
(ensures can_be_split q p /\ True)
val can_be_split_post_elim (#a #b:Type) (t1:a -> post_t b) (t2:post_t b)
: Lemma (requires (forall (x:a) (y:b). t1 x y `equiv` t2 y))
(ensures t1 `can_be_split_post` t2)
val equiv_forall_refl (#a:Type) (t:post_t a)
: Lemma (t `equiv_forall` t)
val equiv_forall_elim (#a:Type) (t1 t2:post_t a)
: Lemma (requires (forall (x:a). t1 x `equiv` t2 x))
(ensures t1 `equiv_forall` t2)
open FStar.Tactics.CanonCommMonoidSimple.Equiv
(* equiv is an equivalence relation on vprops *)
/// Lemmas establishing the equivalence properties on equiv
val equiv_refl (x:vprop) : Lemma (equiv x x)
val equiv_sym (x y:vprop) : Lemma
(requires equiv x y)
(ensures equiv y x)
val equiv_trans (x y z:vprop) : Lemma
(requires equiv x y /\ equiv y z)
(ensures equiv x z)
module CE = FStar.Algebra.CommMonoid.Equiv
/// Equiv is an equivalence relation for vprops elements
inline_for_extraction noextract let req : CE.equiv vprop =
CE.EQ equiv
equiv_refl
equiv_sym
equiv_trans
(* Star induces a commutative monoid for the equiv equivalence relation *)
/// Lemmas establishing the commutative monoid properties
val cm_identity (x:vprop) : Lemma ((emp `star` x) `equiv` x)
val star_commutative (p1 p2:vprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
val star_associative (p1 p2 p3:vprop)
: Lemma (((p1 `star` p2) `star` p3)
`equiv`
(p1 `star` (p2 `star` p3)))
val star_congruence (p1 p2 p3 p4:vprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
/// Star induces a commutative monoid on vprops
[@__steel_reduce__]
inline_for_extraction noextract let rm : CE.cm vprop req =
CE.CM emp
star
cm_identity
star_associative
star_commutative
star_congruence
(*** Vprop combinators ***)
(* Refining a vprop with a selector predicate *)
/// Separation logic predicate stating the validity of a vprop with an additional refinement on its selector
val vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: mem) : Lemma
(interp (vrefine_hp v p) m <==> (interp (hp_of v) m /\ p (sel_of v m)))
/// Selector type for a refined vprop
[@__steel_reduce__]
let vrefine_t (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot Type
= (x: t_of v {p x})
/// Selector of a refined vprop. Returns a value which satisfies the refinement predicate
val vrefine_sel (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (selector (vrefine_t v p) (vrefine_hp v p))
/// Exposing the definition of the refined selector
val vrefine_sel_eq (v: vprop) (p: (normal (t_of v) -> Tot prop)) (m: Mem.hmem (vrefine_hp v p)) : Lemma
(
interp (hp_of v) m /\
vrefine_sel v p m == sel_of v m
)
// [SMTPat ((vrefine_sel v p) m)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above pieces to define a vprop refined by a selector prediacte
[@__steel_reduce__]
let vrefine' (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot vprop' = {
hp = vrefine_hp v p;
t = vrefine_t v p;
sel = vrefine_sel v p;
}
[@__steel_reduce__]
let vrefine (v: vprop) (p: (normal (t_of v) -> Tot prop)) = VUnit (vrefine' v p)
(* Dependent star for vprops *)
/// Separation logic predicate corresponding to a dependent star,
/// where the second predicate depends on the selector value of the first
val vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (slprop u#1)
/// Exposing the validity of the above predicate when needed for proof purposes
val interp_vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: mem) : Lemma
(interp (vdep_hp v p) m <==> (interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m))
/// Helper to define the selector type of the second component of the dependent star
let vdep_payload
(v: vprop) (p: ( (t_of v) -> Tot vprop))
(x: t_of v)
: Tot Type
= t_of (p x)
/// Selector type for the dependent star: A dependent tuple, where the second component's type depends on the first vprop
let vdep_t (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot Type
= dtuple2 (t_of v) (vdep_payload v p)
/// Selector for the dependent star
val vdep_sel (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (selector (vdep_t v p) (vdep_hp v p))
/// Exposing the definition of the dependent star's selector when needed for proof purposes
val vdep_sel_eq (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: Mem.hmem (vdep_hp v p)) : Lemma
(
interp (hp_of v) m /\
begin let x = sel_of v m in
interp (hp_of (p x)) m /\
vdep_sel v p m == (| x, sel_of (p x) m |)
end
)
/// Combining the elements above to create a dependent star vprop
[@__steel_reduce__]
let vdep' (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot vprop' = {
hp = vdep_hp v p;
t = vdep_t v p;
sel = vdep_sel v p;
}
[@__steel_reduce__]
let vdep (v: vprop) (p: ( (t_of v) -> Tot vprop)) = VUnit (vdep' v p)
(* Selector rewrite combinator *)
/// The selector of a rewrite combinator applies a function `f` to the current selector of a vprop.
val vrewrite_sel (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot (selector t (normal (hp_of v)))
/// Exposing the definition of the above selector
val vrewrite_sel_eq (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) (h: Mem.hmem (normal (hp_of v))) : Lemma
((vrewrite_sel v f <: selector' _ _) h == f ((normal (sel_of v) <: selector' _ _) h))
// [SMTPat (vrewrite_sel v f h)] // FIXME: this pattern causes Z3 "wrong number of argument" errors
/// Combining the above elements to create a rewrite vprop
[@__steel_reduce__]
let vrewrite' (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop' = {
hp = normal (hp_of v);
t = t;
sel = vrewrite_sel v f;
}
[@__steel_reduce__]
let vrewrite (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot vprop = VUnit (vrewrite' v f)
(*** Framing tactic ***)
(* Specialize visit_tm from the standard F* tactic library to reimplement name_appears_in.
AF: As of Jan 14, 2021, calling name_appears_in from FStar.Tactics.Derived leads to a segfault *)
exception Appears
let on_sort_binder (f : term -> Tac unit) (b:binder) : Tac unit =
f b.sort
let rec visit_tm (ff : term -> Tac unit) (t : term) : Tac unit =
let tv = inspect t in
(match tv with
| Tv_FVar _
| Tv_UInst _ _
| Tv_Var _
| Tv_BVar _ -> ()
| Tv_Type _ -> ()
| Tv_Const c -> ()
| Tv_Uvar i u -> ()
| Tv_Unsupp -> ()
| Tv_Unknown -> ()
| Tv_Arrow b c ->
on_sort_binder ff b;
visit_comp ff c
| Tv_Abs b t ->
let b = on_sort_binder (visit_tm ff) b in
visit_tm ff t
| Tv_App l (r, q) ->
visit_tm ff l;
visit_tm ff r
| Tv_Refine b r ->
on_sort_binder ff b;
visit_tm ff r
| Tv_Let r attrs b def t ->
on_sort_binder ff b;
visit_tm ff def;
visit_tm ff t
| Tv_Match sc _ brs ->
visit_tm ff sc;
iter (visit_br ff) brs
| Tv_AscribedT e t topt _ ->
visit_tm ff e;
visit_tm ff t
| Tv_AscribedC e c topt _ ->
visit_tm ff e
); ff t
and visit_br (ff : term -> Tac unit) (b:branch) : Tac unit =
let (p, t) = b in
visit_tm ff t
and visit_comp (ff : term -> Tac unit) (c : comp) : Tac unit =
let cv = inspect_comp c in
match cv with
| C_Total ret -> visit_tm ff ret
| C_GTotal ret -> visit_tm ff ret
| C_Lemma pre post pats ->
visit_tm ff pre;
visit_tm ff post;
visit_tm ff pats
| C_Eff us eff res args decrs ->
visit_tm ff res;
iter (fun (a, q) -> visit_tm ff a) args;
iter (visit_tm ff) decrs
/// Decides whether a top-level name [nm] syntactically
/// appears in the term [t].
let name_appears_in (nm:name) (t:term) : Tac bool =
let ff (t : term) : Tac unit =
match inspect t with
| Tv_FVar fv -> if inspect_fv fv = nm then raise Appears
| t -> ()
in
try ignore (visit_tm ff t); false with
| Appears -> true
| e -> raise e
/// Checks whether term [t] appears in term [i]
let term_appears_in (t:term) (i:term) : Tac bool =
name_appears_in (explode_qn (term_to_string t)) i
/// We define a small language to handle arbitrary separation logic predicates.
/// Separation logic predicates are encoded as atoms for which equality is decidable,
/// here represented as integers
let atom : eqtype = int
let rec atoms_to_string (l:list atom) = match l with
| [] -> ""
| hd::tl -> string_of_int hd ^ " " ^ atoms_to_string tl
/// Reflecting the structure of our separation logic on atmos
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
/// A map from atoms to the terms they represent.
/// The second component of the term corresponds to a default element,
/// ensuring we never raise an exception when trying to access an element in the map
let amap (a:Type) = list (atom * a) * a
/// An empty atom map: The list map is empty
let const (#a:Type) (xa:a) : amap a = ([], xa)
/// Accessing an element in the atom map
// We reimplement List.Tot.Base.assoc because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_assoc (#key: eqtype) (#value: Type) (k: key) (dict: list (key & value)) : Pure (option value)
(requires True)
(ensures (fun res -> res == List.Tot.assoc k dict))
= match dict with
| [] -> None
| (k', v') :: q -> if k = k' then Some v' else my_assoc k q
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match my_assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
/// Updating the atom map. Since select finds the first element corresponding to
/// the atom in the list and we do not have any remove function,
/// we can simply append the new element at the head without removing any possible
/// previous element
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
/// Check whether the current term is an unresolved vprop unification variable.
/// This can happen if either it is a uvar, or it is an unresolved dependent
/// vprop uvar which is applied to some argument
let is_uvar (t:term) : Tac bool = match inspect t with
| Tv_Uvar _ _ -> true
| Tv_App _ _ ->
let hd, args = collect_app t in
Tv_Uvar? (inspect hd)
| _ -> false
/// For a given term t, collect all terms in the list l with the same head symbol
let rec get_candidates (t:term) (l:list term) : Tac (list term) =
let name, _ = collect_app t in
match l with
| [] -> []
| hd::tl ->
let n, _ = collect_app hd in
if term_eq_old n name then (
hd::(get_candidates t tl)
) else get_candidates t tl
/// Try to remove a term that is exactly matching, not just that can be unified
let rec trivial_cancel (t:atom) (l:list atom) =
match l with
| [] -> false, l
| hd::tl ->
if hd = t then
// These elements match, we remove them
true, tl
else (let b, res = trivial_cancel t tl in b, hd::res)
/// Call trivial_cancel on all elements of l1.
/// The first two lists returned are the remainders of l1 and l2.
/// The last two lists are the removed parts of l1 and l2, with
/// the additional invariant that they are equal
let rec trivial_cancels (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, [], []
| hd::tl ->
let b, l2' = trivial_cancel hd l2 in
let l1', l2', l1_del, l2_del = trivial_cancels tl l2' am in
(if b then l1' else hd::l1'), l2',
(if b then hd::l1_del else l1_del), (if b then hd::l2_del else l2_del)
exception Failed
exception Success
/// Helper to print the terms corresponding to the current list of atoms
let rec print_atoms (l:list atom) (am:amap term) : Tac string =
match l with
| [] -> ""
| [hd] -> term_to_string (select hd am)
| hd::tl -> term_to_string (select hd am) ^ " * " ^ print_atoms tl am
/// For a list of candidates l, count the number that can unify with t.
/// Does not try to unify with a uvar, this will be done at the very end.
/// Tries to unify with slprops with a different head symbol, it might
/// be an abbreviation
let rec try_candidates (t:atom) (l:list atom) (am:amap term) : Tac (atom * int) =
match l with
| [] -> t, 0
| hd::tl ->
if is_uvar (select hd am) then (try_candidates t tl am)
else
// Encapsulate unify in a try/with to ensure unification is not actually performed
let res = try if unify (select t am) (select hd am) then raise Success else raise Failed
with | Success -> true | _ -> false in
let t', n' = try_candidates t tl am in
if res && hd <> t' then hd, 1 + n' else t', n'
/// Remove the given term from the list. Only to be called when
/// try_candidates succeeded
let rec remove_from_list (t:atom) (l:list atom) : Tac (list atom) =
match l with
| [] -> fail "atom in remove_from_list not found: should not happen"; []
| hd::tl -> if t = hd then tl else hd::remove_from_list t tl
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
let rec equivalent_lists_once (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l1 with
| [] -> [], l2, l1_del, l2_del
| hd::tl ->
let t, n = try_candidates hd l2 am in
if n = 1 then (
let l2 = remove_from_list t l2 in
equivalent_lists_once tl l2 (hd::l1_del) (t::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once tl l2 l1_del l2_del am in
hd::rem1, rem2, l1'_del, l2'_del
)
/// Check if two lists of slprops are equivalent by recursively calling
/// try_candidates by iterating on l2.
/// Assumes that only l2 contains terms with the head symbol unresolved.
/// It returns all elements that were not resolved during this iteration *)
/// This is very close to equivalent_lists_once above, but helps making progress
/// when l1 contains syntactically equal candidates
let rec equivalent_lists_once_l2 (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * list atom * list atom) =
match l2 with
| [] -> l1, [], l1_del, l2_del
| hd::tl ->
if is_uvar (select hd am) then
// We do not try to match the vprop uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
else (
let t, n = try_candidates hd l1 am in
if n = 1 then (
let l1 = remove_from_list t l1 in
equivalent_lists_once_l2 l1 tl (t::l1_del) (hd::l2_del) am
) else (
// Either too many candidates for this scrutinee, or no candidate but the uvar
let rem1, rem2, l1'_del, l2'_del = equivalent_lists_once_l2 l1 tl l1_del l2_del am in
rem1, hd::rem2, l1'_del, l2'_del
)
)
let get_head (l:list atom) (am:amap term) : term = match l with
| [] -> `()
| hd::_ -> select hd am
/// Checks whether the list of atoms [l] only contains one unresolved uvar
let is_only_uvar (l:list atom) (am:amap term) : Tac bool =
if List.Tot.Base.length l = 1 then is_uvar (select (List.Tot.Base.hd l) am)
else false
/// Assumes that u is a uvar, checks that all variables in l can be unified with it.
/// Later in the tactic, the uvar will be unified to a star of l *)
let rec try_unifying_remaining (l:list atom) (u:term) (am:amap term) : Tac unit =
match l with
| [] -> ()
| hd::tl ->
try if unify u (select hd am) then raise Success else raise Failed with
| Success -> try_unifying_remaining tl u am
| _ -> fail ("could not find candidate for scrutinee " ^ term_to_string (select hd am))
/// Is SMT rewriting enabled for this binder
let is_smt_binder (b:binder) : Tac bool =
let l = b.attrs in
not (List.Tot.isEmpty (filter (fun t -> is_fvar t (`%smt_fallback)) l))
/// Creates a new term, where all arguments where SMT rewriting is enabled have been replaced
/// by fresh, unconstrained unification variables
let rec new_args_for_smt_attrs (env:env) (l:list argv) (ty:typ) : Tac (list argv * list term) =
let fresh_ghost_uvar ty =
let e = cur_env () in
ghost_uvar_env e ty
in
match l, inspect_unascribe ty with
| (arg, aqualv)::tl, Tv_Arrow binder comp ->
let needs_smt = is_smt_binder binder in
let new_hd =
if needs_smt then (
let arg_ty = tc env arg in
let uvar = fresh_ghost_uvar arg_ty in
unshelve uvar;
flip ();
(uvar, aqualv)
) else (arg, aqualv)
in
begin
let ty2 =
match inspect_comp comp with
| C_Total ty2 -> ty2
| C_Eff _ eff_name ty2 _ _ ->
if eff_name = ["Prims"; "Tot"]
then ty2
else fail "computation type not supported in definition of slprops"
| _ -> fail "computation type not supported in definition of slprops" in
let tl_argv, tl_terms = new_args_for_smt_attrs env tl ty2 in
new_hd::tl_argv, (if needs_smt then arg::tl_terms else tl_terms)
end
| [], Tv_FVar fv -> [], []
| _ -> fail "should not happen. Is an slprop partially applied?"
/// Rewrites all terms in the context to enable SMT rewriting through the use of fresh, unconstrained unification variables
let rewrite_term_for_smt (env:env) (am:amap term * list term) (a:atom) : Tac (amap term * list term)
= let am, prev_uvar_terms = am in
let term = select a am in
let hd, args = collect_app term in
let t = tc env hd in
let new_args, uvar_terms = new_args_for_smt_attrs env args t in
let new_term = mk_app hd new_args in
update a new_term am, List.Tot.append uvar_terms prev_uvar_terms
/// User-facing error message when the framing tactic fails
let fail_atoms (#a:Type) (l1 l2:list atom) (am:amap term) : Tac a
= fail ("could not find a solution for unifying\n" ^ print_atoms l1 am ^ "\nand\n" ^ print_atoms l2 am)
/// Variant of equivalent_lists' below to be called once terms have been rewritten to allow SMT rewriting.
/// If unification succeeds and we have unicity of the solution, this tactic will succeed,
/// and ultimately create an SMT guard that the two terms are actually equal
let rec equivalent_lists_fallback (n:nat) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false)
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then
// Should always be smaller or equal to n
// If it is equal, no progress was made.
fail_atoms rem1 rem2 am
else equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' am
/// Iterates over all terms in [l2] to prepare them for unification with SMT rewriting
let replace_smt_uvars (l1 l2:list atom) (am:amap term) : Tac (amap term * list term)
= let env = cur_env () in
fold_left (rewrite_term_for_smt env) (am, []) l2
/// Recursively calls equivalent_lists_once.
/// Stops when we're done with unification, or when we didn't make any progress
/// If we didn't make any progress, we have too many candidates for some terms.
/// Accumulates rewritings of l1 and l2 in l1_del and l2_del, with the invariant
/// that the two lists are unifiable at any point
/// The boolean indicates if there is a leftover empty frame
let rec equivalent_lists' (n:nat) (use_smt:bool) (l1 l2 l1_del l2_del:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term) =
match l1 with
| [] -> begin match l2 with
| [] -> (l1_del, l2_del, false, [])
| [hd] ->
// Succeed if there is only one uvar left in l2, which can be therefore
// be unified with emp
if is_uvar (select hd am) then (
// xsdenote is left associative: We put hd at the top to get
// ?u `star` p <==> emp `star` p
(l1_del, hd :: l2_del, true, []))
else fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
| _ -> fail ("could not find candidates for " ^ term_to_string (get_head l2 am))
end
| _ ->
if is_only_uvar l2 am then (
// Terms left in l1, but only a uvar left in l2.
// Put all terms left at the end of l1_rem, so that they can be unified
// with exactly the uvar because of the structure of xsdenote
try_unifying_remaining l1 (get_head l2 am) am;
l1_del `List.Tot.append` l1, l2_del `List.Tot.append` l2, false, []
) else
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once l1 l2 l1_del l2_del am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Try to make progress by matching non-uvars of l2 with candidates in l1
let rem1, rem2, l1_del', l2_del' = equivalent_lists_once_l2 rem1 rem2 l1_del' l2_del' am in
let n' = List.Tot.length rem1 in
if n' >= n then (
// Should always be smaller or equal to n
// If it is equal, no progress was made.
if use_smt then
// SMT fallback is allowed
let new_am, uvar_terms = replace_smt_uvars rem1 rem2 am in
let l1_f, l2_f, b = equivalent_lists_fallback n' rem1 rem2 l1_del' l2_del' new_am in
l1_f, l2_f, b, uvar_terms
else fail_atoms rem1 rem2 am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
) else equivalent_lists' n' use_smt rem1 rem2 l1_del' l2_del' am
/// Checks if term for atom t unifies with fall uvars in l
let rec unifies_with_all_uvars (t:term) (l:list atom) (am:amap term) : Tac bool =
match l with
| [] -> true
| hd::tl ->
if unifies_with_all_uvars t tl am then (
// Unified with tail, try this term
let hd_t = select hd am in
if is_uvar hd_t then (
// The head term is a uvar, try unifying
try if unify t hd_t then raise Success else raise Failed
with | Success -> true | _ -> false
) else true // The uvar is not a head term, we do not need to try it
) else false
/// Puts all terms in l1 that cannot unify with the uvars in l2 at the top:
/// They need to be solved first
let rec most_restricted_at_top (l1 l2:list atom) (am:amap term) : Tac (list atom) =
match l1 with
| [] -> []
| hd::tl ->
if unifies_with_all_uvars (select hd am) l2 am then (most_restricted_at_top tl l2 am) `List.Tot.append` [hd]
else hd::(most_restricted_at_top tl l2 am)
/// Core AC-unification tactic.
/// First remove all trivially equal terms, then try to decide equivalence.
/// Assumes that l1 does not contain any vprop uvar.
/// If it succeeds, returns permutations of l1, l2, and a boolean indicating
/// if l2 has a trailing empty frame to be unified
let equivalent_lists (use_smt:bool) (l1 l2:list atom) (am:amap term)
: Tac (list atom * list atom * bool * list term)
= let l1, l2, l1_del, l2_del = trivial_cancels l1 l2 am in
let l1 = most_restricted_at_top l1 l2 am in
let n = List.Tot.length l1 in
let l1_del, l2_del, emp_frame, uvar_terms = equivalent_lists' n use_smt l1 l2 l1_del l2_del am in
l1_del, l2_del, emp_frame, uvar_terms
(* Helpers to relate the actual terms to their representation as a list of atoms *)
open FStar.Reflection.V2.Derived.Lemmas
let rec list_to_string (l:list term) : Tac string =
match l with
| [] -> "end"
| hd::tl -> term_to_string hd ^ " " ^ list_to_string tl
let rec mdenote_gen (#a:Type u#aa) (unit:a) (mult:a -> a -> a) (am:amap a) (e:exp) : a =
match e with
| Unit -> unit
| Atom x -> select x am
| Mult e1 e2 -> mult (mdenote_gen unit mult am e1) (mdenote_gen unit mult am e2)
let rec xsdenote_gen (#a:Type) (unit:a) (mult:a -> a -> a) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> unit
| [x] -> select x am
| x::xs' -> mult (select x am) (xsdenote_gen unit mult am xs')
unfold
let mdenote (#a:Type u#aa) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp) : a =
let open FStar.Algebra.CommMonoid.Equiv in
mdenote_gen (CM?.unit m) (CM?.mult m) am e
unfold
let xsdenote (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom) : a =
let open FStar.Algebra.CommMonoid.Equiv in
xsdenote_gen (CM?.unit m) (CM?.mult m) am xs
// We reimplement List.Tot.Base.append because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_append (#t: Type) (l1 l2: list t) : Pure (list t)
(requires True)
(ensures (fun res -> res == l1 `List.Tot.append` l2))
(decreases l1)
= match l1 with
| [] -> l2
| a :: q -> a :: my_append q l2
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 `my_append` flatten e2
let rec flatten_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 `my_append` xs2) `CE.EQ?.eq eq` CE.CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
let open FStar.Algebra.CommMonoid.Equiv in
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' `my_append` xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' `my_append` xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `CE.EQ?.eq eq` xsdenote eq m am (flatten e)) =
let open FStar.Algebra.CommMonoid.Equiv in
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 `my_append` flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 `my_append` flatten e2))
let monoid_reflect (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (flatten e1) `CE.EQ?.eq eq` xsdenote eq m am (flatten e2)))
: squash (mdenote eq m am e1 `CE.EQ?.eq eq` mdenote eq m am e2) =
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CE.EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (flatten e2));
CE.EQ?.transitivity eq
(xsdenote eq m am (flatten e1))
(xsdenote eq m am (flatten e2))
(mdenote eq m am e2);
CE.EQ?.transitivity eq
(mdenote eq m am e1)
(xsdenote eq m am (flatten e1))
(mdenote eq m am e2)
// Here we sort the variable numbers
// We reimplement List.Tot.Base.sortWith because we need our tactic to normalize it,
// but we don't want to normalize user-provided instances
let rec my_partition (#a: Type) (f: (a -> Tot bool)) (l: list a)
: Pure (list a & list a)
(requires True)
(ensures (fun res -> res == List.Tot.partition f l))
= match l with
| [] -> [], []
| hd::tl ->
let l1, l2 = my_partition f tl in
if f hd
then hd::l1, l2
else l1, hd::l2
let rec partition_ext (#a: Type) (f1 f2: (a -> Tot bool)) (l: list a)
: Lemma
(requires (forall x . f1 x == f2 x))
(ensures (List.Tot.partition f1 l == List.Tot.partition f2 l))
= match l with
| [] -> ()
| hd::tl -> partition_ext f1 f2 tl
let my_bool_of_compare (#a: Type) (f: a -> a -> Tot int) (x: a) (y: a) : Tot bool
= f x y < 0
let rec my_sortWith (#a: Type) (f: (a -> a -> Tot int)) (l:list a)
: Pure (list a)
(requires True)
(ensures (fun res -> res == List.Tot.sortWith f l))
(decreases (List.Tot.length l))
= match l with
| [] -> []
| pivot::tl ->
let hi, lo = my_partition (my_bool_of_compare f pivot) tl in
partition_ext (my_bool_of_compare f pivot) (List.Tot.bool_of_compare f pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f pivot) tl;
my_append (my_sortWith f lo) (pivot::my_sortWith f hi)
let rec sortWith_ext (#a: Type) (f1 f2: (a -> a -> Tot int)) (l: list a)
: Lemma
(requires (forall x y . f1 x y == f2 x y))
(ensures (List.Tot.sortWith f1 l == List.Tot.sortWith f2 l))
(decreases (List.Tot.length l))
= match l with
| [] -> ()
| pivot::tl ->
partition_ext (List.Tot.bool_of_compare f1 pivot) (List.Tot.bool_of_compare f2 pivot) tl;
List.Tot.partition_length (List.Tot.bool_of_compare f1 pivot) tl;
let hi, lo = List.Tot.partition (List.Tot.bool_of_compare f1 pivot) tl in
sortWith_ext f1 f2 lo;
sortWith_ext f1 f2 hi
let permute = list atom -> list atom
let my_compare_of_bool (#a:eqtype) (rel: a -> a -> Tot bool) (x: a) (y: a) : Tot int
= if x `rel` y then -1
else if x = y then 0
else 1
let sort : permute = my_sortWith #int (my_compare_of_bool (<))
#push-options "--fuel 1 --ifuel 1"
let lemma_xsdenote_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (hd:atom) (tl:list atom)
: Lemma (xsdenote eq m am (hd::tl) `CE.EQ?.eq eq`
(CE.CM?.mult m (select hd am) (xsdenote eq m am tl)))
= let open FStar.Algebra.CommMonoid.Equiv in
match tl with
| [] ->
assert (xsdenote eq m am (hd::tl) == select hd am);
CM?.identity m (select hd am);
EQ?.symmetry eq (CM?.unit m `CM?.mult m` select hd am) (select hd am);
CM?.commutativity m (CM?.unit m) (select hd am);
EQ?.transitivity eq
(xsdenote eq m am (hd::tl))
(CM?.unit m `CM?.mult m` select hd am)
(CM?.mult m (select hd am) (xsdenote eq m am tl))
| _ -> EQ?.reflexivity eq (xsdenote eq m am (hd::tl))
let rec partition_equiv (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (pivot:atom) (q:list atom)
: Lemma
(let open FStar.List.Tot.Base in
let hi, lo = partition (bool_of_compare (compare_of_bool (<)) pivot) q in
CE.EQ?.eq eq
(xsdenote eq m am hi `CE.CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am q))
= let open FStar.Algebra.CommMonoid.Equiv in
let open FStar.List.Tot.Base in
let f = bool_of_compare (compare_of_bool (<)) pivot in
let hi, lo = partition f q in
match q with
| [] -> CM?.identity m (xsdenote eq m am hi)
| hd::tl ->
let l1, l2 = partition f tl in
partition_equiv eq m am pivot tl;
assert (EQ?.eq eq
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(xsdenote eq m am tl));
EQ?.reflexivity eq (xsdenote eq m am l1);
EQ?.reflexivity eq (xsdenote eq m am l2);
EQ?.reflexivity eq (xsdenote eq m am hi);
EQ?.reflexivity eq (xsdenote eq m am lo);
if f hd then begin
assert (hi == hd::l1 /\ lo == l2);
lemma_xsdenote_aux eq m am hd l1;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am l1)
(xsdenote eq m am l2);
CM?.associativity m
(select hd am)
(xsdenote eq m am l1)
(xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l1) `CM?.mult m` xsdenote eq m am l2)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end else begin
assert (hi == l1 /\ lo == hd::l2);
lemma_xsdenote_aux eq m am hd l2;
CM?.congruence m
(xsdenote eq m am hi)
(xsdenote eq m am lo)
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
CM?.commutativity m
(xsdenote eq m am l1)
(select hd am `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(xsdenote eq m am l1 `CM?.mult m` (select hd am `CM?.mult m` xsdenote eq m am l2))
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1);
CM?.associativity m
(select hd am)
(xsdenote eq m am l2)
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
((select hd am `CM?.mult m` xsdenote eq m am l2) `CM?.mult m` xsdenote eq m am l1)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1));
CM?.commutativity m (xsdenote eq m am l2) (xsdenote eq m am l1);
EQ?.reflexivity eq (select hd am);
CM?.congruence m
(select hd am)
(xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1)
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l2 `CM?.mult m` xsdenote eq m am l1))
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2));
CM?.congruence m
(select hd am)
(xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2)
(select hd am)
(xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` (xsdenote eq m am l1 `CM?.mult m` xsdenote eq m am l2))
(select hd am `CM?.mult m` xsdenote eq m am tl);
lemma_xsdenote_aux eq m am hd tl;
EQ?.symmetry eq
(xsdenote eq m am (hd::tl))
(select hd am `CM?.mult m` xsdenote eq m am tl);
EQ?.transitivity eq
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select hd am `CM?.mult m` xsdenote eq m am tl)
(xsdenote eq m am (hd::tl))
end
let rec sort_correct_aux (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (xs:list atom)
: Lemma (requires True)
(ensures xsdenote eq m am xs `CE.EQ?.eq eq` xsdenote eq m am (sort xs))
(decreases (FStar.List.Tot.Base.length xs))
= let open FStar.Algebra.CommMonoid.Equiv in
match xs with
| [] -> EQ?.reflexivity eq (xsdenote eq m am [])
| pivot::q ->
let sort0 : permute = List.Tot.sortWith #int (List.Tot.compare_of_bool (<)) in
let sort_eq (l: list atom) : Lemma
(sort l == sort0 l)
[SMTPat (sort l)]
= sortWith_ext (my_compare_of_bool (<)) (List.Tot.compare_of_bool (<)) l
in
let open FStar.List.Tot.Base in
let f:int -> int -> int = compare_of_bool (<) in
let hi, lo = partition (bool_of_compare f pivot) q in
flatten_correct_aux eq m am (sort lo) (pivot::sort hi);
assert (xsdenote eq m am (sort xs) `EQ?.eq eq`
CM?.mult m (xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi)));
lemma_xsdenote_aux eq m am pivot (sort hi);
EQ?.reflexivity eq (xsdenote eq m am (sort lo));
CM?.congruence m
(xsdenote eq m am (sort lo))
(xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` xsdenote eq m am (pivot::sort hi))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi))));
CM?.commutativity m
(xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` xsdenote eq m am (sort hi));
CM?.associativity m
(select pivot am)
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo));
EQ?.transitivity eq
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
((select pivot am `CM?.mult m` xsdenote eq m am (sort hi)) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(xsdenote eq m am (sort lo) `CM?.mult m` (select pivot am `CM?.mult m` xsdenote eq m am (sort hi)))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))));
partition_length (bool_of_compare f pivot) q;
sort_correct_aux eq m am hi;
sort_correct_aux eq m am lo;
EQ?.symmetry eq (xsdenote eq m am lo) (xsdenote eq m am (sort lo));
EQ?.symmetry eq (xsdenote eq m am hi) (xsdenote eq m am (sort hi));
CM?.congruence m
(xsdenote eq m am (sort hi))
(xsdenote eq m am (sort lo))
(xsdenote eq m am hi)
(xsdenote eq m am lo);
assert (EQ?.eq eq
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
EQ?.reflexivity eq (select pivot am);
CM?.congruence m
(select pivot am)
(xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo))
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am (sort hi) `CM?.mult m` xsdenote eq m am (sort lo)))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)));
partition_equiv eq m am pivot q;
CM?.congruence m
(select pivot am)
(xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo)
(select pivot am)
(xsdenote eq m am q);
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am hi `CM?.mult m` xsdenote eq m am lo))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
assert (EQ?.eq eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q)));
lemma_xsdenote_aux eq m am pivot q;
EQ?.symmetry eq
(xsdenote eq m am (pivot::q))
(select pivot am `CM?.mult m` (xsdenote eq m am q));
EQ?.transitivity eq
(xsdenote eq m am (sort xs))
(select pivot am `CM?.mult m` (xsdenote eq m am q))
(xsdenote eq m am xs);
EQ?.symmetry eq (xsdenote eq m am (sort xs)) (xsdenote eq m am xs)
#pop-options
#push-options "--fuel 0 --ifuel 0"
(* Lemmas to be called after a permutation compatible with AC-unification was found *)
let smt_reflexivity (#a:Type) (eq:CE.equiv a) (x y:a)
: Lemma (requires x == y)
(ensures CE.EQ?.eq eq x y)
= CE.EQ?.reflexivity eq x
let identity_left_smt (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a)
: Lemma
(requires x == y)
(ensures CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) y))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_left (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x:a)
: Lemma (CE.EQ?.eq eq x (CE.CM?.mult m (CE.CM?.unit m) x))
= CE.CM?.identity m x;
CE.EQ?.symmetry eq (CE.CM?.mult m (CE.CM?.unit m) x) x
let identity_right_diff (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (x y:a) : Lemma
(requires CE.EQ?.eq eq x y)
(ensures CE.EQ?.eq eq (CE.CM?.mult m x (CE.CM?.unit m)) y)
= CE.right_identity eq m x;
CE.EQ?.transitivity eq (CE.CM?.mult m x (CE.CM?.unit m)) x y
/// Dismiss possible vprops goals that might have been created by lemma application.
/// These vprops will be instantiated at a later stage; else, Meta-F* will raise an error
let rec dismiss_slprops () : Tac unit =
match term_as_formula' (cur_goal ()) with
| App t _ -> if is_fvar t (`%squash) then () else (dismiss(); dismiss_slprops ())
| _ -> dismiss(); dismiss_slprops ()
/// Recursively removing trailing empty assertions
let rec n_identity_left (n:int) (eq m:term) : Tac unit
= if n = 0 then (
apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
// Cleaning up, in case a uvar has been generated here. It'll be solved later
set_goals [])
else (
apply_lemma (`identity_right_diff (`#eq) (`#m));
// Drop the slprops generated, they will be solved later
dismiss_slprops ();
n_identity_left (n-1) eq m
)
/// Helper lemma: If two vprops (as represented by lists of atoms) are equivalent, then their canonical forms
/// (corresponding to applying the sort function on atoms) are equivalent
let equivalent_sorted (#a:Type) (eq:CE.equiv a) (m:CE.cm a eq) (am:amap a) (l1 l2 l1' l2':list atom)
: Lemma (requires
sort l1 == sort l1' /\
sort l2 == sort l2' /\
xsdenote eq m am l1 `CE.EQ?.eq eq` xsdenote eq m am l2)
(ensures xsdenote eq m am l1' `CE.EQ?.eq eq` xsdenote eq m am l2')
= let open FStar.Algebra.CommMonoid.Equiv in
sort_correct_aux eq m am l1';
sort_correct_aux eq m am l1;
EQ?.symmetry eq (xsdenote eq m am l1) (xsdenote eq m am (sort l1));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l1'))
(xsdenote eq m am l1);
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l1)
(xsdenote eq m am l2);
sort_correct_aux eq m am l2;
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am l2)
(xsdenote eq m am (sort l2));
sort_correct_aux eq m am l2';
EQ?.symmetry eq (xsdenote eq m am l2') (xsdenote eq m am (sort l2'));
EQ?.transitivity eq
(xsdenote eq m am l1')
(xsdenote eq m am (sort l2))
(xsdenote eq m am l2')
#pop-options
/// Finds the position of first occurrence of x in xs.
/// This is now specialized to terms and their funny term_eq_old.
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) (decreases xs) =
match xs with
| [] -> None
| x'::xs' -> if term_eq_old x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = List.Tot.Base.length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts `List.Tot.append` [t], update vfresh t am)
/// Transforming a term into the corresponding list of atoms
/// If the atomic terms were already present in the map [am], then
/// they correspond to the same atoms
/// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app_ref t in
match inspect_unascribe hd, List.Tot.Base.list_unref tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq_old (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq_old t unit
then (Unit, ts, am)
else fatom t ts am
/// Performs the required normalization before calling the function above
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CE.CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CE.CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
/// Meta-F* internal: Transforms the atom map into a term
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
/// `am` is an amap (basically a list) of terms, each representing a value
/// of type `a` (whichever we are canonicalizing). This functions converts
/// `am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) )
/// Transforms a term representatoin into a term through quotation
let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt))
let rec quote_atoms (l:list atom) = match l with
| [] -> `[]
| hd::tl -> let nt = pack (Tv_Const (C_Int hd)) in
(`Cons (`#nt) (`#(quote_atoms tl)))
/// Some internal normalization steps to make reflection of vprops into atoms and atom permutation go smoothly.
/// We reimplemented sorting/list functions to normalize our uses without normalizing those introduced by the user.
let normal_tac_steps = [primops; iota; zeta; delta_only [
`%mdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm]]
/// The normalization function, using the above normalization steps
let normal_tac (#a:Type) (x:a) : a = FStar.Pervasives.norm normal_tac_steps x
/// Helper lemma to establish relation between normalized and initial values
let normal_elim (x:Type0) : Lemma
(requires x)
(ensures normal_tac x)
= ()
exception Result of list atom * list atom * bool * list term
/// F* equalities are typed, but the generated type sometimes is a unification variable.
/// This helper ensures that such unification variables are not left unresolved, which would lead to an error
let close_equality_typ' (t:term) : Tac unit =
let f = term_as_formula' t in
match f with
| Comp (Eq (Some u)) l _ -> if is_uvar u then (unshelve u; exact_with_ref (tc (cur_env()) l))
| _ -> ()
/// Recursively closing equality types in a given term (usually a unification constraint)
let close_equality_typ (t:term) : Tac unit =
visit_tm close_equality_typ' t
/// Core unification tactic.
/// Transforms terms into their atom representations,
/// Tries to find a solution to AC-unification, and if so,
/// soundly permutes the atom representations before calling the unifier
/// to check the validity of the provided solution.
/// In the case where SMT rewriting was needed, equalities abduction is performed by instantiating the
/// abduction prop unification variable with the corresponding guard
/// 09/24:
///
/// The tactic internally builds a map from atoms to terms
/// and uses the map for reflecting the goal to atoms representation
/// During reflection, the tactics engine typechecks the amap, and hence all
/// the terms again
/// This typechecking of terms is unnecessary, since the terms are coming
/// from the goal, and hence are already well-typed
/// Worse, re-typechecking them may generate a lot of SMT queries
/// And even worse, the SMT queries are discharged in the static context,
/// requiring various workarounds (e.g. squash variables for if conditions etc.)
///
/// To fix this, we now "name" the terms and use the amap with names
///
/// Read through the canon_l_r function for how we do this
/// The following three lemmas are helpers to manipulate the goal in canon_l_r
[@@ no_subtyping]
let inst_bv (#a:Type) (#p:a -> Type0) (#q:Type0) (x:a) (_:squash (p x ==> q))
: Lemma ((forall (x:a). p x) ==> q) = ()
let modus_ponens (#p #q:Type0) (_:squash p)
: Lemma ((p ==> q) ==> q)
= ()
let cut (p q:Type0) : Lemma (requires p /\ (p ==> q)) (ensures q) = ()
let and_true (p: Type0) : Lemma (requires (p /\ (p ==> True))) (ensures p) = ()
let solve_implies_true (p: Type0) : Lemma (p ==> True) = ()
// This exception is raised for failures that should not be considered
// hard but should allow postponing the goal instead
exception Postpone of string
(* NOTE! Redefining boolean disjunction to *not* be short-circuiting,
since we cannot use an effectful result as argument of Prims.op_BarBar *)
private
let bor = op_BarBar
private
let is_and (t:term) : bool =
is_any_fvar t [`%(/\); `%prop_and]
private
let is_squash (t:term) : bool =
is_any_fvar t [`%squash; `%auto_squash]
private
let is_star (t:term) : bool =
is_any_fvar t [`%star; `%VStar]
private
let is_star_or_unit (t:term) : bool =
is_any_fvar t [`%star; `%VStar; `%VUnit]
let rec unify_pr_with_true (pr: term) : Tac unit =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| [pr_l, _; pr_r, _] ->
unify_pr_with_true pr_l;
unify_pr_with_true pr_r
| _ -> fail "unify_pr_with_true: ill-formed /\\"
else
match inspect_unascribe hd with
| Tv_Uvar _ _ ->
if unify pr (`true_p)
then ()
else begin
fail "unify_pr_with_true: could not unify SMT prop with True"
end
| _ ->
if List.Tot.length (free_uvars pr) = 0
then ()
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "unify_pr_with_true: some uvars are still there")
let elim_and_l_squash (#a #b: Type0) (#goal: Type0) (f: (a -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash a) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash a) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let elim_and_r_squash (#a #b: Type0) (#goal: Type0) (f: (b -> Tot (squash goal))) (h: (a /\ b)) : Tot (squash goal) =
let f' (x: squash b) : Tot (squash goal) =
FStar.Squash.bind_squash x f
in
let elim_impl (x: squash (a /\ b)) : Tot (squash b) = () in
f' (elim_impl (FStar.Squash.return_squash h))
let _return_squash (#a: Type) () (x: a) : Tot (squash a) =
FStar.Squash.return_squash x
let rec set_abduction_variable_term (pr: term) : Tac term =
let hd, tl = collect_app pr in
if is_and hd
then
match tl with
| (pr_l, Q_Explicit) :: (pr_r, Q_Explicit) :: [] ->
if List.Tot.length (free_uvars pr_r) = 0
then
let arg = set_abduction_variable_term pr_l in
mk_app (`elim_and_l_squash) [arg, Q_Explicit]
else if List.Tot.length (free_uvars pr_l) = 0
then
let arg = set_abduction_variable_term pr_r in
mk_app (`elim_and_r_squash) [arg, Q_Explicit]
else
// postpone the goal instead of failing hard, to allow for other goals to solve those uvars
raise (Postpone "set_abduction_variable_term: there are still uvars on both sides of l_and")
| _ -> fail "set_abduction_variable: ill-formed /\\"
else
match inspect hd with
| Tv_Uvar _ _ ->
mk_app (`_return_squash) [`(), Q_Explicit]
| _ -> fail "set_abduction_variable: cannot unify"
let set_abduction_variable () : Tac unit =
let g = cur_goal () in
match inspect_unascribe g with
| Tv_Arrow b _ ->
let pr = b.sort in
exact (set_abduction_variable_term pr)
| _ -> fail "Not an arrow goal"
let canon_l_r (use_smt:bool)
(carrier_t:term) //e.g. vprop
(eq:term) (m:term)
(pr pr_bind:term)
(lhs rel rhs:term) : Tac unit =
let m_unit = norm_term [iota; zeta; delta] (`(CE.CM?.unit (`#m))) in
let m_mult = norm_term [iota; zeta; delta] (`(CE.CM?.mult (`#m))) in
let am = const m_unit in (* empty map *)
let (r1_raw, ts, am) = reification eq m [] am lhs in
let (r2_raw, _, am) = reification eq m ts am rhs in
// Encapsulating this in a try/with to avoid spawning uvars for smt_fallback
let l1_raw, l2_raw, emp_frame, uvar_terms =
try
let res = equivalent_lists use_smt (flatten r1_raw) (flatten r2_raw) am in
raise (Result res) with
| TacticFailure m -> fail m
| Result res -> res
| _ -> fail "uncaught exception in equivalent_lists"
in
//So now we have:
// am : amap mapping atoms to terms in lhs and rhs
// r1_raw : an expression in the atoms language for lhs
// r2_raw : an expression in the atoms language for rhs
// l1_raw : sorted list of atoms in lhs
// l2_raw : sorted list of atoms in rhs
//
//In particular, r1_raw and r2_raw capture lhs and rhs structurally
// (i.e. same associativity, emp, etc.)
//
//Whereas l1_raw and l2_raw are "canonical" representations of lhs and rhs
// (vis xsdenote)
//Build an amap where atoms are mapped to names
//The type of these names is carrier_t passed by the caller
let am_bv : list (atom & namedv & typ) = mapi (fun i (a, _) ->
let x = fresh_namedv_named ("x" ^ (string_of_int i)) in
(a, x, carrier_t)) (fst am) in
let am_bv_term : amap term = map (fun (a, bv, _sort) -> a, pack (Tv_Var bv)) am_bv, snd am in
let mdenote_tm (e:exp) : term = mdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
e in
let xsdenote_tm (l:list atom) : term = xsdenote_gen
m_unit
(fun t1 t2 -> mk_app m_mult [(t1, Q_Explicit); (t2, Q_Explicit)])
am_bv_term
l in
//Get the named representations of lhs, rhs, and their respective sorted versions
let lhs_named = mdenote_tm r1_raw in
let rhs_named = mdenote_tm r2_raw in
let sorted_lhs_named = xsdenote_tm l1_raw in
let sorted_rhs_named = xsdenote_tm l2_raw in
//We now build an auxiliary goal of the form:
//
// forall xs. (sorted_lhs_named `rel` sorted_rhs_names) ==> (lhs_names `rel` rhs_named)
//
// where xs are the fresh names that we introduced earlier
let mk_rel (l r:term) : term =
mk_app rel [(l, Q_Explicit); (r, Q_Explicit)] in
let imp_rhs = mk_rel lhs_named rhs_named in
let imp_lhs = mk_rel sorted_lhs_named sorted_rhs_named in
let imp =
mk_app (pack (Tv_FVar (pack_fv imp_qn))) [(imp_lhs, Q_Explicit); (imp_rhs, Q_Explicit)] in
//fold over names and quantify over them
let aux_goal = fold_right (fun (_, nv, sort) t ->
let nvv = inspect_namedv nv in
let b = {
ppname = nvv.ppname;
uniq = nvv.uniq;
qual = Q_Explicit;
attrs = [];
sort = sort;
} in
let _, t = close_term b t in
let t = pack (Tv_Abs b t) in
mk_app (pack (Tv_FVar (pack_fv forall_qn))) [t, Q_Explicit]) am_bv imp in
//Introduce a cut with the auxiliary goal
apply_lemma (`cut (`#aux_goal));
//After the cut, the goal looks like: A /\ (A ==> G)
// where A is the auxiliary goal and G is the original goal (lhs `rel` rhs)
split ();
//Solving A:
focus (fun _ ->
//The proof follows a similar structure as before naming was introduced
//
//Except that this time, the amap is in terms of names,
// and hence its typechecking is faster and (hopefully) no SMT involved
//Open the forall binders in A, and use the fresh names to build an amap
let am = fold_left (fun am (a, _, _sort) ->
let b = forall_intro () in
let v = binding_to_namedv b in
(a, pack (Tv_Var v))::am) [] am_bv, snd am in
//Introduce the lhs of implication
let b = implies_intro () in
//Now the proof is the plain old canon proof
let am = convert_am am in
let r1 = quote_exp r1_raw in
let r2 = quote_exp r2_raw in
change_sq (`(normal_tac (mdenote (`#eq) (`#m) (`#am) (`#r1)
`CE.EQ?.eq (`#eq)`
mdenote (`#eq) (`#m) (`#am) (`#r2))));
apply_lemma (`normal_elim);
apply (`monoid_reflect );
let l1 = quote_atoms l1_raw in
let l2 = quote_atoms l2_raw in
apply_lemma (`equivalent_sorted (`#eq) (`#m) (`#am) (`#l1) (`#l2));
if List.Tot.length (goals ()) = 0 then ()
else begin
norm [primops; iota; zeta; delta_only
[`%xsdenote; `%select;
`%my_assoc; `%my_append;
`%flatten; `%sort;
`%my_sortWith; `%my_partition;
`%my_bool_of_compare; `%my_compare_of_bool;
`%fst; `%__proj__Mktuple2__item___1;
`%snd; `%__proj__Mktuple2__item___2;
`%CE.__proj__CM__item__unit;
`%CE.__proj__CM__item__mult;
`%rm;
`%CE.__proj__EQ__item__eq;
`%req;
`%star;]
];
//The goal is of the form G1 /\ G2 /\ G3, as in the requires of equivalent_sorted
split ();
split ();
//Solve G1 and G2 by trefl
trefl ();
trefl ();
//G3 is the lhs of the implication in the auxiliary goal
// that we have in our assumptions via b
apply (`FStar.Squash.return_squash);
exact (binding_to_term b)
end);
dismiss_slprops();
//Our goal now is A ==> G (where G is the original goal (lhs `rel` rhs))
//Open the forall binders
ignore (repeatn (List.Tot.length am_bv) (fun _ -> apply_lemma (`inst_bv)));
//And apply modus ponens
apply_lemma (`modus_ponens);
//Now our goal is sorted_lhs_named `rel` sorted_rhs_named
// where the names are replaced with fresh uvars (from the repeatn call above)
//So we just trefl
match uvar_terms with
| [] -> // Closing unneeded prop uvar
focus (fun _ ->
try
apply_lemma (`and_true);
split ();
if emp_frame then apply_lemma (`identity_left (`#eq) (`#m))
else apply_lemma (`(CE.EQ?.reflexivity (`#eq)));
unify_pr_with_true pr; // MUST be done AFTER identity_left/reflexivity, which can unify other uvars
apply_lemma (`solve_implies_true)
with
| TacticFailure msg -> fail ("Cannot unify pr with true: " ^ msg)
| e -> raise e
)
| l ->
if emp_frame then (
apply_lemma (`identity_left_smt (`#eq) (`#m))
) else (
apply_lemma (`smt_reflexivity (`#eq))
);
t_trefl true;
close_equality_typ (cur_goal());
revert ();
set_abduction_variable ()
/// Wrapper around the tactic above
/// The constraint should be of the shape `squash (equiv lhs rhs)`
let canon_monoid (use_smt:bool) (carrier_t:term) (eq m:term) (pr pr_bind:term) : Tac unit =
norm [iota; zeta];
let t = cur_goal () in
// removing top-level squash application
let sq, rel_xy = collect_app_ref t in
// unpacking the application of the equivalence relation (lhs `EQ?.eq eq` rhs)
(match rel_xy with
| [(rel_xy,_)] -> (
let open FStar.List.Tot.Base in
let rel, xy = collect_app_ref rel_xy in
if (length xy >= 2)
then (
match index xy (length xy - 2) , index xy (length xy - 1) with
| (lhs, Q_Explicit) , (rhs, Q_Explicit) ->
canon_l_r use_smt carrier_t eq m pr pr_bind lhs rel rhs
| _ -> fail "Goal should have been an application of a binary relation to 2 explicit arguments"
)
else (
fail "Goal should have been an application of a binary relation to n implicit and 2 explicit arguments"
)
)
| _ -> fail "Goal should be squash applied to a binary relation")
/// Instantiation of the generic AC-unification tactic with the vprop commutative monoid
let canon' (use_smt:bool) (pr:term) (pr_bind:term) : Tac unit =
canon_monoid use_smt (pack (Tv_FVar (pack_fv [`%vprop]))) (`req) (`rm) pr pr_bind
/// Counts the number of unification variables corresponding to vprops in the term [t]
let rec slterm_nbr_uvars (t:term) : Tac int =
match inspect_unascribe t with
| Tv_Uvar _ _ -> 1
| Tv_App _ _ ->
let hd, args = collect_app t in
if is_star_or_unit hd then
// Only count the number of unresolved slprops, not program implicits
slterm_nbr_uvars_argv args
else if is_uvar hd then 1
else 0
| Tv_Abs _ t -> slterm_nbr_uvars t
| _ -> 0
and slterm_nbr_uvars_argv (args: list argv) : Tac int =
fold_left (fun n (x, _) -> n + slterm_nbr_uvars x) 0 args
let guard_vprop (v: vprop) : Tot vprop = v
let rec all_guards_solved (t: term) : Tac bool =
match inspect_unascribe t with
| Tv_Abs _ t -> all_guards_solved t
| Tv_App _ _ ->
let hd, args = collect_app t in
if hd `is_fvar` (`%guard_vprop)
then slterm_nbr_uvars_argv args = 0
else if not (all_guards_solved hd)
then false
else
List.Tot.fold_left
(fun (tac: (unit -> Tac bool)) (tm, _) ->
let f () : Tac bool =
if all_guards_solved tm
then tac ()
else false
in
f
)
(let f () : Tac bool = true in f)
args
()
| _ -> true
let unfold_guard () : Tac bool =
if all_guards_solved (cur_goal ())
then begin
focus (fun _ -> norm [delta_only [(`%guard_vprop)]]);
true
end else
false
let rec term_is_uvar (t: term) (i: int) : Tac bool = match inspect t with
| Tv_Uvar i' _ -> i = i'
| Tv_App _ _ ->
let hd, args = collect_app t in
term_is_uvar hd i
| _ -> false
val solve_can_be_split_for : string -> Tot unit
val solve_can_be_split_lookup : unit // FIXME: src/reflection/FStar.Reflection.Basic.lookup_attr only supports fvar attributes, so we cannot directly look up for (solve_can_be_split_for blabla), we need a nullary attribute to use with lookup_attr
let rec dismiss_all_but_last' (l: list goal) : Tac unit =
match l with
| [] | [_] -> set_goals l
| _ :: q -> dismiss_all_but_last' q
let dismiss_all_but_last () : Tac unit =
dismiss_all_but_last' (goals ())
let rec dismiss_non_squash_goals' (keep:list goal) (goals:list goal)
: Tac unit
= match goals with
| [] -> set_goals (List.Tot.rev keep)
| hd :: tl ->
let f = term_as_formula' (goal_type hd) in
match f with
| App hs _ ->
if is_squash hs
then dismiss_non_squash_goals' (hd::keep) tl
else dismiss_non_squash_goals' keep tl
| _ ->
dismiss_non_squash_goals' keep tl
let dismiss_non_squash_goals () =
let g = goals () in
dismiss_non_squash_goals' [] g
let rec term_mem (te: term) (l: list term) : Tac bool =
match l with
| [] -> false
| t' :: q ->
if te `term_eq_old` t' then true else term_mem te q
let rec lookup_by_term_attr' (attr: term) (e: env) (found: list fv) (l: list fv) : Tac (list fv)
=
match l with
| [] -> List.Tot.rev found
| f :: q ->
let n = inspect_fv f in
begin match lookup_typ e n with
| None -> lookup_by_term_attr' attr e found q
| Some se ->
let found' =
if attr `term_mem` sigelt_attrs se
then f :: found
else found
in
lookup_by_term_attr' attr e found' q
end
let lookup_by_term_attr (label_attr: term) (attr: term) : Tac (list fv) =
let e = cur_env () in
let candidates = lookup_attr label_attr e in
lookup_by_term_attr' attr e [] candidates
let rec bring_last_goal_on_top' (others: list goal) (goals: list goal) : Tac unit =
match goals with
| [] -> set_goals (List.Tot.rev others)
| last :: [] -> set_goals (last :: List.Tot.rev others)
| a :: q -> bring_last_goal_on_top' (a :: others) q
let bring_last_goal_on_top () =
let g = goals () in
bring_last_goal_on_top' [] g
let rec extract_contexts
(lemma_left lemma_right label_attr attr: term)
(t: term)
: Tac (option (unit -> Tac unit))
=
let hd, tl = collect_app t in
if is_star hd
then
match tl with
| (t_left, Q_Explicit) :: (t_right, Q_Explicit) :: [] ->
let extract_right () : Tac (option (unit -> Tac unit)) =
match extract_contexts lemma_left lemma_right label_attr attr t_right with
| None -> None
| Some f ->
Some (fun _ ->
apply_lemma lemma_right;
dismiss_all_but_last ();
f ()
)
in
begin match extract_contexts lemma_left lemma_right label_attr attr t_left with
| None -> extract_right ()
| Some f ->
Some (fun _ ->
try
apply_lemma lemma_left;
dismiss_all_but_last ();
f ()
with _ ->
begin match extract_right () with
| None -> fail "no context on the right either"
| Some g -> g ()
end
)
end
| _ -> None
else
let candidates =
let hd_fv = match inspect_unascribe hd with
| Tv_FVar fv -> Some fv
| Tv_UInst fv _ -> Some fv
| _ -> None
in
match hd_fv with
| None -> []
| Some hd_fv ->
let hd_s' = implode_qn (inspect_fv hd_fv) in
let hd_s = pack (Tv_Const (C_String hd_s')) in
lookup_by_term_attr label_attr (mk_app attr [hd_s, Q_Explicit])
in
if Nil? candidates
then None
else
Some (fun _ ->
first (List.Tot.map (fun candidate _ -> apply_lemma (pack (Tv_FVar candidate)) <: Tac unit) candidates);
dismiss_non_squash_goals ()
)
let extract_cbs_contexts = extract_contexts
(`can_be_split_congr_l)
(`can_be_split_congr_r)
(`solve_can_be_split_lookup)
(`solve_can_be_split_for)
let open_existentials () : Tac unit
=
let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [delta_attr [`%__reduce__]];
let t0 = cur_goal () in
match collect_app t0 with
| _ (* squash/auto_squash *) , (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split)
then
match tl with
| _ (* lhs *) :: (rhs, Q_Explicit) :: [] ->
begin match extract_cbs_contexts rhs with
| None -> fail "open_existentials: no context found"
| Some f ->
apply_lemma (`can_be_split_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top () // so that any preconditions for the selected lemma are scheduled for later
end
| _ -> fail "open_existentials: ill-formed can_be_split"
else
fail "open_existentials: not a can_be_split goal"
| _ -> fail "open_existentials: not a squash goal"
let try_open_existentials () : Tac bool =
focus (fun _ ->
try
open_existentials ();
true
with _ -> false
)
(* Solving the can_be_split* constraints, if they are ready to be scheduled
A constraint is deemed ready to be scheduled if it contains only one vprop unification variable
If so, constraints are stripped to their underlying definition based on vprop equivalence,
introducing universally quantified variables when needed.
Internal details of the encoding are removed through normalization, before calling the AC-unification
tactic defined above
*)
/// Solves a `can_be_split` constraint
let rec solve_can_be_split (args:list argv) : Tac bool =
match args with
| [(t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
try
focus (fun _ -> apply_lemma (`equiv_can_be_split);
dismiss_slprops();
// If we have exactly the same term on both side,
// equiv_sl_implies would solve the goal immediately
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if rnbr = 0 then apply_lemma (`equiv_sym);
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
with
| _ ->
let opened_some = try_open_existentials () in
if opened_some then solve_can_be_split args // we only need args for their number of uvars, which has not changed
else false
) else false
| _ -> false // Ill-formed can_be_split, should not happen
/// Solves a can_be_split_dep constraint
let solve_can_be_split_dep (args:list argv) : Tac bool =
match args with
| [(p, _); (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
let p_bind = implies_intro () in
apply_lemma (`equiv_can_be_split);
dismiss_slprops ();
or_else
(fun _ ->
let b = unify p (`true_p) in
if not b then fail "could not unify SMT prop with True";
apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' true p (binding_to_term p_bind)));
true
) else false
| _ -> fail "ill-formed can_be_split_dep"
/// Helper rewriting lemma
val emp_unit_variant (p:vprop) : Lemma
(ensures can_be_split p (p `star` emp))
/// Solves a can_be_split_forall constraint
let solve_can_be_split_forall (args:list argv) : Tac bool =
match args with
| [_; (t1, _); (t2, _)] ->
let lnbr = slterm_nbr_uvars t1 in
let rnbr = slterm_nbr_uvars t2 in
if
if lnbr + rnbr <= 1
then unfold_guard ()
else false
then (
let open FStar.Algebra.CommMonoid.Equiv in
focus (fun _ ->
ignore (forall_intro());
apply_lemma (`equiv_can_be_split);
dismiss_slprops();
or_else (fun _ -> apply_lemma (`equiv_refl))
(fun _ ->
if lnbr <> 0 && rnbr = 0 then apply_lemma (`equiv_sym);
or_else (fun _ -> flip()) (fun _ -> ());
norm [delta_only [
`%__proj__CM__item__unit;
`%__proj__CM__item__mult;
`%rm;
`%__proj__Mktuple2__item___1; `%__proj__Mktuple2__item___2;
`%fst; `%snd];
delta_attr [`%__reduce__];
primops; iota; zeta];
canon' false (`true_p) (`true_p)));
true
) else false
| _ -> fail "Ill-formed can_be_split_forall, should not happen"
val solve_can_be_split_forall_dep_for : string -> Tot unit
val solve_can_be_split_forall_dep_lookup : unit // FIXME: same as solve_can_be_split_for above
let extract_cbs_forall_dep_contexts
=
extract_contexts
(`can_be_split_forall_dep_congr_l)
(`can_be_split_forall_dep_congr_r)
(`solve_can_be_split_forall_dep_lookup)
(`solve_can_be_split_forall_dep_for) | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"FStar.String.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.Derived.Lemmas.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "Steel.Effect.Common.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Derived.Lemmas",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": false,
"full_module": "Steel.Semantics.Instantiate",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.Semantics.Hoare.MST",
"short_module": "Sem"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "FExt"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Reflection.Types.term",
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.argv",
"FStar.Reflection.V2.Derived.is_fvar",
"FStar.Tactics.NamedView.binder",
"FStar.Tactics.V2.Derived.fail",
"FStar.Stubs.Tactics.V2.Builtins.norm",
"Prims.Nil",
"FStar.Pervasives.norm_step",
"Prims.bool",
"Prims.uu___is_Cons",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Tactics.V2.Derived.goals",
"Steel.Effect.Common.bring_last_goal_on_top",
"FStar.Tactics.V2.Derived.focus",
"FStar.Tactics.V2.Logic.split",
"Steel.Effect.Common.dismiss_all_but_last",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Pervasives.Native.option",
"Steel.Effect.Common.extract_cbs_forall_dep_contexts",
"FStar.Tactics.NamedView.named_term_view",
"FStar.Tactics.NamedView.term_view",
"Prims.b2t",
"FStar.Tactics.NamedView.notAscription",
"FStar.Tactics.V2.SyntaxHelpers.inspect_unascribe",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.SyntaxHelpers.collect_app",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.V2.Derived.cur_goal",
"Prims.Cons",
"FStar.Pervasives.delta_only",
"Prims.string",
"FStar.Pervasives.iota",
"FStar.Pervasives.delta_attr",
"Prims.uu___is_Nil",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Reflection.V2.Builtins.lookup_attr",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V2.Derived.cur_env"
] | [] | false | true | false | false | false | let open_existentials_forall_dep () : Tac unit =
| let e = cur_env () in
if Nil? (lookup_attr (`solve_can_be_split_forall_dep_lookup) e)
then fail "Tactic disabled: no available lemmas in context";
norm [
delta_only [
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit;
`%FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult;
`%rm
];
iota;
delta_attr [`%__reduce__]
];
let t0 = cur_goal () in
match collect_app t0 with
| _, (t1, Q_Explicit) :: [] ->
let hd, tl = collect_app t1 in
if hd `is_fvar` (`%can_be_split_forall_dep)
then
match tl with
| _ :: _ :: (rhs, Q_Explicit) :: []
| (_, Q_Implicit) :: _ :: _ :: (rhs, Q_Explicit) :: [] ->
(match inspect_unascribe rhs with
| Tv_Abs _ body ->
(match extract_cbs_forall_dep_contexts body with
| None -> fail "open_existentials_forall_dep: no candidate"
| Some f ->
apply_lemma (`can_be_split_forall_dep_trans_rev);
dismiss_all_but_last ();
split ();
focus f;
bring_last_goal_on_top ();
if Cons? (goals ()) then norm [])
| _ -> fail "open_existentials_forall_dep : not an abstraction")
| _ ->
fail "open_existentials_forall_dep : wrong number of arguments to can_be_split_forall_dep"
else fail "open_existentials_forall_dep : not a can_be_split_forall_dep goal"
| _ -> fail "open_existentials_forall_dep : not a squash/auto_squash goal" | false |
CQueue.LList.fst | CQueue.LList.alloc_llist | val alloc_llist
(#a: Type0)
(head: ccell_ptrvalue a)
(tail: ref (ccell_ptrvalue a))
: Steel (cllist_lvalue a)
emp
(fun res -> cllist res)
(requires (fun _ -> True))
(ensures (fun _ res h' ->
h' (cllist res) == ({ vllist_head = head; vllist_tail = tail; }) /\
freeable res
)) | val alloc_llist
(#a: Type0)
(head: ccell_ptrvalue a)
(tail: ref (ccell_ptrvalue a))
: Steel (cllist_lvalue a)
emp
(fun res -> cllist res)
(requires (fun _ -> True))
(ensures (fun _ res h' ->
h' (cllist res) == ({ vllist_head = head; vllist_tail = tail; }) /\
freeable res
)) | let alloc_llist
#a head tail
=
let rhead = ralloc head in
let rtail = ralloc tail in
let res : cllist_lvalue a = ({ head = rhead; tail = rtail; all_or_none_null = () }) in
change_equal_slprop (vptr rhead) (vptr (cllist_head res));
change_equal_slprop (vptr rtail) (vptr (cllist_tail res));
intro_cllist res;
return res | {
"file_name": "share/steel/examples/steel/CQueue.LList.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 12,
"end_line": 156,
"start_col": 0,
"start_line": 147
} | module CQueue.LList
noeq
type cllist_ptrvalue (a: Type0) = {
head: ref (ccell_ptrvalue a);
tail: ref (ref (ccell_ptrvalue a));
all_or_none_null: squash (is_null head == is_null tail);
}
let cllist_ptrvalue_null a = {head = null; tail = null; all_or_none_null = ()}
let cllist_ptrvalue_is_null #a x = is_null x.head
let cllist_head #a c =
c.head
let cllist_tail #a c =
c.tail
#push-options "--ide_id_info_off"
let cllist0_refine
(#a: Type0)
(c: cllist_ptrvalue a)
(_: t_of emp)
: Tot prop
= cllist_ptrvalue_is_null c == false
// unfold
let cllist0_rewrite
(#a: Type0)
(c: cllist_ptrvalue a)
(_: t_of (emp `vrefine` cllist0_refine c))
: Tot (cllist_lvalue a)
= c
[@@ __steel_reduce__]
let cllist0 (a: Type0) (c: cllist_lvalue a) : Tot vprop =
(vptr (cllist_head c) `star` vptr (cllist_tail c))
// unfold
let cllist_rewrite
(#a: Type0)
(c: cllist_ptrvalue a)
(x: dtuple2 (cllist_lvalue a) (vdep_payload (emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c) (cllist0 a)))
: GTot (vllist a)
= let p =
dsnd #(cllist_lvalue a) #(vdep_payload (emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c) (cllist0 a)) x
in
{
vllist_head = fst p;
vllist_tail = snd p;
}
[@@ __steel_reduce__ ; __reduce__] // to avoid manual unfoldings through change_slprop
let cllist1
(#a: Type0)
(c: cllist_ptrvalue a)
: Tot vprop
= emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c `vdep` cllist0 a `vrewrite` cllist_rewrite c
let cllist_hp
#a c
= hp_of (cllist1 c)
let cllist_sel
#a c
= sel_of (cllist1 c)
let intro_cllist
#opened #a c
=
intro_vrefine emp (cllist0_refine c);
intro_vrewrite (emp `vrefine` cllist0_refine c) (cllist0_rewrite c);
reveal_star (vptr (cllist_head c)) (vptr (cllist_tail c));
intro_vdep
(emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c)
(vptr (cllist_head c) `star` vptr (cllist_tail c))
(cllist0 a);
intro_vrewrite
(emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c `vdep` cllist0 a)
(cllist_rewrite c);
change_slprop_rel
(cllist1 c)
(cllist c)
(fun x y -> x == y)
(fun m ->
assert_norm (hp_of (cllist1 c) == cllist_hp c);
assert_norm (sel_of (cllist1 c) m === sel_of (cllist c) m)
)
let elim_cllist_ghost
#opened #a c
=
change_slprop_rel
(cllist c)
(cllist1 c)
(fun x y -> x == y)
(fun m ->
assert_norm (hp_of (cllist1 c) == cllist_hp c);
assert_norm (sel_of (cllist1 c) m === sel_of (cllist c) m)
);
elim_vrewrite
(emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c `vdep` cllist0 a)
(cllist_rewrite c);
let c' : Ghost.erased (cllist_lvalue a) = elim_vdep
(emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c)
(cllist0 a)
in
elim_vrewrite (emp `vrefine` cllist0_refine c) (cllist0_rewrite c);
elim_vrefine emp (cllist0_refine c);
change_equal_slprop
(cllist0 a c')
(vptr (cllist_head (Ghost.reveal c')) `star` vptr (cllist_tail (Ghost.reveal c')));
reveal_star (vptr (cllist_head (Ghost.reveal c'))) (vptr (cllist_tail (Ghost.reveal c')));
c'
let elim_cllist
#opened #a c
=
let c2 = elim_cllist_ghost c in
let c : cllist_lvalue a = c in
change_equal_slprop (vptr (cllist_head c2)) (vptr (cllist_head c));
change_equal_slprop (vptr (cllist_tail c2)) (vptr (cllist_tail c));
return c
let cllist_not_null
#opened #a c
=
let c1 = elim_cllist_ghost c in
let c2 : cllist_lvalue a = c in
change_equal_slprop (vptr (cllist_head c1)) (vptr (cllist_head c2));
change_equal_slprop (vptr (cllist_tail c1)) (vptr (cllist_tail c2));
intro_cllist c2;
change_equal_slprop (cllist c2) (cllist c);
()
let freeable _ = True
let ralloc (#a:Type0) (x:a) : Steel (ref a)
emp (fun r -> vptr r)
(requires fun _ -> True)
(ensures fun _ r h1 -> h1 (vptr r) == x /\ not (is_null r))
=
malloc x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "CQueue.LList.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "CQueue.Cell",
"short_module": null
},
{
"abbrev": false,
"full_module": "CQueue",
"short_module": null
},
{
"abbrev": false,
"full_module": "CQueue",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | head: CQueue.Cell.ccell_ptrvalue a -> tail: Steel.Reference.ref (CQueue.Cell.ccell_ptrvalue a)
-> Steel.Effect.Steel (CQueue.LList.cllist_lvalue a) | Steel.Effect.Steel | [] | [] | [
"CQueue.Cell.ccell_ptrvalue",
"Steel.Reference.ref",
"Steel.Effect.Atomic.return",
"CQueue.LList.cllist_lvalue",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"CQueue.LList.cllist",
"Steel.Effect.Common.vprop",
"Prims.unit",
"CQueue.LList.intro_cllist",
"Steel.Effect.Atomic.change_equal_slprop",
"Steel.Reference.vptr",
"CQueue.LList.cllist_tail",
"CQueue.LList.cllist_head",
"CQueue.LList.Mkcllist_ptrvalue",
"CQueue.LList.ralloc"
] | [] | false | true | false | false | false | let alloc_llist #a head tail =
| let rhead = ralloc head in
let rtail = ralloc tail in
let res:cllist_lvalue a = ({ head = rhead; tail = rtail; all_or_none_null = () }) in
change_equal_slprop (vptr rhead) (vptr (cllist_head res));
change_equal_slprop (vptr rtail) (vptr (cllist_tail res));
intro_cllist res;
return res | false |
Hacl.Impl.Poly1305.Lemmas.fst | Hacl.Impl.Poly1305.Lemmas.uints_from_bytes_le_lemma64_1 | val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0]) | val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0]) | let uints_from_bytes_le_lemma64_1 b =
index_uints_from_bytes_le #U64 #SEC #1 (sub b 0 8) 0;
index_uints_from_bytes_le #U64 #SEC #1 (sub b 8 8) 0;
uint_from_bytes_le_lemma b | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 38,
"start_col": 0,
"start_line": 35
} | module Hacl.Impl.Poly1305.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --max_fuel 1"
val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo)
let uint_from_bytes_le_lemma b =
let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 == nat_from_intseq_le (Seq.slice r2 0 1) + pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[0] + pow2 64 * uint_v r2.[1]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b)
val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0]) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq Lib.IntTypes.uint8 16
-> FStar.Pervasives.Lemma
(ensures
(let lo = Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.sub b 0 8) in
let hi = Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.sub b 8 8) in
Lib.ByteSequence.nat_from_bytes_le b ==
Prims.pow2 64 * Lib.IntTypes.uint_v hi.[ 0 ] + Lib.IntTypes.uint_v lo.[ 0 ])) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Hacl.Impl.Poly1305.Lemmas.uint_from_bytes_le_lemma",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_le",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Sequence.sub"
] | [] | true | false | true | false | false | let uints_from_bytes_le_lemma64_1 b =
| index_uints_from_bytes_le #U64 #SEC #1 (sub b 0 8) 0;
index_uints_from_bytes_le #U64 #SEC #1 (sub b 8 8) 0;
uint_from_bytes_le_lemma b | false |
Hacl.Impl.Poly1305.Lemmas.fst | Hacl.Impl.Poly1305.Lemmas.uint_from_bytes_le_lemma | val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo) | val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo) | let uint_from_bytes_le_lemma b =
let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 == nat_from_intseq_le (Seq.slice r2 0 1) + pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[0] + pow2 64 * uint_v r2.[1]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b) | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 67,
"end_line": 27,
"start_col": 0,
"start_line": 17
} | module Hacl.Impl.Poly1305.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --max_fuel 1"
val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq Lib.IntTypes.uint8 16
-> FStar.Pervasives.Lemma
(ensures
(let lo = Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b 0 8) in
let hi = Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b 8 8) in
Lib.ByteSequence.nat_from_bytes_le b ==
Prims.pow2 64 * Lib.IntTypes.uint_v hi + Lib.IntTypes.uint_v lo)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"FStar.Classical.forall_intro",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Sequence.index",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Lib.ByteSequence.index_uints_from_bytes_le",
"Prims.unit",
"Prims._assert",
"Prims.int",
"Prims.op_Addition",
"Lib.IntTypes.uint_v",
"Lib.Sequence.op_String_Access",
"Prims.pow2",
"Lib.ByteSequence.nat_from_intseq_le_lemma0",
"FStar.Seq.Base.slice",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma",
"Prims.nat",
"Prims.l_or",
"Lib.Sequence.length",
"Lib.IntTypes.bits",
"Lib.ByteSequence.uints_from_bytes_le_nat_lemma",
"Lib.IntTypes.int_t",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_bytes_le"
] | [] | false | false | true | false | false | let uint_from_bytes_le_lemma b =
| let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 ==
nat_from_intseq_le (Seq.slice r2 0 1) +
pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[ 0 ] + pow2 64 * uint_v r2.[ 1 ]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b) | false |
Hacl.Impl.Poly1305.Lemmas.fst | Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma | val nat_from_bytes_le_eq_lemma: len:size_nat{len < 16} -> b:lseq uint8 len -> Lemma
(let tmp = create 16 (u8 0) in
nat_from_bytes_le b == nat_from_bytes_le (update_sub tmp 0 len b)) | val nat_from_bytes_le_eq_lemma: len:size_nat{len < 16} -> b:lseq uint8 len -> Lemma
(let tmp = create 16 (u8 0) in
nat_from_bytes_le b == nat_from_bytes_le (update_sub tmp 0 len b)) | let nat_from_bytes_le_eq_lemma len b = nat_from_bytes_le_eq_lemma_ len b | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 125,
"start_col": 0,
"start_line": 125
} | module Hacl.Impl.Poly1305.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --max_fuel 1"
val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo)
let uint_from_bytes_le_lemma b =
let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 == nat_from_intseq_le (Seq.slice r2 0 1) + pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[0] + pow2 64 * uint_v r2.[1]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b)
val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0])
let uints_from_bytes_le_lemma64_1 b =
index_uints_from_bytes_le #U64 #SEC #1 (sub b 0 8) 0;
index_uints_from_bytes_le #U64 #SEC #1 (sub b 8 8) 0;
uint_from_bytes_le_lemma b
val uints_from_bytes_le_lemma64_2: b:lseq uint8 32 -> Lemma
(let lo:lseq uint64 2 = uints_from_bytes_le (sub b 0 16) in
let hi:lseq uint64 2 = uints_from_bytes_le (sub b 16 16) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v hi.[1] + uint_v hi.[0])
let uints_from_bytes_le_lemma64_2 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 0 16));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 16 16));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16)
val uints_from_bytes_le_lemma64_4: b:lseq uint8 64 -> Lemma
(let lo:lseq uint64 4 = uints_from_bytes_le (sub b 0 32) in
let hi:lseq uint64 4 = uints_from_bytes_le (sub b 32 32) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
let b3 = nat_from_bytes_le (sub b 32 16) in
let b4 = nat_from_bytes_le (sub b 48 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v lo.[3] + uint_v lo.[2] /\
b3 == pow2 64 * uint_v hi.[1] + uint_v hi.[0] /\
b4 == pow2 64 * uint_v hi.[3] + uint_v hi.[2])
let uints_from_bytes_le_lemma64_4 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 0 32));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 32 32));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16);
uint_from_bytes_le_lemma (sub b 32 16);
uint_from_bytes_le_lemma (sub b 48 16)
val uints64_to_bytes_le_lemma: lo:uint64 -> hi:uint64 -> Lemma
(concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) == nat_to_bytes_le 16 (v hi * pow2 64 + v lo))
let uints64_to_bytes_le_lemma lo hi =
let lp = nat_to_bytes_le #SEC 16 (v hi * pow2 64 + v lo) in
let rp = concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) in
assert (nat_from_bytes_le lp == v hi * pow2 64 + v lo);
Seq.append_slices (uint_to_bytes_le lo) (uint_to_bytes_le hi);
nat_from_intseq_le_slice_lemma #U8 #SEC #16 rp 8;
assert (nat_from_bytes_le rp == nat_from_bytes_le (Seq.slice rp 0 8) + pow2 (8 * 8) * nat_from_bytes_le (Seq.slice rp 8 16));
assert (nat_from_bytes_le rp == nat_from_bytes_le (uint_to_bytes_le lo) + pow2 64 * nat_from_bytes_le (uint_to_bytes_le hi));
lemma_uint_to_bytes_le_preserves_value lo;
lemma_uint_to_bytes_le_preserves_value hi;
nat_from_intseq_le_inj lp rp
val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma
(requires (forall (i:nat). i < len ==> b.[i] == u8 0))
(ensures nat_from_intseq_le b == 0)
let rec lemma_nat_from_bytes_le_zeroes len b =
if len = 0 then ()
else begin
nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1;
nat_from_intseq_le_lemma0 (Seq.slice b 0 1);
lemma_nat_from_bytes_le_zeroes (len-1) (Seq.slice b 1 len) end
val nat_from_bytes_le_eq_lemma_: len:size_nat{len < 16} -> b:lseq uint8 len -> Lemma
(let tmp = create 16 (u8 0) in
nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len b))
let nat_from_bytes_le_eq_lemma_ len b =
let tmp = create 16 (u8 0) in
let r = update_sub tmp 0 len b in
assert (Seq.slice r 0 len == b);
assert (forall (i:nat). len <= i /\ i < 16 ==> r.[i] == u8 0);
assert (forall (i:nat). i < 16 - len ==> Seq.index (Seq.slice r len 16) i == u8 0);
nat_from_intseq_le_slice_lemma #U8 #SEC #16 r len;
assert (nat_from_intseq_le r == nat_from_intseq_le (Seq.slice r 0 len) + pow2 (len * 8) * nat_from_intseq_le (Seq.slice r len 16));
assert (nat_from_intseq_le r == nat_from_intseq_le b + pow2 (len * 8) * nat_from_intseq_le (Seq.slice r len 16));
lemma_nat_from_bytes_le_zeroes (16 - len) (Seq.slice r len 16)
val nat_from_bytes_le_eq_lemma: len:size_nat{len < 16} -> b:lseq uint8 len -> Lemma
(let tmp = create 16 (u8 0) in
nat_from_bytes_le b == nat_from_bytes_le (update_sub tmp 0 len b)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Lib.IntTypes.size_nat{len < 16} -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len
-> FStar.Pervasives.Lemma
(ensures
(let tmp = Lib.Sequence.create 16 (Lib.IntTypes.u8 0) in
Lib.ByteSequence.nat_from_bytes_le b ==
Lib.ByteSequence.nat_from_bytes_le (Lib.Sequence.update_sub tmp 0 len b))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma_",
"Prims.unit"
] | [] | true | false | true | false | false | let nat_from_bytes_le_eq_lemma len b =
| nat_from_bytes_le_eq_lemma_ len b | false |
Hacl.Impl.Poly1305.Lemmas.fst | Hacl.Impl.Poly1305.Lemmas.uints64_to_bytes_le_lemma | val uints64_to_bytes_le_lemma: lo:uint64 -> hi:uint64 -> Lemma
(concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) == nat_to_bytes_le 16 (v hi * pow2 64 + v lo)) | val uints64_to_bytes_le_lemma: lo:uint64 -> hi:uint64 -> Lemma
(concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) == nat_to_bytes_le 16 (v hi * pow2 64 + v lo)) | let uints64_to_bytes_le_lemma lo hi =
let lp = nat_to_bytes_le #SEC 16 (v hi * pow2 64 + v lo) in
let rp = concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) in
assert (nat_from_bytes_le lp == v hi * pow2 64 + v lo);
Seq.append_slices (uint_to_bytes_le lo) (uint_to_bytes_le hi);
nat_from_intseq_le_slice_lemma #U8 #SEC #16 rp 8;
assert (nat_from_bytes_le rp == nat_from_bytes_le (Seq.slice rp 0 8) + pow2 (8 * 8) * nat_from_bytes_le (Seq.slice rp 8 16));
assert (nat_from_bytes_le rp == nat_from_bytes_le (uint_to_bytes_le lo) + pow2 64 * nat_from_bytes_le (uint_to_bytes_le hi));
lemma_uint_to_bytes_le_preserves_value lo;
lemma_uint_to_bytes_le_preserves_value hi;
nat_from_intseq_le_inj lp rp | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 90,
"start_col": 0,
"start_line": 80
} | module Hacl.Impl.Poly1305.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --max_fuel 1"
val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo)
let uint_from_bytes_le_lemma b =
let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 == nat_from_intseq_le (Seq.slice r2 0 1) + pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[0] + pow2 64 * uint_v r2.[1]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b)
val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0])
let uints_from_bytes_le_lemma64_1 b =
index_uints_from_bytes_le #U64 #SEC #1 (sub b 0 8) 0;
index_uints_from_bytes_le #U64 #SEC #1 (sub b 8 8) 0;
uint_from_bytes_le_lemma b
val uints_from_bytes_le_lemma64_2: b:lseq uint8 32 -> Lemma
(let lo:lseq uint64 2 = uints_from_bytes_le (sub b 0 16) in
let hi:lseq uint64 2 = uints_from_bytes_le (sub b 16 16) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v hi.[1] + uint_v hi.[0])
let uints_from_bytes_le_lemma64_2 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 0 16));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 16 16));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16)
val uints_from_bytes_le_lemma64_4: b:lseq uint8 64 -> Lemma
(let lo:lseq uint64 4 = uints_from_bytes_le (sub b 0 32) in
let hi:lseq uint64 4 = uints_from_bytes_le (sub b 32 32) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
let b3 = nat_from_bytes_le (sub b 32 16) in
let b4 = nat_from_bytes_le (sub b 48 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v lo.[3] + uint_v lo.[2] /\
b3 == pow2 64 * uint_v hi.[1] + uint_v hi.[0] /\
b4 == pow2 64 * uint_v hi.[3] + uint_v hi.[2])
let uints_from_bytes_le_lemma64_4 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 0 32));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 32 32));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16);
uint_from_bytes_le_lemma (sub b 32 16);
uint_from_bytes_le_lemma (sub b 48 16)
val uints64_to_bytes_le_lemma: lo:uint64 -> hi:uint64 -> Lemma
(concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) == nat_to_bytes_le 16 (v hi * pow2 64 + v lo)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.concat (Lib.ByteSequence.uint_to_bytes_le lo)
(Lib.ByteSequence.uint_to_bytes_le hi) ==
Lib.ByteSequence.nat_to_bytes_le 16 (Lib.IntTypes.v hi * Prims.pow2 64 + Lib.IntTypes.v lo)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.uint64",
"Lib.ByteSequence.nat_from_intseq_le_inj",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.unit",
"Lib.ByteSequence.lemma_uint_to_bytes_le_preserves_value",
"Lib.IntTypes.U64",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.ByteSequence.nat_from_bytes_le",
"Prims.op_Addition",
"Lib.ByteSequence.uint_to_bytes_le",
"FStar.Mul.op_Star",
"Prims.pow2",
"FStar.Seq.Base.slice",
"Lib.IntTypes.uint_t",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma",
"FStar.Seq.Properties.append_slices",
"Lib.IntTypes.v",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Lib.IntTypes.numbytes",
"Lib.Sequence.seq",
"Prims.l_and",
"Prims.nat",
"Lib.Sequence.length",
"Prims.l_or",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.ByteSequence.nat_to_bytes_le"
] | [] | true | false | true | false | false | let uints64_to_bytes_le_lemma lo hi =
| let lp = nat_to_bytes_le #SEC 16 (v hi * pow2 64 + v lo) in
let rp = concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) in
assert (nat_from_bytes_le lp == v hi * pow2 64 + v lo);
Seq.append_slices (uint_to_bytes_le lo) (uint_to_bytes_le hi);
nat_from_intseq_le_slice_lemma #U8 #SEC #16 rp 8;
assert (nat_from_bytes_le rp ==
nat_from_bytes_le (Seq.slice rp 0 8) + pow2 (8 * 8) * nat_from_bytes_le (Seq.slice rp 8 16));
assert (nat_from_bytes_le rp ==
nat_from_bytes_le (uint_to_bytes_le lo) + pow2 64 * nat_from_bytes_le (uint_to_bytes_le hi));
lemma_uint_to_bytes_le_preserves_value lo;
lemma_uint_to_bytes_le_preserves_value hi;
nat_from_intseq_le_inj lp rp | false |
Hacl.Impl.Poly1305.Lemmas.fst | Hacl.Impl.Poly1305.Lemmas.lemma_nat_from_bytes_le_zeroes | val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma
(requires (forall (i:nat). i < len ==> b.[i] == u8 0))
(ensures nat_from_intseq_le b == 0) | val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma
(requires (forall (i:nat). i < len ==> b.[i] == u8 0))
(ensures nat_from_intseq_le b == 0) | let rec lemma_nat_from_bytes_le_zeroes len b =
if len = 0 then ()
else begin
nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1;
nat_from_intseq_le_lemma0 (Seq.slice b 0 1);
lemma_nat_from_bytes_le_zeroes (len-1) (Seq.slice b 1 len) end | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 102,
"start_col": 0,
"start_line": 97
} | module Hacl.Impl.Poly1305.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --max_fuel 1"
val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo)
let uint_from_bytes_le_lemma b =
let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 == nat_from_intseq_le (Seq.slice r2 0 1) + pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[0] + pow2 64 * uint_v r2.[1]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b)
val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0])
let uints_from_bytes_le_lemma64_1 b =
index_uints_from_bytes_le #U64 #SEC #1 (sub b 0 8) 0;
index_uints_from_bytes_le #U64 #SEC #1 (sub b 8 8) 0;
uint_from_bytes_le_lemma b
val uints_from_bytes_le_lemma64_2: b:lseq uint8 32 -> Lemma
(let lo:lseq uint64 2 = uints_from_bytes_le (sub b 0 16) in
let hi:lseq uint64 2 = uints_from_bytes_le (sub b 16 16) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v hi.[1] + uint_v hi.[0])
let uints_from_bytes_le_lemma64_2 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 0 16));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 16 16));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16)
val uints_from_bytes_le_lemma64_4: b:lseq uint8 64 -> Lemma
(let lo:lseq uint64 4 = uints_from_bytes_le (sub b 0 32) in
let hi:lseq uint64 4 = uints_from_bytes_le (sub b 32 32) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
let b3 = nat_from_bytes_le (sub b 32 16) in
let b4 = nat_from_bytes_le (sub b 48 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v lo.[3] + uint_v lo.[2] /\
b3 == pow2 64 * uint_v hi.[1] + uint_v hi.[0] /\
b4 == pow2 64 * uint_v hi.[3] + uint_v hi.[2])
let uints_from_bytes_le_lemma64_4 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 0 32));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 32 32));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16);
uint_from_bytes_le_lemma (sub b 32 16);
uint_from_bytes_le_lemma (sub b 48 16)
val uints64_to_bytes_le_lemma: lo:uint64 -> hi:uint64 -> Lemma
(concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) == nat_to_bytes_le 16 (v hi * pow2 64 + v lo))
let uints64_to_bytes_le_lemma lo hi =
let lp = nat_to_bytes_le #SEC 16 (v hi * pow2 64 + v lo) in
let rp = concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) in
assert (nat_from_bytes_le lp == v hi * pow2 64 + v lo);
Seq.append_slices (uint_to_bytes_le lo) (uint_to_bytes_le hi);
nat_from_intseq_le_slice_lemma #U8 #SEC #16 rp 8;
assert (nat_from_bytes_le rp == nat_from_bytes_le (Seq.slice rp 0 8) + pow2 (8 * 8) * nat_from_bytes_le (Seq.slice rp 8 16));
assert (nat_from_bytes_le rp == nat_from_bytes_le (uint_to_bytes_le lo) + pow2 64 * nat_from_bytes_le (uint_to_bytes_le hi));
lemma_uint_to_bytes_le_preserves_value lo;
lemma_uint_to_bytes_le_preserves_value hi;
nat_from_intseq_le_inj lp rp
val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma
(requires (forall (i:nat). i < len ==> b.[i] == u8 0))
(ensures nat_from_intseq_le b == 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Lib.IntTypes.size_nat -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.nat). i < len ==> b.[ i ] == Lib.IntTypes.u8 0)
(ensures Lib.ByteSequence.nat_from_intseq_le b == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Hacl.Impl.Poly1305.Lemmas.lemma_nat_from_bytes_le_zeroes",
"Prims.op_Subtraction",
"FStar.Seq.Base.slice",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_le_lemma0",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_nat_from_bytes_le_zeroes len b =
| if len = 0
then ()
else
(nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1;
nat_from_intseq_le_lemma0 (Seq.slice b 0 1);
lemma_nat_from_bytes_le_zeroes (len - 1) (Seq.slice b 1 len)) | false |
Steel.Closure.fst | Steel.Closure.new_counter' | val new_counter' (u:unit) :
SteelT ctr_t emp (fun r -> dfst r 0) | val new_counter' (u:unit) :
SteelT ctr_t emp (fun r -> dfst r 0) | let new_counter' () =
let x = alloc_pt 0 in
let f : ctr x = next x in
let res : ctr_t = (| repr x, f |) in
rewrite_slprop (repr x 0) (dfst res 0) (fun _ -> ());
return res | {
"file_name": "lib/steel/Steel.Closure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 12,
"end_line": 45,
"start_col": 0,
"start_line": 40
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Closure
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.Reference
open Steel.FractionalPermission
[@@__reduce__]
let repr (r:ref int) (x:int) = pts_to r full_perm (hide x)
let ctr (r:ref int) = prev:erased int -> SteelT (y:int{y == prev + 1}) (repr r prev) (repr r)
let next (r:ref int) (prev:erased int)
: SteelT (y:int{y == prev + 1}) (repr r prev) (repr r)
= let v = read_pt r in
let (x:int { x == prev + 1 }) = v + 1 in
write_pt r x;
x
val new_counter' (u:unit) :
SteelT ctr_t emp (fun r -> dfst r 0) | {
"checked_file": "/",
"dependencies": [
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Closure.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | u13: Prims.unit -> Steel.Effect.SteelT Steel.Closure.ctr_t | Steel.Effect.SteelT | [] | [] | [
"Prims.unit",
"Steel.Effect.Atomic.return",
"Steel.Closure.ctr_t",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"FStar.Pervasives.dfst",
"Prims.int",
"Steel.Effect.Common.vprop",
"FStar.Ghost.erased",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Ghost.reveal",
"Steel.Effect.Atomic.rewrite_slprop",
"Steel.Closure.repr",
"Steel.Memory.mem",
"Prims.Mkdtuple2",
"Steel.Closure.ctr",
"Steel.Closure.next",
"Steel.Reference.ref",
"Steel.Reference.alloc_pt"
] | [] | false | true | false | false | false | let new_counter' () =
| let x = alloc_pt 0 in
let f:ctr x = next x in
let res:ctr_t = (| repr x, f |) in
rewrite_slprop (repr x 0) (dfst res 0) (fun _ -> ());
return res | false |
Spec.Frodo.KEM.fst | Spec.Frodo.KEM.crypto_kem_keypair | val crypto_kem_keypair:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> lbytes (crypto_publickeybytes a) & lbytes (crypto_secretkeybytes a) | val crypto_kem_keypair:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> lbytes (crypto_publickeybytes a) & lbytes (crypto_secretkeybytes a) | let crypto_kem_keypair a gen_a state = KeyGen.crypto_kem_keypair a gen_a state | {
"file_name": "specs/frodo/Spec.Frodo.KEM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 78,
"end_line": 23,
"start_col": 0,
"start_line": 23
} | module Spec.Frodo.KEM
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.Params
module KeyGen = Spec.Frodo.KEM.KeyGen
module Encaps = Spec.Frodo.KEM.Encaps
module Decaps = Spec.Frodo.KEM.Decaps
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val crypto_kem_keypair:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> lbytes (crypto_publickeybytes a) & lbytes (crypto_secretkeybytes a) | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": "Decaps"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": "Encaps"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KeyGen"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
state: Spec.Frodo.Random.state_t
-> Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_publickeybytes a) *
Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_secretkeybytes a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Spec.Frodo.Random.state_t",
"Spec.Frodo.KEM.KeyGen.crypto_kem_keypair",
"FStar.Pervasives.Native.tuple2",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.crypto_publickeybytes",
"Spec.Frodo.Params.crypto_secretkeybytes"
] | [] | false | false | false | false | false | let crypto_kem_keypair a gen_a state =
| KeyGen.crypto_kem_keypair a gen_a state | false |
Spec.Frodo.KEM.fst | Spec.Frodo.KEM.crypto_kem_enc | val crypto_kem_enc:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | val crypto_kem_enc:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | let crypto_kem_enc a gen_a state pk = Encaps.crypto_kem_enc a gen_a state pk | {
"file_name": "specs/frodo/Spec.Frodo.KEM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 76,
"end_line": 33,
"start_col": 0,
"start_line": 33
} | module Spec.Frodo.KEM
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.Params
module KeyGen = Spec.Frodo.KEM.KeyGen
module Encaps = Spec.Frodo.KEM.Encaps
module Decaps = Spec.Frodo.KEM.Decaps
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val crypto_kem_keypair:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> lbytes (crypto_publickeybytes a) & lbytes (crypto_secretkeybytes a)
let crypto_kem_keypair a gen_a state = KeyGen.crypto_kem_keypair a gen_a state
val crypto_kem_enc:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": "Decaps"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": "Encaps"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KeyGen"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
state: Spec.Frodo.Random.state_t ->
pk: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_publickeybytes a)
-> Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_ciphertextbytes a) *
Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_bytes a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Spec.Frodo.Random.state_t",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.crypto_publickeybytes",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc",
"FStar.Pervasives.Native.tuple2",
"Spec.Frodo.Params.crypto_ciphertextbytes",
"Spec.Frodo.Params.crypto_bytes"
] | [] | false | false | false | false | false | let crypto_kem_enc a gen_a state pk =
| Encaps.crypto_kem_enc a gen_a state pk | false |
Hacl.Impl.Poly1305.Lemmas.fst | Hacl.Impl.Poly1305.Lemmas.uints_from_bytes_le_lemma64_2 | val uints_from_bytes_le_lemma64_2: b:lseq uint8 32 -> Lemma
(let lo:lseq uint64 2 = uints_from_bytes_le (sub b 0 16) in
let hi:lseq uint64 2 = uints_from_bytes_le (sub b 16 16) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v hi.[1] + uint_v hi.[0]) | val uints_from_bytes_le_lemma64_2: b:lseq uint8 32 -> Lemma
(let lo:lseq uint64 2 = uints_from_bytes_le (sub b 0 16) in
let hi:lseq uint64 2 = uints_from_bytes_le (sub b 16 16) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v hi.[1] + uint_v hi.[0]) | let uints_from_bytes_le_lemma64_2 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 0 16));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 16 16));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16) | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 53,
"start_col": 0,
"start_line": 49
} | module Hacl.Impl.Poly1305.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --max_fuel 1"
val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo)
let uint_from_bytes_le_lemma b =
let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 == nat_from_intseq_le (Seq.slice r2 0 1) + pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[0] + pow2 64 * uint_v r2.[1]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b)
val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0])
let uints_from_bytes_le_lemma64_1 b =
index_uints_from_bytes_le #U64 #SEC #1 (sub b 0 8) 0;
index_uints_from_bytes_le #U64 #SEC #1 (sub b 8 8) 0;
uint_from_bytes_le_lemma b
val uints_from_bytes_le_lemma64_2: b:lseq uint8 32 -> Lemma
(let lo:lseq uint64 2 = uints_from_bytes_le (sub b 0 16) in
let hi:lseq uint64 2 = uints_from_bytes_le (sub b 16 16) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v hi.[1] + uint_v hi.[0]) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq Lib.IntTypes.uint8 32
-> FStar.Pervasives.Lemma
(ensures
(let lo = Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.sub b 0 16) in
let hi = Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.sub b 16 16) in
let b1 = Lib.ByteSequence.nat_from_bytes_le (Lib.Sequence.sub b 0 16) in
let b2 = Lib.ByteSequence.nat_from_bytes_le (Lib.Sequence.sub b 16 16) in
b1 == Prims.pow2 64 * Lib.IntTypes.uint_v lo.[ 1 ] + Lib.IntTypes.uint_v lo.[ 0 ] /\
b2 == Prims.pow2 64 * Lib.IntTypes.uint_v hi.[ 1 ] + Lib.IntTypes.uint_v hi.[ 0 ])) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Hacl.Impl.Poly1305.Lemmas.uint_from_bytes_le_lemma",
"Lib.Sequence.sub",
"Prims.unit",
"FStar.Classical.forall_intro",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Sequence.index",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.IntTypes.U8",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Lib.ByteSequence.index_uints_from_bytes_le"
] | [] | false | false | true | false | false | let uints_from_bytes_le_lemma64_2 b =
| Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 0 16));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 16 16));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16) | false |
Hacl.Impl.Poly1305.Lemmas.fst | Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma_ | val nat_from_bytes_le_eq_lemma_: len:size_nat{len < 16} -> b:lseq uint8 len -> Lemma
(let tmp = create 16 (u8 0) in
nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len b)) | val nat_from_bytes_le_eq_lemma_: len:size_nat{len < 16} -> b:lseq uint8 len -> Lemma
(let tmp = create 16 (u8 0) in
nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len b)) | let nat_from_bytes_le_eq_lemma_ len b =
let tmp = create 16 (u8 0) in
let r = update_sub tmp 0 len b in
assert (Seq.slice r 0 len == b);
assert (forall (i:nat). len <= i /\ i < 16 ==> r.[i] == u8 0);
assert (forall (i:nat). i < 16 - len ==> Seq.index (Seq.slice r len 16) i == u8 0);
nat_from_intseq_le_slice_lemma #U8 #SEC #16 r len;
assert (nat_from_intseq_le r == nat_from_intseq_le (Seq.slice r 0 len) + pow2 (len * 8) * nat_from_intseq_le (Seq.slice r len 16));
assert (nat_from_intseq_le r == nat_from_intseq_le b + pow2 (len * 8) * nat_from_intseq_le (Seq.slice r len 16));
lemma_nat_from_bytes_le_zeroes (16 - len) (Seq.slice r len 16) | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 64,
"end_line": 118,
"start_col": 0,
"start_line": 109
} | module Hacl.Impl.Poly1305.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --max_fuel 1"
val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo)
let uint_from_bytes_le_lemma b =
let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 == nat_from_intseq_le (Seq.slice r2 0 1) + pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[0] + pow2 64 * uint_v r2.[1]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b)
val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0])
let uints_from_bytes_le_lemma64_1 b =
index_uints_from_bytes_le #U64 #SEC #1 (sub b 0 8) 0;
index_uints_from_bytes_le #U64 #SEC #1 (sub b 8 8) 0;
uint_from_bytes_le_lemma b
val uints_from_bytes_le_lemma64_2: b:lseq uint8 32 -> Lemma
(let lo:lseq uint64 2 = uints_from_bytes_le (sub b 0 16) in
let hi:lseq uint64 2 = uints_from_bytes_le (sub b 16 16) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v hi.[1] + uint_v hi.[0])
let uints_from_bytes_le_lemma64_2 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 0 16));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 16 16));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16)
val uints_from_bytes_le_lemma64_4: b:lseq uint8 64 -> Lemma
(let lo:lseq uint64 4 = uints_from_bytes_le (sub b 0 32) in
let hi:lseq uint64 4 = uints_from_bytes_le (sub b 32 32) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
let b3 = nat_from_bytes_le (sub b 32 16) in
let b4 = nat_from_bytes_le (sub b 48 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v lo.[3] + uint_v lo.[2] /\
b3 == pow2 64 * uint_v hi.[1] + uint_v hi.[0] /\
b4 == pow2 64 * uint_v hi.[3] + uint_v hi.[2])
let uints_from_bytes_le_lemma64_4 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 0 32));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 32 32));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16);
uint_from_bytes_le_lemma (sub b 32 16);
uint_from_bytes_le_lemma (sub b 48 16)
val uints64_to_bytes_le_lemma: lo:uint64 -> hi:uint64 -> Lemma
(concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) == nat_to_bytes_le 16 (v hi * pow2 64 + v lo))
let uints64_to_bytes_le_lemma lo hi =
let lp = nat_to_bytes_le #SEC 16 (v hi * pow2 64 + v lo) in
let rp = concat (uint_to_bytes_le lo) (uint_to_bytes_le hi) in
assert (nat_from_bytes_le lp == v hi * pow2 64 + v lo);
Seq.append_slices (uint_to_bytes_le lo) (uint_to_bytes_le hi);
nat_from_intseq_le_slice_lemma #U8 #SEC #16 rp 8;
assert (nat_from_bytes_le rp == nat_from_bytes_le (Seq.slice rp 0 8) + pow2 (8 * 8) * nat_from_bytes_le (Seq.slice rp 8 16));
assert (nat_from_bytes_le rp == nat_from_bytes_le (uint_to_bytes_le lo) + pow2 64 * nat_from_bytes_le (uint_to_bytes_le hi));
lemma_uint_to_bytes_le_preserves_value lo;
lemma_uint_to_bytes_le_preserves_value hi;
nat_from_intseq_le_inj lp rp
val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma
(requires (forall (i:nat). i < len ==> b.[i] == u8 0))
(ensures nat_from_intseq_le b == 0)
let rec lemma_nat_from_bytes_le_zeroes len b =
if len = 0 then ()
else begin
nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1;
nat_from_intseq_le_lemma0 (Seq.slice b 0 1);
lemma_nat_from_bytes_le_zeroes (len-1) (Seq.slice b 1 len) end
val nat_from_bytes_le_eq_lemma_: len:size_nat{len < 16} -> b:lseq uint8 len -> Lemma
(let tmp = create 16 (u8 0) in
nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len b)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Lib.IntTypes.size_nat{len < 16} -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len
-> FStar.Pervasives.Lemma
(ensures
(let tmp = Lib.Sequence.create 16 (Lib.IntTypes.u8 0) in
Lib.ByteSequence.nat_from_intseq_le b ==
Lib.ByteSequence.nat_from_intseq_le (Lib.Sequence.update_sub tmp 0 len b))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Hacl.Impl.Poly1305.Lemmas.lemma_nat_from_bytes_le_zeroes",
"Prims.op_Subtraction",
"FStar.Seq.Base.slice",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"FStar.Seq.Base.index",
"Lib.IntTypes.u8",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.l_or",
"Lib.Sequence.to_seq",
"Lib.IntTypes.range_t",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"Lib.Sequence.sub",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Lib.Sequence.create"
] | [] | false | false | true | false | false | let nat_from_bytes_le_eq_lemma_ len b =
| let tmp = create 16 (u8 0) in
let r = update_sub tmp 0 len b in
assert (Seq.slice r 0 len == b);
assert (forall (i: nat). len <= i /\ i < 16 ==> r.[ i ] == u8 0);
assert (forall (i: nat). i < 16 - len ==> Seq.index (Seq.slice r len 16) i == u8 0);
nat_from_intseq_le_slice_lemma #U8 #SEC #16 r len;
assert (nat_from_intseq_le r ==
nat_from_intseq_le (Seq.slice r 0 len) +
pow2 (len * 8) * nat_from_intseq_le (Seq.slice r len 16));
assert (nat_from_intseq_le r ==
nat_from_intseq_le b + pow2 (len * 8) * nat_from_intseq_le (Seq.slice r len 16));
lemma_nat_from_bytes_le_zeroes (16 - len) (Seq.slice r len 16) | false |
Spec.Frodo.KEM.fst | Spec.Frodo.KEM.crypto_kem_dec | val crypto_kem_dec:
a:frodo_alg
-> gen_a:frodo_gen_a
-> ct:lbytes (crypto_ciphertextbytes a)
-> sk:lbytes (crypto_secretkeybytes a)
-> lbytes (crypto_bytes a) | val crypto_kem_dec:
a:frodo_alg
-> gen_a:frodo_gen_a
-> ct:lbytes (crypto_ciphertextbytes a)
-> sk:lbytes (crypto_secretkeybytes a)
-> lbytes (crypto_bytes a) | let crypto_kem_dec a gen_a ct sk = Decaps.crypto_kem_dec a gen_a ct sk | {
"file_name": "specs/frodo/Spec.Frodo.KEM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 70,
"end_line": 43,
"start_col": 0,
"start_line": 43
} | module Spec.Frodo.KEM
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.Params
module KeyGen = Spec.Frodo.KEM.KeyGen
module Encaps = Spec.Frodo.KEM.Encaps
module Decaps = Spec.Frodo.KEM.Decaps
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val crypto_kem_keypair:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> lbytes (crypto_publickeybytes a) & lbytes (crypto_secretkeybytes a)
let crypto_kem_keypair a gen_a state = KeyGen.crypto_kem_keypair a gen_a state
val crypto_kem_enc:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a)
let crypto_kem_enc a gen_a state pk = Encaps.crypto_kem_enc a gen_a state pk
val crypto_kem_dec:
a:frodo_alg
-> gen_a:frodo_gen_a
-> ct:lbytes (crypto_ciphertextbytes a)
-> sk:lbytes (crypto_secretkeybytes a)
-> lbytes (crypto_bytes a) | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": "Decaps"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": "Encaps"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KeyGen"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
ct: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_ciphertextbytes a) ->
sk: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_secretkeybytes a)
-> Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_bytes a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.crypto_ciphertextbytes",
"Spec.Frodo.Params.crypto_secretkeybytes",
"Spec.Frodo.KEM.Decaps.crypto_kem_dec",
"Spec.Frodo.Params.crypto_bytes"
] | [] | false | false | false | false | false | let crypto_kem_dec a gen_a ct sk =
| Decaps.crypto_kem_dec a gen_a ct sk | false |
Hacl.Impl.Poly1305.Lemmas.fst | Hacl.Impl.Poly1305.Lemmas.uints_from_bytes_le_lemma64_4 | val uints_from_bytes_le_lemma64_4: b:lseq uint8 64 -> Lemma
(let lo:lseq uint64 4 = uints_from_bytes_le (sub b 0 32) in
let hi:lseq uint64 4 = uints_from_bytes_le (sub b 32 32) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
let b3 = nat_from_bytes_le (sub b 32 16) in
let b4 = nat_from_bytes_le (sub b 48 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v lo.[3] + uint_v lo.[2] /\
b3 == pow2 64 * uint_v hi.[1] + uint_v hi.[0] /\
b4 == pow2 64 * uint_v hi.[3] + uint_v hi.[2]) | val uints_from_bytes_le_lemma64_4: b:lseq uint8 64 -> Lemma
(let lo:lseq uint64 4 = uints_from_bytes_le (sub b 0 32) in
let hi:lseq uint64 4 = uints_from_bytes_le (sub b 32 32) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
let b3 = nat_from_bytes_le (sub b 32 16) in
let b4 = nat_from_bytes_le (sub b 48 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v lo.[3] + uint_v lo.[2] /\
b3 == pow2 64 * uint_v hi.[1] + uint_v hi.[0] /\
b4 == pow2 64 * uint_v hi.[3] + uint_v hi.[2]) | let uints_from_bytes_le_lemma64_4 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 0 32));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 32 32));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16);
uint_from_bytes_le_lemma (sub b 32 16);
uint_from_bytes_le_lemma (sub b 48 16) | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 74,
"start_col": 0,
"start_line": 68
} | module Hacl.Impl.Poly1305.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --max_fuel 1"
val uint_from_bytes_le_lemma: b:lseq uint8 16 -> Lemma
(let lo = uint_from_bytes_le #U64 (sub b 0 8) in
let hi = uint_from_bytes_le #U64 (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi + uint_v lo)
let uint_from_bytes_le_lemma b =
let r1 = nat_from_bytes_le b in
let r2 = uints_from_bytes_le #U64 #SEC #2 b in
uints_from_bytes_le_nat_lemma #U64 #SEC #2 b;
assert (r1 == nat_from_intseq_le r2);
nat_from_intseq_le_slice_lemma #U64 #SEC #2 r2 1;
assert (r1 == nat_from_intseq_le (Seq.slice r2 0 1) + pow2 64 * nat_from_intseq_le #U64 #SEC (Seq.slice r2 1 2));
nat_from_intseq_le_lemma0 (Seq.slice r2 0 1);
nat_from_intseq_le_lemma0 (Seq.slice r2 1 2);
assert (r1 == uint_v r2.[0] + pow2 64 * uint_v r2.[1]);
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 b)
val uints_from_bytes_le_lemma64_1: b:lseq uint8 16 -> Lemma
(let lo:lseq uint64 1 = uints_from_bytes_le (sub b 0 8) in
let hi:lseq uint64 1 = uints_from_bytes_le (sub b 8 8) in
nat_from_bytes_le b == pow2 64 * uint_v hi.[0] + uint_v lo.[0])
let uints_from_bytes_le_lemma64_1 b =
index_uints_from_bytes_le #U64 #SEC #1 (sub b 0 8) 0;
index_uints_from_bytes_le #U64 #SEC #1 (sub b 8 8) 0;
uint_from_bytes_le_lemma b
val uints_from_bytes_le_lemma64_2: b:lseq uint8 32 -> Lemma
(let lo:lseq uint64 2 = uints_from_bytes_le (sub b 0 16) in
let hi:lseq uint64 2 = uints_from_bytes_le (sub b 16 16) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v hi.[1] + uint_v hi.[0])
let uints_from_bytes_le_lemma64_2 b =
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 0 16));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #2 (sub b 16 16));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16)
val uints_from_bytes_le_lemma64_4: b:lseq uint8 64 -> Lemma
(let lo:lseq uint64 4 = uints_from_bytes_le (sub b 0 32) in
let hi:lseq uint64 4 = uints_from_bytes_le (sub b 32 32) in
let b1 = nat_from_bytes_le (sub b 0 16) in
let b2 = nat_from_bytes_le (sub b 16 16) in
let b3 = nat_from_bytes_le (sub b 32 16) in
let b4 = nat_from_bytes_le (sub b 48 16) in
b1 == pow2 64 * uint_v lo.[1] + uint_v lo.[0] /\
b2 == pow2 64 * uint_v lo.[3] + uint_v lo.[2] /\
b3 == pow2 64 * uint_v hi.[1] + uint_v hi.[0] /\
b4 == pow2 64 * uint_v hi.[3] + uint_v hi.[2]) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq Lib.IntTypes.uint8 64
-> FStar.Pervasives.Lemma
(ensures
(let lo = Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.sub b 0 32) in
let hi = Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.sub b 32 32) in
let b1 = Lib.ByteSequence.nat_from_bytes_le (Lib.Sequence.sub b 0 16) in
let b2 = Lib.ByteSequence.nat_from_bytes_le (Lib.Sequence.sub b 16 16) in
let b3 = Lib.ByteSequence.nat_from_bytes_le (Lib.Sequence.sub b 32 16) in
let b4 = Lib.ByteSequence.nat_from_bytes_le (Lib.Sequence.sub b 48 16) in
b1 == Prims.pow2 64 * Lib.IntTypes.uint_v lo.[ 1 ] + Lib.IntTypes.uint_v lo.[ 0 ] /\
b2 == Prims.pow2 64 * Lib.IntTypes.uint_v lo.[ 3 ] + Lib.IntTypes.uint_v lo.[ 2 ] /\
b3 == Prims.pow2 64 * Lib.IntTypes.uint_v hi.[ 1 ] + Lib.IntTypes.uint_v hi.[ 0 ] /\
b4 == Prims.pow2 64 * Lib.IntTypes.uint_v hi.[ 3 ] + Lib.IntTypes.uint_v hi.[ 2 ])) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Hacl.Impl.Poly1305.Lemmas.uint_from_bytes_le_lemma",
"Lib.Sequence.sub",
"Prims.unit",
"FStar.Classical.forall_intro",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Sequence.index",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.IntTypes.U8",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Lib.ByteSequence.index_uints_from_bytes_le"
] | [] | false | false | true | false | false | let uints_from_bytes_le_lemma64_4 b =
| Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 0 32));
Classical.forall_intro (index_uints_from_bytes_le #U64 #SEC #4 (sub b 32 32));
uint_from_bytes_le_lemma (sub b 0 16);
uint_from_bytes_le_lemma (sub b 16 16);
uint_from_bytes_le_lemma (sub b 32 16);
uint_from_bytes_le_lemma (sub b 48 16) | false |
Spec.SHA2.fst | Spec.SHA2.block_w | val block_w : a: Spec.Hash.Definitions.sha2_alg -> Type0 | let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a} | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 80,
"end_line": 34,
"start_col": 0,
"start_line": 34
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"FStar.Seq.Base.seq",
"Spec.Hash.Definitions.word",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Spec.Hash.Definitions.block_word_length"
] | [] | false | false | false | true | true | let block_w (a: sha2_alg) =
| m: S.seq (word a) {S.length m = block_word_length a} | false |
|
Spec.SHA2.fst | Spec.SHA2.op384_512 | val op384_512:ops | val op384_512:ops | let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
} | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 1,
"end_line": 60,
"start_col": 0,
"start_line": 55
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
} | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.SHA2.ops | Prims.Tot | [
"total"
] | [] | [
"Spec.SHA2.Mkops",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | true | false | let op384_512:ops =
| {
c0 = 28ul;
c1 = 34ul;
c2 = 39ul;
c3 = 14ul;
c4 = 18ul;
c5 = 41ul;
e0 = 1ul;
e1 = 8ul;
e2 = 7ul;
e3 = 19ul;
e4 = 61ul;
e5 = 6ul
} | false |
Spec.SHA2.fst | Spec.SHA2.op224_256 | val op224_256:ops | val op224_256:ops | let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
} | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 1,
"end_line": 52,
"start_col": 0,
"start_line": 47
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.SHA2.ops | Prims.Tot | [
"total"
] | [] | [
"Spec.SHA2.Mkops",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | true | false | let op224_256:ops =
| {
c0 = 2ul;
c1 = 13ul;
c2 = 22ul;
c3 = 6ul;
c4 = 11ul;
c5 = 25ul;
e0 = 7ul;
e1 = 18ul;
e2 = 3ul;
e3 = 17ul;
e4 = 19ul;
e5 = 10ul
} | false |
Spec.SHA2.fst | Spec.SHA2.counter | val counter : Type0 | let counter = nat | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 35,
"start_col": 0,
"start_line": 35
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a} | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.nat"
] | [] | false | false | false | true | true | let counter =
| nat | false |
|
CQueue.LList.fst | CQueue.LList.cllist_not_null | val cllist_not_null
(#opened: _)
(#a: Type0)
(c: cllist_ptrvalue a)
: SteelGhost (squash (cllist_ptrvalue_is_null c == false)) opened
(cllist c)
(fun _ -> cllist c)
(fun _ -> True)
(fun h _ h' ->
h' (cllist c) == h (cllist c)
) | val cllist_not_null
(#opened: _)
(#a: Type0)
(c: cllist_ptrvalue a)
: SteelGhost (squash (cllist_ptrvalue_is_null c == false)) opened
(cllist c)
(fun _ -> cllist c)
(fun _ -> True)
(fun h _ h' ->
h' (cllist c) == h (cllist c)
) | let cllist_not_null
#opened #a c
=
let c1 = elim_cllist_ghost c in
let c2 : cllist_lvalue a = c in
change_equal_slprop (vptr (cllist_head c1)) (vptr (cllist_head c2));
change_equal_slprop (vptr (cllist_tail c1)) (vptr (cllist_tail c2));
intro_cllist c2;
change_equal_slprop (cllist c2) (cllist c);
() | {
"file_name": "share/steel/examples/steel/CQueue.LList.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 4,
"end_line": 136,
"start_col": 0,
"start_line": 127
} | module CQueue.LList
noeq
type cllist_ptrvalue (a: Type0) = {
head: ref (ccell_ptrvalue a);
tail: ref (ref (ccell_ptrvalue a));
all_or_none_null: squash (is_null head == is_null tail);
}
let cllist_ptrvalue_null a = {head = null; tail = null; all_or_none_null = ()}
let cllist_ptrvalue_is_null #a x = is_null x.head
let cllist_head #a c =
c.head
let cllist_tail #a c =
c.tail
#push-options "--ide_id_info_off"
let cllist0_refine
(#a: Type0)
(c: cllist_ptrvalue a)
(_: t_of emp)
: Tot prop
= cllist_ptrvalue_is_null c == false
// unfold
let cllist0_rewrite
(#a: Type0)
(c: cllist_ptrvalue a)
(_: t_of (emp `vrefine` cllist0_refine c))
: Tot (cllist_lvalue a)
= c
[@@ __steel_reduce__]
let cllist0 (a: Type0) (c: cllist_lvalue a) : Tot vprop =
(vptr (cllist_head c) `star` vptr (cllist_tail c))
// unfold
let cllist_rewrite
(#a: Type0)
(c: cllist_ptrvalue a)
(x: dtuple2 (cllist_lvalue a) (vdep_payload (emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c) (cllist0 a)))
: GTot (vllist a)
= let p =
dsnd #(cllist_lvalue a) #(vdep_payload (emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c) (cllist0 a)) x
in
{
vllist_head = fst p;
vllist_tail = snd p;
}
[@@ __steel_reduce__ ; __reduce__] // to avoid manual unfoldings through change_slprop
let cllist1
(#a: Type0)
(c: cllist_ptrvalue a)
: Tot vprop
= emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c `vdep` cllist0 a `vrewrite` cllist_rewrite c
let cllist_hp
#a c
= hp_of (cllist1 c)
let cllist_sel
#a c
= sel_of (cllist1 c)
let intro_cllist
#opened #a c
=
intro_vrefine emp (cllist0_refine c);
intro_vrewrite (emp `vrefine` cllist0_refine c) (cllist0_rewrite c);
reveal_star (vptr (cllist_head c)) (vptr (cllist_tail c));
intro_vdep
(emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c)
(vptr (cllist_head c) `star` vptr (cllist_tail c))
(cllist0 a);
intro_vrewrite
(emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c `vdep` cllist0 a)
(cllist_rewrite c);
change_slprop_rel
(cllist1 c)
(cllist c)
(fun x y -> x == y)
(fun m ->
assert_norm (hp_of (cllist1 c) == cllist_hp c);
assert_norm (sel_of (cllist1 c) m === sel_of (cllist c) m)
)
let elim_cllist_ghost
#opened #a c
=
change_slprop_rel
(cllist c)
(cllist1 c)
(fun x y -> x == y)
(fun m ->
assert_norm (hp_of (cllist1 c) == cllist_hp c);
assert_norm (sel_of (cllist1 c) m === sel_of (cllist c) m)
);
elim_vrewrite
(emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c `vdep` cllist0 a)
(cllist_rewrite c);
let c' : Ghost.erased (cllist_lvalue a) = elim_vdep
(emp `vrefine` cllist0_refine c `vrewrite` cllist0_rewrite c)
(cllist0 a)
in
elim_vrewrite (emp `vrefine` cllist0_refine c) (cllist0_rewrite c);
elim_vrefine emp (cllist0_refine c);
change_equal_slprop
(cllist0 a c')
(vptr (cllist_head (Ghost.reveal c')) `star` vptr (cllist_tail (Ghost.reveal c')));
reveal_star (vptr (cllist_head (Ghost.reveal c'))) (vptr (cllist_tail (Ghost.reveal c')));
c'
let elim_cllist
#opened #a c
=
let c2 = elim_cllist_ghost c in
let c : cllist_lvalue a = c in
change_equal_slprop (vptr (cllist_head c2)) (vptr (cllist_head c));
change_equal_slprop (vptr (cllist_tail c2)) (vptr (cllist_tail c));
return c | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "CQueue.LList.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "CQueue.Cell",
"short_module": null
},
{
"abbrev": false,
"full_module": "CQueue",
"short_module": null
},
{
"abbrev": false,
"full_module": "CQueue",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: CQueue.LList.cllist_ptrvalue a
-> Steel.Effect.Atomic.SteelGhost (Prims.squash (CQueue.LList.cllist_ptrvalue_is_null c == false)) | Steel.Effect.Atomic.SteelGhost | [] | [] | [
"Steel.Memory.inames",
"CQueue.LList.cllist_ptrvalue",
"Prims.squash",
"Prims.eq2",
"Prims.bool",
"CQueue.LList.cllist_ptrvalue_is_null",
"Prims.unit",
"Steel.Effect.Atomic.change_equal_slprop",
"CQueue.LList.cllist",
"CQueue.LList.intro_cllist",
"Steel.Reference.vptr",
"Steel.Reference.ref",
"CQueue.Cell.ccell_ptrvalue",
"CQueue.LList.cllist_tail",
"FStar.Ghost.reveal",
"CQueue.LList.cllist_lvalue",
"CQueue.LList.cllist_head",
"FStar.Ghost.erased",
"CQueue.LList.elim_cllist_ghost"
] | [] | false | true | true | false | false | let cllist_not_null #opened #a c =
| let c1 = elim_cllist_ghost c in
let c2:cllist_lvalue a = c in
change_equal_slprop (vptr (cllist_head c1)) (vptr (cllist_head c2));
change_equal_slprop (vptr (cllist_tail c1)) (vptr (cllist_tail c2));
intro_cllist c2;
change_equal_slprop (cllist c2) (cllist c);
() | false |
Spec.SHA2.fst | Spec.SHA2._Ch | val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | let _Ch a x y z = (x &. y) ^. (~.x &. z) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 110,
"start_col": 0,
"start_line": 110
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
x: Spec.Hash.Definitions.word a ->
y: Spec.Hash.Definitions.word a ->
z: Spec.Hash.Definitions.word a
-> Spec.Hash.Definitions.word a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Spec.SHA2.op_Hat_Dot",
"Spec.SHA2.op_Amp_Dot",
"Spec.SHA2.op_Tilde_Dot"
] | [] | false | false | false | false | false | let _Ch a x y z =
| (x &. y) ^. (~.x &. z) | false |
Spec.SHA2.fst | Spec.SHA2.word_n | val word_n: sha2_alg -> Tot nat | val word_n: sha2_alg -> Tot nat | let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64 | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 21,
"start_col": 0,
"start_line": 19
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80 | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Spec.Hash.Definitions.sha2_alg -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat"
] | [] | false | false | false | true | false | let word_n: sha2_alg -> Tot nat =
| function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64 | false |
Spec.SHA2.fst | Spec.SHA2._Maj | val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z)) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 53,
"end_line": 115,
"start_col": 0,
"start_line": 115
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
x: Spec.Hash.Definitions.word a ->
y: Spec.Hash.Definitions.word a ->
z: Spec.Hash.Definitions.word a
-> Spec.Hash.Definitions.word a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Spec.SHA2.op_Hat_Dot",
"Spec.SHA2.op_Amp_Dot"
] | [] | false | false | false | false | false | let _Maj a x y z =
| (x &. y) ^. ((x &. z) ^. (y &. z)) | false |
Spec.SHA2.fst | Spec.SHA2.k_w | val k_w : a: Spec.Hash.Definitions.sha2_alg -> Type0 | let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a} | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 71,
"end_line": 33,
"start_col": 0,
"start_line": 33
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"FStar.Seq.Base.seq",
"Spec.Hash.Definitions.word",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"FStar.Seq.Base.length",
"Spec.SHA2.size_k_w"
] | [] | false | false | false | true | true | let k_w (a: sha2_alg) =
| m: S.seq (word a) {S.length m = size_k_w a} | false |
|
Spec.SHA2.fst | Spec.SHA2.to_word | val to_word (a: sha2_alg) (n: nat{n < pow2 (word_n a)}) : word a | val to_word (a: sha2_alg) (n: nat{n < pow2 (word_n a)}) : word a | let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 27,
"start_col": 0,
"start_line": 24
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64 | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> n: Prims.nat{n < Prims.pow2 (Spec.SHA2.word_n a)}
-> Spec.Hash.Definitions.word a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Spec.SHA2.word_n",
"Lib.IntTypes.u32",
"Lib.IntTypes.u64",
"Spec.Hash.Definitions.word"
] | [] | false | false | false | false | false | let to_word (a: sha2_alg) (n: nat{n < pow2 (word_n a)}) : word a =
| match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n | false |
Spec.SHA2.fst | Spec.SHA2.v' | val v' : x: Spec.Hash.Definitions.word a
-> x:
Prims.int
{ Lib.IntTypes.range x Lib.IntTypes.U32 \/ Lib.IntTypes.range x Lib.IntTypes.U64 \/
Lib.IntTypes.range x Lib.IntTypes.U64 \/ Lib.IntTypes.range x Lib.IntTypes.U32 } | let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 31,
"start_col": 0,
"start_line": 29
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Spec.Hash.Definitions.word a
-> x:
Prims.int
{ Lib.IntTypes.range x Lib.IntTypes.U32 \/ Lib.IntTypes.range x Lib.IntTypes.U64 \/
Lib.IntTypes.range x Lib.IntTypes.U64 \/ Lib.IntTypes.range x Lib.IntTypes.U32 } | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Lib.IntTypes.uint_v",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Lib.IntTypes.U64",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range"
] | [] | false | false | false | false | false | let v' (#a: sha2_alg) (x: word a) =
| match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x | false |
|
Spec.SHA2.fst | Spec.SHA2.size_k_w | val size_k_w: sha2_alg -> Tot nat | val size_k_w: sha2_alg -> Tot nat | let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80 | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 16,
"start_col": 0,
"start_line": 14
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Spec.Hash.Definitions.sha2_alg -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat"
] | [] | false | false | false | true | false | let size_k_w: sha2_alg -> Tot nat =
| function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80 | false |
Spec.SHA2.fst | Spec.SHA2.op0 | val op0 (a: sha2_alg) : Tot ops | val op0 (a: sha2_alg) : Tot ops | let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512 | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 67,
"start_col": 0,
"start_line": 63
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
} | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> Spec.SHA2.ops | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.op224_256",
"Spec.SHA2.op384_512",
"Spec.SHA2.ops"
] | [] | false | false | false | true | false | let op0: a: sha2_alg -> Tot ops =
| function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512 | false |
Spec.SHA2.fst | Spec.SHA2.shuffle_core_pre | val shuffle_core_pre : a: Spec.Hash.Definitions.sha2_alg ->
k_t: Spec.Hash.Definitions.word a ->
ws_t: Spec.Hash.Definitions.word a ->
hash: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | let shuffle_core_pre = shuffle_core_pre_ | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 173,
"start_col": 0,
"start_line": 173
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
k_t: Spec.Hash.Definitions.word a ->
ws_t: Spec.Hash.Definitions.word a ->
hash: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | Prims.Tot | [
"total"
] | [] | [
"Spec.SHA2.shuffle_core_pre_"
] | [] | false | false | false | false | false | let shuffle_core_pre =
| shuffle_core_pre_ | false |
|
CPS.DoubleDefun.fst | CPS.DoubleDefun.eval | val eval : expr -> Tot int | val eval : expr -> Tot int | let eval e = eval_cps e C0 | {
"file_name": "examples/termination/CPS.DoubleDefun.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 58,
"start_col": 0,
"start_line": 58
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(* *****************************************************************************)
(* * Proving termination of its defunctionalized version is known to be hard ***)
(* *****************************************************************************)
(* First standard try: to prove termination, I augment << with an
ordering on call stacks **)
module CPS.DoubleDefun
open CPS.Expr
type cont =
| C0 : cont
| C1 : cont -> int -> cont
| C2 : cont -> expr -> cont
val stack : cont -> Tot (list expr)
let rec stack = function
| C0 -> []
| C1 k _ -> stack k
| C2 k e -> e::(stack k)
(* Order on call stacks *)
assume Rstack0: forall (e:expr) (l:list expr).{:pattern (Prims.precedes l (Cons e l))} l << e::l
assume Rstack1: forall (e1:expr) (e:expr) (l:list expr).{:pattern (Prims.precedes (Cons e1 l) (Cons e l))}
e1 << e ==> (e1::l) << (e::l)
assume Rstack2: forall (e1:expr) (e2:expr) (e:expr) (l:list expr).{:pattern (Prims.precedes (Cons e1 (Cons e2 l)) (Cons e l))}
e1 << e ==> e2 << e ==> (e1::e2::l) << (e::l)
val apply : e:expr -> k:cont -> int -> Tot int (decreases %[e::(stack k);k;0])
val eval_cps : e:expr -> k:cont -> Tot int (decreases %[e::(stack k);k;1])
let rec apply e k r = match k with
| C0 -> r
| C1 k r1 -> apply e k (r1 + r)
| C2 k e2 -> eval_cps e2 (C1 k r)
and eval_cps e k =
match e with
| Const n -> apply e k n
| Plus e1 e2 -> eval_cps e1 (C2 k e2) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"CPS.Expr.fst.checked"
],
"interface_file": false,
"source_file": "CPS.DoubleDefun.fst"
} | [
{
"abbrev": false,
"full_module": "CPS.Expr",
"short_module": null
},
{
"abbrev": false,
"full_module": "CPS",
"short_module": null
},
{
"abbrev": false,
"full_module": "CPS",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: CPS.Expr.expr -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"CPS.Expr.expr",
"CPS.DoubleDefun.eval_cps",
"CPS.DoubleDefun.C0",
"Prims.int"
] | [] | false | false | false | true | false | let eval e =
| eval_cps e C0 | false |
Spec.SHA2.fst | Spec.SHA2.shuffle | val shuffle : a: Spec.Hash.Definitions.sha2_alg ->
hash: Spec.Hash.Definitions.words_state a ->
block: Spec.SHA2.block_w a
-> Spec.Hash.Definitions.words_state a | let shuffle = shuffle_pre | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 210,
"start_col": 0,
"start_line": 210
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i)
let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < size_k_w a}) (ws:k_w a) : k_w a =
if i < block_word_length a then
ws0_pre_inner a block i ws
else
wsi_pre_inner a i ws
let ws_pre_ (a:sha2_alg) (block:block_w a) : k_w a =
Lib.LoopCombinators.repeati (size_k_w a) (ws_pre_inner a block) (Seq.create (size_k_w a) (to_word a 0))
[@"opaque_to_smt"]
let ws_pre = ws_pre_
(* Full shuffling function *)
let shuffle_pre (a:sha2_alg) (hash:words_state a) (block:block_w a): Tot (words_state a) =
let ws = ws_pre a block in
let k = k0 a in
Lib.LoopCombinators.repeati (size_k_w a)
(fun i h -> shuffle_core_pre a k.[i] ws.[i] h) hash | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
hash: Spec.Hash.Definitions.words_state a ->
block: Spec.SHA2.block_w a
-> Spec.Hash.Definitions.words_state a | Prims.Tot | [
"total"
] | [] | [
"Spec.SHA2.shuffle_pre"
] | [] | false | false | false | false | false | let shuffle =
| shuffle_pre | false |
|
CPS.DoubleDefun.fst | CPS.DoubleDefun.stack | val stack : cont -> Tot (list expr) | val stack : cont -> Tot (list expr) | let rec stack = function
| C0 -> []
| C1 k _ -> stack k
| C2 k e -> e::(stack k) | {
"file_name": "examples/termination/CPS.DoubleDefun.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 35,
"start_col": 0,
"start_line": 32
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(* *****************************************************************************)
(* * Proving termination of its defunctionalized version is known to be hard ***)
(* *****************************************************************************)
(* First standard try: to prove termination, I augment << with an
ordering on call stacks **)
module CPS.DoubleDefun
open CPS.Expr
type cont =
| C0 : cont
| C1 : cont -> int -> cont
| C2 : cont -> expr -> cont | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"CPS.Expr.fst.checked"
],
"interface_file": false,
"source_file": "CPS.DoubleDefun.fst"
} | [
{
"abbrev": false,
"full_module": "CPS.Expr",
"short_module": null
},
{
"abbrev": false,
"full_module": "CPS",
"short_module": null
},
{
"abbrev": false,
"full_module": "CPS",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: CPS.DoubleDefun.cont -> Prims.list CPS.Expr.expr | Prims.Tot | [
"total"
] | [] | [
"CPS.DoubleDefun.cont",
"Prims.Nil",
"CPS.Expr.expr",
"Prims.int",
"CPS.DoubleDefun.stack",
"Prims.Cons",
"Prims.list"
] | [
"recursion"
] | false | false | false | true | false | let rec stack =
| function
| C0 -> []
| C1 k _ -> stack k
| C2 k e -> e :: (stack k) | false |
Spec.SHA2.fst | Spec.SHA2.init | val init: a:sha2_alg -> init_t a | val init: a:sha2_alg -> init_t a | let init a = h0 a | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 212,
"start_col": 0,
"start_line": 212
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i)
let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < size_k_w a}) (ws:k_w a) : k_w a =
if i < block_word_length a then
ws0_pre_inner a block i ws
else
wsi_pre_inner a i ws
let ws_pre_ (a:sha2_alg) (block:block_w a) : k_w a =
Lib.LoopCombinators.repeati (size_k_w a) (ws_pre_inner a block) (Seq.create (size_k_w a) (to_word a 0))
[@"opaque_to_smt"]
let ws_pre = ws_pre_
(* Full shuffling function *)
let shuffle_pre (a:sha2_alg) (hash:words_state a) (block:block_w a): Tot (words_state a) =
let ws = ws_pre a block in
let k = k0 a in
Lib.LoopCombinators.repeati (size_k_w a)
(fun i h -> shuffle_core_pre a k.[i] ws.[i] h) hash
[@"opaque_to_smt"]
let shuffle = shuffle_pre | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> Spec.Hash.Definitions.init_t a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.h0",
"Spec.Hash.Definitions.init_t"
] | [] | false | false | false | false | false | let init a =
| h0 a | false |
IOWPInconsistent.fst | IOWPInconsistent.prop | val prop : Type | let prop = p:Type0{forall (x y:p). x == y} | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 42,
"start_col": 0,
"start_line": 42
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.eq2"
] | [] | false | false | false | true | true | let prop =
| p: Type0{forall (x: p) (y: p). x == y} | false |
|
Spec.SHA2.fst | Spec.SHA2.ws_pre | val ws_pre : a: Spec.Hash.Definitions.sha2_alg -> block: Spec.SHA2.block_w a -> Spec.SHA2.k_w a | let ws_pre = ws_pre_ | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 20,
"end_line": 201,
"start_col": 0,
"start_line": 201
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i)
let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < size_k_w a}) (ws:k_w a) : k_w a =
if i < block_word_length a then
ws0_pre_inner a block i ws
else
wsi_pre_inner a i ws
let ws_pre_ (a:sha2_alg) (block:block_w a) : k_w a =
Lib.LoopCombinators.repeati (size_k_w a) (ws_pre_inner a block) (Seq.create (size_k_w a) (to_word a 0)) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> block: Spec.SHA2.block_w a -> Spec.SHA2.k_w a | Prims.Tot | [
"total"
] | [] | [
"Spec.SHA2.ws_pre_"
] | [] | false | false | false | false | false | let ws_pre =
| ws_pre_ | false |
|
CPS.DoubleDefun.fst | CPS.DoubleDefun.eval_cps | val eval_cps : e:expr -> k:cont -> Tot int (decreases %[e::(stack k);k;1]) | val eval_cps : e:expr -> k:cont -> Tot int (decreases %[e::(stack k);k;1]) | let rec apply e k r = match k with
| C0 -> r
| C1 k r1 -> apply e k (r1 + r)
| C2 k e2 -> eval_cps e2 (C1 k r)
and eval_cps e k =
match e with
| Const n -> apply e k n
| Plus e1 e2 -> eval_cps e1 (C2 k e2) | {
"file_name": "examples/termination/CPS.DoubleDefun.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 55,
"start_col": 0,
"start_line": 47
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(* *****************************************************************************)
(* * Proving termination of its defunctionalized version is known to be hard ***)
(* *****************************************************************************)
(* First standard try: to prove termination, I augment << with an
ordering on call stacks **)
module CPS.DoubleDefun
open CPS.Expr
type cont =
| C0 : cont
| C1 : cont -> int -> cont
| C2 : cont -> expr -> cont
val stack : cont -> Tot (list expr)
let rec stack = function
| C0 -> []
| C1 k _ -> stack k
| C2 k e -> e::(stack k)
(* Order on call stacks *)
assume Rstack0: forall (e:expr) (l:list expr).{:pattern (Prims.precedes l (Cons e l))} l << e::l
assume Rstack1: forall (e1:expr) (e:expr) (l:list expr).{:pattern (Prims.precedes (Cons e1 l) (Cons e l))}
e1 << e ==> (e1::l) << (e::l)
assume Rstack2: forall (e1:expr) (e2:expr) (e:expr) (l:list expr).{:pattern (Prims.precedes (Cons e1 (Cons e2 l)) (Cons e l))}
e1 << e ==> e2 << e ==> (e1::e2::l) << (e::l)
val apply : e:expr -> k:cont -> int -> Tot int (decreases %[e::(stack k);k;0])
val eval_cps : e:expr -> k:cont -> Tot int (decreases %[e::(stack k);k;1]) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"CPS.Expr.fst.checked"
],
"interface_file": false,
"source_file": "CPS.DoubleDefun.fst"
} | [
{
"abbrev": false,
"full_module": "CPS.Expr",
"short_module": null
},
{
"abbrev": false,
"full_module": "CPS",
"short_module": null
},
{
"abbrev": false,
"full_module": "CPS",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: CPS.Expr.expr -> k: CPS.DoubleDefun.cont -> Prims.Tot Prims.int | Prims.Tot | [
"total",
""
] | [
"apply",
"eval_cps"
] | [
"CPS.Expr.expr",
"CPS.DoubleDefun.cont",
"Prims.int",
"CPS.DoubleDefun.apply",
"CPS.DoubleDefun.eval_cps",
"CPS.DoubleDefun.C2"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec eval_cps e k =
| match e with
| Const n -> apply e k n
| Plus e1 e2 -> eval_cps e1 (C2 k e2) | false |
IOWPInconsistent.fst | IOWPInconsistent.f | val f (#a: Type) (p: (either (out_wp a) a -> prop)) : either (out_wp a) a | val f (#a: Type) (p: (either (out_wp a) a -> prop)) : either (out_wp a) a | let f (#a:Type) (p:either (out_wp a) a -> prop) : either (out_wp a) a =
Inl (Intro (inj p)) | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 62,
"start_col": 0,
"start_line": 61
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *)
let prop = p:Type0{forall (x y:p). x == y}
noeq type out_wp (a:Type) = (* the non strictly positive WP type for output one would get from DM4F *)
| Intro : ((either (out_wp a) a -> prop) -> prop) -> out_wp a
(* The rest is simply a recreation of the paradoxes considered *)
(* in the notes above, adapted to the case of unit-output. *)
let intro_injective (#a:Type) (p p': (either (out_wp a) a -> prop) -> prop)
: Lemma (Intro p == Intro p' ==> p == p) =
()
let inj (#x:Type) : x -> (x -> prop) = fun x0 y0 -> x0 == y0
let inj_injective (#x:Type) (x0 x0':x)
: Lemma (requires (inj x0 == inj x0'))
(ensures (x0 == x0')) =
assert (inj x0 x0) ;
assert (inj x0' x0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: FStar.Pervasives.either (IOWPInconsistent.out_wp a) a -> IOWPInconsistent.prop)
-> FStar.Pervasives.either (IOWPInconsistent.out_wp a) a | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.either",
"IOWPInconsistent.out_wp",
"IOWPInconsistent.prop",
"FStar.Pervasives.Inl",
"IOWPInconsistent.Intro",
"IOWPInconsistent.inj"
] | [] | false | false | false | true | false | let f (#a: Type) (p: (either (out_wp a) a -> prop)) : either (out_wp a) a =
| Inl (Intro (inj p)) | false |
IOWPInconsistent.fst | IOWPInconsistent.x0 | val x0 : FStar.Pervasives.either (IOWPInconsistent.out_wp a) a | let x0 (#a:Type) = f #a p0 | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 73,
"start_col": 0,
"start_line": 73
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *)
let prop = p:Type0{forall (x y:p). x == y}
noeq type out_wp (a:Type) = (* the non strictly positive WP type for output one would get from DM4F *)
| Intro : ((either (out_wp a) a -> prop) -> prop) -> out_wp a
(* The rest is simply a recreation of the paradoxes considered *)
(* in the notes above, adapted to the case of unit-output. *)
let intro_injective (#a:Type) (p p': (either (out_wp a) a -> prop) -> prop)
: Lemma (Intro p == Intro p' ==> p == p) =
()
let inj (#x:Type) : x -> (x -> prop) = fun x0 y0 -> x0 == y0
let inj_injective (#x:Type) (x0 x0':x)
: Lemma (requires (inj x0 == inj x0'))
(ensures (x0 == x0')) =
assert (inj x0 x0) ;
assert (inj x0' x0)
let f (#a:Type) (p:either (out_wp a) a -> prop) : either (out_wp a) a =
Inl (Intro (inj p))
let f_injective (#a:Type) (p p' : either (out_wp a) a -> prop)
: Lemma (requires (f p == f p'))
(ensures (p == p')) =
inj_injective p p' ;
intro_injective (inj p) (inj p')
let p0 : #a:Type -> either (out_wp a) a -> prop = fun #a x ->
exists (p:either (out_wp a) a -> prop). | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Pervasives.either (IOWPInconsistent.out_wp a) a | Prims.Tot | [
"total"
] | [] | [
"IOWPInconsistent.f",
"IOWPInconsistent.p0",
"FStar.Pervasives.either",
"IOWPInconsistent.out_wp"
] | [] | false | false | false | true | false | let x0 (#a: Type) =
| f #a p0 | false |
|
Spec.SHA2.fst | Spec.SHA2._Sigma0 | val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 83,
"end_line": 120,
"start_col": 0,
"start_line": 120
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> x: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Spec.SHA2.op_Hat_Dot",
"Spec.SHA2.op_Greater_Greater_Greater_Dot",
"Spec.SHA2.__proj__Mkops__item__c0",
"Spec.SHA2.op0",
"Spec.SHA2.__proj__Mkops__item__c1",
"Spec.SHA2.__proj__Mkops__item__c2"
] | [] | false | false | false | false | false | let _Sigma0 a x =
| (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2) | false |
Spec.SHA2.fst | Spec.SHA2.k0 | val k0 (a: sha2_alg) : Tot (m: S.seq (word a) {S.length m = size_k_w a}) | val k0 (a: sha2_alg) : Tot (m: S.seq (word a) {S.length m = size_k_w a}) | let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512 | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 147,
"start_col": 0,
"start_line": 143
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512 | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg
-> m:
FStar.Seq.Base.seq (Spec.Hash.Definitions.word a)
{FStar.Seq.Base.length m = Spec.SHA2.size_k_w a} | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.Constants.k224_256",
"Spec.SHA2.Constants.k384_512",
"FStar.Seq.Base.seq",
"Spec.Hash.Definitions.word",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"FStar.Seq.Base.length",
"Spec.SHA2.size_k_w"
] | [] | false | false | false | false | false | let k0: a: sha2_alg -> Tot (m: S.seq (word a) {S.length m = size_k_w a}) =
| function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512 | false |
IOWPInconsistent.fst | IOWPInconsistent.inj_injective | val inj_injective (#x: Type) (x0 x0': x)
: Lemma (requires (inj x0 == inj x0')) (ensures (x0 == x0')) | val inj_injective (#x: Type) (x0 x0': x)
: Lemma (requires (inj x0 == inj x0')) (ensures (x0 == x0')) | let inj_injective (#x:Type) (x0 x0':x)
: Lemma (requires (inj x0 == inj x0'))
(ensures (x0 == x0')) =
assert (inj x0 x0) ;
assert (inj x0' x0) | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 59,
"start_col": 0,
"start_line": 55
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *)
let prop = p:Type0{forall (x y:p). x == y}
noeq type out_wp (a:Type) = (* the non strictly positive WP type for output one would get from DM4F *)
| Intro : ((either (out_wp a) a -> prop) -> prop) -> out_wp a
(* The rest is simply a recreation of the paradoxes considered *)
(* in the notes above, adapted to the case of unit-output. *)
let intro_injective (#a:Type) (p p': (either (out_wp a) a -> prop) -> prop)
: Lemma (Intro p == Intro p' ==> p == p) =
()
let inj (#x:Type) : x -> (x -> prop) = fun x0 y0 -> x0 == y0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x0: x -> x0': x
-> FStar.Pervasives.Lemma (requires IOWPInconsistent.inj x0 == IOWPInconsistent.inj x0')
(ensures x0 == x0') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims._assert",
"IOWPInconsistent.inj",
"Prims.unit",
"Prims.eq2",
"IOWPInconsistent.prop",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let inj_injective (#x: Type) (x0 x0': x)
: Lemma (requires (inj x0 == inj x0')) (ensures (x0 == x0')) =
| assert (inj x0 x0);
assert (inj x0' x0) | false |
IOWPInconsistent.fst | IOWPInconsistent.inj | val inj: #x: Type -> x -> (x -> prop) | val inj: #x: Type -> x -> (x -> prop) | let inj (#x:Type) : x -> (x -> prop) = fun x0 y0 -> x0 == y0 | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 60,
"end_line": 53,
"start_col": 0,
"start_line": 53
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *)
let prop = p:Type0{forall (x y:p). x == y}
noeq type out_wp (a:Type) = (* the non strictly positive WP type for output one would get from DM4F *)
| Intro : ((either (out_wp a) a -> prop) -> prop) -> out_wp a
(* The rest is simply a recreation of the paradoxes considered *)
(* in the notes above, adapted to the case of unit-output. *)
let intro_injective (#a:Type) (p p': (either (out_wp a) a -> prop) -> prop)
: Lemma (Intro p == Intro p' ==> p == p) =
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: x -> _: x -> IOWPInconsistent.prop | Prims.Tot | [
"total"
] | [] | [
"Prims.eq2",
"IOWPInconsistent.prop"
] | [] | false | false | false | true | false | let inj (#x: Type) : x -> (x -> prop) =
| fun x0 y0 -> x0 == y0 | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.right_unitality_lemma | val right_unitality_lemma : m: Type -> u9: m -> mult: (_: m -> _: m -> m) -> Prims.logical | let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 30,
"start_col": 0,
"start_line": 29
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Type -> u9: m -> mult: (_: m -> _: m -> m) -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | true | true | let right_unitality_lemma (m: Type) (u: m) (mult: (m -> m -> m)) =
| forall (x: m). x `mult` u == x | false |
|
Spec.SHA2.fst | Spec.SHA2.ws0_pre_inner | val ws0_pre_inner (a: sha2_alg) (block: block_w a) (i: nat{i < block_word_length a}) (ws: k_w a)
: k_w a | val ws0_pre_inner (a: sha2_alg) (block: block_w a) (i: nat{i < block_word_length a}) (ws: k_w a)
: k_w a | let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 180,
"start_col": 0,
"start_line": 179
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
block: Spec.SHA2.block_w a ->
i: Prims.nat{i < Spec.Hash.Definitions.block_word_length a} ->
ws: Spec.SHA2.k_w a
-> Spec.SHA2.k_w a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.block_w",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.Hash.Definitions.block_word_length",
"Spec.SHA2.k_w",
"FStar.Seq.Base.upd",
"Spec.Hash.Definitions.word",
"FStar.Seq.Base.index"
] | [] | false | false | false | false | false | let ws0_pre_inner (a: sha2_alg) (block: block_w a) (i: nat{i < block_word_length a}) (ws: k_w a)
: k_w a =
| Seq.upd ws i (Seq.index block i) | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.left_unitality_lemma | val left_unitality_lemma : m: Type -> u17: m -> mult: (_: m -> _: m -> m) -> Prims.logical | let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 33,
"start_col": 0,
"start_line": 32
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Type -> u17: m -> mult: (_: m -> _: m -> m) -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | true | true | let left_unitality_lemma (m: Type) (u: m) (mult: (m -> m -> m)) =
| forall (x: m). u `mult` x == x | false |
|
Spec.SHA2.fst | Spec.SHA2.ws_pre_inner | val ws_pre_inner (a: sha2_alg) (block: block_w a) (i: nat{i < size_k_w a}) (ws: k_w a) : k_w a | val ws_pre_inner (a: sha2_alg) (block: block_w a) (i: nat{i < size_k_w a}) (ws: k_w a) : k_w a | let ws_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < size_k_w a}) (ws:k_w a) : k_w a =
if i < block_word_length a then
ws0_pre_inner a block i ws
else
wsi_pre_inner a i ws | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 195,
"start_col": 0,
"start_line": 191
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i)
let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
block: Spec.SHA2.block_w a ->
i: Prims.nat{i < Spec.SHA2.size_k_w a} ->
ws: Spec.SHA2.k_w a
-> Spec.SHA2.k_w a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.block_w",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.SHA2.size_k_w",
"Spec.SHA2.k_w",
"Spec.Hash.Definitions.block_word_length",
"Spec.SHA2.ws0_pre_inner",
"Prims.bool",
"Spec.SHA2.wsi_pre_inner"
] | [] | false | false | false | false | false | let ws_pre_inner (a: sha2_alg) (block: block_w a) (i: nat{i < size_k_w a}) (ws: k_w a) : k_w a =
| if i < block_word_length a then ws0_pre_inner a block i ws else wsi_pre_inner a i ws | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.associativity_lemma | val associativity_lemma : m: Type -> mult: (_: m -> _: m -> m) -> Prims.logical | let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z) | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 64,
"end_line": 36,
"start_col": 0,
"start_line": 35
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Type -> mult: (_: m -> _: m -> m) -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | true | true | let associativity_lemma (m: Type) (mult: (m -> m -> m)) =
| forall (x: m) (y: m) (z: m). (x `mult` y) `mult` z == x `mult` (y `mult` z) | false |
|
Spec.SHA2.fst | Spec.SHA2._Sigma1 | val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 83,
"end_line": 125,
"start_col": 0,
"start_line": 125
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> x: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Spec.SHA2.op_Hat_Dot",
"Spec.SHA2.op_Greater_Greater_Greater_Dot",
"Spec.SHA2.__proj__Mkops__item__c3",
"Spec.SHA2.op0",
"Spec.SHA2.__proj__Mkops__item__c4",
"Spec.SHA2.__proj__Mkops__item__c5"
] | [] | false | false | false | false | false | let _Sigma1 a x =
| (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5) | false |
IOWPInconsistent.fst | IOWPInconsistent.p0 | val p0: #a: Type -> either (out_wp a) a -> prop | val p0: #a: Type -> either (out_wp a) a -> prop | let p0 : #a:Type -> either (out_wp a) a -> prop = fun #a x ->
exists (p:either (out_wp a) a -> prop).
f #a p == x /\ ~(p x) | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 72,
"start_col": 0,
"start_line": 70
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *)
let prop = p:Type0{forall (x y:p). x == y}
noeq type out_wp (a:Type) = (* the non strictly positive WP type for output one would get from DM4F *)
| Intro : ((either (out_wp a) a -> prop) -> prop) -> out_wp a
(* The rest is simply a recreation of the paradoxes considered *)
(* in the notes above, adapted to the case of unit-output. *)
let intro_injective (#a:Type) (p p': (either (out_wp a) a -> prop) -> prop)
: Lemma (Intro p == Intro p' ==> p == p) =
()
let inj (#x:Type) : x -> (x -> prop) = fun x0 y0 -> x0 == y0
let inj_injective (#x:Type) (x0 x0':x)
: Lemma (requires (inj x0 == inj x0'))
(ensures (x0 == x0')) =
assert (inj x0 x0) ;
assert (inj x0' x0)
let f (#a:Type) (p:either (out_wp a) a -> prop) : either (out_wp a) a =
Inl (Intro (inj p))
let f_injective (#a:Type) (p p' : either (out_wp a) a -> prop)
: Lemma (requires (f p == f p'))
(ensures (p == p')) =
inj_injective p p' ;
intro_injective (inj p) (inj p') | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Pervasives.either (IOWPInconsistent.out_wp a) a -> IOWPInconsistent.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.either",
"IOWPInconsistent.out_wp",
"Prims.l_Exists",
"IOWPInconsistent.prop",
"Prims.l_and",
"Prims.eq2",
"IOWPInconsistent.f",
"Prims.l_not"
] | [] | false | false | false | true | false | let p0: #a: Type -> either (out_wp a) a -> prop =
| fun #a x -> exists (p: (either (out_wp a) a -> prop)). f #a p == x /\ ~(p x) | false |
IOWPInconsistent.fst | IOWPInconsistent.f_injective | val f_injective (#a: Type) (p p': (either (out_wp a) a -> prop))
: Lemma (requires (f p == f p')) (ensures (p == p')) | val f_injective (#a: Type) (p p': (either (out_wp a) a -> prop))
: Lemma (requires (f p == f p')) (ensures (p == p')) | let f_injective (#a:Type) (p p' : either (out_wp a) a -> prop)
: Lemma (requires (f p == f p'))
(ensures (p == p')) =
inj_injective p p' ;
intro_injective (inj p) (inj p') | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 68,
"start_col": 0,
"start_line": 64
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *)
let prop = p:Type0{forall (x y:p). x == y}
noeq type out_wp (a:Type) = (* the non strictly positive WP type for output one would get from DM4F *)
| Intro : ((either (out_wp a) a -> prop) -> prop) -> out_wp a
(* The rest is simply a recreation of the paradoxes considered *)
(* in the notes above, adapted to the case of unit-output. *)
let intro_injective (#a:Type) (p p': (either (out_wp a) a -> prop) -> prop)
: Lemma (Intro p == Intro p' ==> p == p) =
()
let inj (#x:Type) : x -> (x -> prop) = fun x0 y0 -> x0 == y0
let inj_injective (#x:Type) (x0 x0':x)
: Lemma (requires (inj x0 == inj x0'))
(ensures (x0 == x0')) =
assert (inj x0 x0) ;
assert (inj x0' x0)
let f (#a:Type) (p:either (out_wp a) a -> prop) : either (out_wp a) a =
Inl (Intro (inj p)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: FStar.Pervasives.either (IOWPInconsistent.out_wp a) a -> IOWPInconsistent.prop) ->
p': (_: FStar.Pervasives.either (IOWPInconsistent.out_wp a) a -> IOWPInconsistent.prop)
-> FStar.Pervasives.Lemma (requires IOWPInconsistent.f p == IOWPInconsistent.f p')
(ensures p == p') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Pervasives.either",
"IOWPInconsistent.out_wp",
"IOWPInconsistent.prop",
"IOWPInconsistent.intro_injective",
"IOWPInconsistent.inj",
"Prims.unit",
"IOWPInconsistent.inj_injective",
"Prims.eq2",
"IOWPInconsistent.f",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let f_injective (#a: Type) (p p': (either (out_wp a) a -> prop))
: Lemma (requires (f p == f p')) (ensures (p == p')) =
| inj_injective p p';
intro_injective (inj p) (inj p') | false |
Spec.SHA2.fst | Spec.SHA2.ws_pre_ | val ws_pre_ (a: sha2_alg) (block: block_w a) : k_w a | val ws_pre_ (a: sha2_alg) (block: block_w a) : k_w a | let ws_pre_ (a:sha2_alg) (block:block_w a) : k_w a =
Lib.LoopCombinators.repeati (size_k_w a) (ws_pre_inner a block) (Seq.create (size_k_w a) (to_word a 0)) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 105,
"end_line": 198,
"start_col": 0,
"start_line": 197
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i)
let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < size_k_w a}) (ws:k_w a) : k_w a =
if i < block_word_length a then
ws0_pre_inner a block i ws
else
wsi_pre_inner a i ws | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> block: Spec.SHA2.block_w a -> Spec.SHA2.k_w a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.block_w",
"Lib.LoopCombinators.repeati",
"Spec.SHA2.k_w",
"Spec.SHA2.size_k_w",
"Spec.SHA2.ws_pre_inner",
"FStar.Seq.Base.create",
"Spec.Hash.Definitions.word",
"Spec.SHA2.to_word"
] | [] | false | false | false | false | false | let ws_pre_ (a: sha2_alg) (block: block_w a) : k_w a =
| Lib.LoopCombinators.repeati (size_k_w a)
(ws_pre_inner a block)
(Seq.create (size_k_w a) (to_word a 0)) | false |
IOWPInconsistent.fst | IOWPInconsistent.bad1 | val bad1 (a: Type) : Lemma (requires (p0 (x0 #a))) (ensures (~(p0 (x0 #a)))) | val bad1 (a: Type) : Lemma (requires (p0 (x0 #a))) (ensures (~(p0 (x0 #a)))) | let bad1 (a:Type)
: Lemma (requires (p0 (x0 #a)))
(ensures (~(p0 (x0 #a)))) =
let aux (p:(either (out_wp a) a -> prop){f p == (x0 #a) /\ ~(p (x0 #a))})
: GTot (squash (~(p0 (x0 #a)))) =
f_injective p p0
in
exists_elim (~(p0 (x0 #a))) (FStar.Squash.get_proof (p0 (x0 #a))) aux | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 71,
"end_line": 84,
"start_col": 0,
"start_line": 77
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *)
let prop = p:Type0{forall (x y:p). x == y}
noeq type out_wp (a:Type) = (* the non strictly positive WP type for output one would get from DM4F *)
| Intro : ((either (out_wp a) a -> prop) -> prop) -> out_wp a
(* The rest is simply a recreation of the paradoxes considered *)
(* in the notes above, adapted to the case of unit-output. *)
let intro_injective (#a:Type) (p p': (either (out_wp a) a -> prop) -> prop)
: Lemma (Intro p == Intro p' ==> p == p) =
()
let inj (#x:Type) : x -> (x -> prop) = fun x0 y0 -> x0 == y0
let inj_injective (#x:Type) (x0 x0':x)
: Lemma (requires (inj x0 == inj x0'))
(ensures (x0 == x0')) =
assert (inj x0 x0) ;
assert (inj x0' x0)
let f (#a:Type) (p:either (out_wp a) a -> prop) : either (out_wp a) a =
Inl (Intro (inj p))
let f_injective (#a:Type) (p p' : either (out_wp a) a -> prop)
: Lemma (requires (f p == f p'))
(ensures (p == p')) =
inj_injective p p' ;
intro_injective (inj p) (inj p')
let p0 : #a:Type -> either (out_wp a) a -> prop = fun #a x ->
exists (p:either (out_wp a) a -> prop).
f #a p == x /\ ~(p x)
let x0 (#a:Type) = f #a p0
open FStar.Classical | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type
-> FStar.Pervasives.Lemma (requires IOWPInconsistent.p0 IOWPInconsistent.x0)
(ensures ~(IOWPInconsistent.p0 IOWPInconsistent.x0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Classical.exists_elim",
"Prims.l_not",
"IOWPInconsistent.p0",
"IOWPInconsistent.x0",
"FStar.Pervasives.either",
"IOWPInconsistent.out_wp",
"IOWPInconsistent.prop",
"Prims.l_and",
"Prims.eq2",
"IOWPInconsistent.f",
"FStar.Squash.get_proof",
"Prims.squash",
"IOWPInconsistent.f_injective",
"Prims.unit",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let bad1 (a: Type) : Lemma (requires (p0 (x0 #a))) (ensures (~(p0 (x0 #a)))) =
| let aux (p: (either (out_wp a) a -> prop){f p == (x0 #a) /\ ~(p (x0 #a))})
: GTot (squash (~(p0 (x0 #a)))) =
f_injective p p0
in
exists_elim (~(p0 (x0 #a))) (FStar.Squash.get_proof (p0 (x0 #a))) aux | false |
Spec.SHA2.fst | Spec.SHA2.h0 | val h0 (a: sha2_alg) : Tot (words_state a) | val h0 (a: sha2_alg) : Tot (words_state a) | let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512 | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 141,
"start_col": 0,
"start_line": 137
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> Spec.Hash.Definitions.words_state a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.Constants.h224",
"Spec.SHA2.Constants.h256",
"Spec.SHA2.Constants.h384",
"Spec.SHA2.Constants.h512",
"Spec.Hash.Definitions.words_state"
] | [] | false | false | false | false | false | let h0: a: sha2_alg -> Tot (words_state a) =
| function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512 | false |
IOWPInconsistent.fst | IOWPInconsistent.bad2 | val bad2 (a: Type) : Lemma (requires (~(p0 (x0 #a)))) (ensures (p0 (x0 #a))) | val bad2 (a: Type) : Lemma (requires (~(p0 (x0 #a)))) (ensures (p0 (x0 #a))) | let bad2 (a:Type)
: Lemma (requires (~(p0 (x0 #a))))
(ensures (p0 (x0 #a))) =
exists_intro (fun (p:either (out_wp a) a -> prop) ->
f p == x0 #a /\ ~(p (x0 #a))) p0 | {
"file_name": "examples/paradoxes/IOWPInconsistent.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 90,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IOWPInconsistent
(* Showing that the WP that would result from using DM4F on the IO monad transformer leads to inconsistency. *)
(* *)
(* To simplify the proof, here we show that considering just unit-output already leads to inconsistency, *)
(* where by unit-output we mean the algebraically given effect with one unary operation symbol `out : 1`. *)
(* *)
(* Based on: *)
(* - the unit-output monad transformer, if it exists, given by *)
(* Out_T T X = mu Z . T (Z + X) *)
(* *)
(* which is also the counterexample used to the existence of the sum of continuations with arbitrary other monads in *)
(* M. Hyland et al. Combining algebraic effects with continuations. Theor. Comput. Sci. 375(1-3): 20-40 (2007) *)
(* *)
(* - the DM4F construction amounting to applying Out_T to the prop-valued continuation monad, resulting in *)
(* Out_WP X = mu Z . ((Z + X) -> prop) -> prop *)
(* *)
(* - the counterexample to allowing inductive types to be not strictly positive given in *)
(* FStar/examples/paradoxes/propImpredicativeAndNonStrictlyPositiveinductives.fst *)
(* *)
(* which itself is based on the following note about (non) strict positivity and impredicativity *)
(* http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/ *)
#set-options "--__no_positivity" (* enabling non strict positivity so as to ensure Out_WP exists in F* *)
let prop = p:Type0{forall (x y:p). x == y}
noeq type out_wp (a:Type) = (* the non strictly positive WP type for output one would get from DM4F *)
| Intro : ((either (out_wp a) a -> prop) -> prop) -> out_wp a
(* The rest is simply a recreation of the paradoxes considered *)
(* in the notes above, adapted to the case of unit-output. *)
let intro_injective (#a:Type) (p p': (either (out_wp a) a -> prop) -> prop)
: Lemma (Intro p == Intro p' ==> p == p) =
()
let inj (#x:Type) : x -> (x -> prop) = fun x0 y0 -> x0 == y0
let inj_injective (#x:Type) (x0 x0':x)
: Lemma (requires (inj x0 == inj x0'))
(ensures (x0 == x0')) =
assert (inj x0 x0) ;
assert (inj x0' x0)
let f (#a:Type) (p:either (out_wp a) a -> prop) : either (out_wp a) a =
Inl (Intro (inj p))
let f_injective (#a:Type) (p p' : either (out_wp a) a -> prop)
: Lemma (requires (f p == f p'))
(ensures (p == p')) =
inj_injective p p' ;
intro_injective (inj p) (inj p')
let p0 : #a:Type -> either (out_wp a) a -> prop = fun #a x ->
exists (p:either (out_wp a) a -> prop).
f #a p == x /\ ~(p x)
let x0 (#a:Type) = f #a p0
open FStar.Classical
let bad1 (a:Type)
: Lemma (requires (p0 (x0 #a)))
(ensures (~(p0 (x0 #a)))) =
let aux (p:(either (out_wp a) a -> prop){f p == (x0 #a) /\ ~(p (x0 #a))})
: GTot (squash (~(p0 (x0 #a)))) =
f_injective p p0
in
exists_elim (~(p0 (x0 #a))) (FStar.Squash.get_proof (p0 (x0 #a))) aux | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "IOWPInconsistent.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type
-> FStar.Pervasives.Lemma (requires ~(IOWPInconsistent.p0 IOWPInconsistent.x0))
(ensures IOWPInconsistent.p0 IOWPInconsistent.x0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Classical.exists_intro",
"FStar.Pervasives.either",
"IOWPInconsistent.out_wp",
"IOWPInconsistent.prop",
"Prims.l_and",
"Prims.eq2",
"IOWPInconsistent.f",
"IOWPInconsistent.x0",
"Prims.l_not",
"IOWPInconsistent.p0",
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let bad2 (a: Type) : Lemma (requires (~(p0 (x0 #a)))) (ensures (p0 (x0 #a))) =
| exists_intro (fun (p: (either (out_wp a) a -> prop)) -> f p == x0 #a /\ ~(p (x0 #a))) p0 | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.monoid_morphism_mult_lemma | val monoid_morphism_mult_lemma : f: (_: a -> b) -> ma: FStar.Algebra.Monoid.monoid a -> mb: FStar.Algebra.Monoid.monoid b
-> Prims.logical | let monoid_morphism_mult_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
forall (x y:a). Monoid?.mult mb (f x) (f y) == f (Monoid?.mult ma x y) | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 72,
"end_line": 150,
"start_col": 0,
"start_line": 149
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor
let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult
(* Definition of a morphism of monoid *)
let monoid_morphism_unit_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
f (Monoid?.unit ma) == Monoid?.unit mb | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> b) -> ma: FStar.Algebra.Monoid.monoid a -> mb: FStar.Algebra.Monoid.monoid b
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.monoid",
"Prims.l_Forall",
"Prims.eq2",
"FStar.Algebra.Monoid.__proj__Monoid__item__mult",
"Prims.logical"
] | [] | false | false | false | true | true | let monoid_morphism_mult_lemma (#a #b: Type) (f: (a -> b)) (ma: monoid a) (mb: monoid b) =
| forall (x: a) (y: a). Monoid?.mult mb (f x) (f y) == f (Monoid?.mult ma x y) | false |
|
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.monoid_morphism_unit_lemma | val monoid_morphism_unit_lemma : f: (_: a -> b) -> ma: FStar.Algebra.Monoid.monoid a -> mb: FStar.Algebra.Monoid.monoid b
-> Prims.logical | let monoid_morphism_unit_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
f (Monoid?.unit ma) == Monoid?.unit mb | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 147,
"start_col": 0,
"start_line": 146
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor
let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult
(* Definition of a morphism of monoid *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> b) -> ma: FStar.Algebra.Monoid.monoid a -> mb: FStar.Algebra.Monoid.monoid b
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.monoid",
"Prims.eq2",
"FStar.Algebra.Monoid.__proj__Monoid__item__unit",
"Prims.logical"
] | [] | false | false | false | true | true | let monoid_morphism_unit_lemma (#a #b: Type) (f: (a -> b)) (ma: monoid a) (mb: monoid b) =
| f (Monoid?.unit ma) == Monoid?.unit mb | false |
|
Spec.SHA2.fst | Spec.SHA2._sigma0 | val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 130,
"start_col": 0,
"start_line": 130
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> x: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Spec.SHA2.op_Hat_Dot",
"Spec.SHA2.op_Greater_Greater_Greater_Dot",
"Spec.SHA2.__proj__Mkops__item__e0",
"Spec.SHA2.op0",
"Spec.SHA2.__proj__Mkops__item__e1",
"Spec.SHA2.op_Greater_Greater_Dot",
"Spec.SHA2.__proj__Mkops__item__e2"
] | [] | false | false | false | false | false | let _sigma0 a x =
| (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2) | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.embed_nat_int | val embed_nat_int (n: nat) : int | val embed_nat_int (n: nat) : int | let embed_nat_int (n:nat) : int = n | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 165,
"start_col": 0,
"start_line": 165
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor
let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult
(* Definition of a morphism of monoid *)
let monoid_morphism_unit_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
f (Monoid?.unit ma) == Monoid?.unit mb
let monoid_morphism_mult_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
forall (x y:a). Monoid?.mult mb (f x) (f y) == f (Monoid?.mult ma x y)
type monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
| MonoidMorphism :
unit:squash (monoid_morphism_unit_lemma f ma mb) ->
mult:squash (monoid_morphism_mult_lemma f ma mb) ->
monoid_morphism f ma mb
let intro_monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True))
=
MonoidMorphism () () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.int"
] | [] | false | false | false | true | false | let embed_nat_int (n: nat) : int =
| n | false |
Spec.SHA2.fst | Spec.SHA2._sigma1 | val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 135,
"start_col": 0,
"start_line": 135
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> x: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Spec.SHA2.op_Hat_Dot",
"Spec.SHA2.op_Greater_Greater_Greater_Dot",
"Spec.SHA2.__proj__Mkops__item__e3",
"Spec.SHA2.op0",
"Spec.SHA2.__proj__Mkops__item__e4",
"Spec.SHA2.op_Greater_Greater_Dot",
"Spec.SHA2.__proj__Mkops__item__e5"
] | [] | false | false | false | false | false | let _sigma1 a x =
| (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5) | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.neg | val neg (p: prop) : prop | val neg (p: prop) : prop | let neg (p:prop) : prop = ~p | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 168,
"start_col": 0,
"start_line": 168
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor
let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult
(* Definition of a morphism of monoid *)
let monoid_morphism_unit_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
f (Monoid?.unit ma) == Monoid?.unit mb
let monoid_morphism_mult_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
forall (x y:a). Monoid?.mult mb (f x) (f y) == f (Monoid?.mult ma x y)
type monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
| MonoidMorphism :
unit:squash (monoid_morphism_unit_lemma f ma mb) ->
mult:squash (monoid_morphism_mult_lemma f ma mb) ->
monoid_morphism f ma mb
let intro_monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True))
=
MonoidMorphism () ()
let embed_nat_int (n:nat) : int = n
let _ = intro_monoid_morphism embed_nat_int nat_plus_monoid int_plus_monoid | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Prims.prop -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Prims.prop",
"Prims.l_not"
] | [] | false | false | false | true | true | let neg (p: prop) : prop =
| ~p | false |
Spec.SHA2.fst | Spec.SHA2.wsi_pre_inner | val wsi_pre_inner (a: sha2_alg) (i: nat{i >= block_word_length a /\ i < size_k_w a}) (ws: k_w a)
: k_w a | val wsi_pre_inner (a: sha2_alg) (i: nat{i >= block_word_length a /\ i < size_k_w a}) (ws: k_w a)
: k_w a | let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16) | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 189,
"start_col": 0,
"start_line": 182
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
i: Prims.nat{i >= Spec.Hash.Definitions.block_word_length a /\ i < Spec.SHA2.size_k_w a} ->
ws: Spec.SHA2.k_w a
-> Spec.SHA2.k_w a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Spec.Hash.Definitions.block_word_length",
"Prims.op_LessThan",
"Spec.SHA2.size_k_w",
"Spec.SHA2.k_w",
"FStar.Seq.Base.upd",
"Spec.Hash.Definitions.word",
"Spec.SHA2.op_Plus_Dot",
"Spec.SHA2._sigma0",
"Spec.SHA2._sigma1",
"Spec.SHA2.op_String_Access",
"Prims.op_Subtraction"
] | [] | false | false | false | false | false | let wsi_pre_inner (a: sha2_alg) (i: nat{i >= block_word_length a /\ i < size_k_w a}) (ws: k_w a)
: k_w a =
| let t16 = ws.[ i - 16 ] in
let t15 = ws.[ i - 15 ] in
let t7 = ws.[ i - 7 ] in
let t2 = ws.[ i - 2 ] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16) | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.mult_act_lemma | val mult_act_lemma : m: Type -> a: Type -> mult: (_: m -> _: m -> m) -> act: (_: m -> _: a -> a) -> Prims.logical | let mult_act_lemma (m a:Type) (mult:m -> m -> m) (act:m -> a -> a) =
forall (x x':m) (y:a). (x `mult` x') `act` y == x `act` (x' `act` y) | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 192,
"start_col": 0,
"start_line": 191
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor
let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult
(* Definition of a morphism of monoid *)
let monoid_morphism_unit_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
f (Monoid?.unit ma) == Monoid?.unit mb
let monoid_morphism_mult_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
forall (x y:a). Monoid?.mult mb (f x) (f y) == f (Monoid?.mult ma x y)
type monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
| MonoidMorphism :
unit:squash (monoid_morphism_unit_lemma f ma mb) ->
mult:squash (monoid_morphism_mult_lemma f ma mb) ->
monoid_morphism f ma mb
let intro_monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True))
=
MonoidMorphism () ()
let embed_nat_int (n:nat) : int = n
let _ = intro_monoid_morphism embed_nat_int nat_plus_monoid int_plus_monoid
let neg (p:prop) : prop = ~p
let _ =
assert (neg True <==> False) ;
PropExt.apply (neg True) False ;
let mult_lemma_helper (p q:prop) : Lemma (neg (p /\ q) == (neg p \/ neg q)) =
assert (neg (p /\ q) <==> (neg p \/ neg q)) ;
PropExt.apply (neg (p /\ q)) (neg p \/ neg q)
in
forall_intro_2 mult_lemma_helper ;
intro_monoid_morphism neg conjunction_monoid disjunction_monoid
let _ =
assert (neg False <==> True) ;
PropExt.apply (neg False) True ;
let mult_lemma_helper (p q:prop) : Lemma (neg (p \/ q) == (neg p /\ neg q)) =
assert (neg (p \/ q) <==> (neg p /\ neg q)) ;
PropExt.apply (neg (p \/ q)) (neg p /\ neg q)
in
forall_intro_2 mult_lemma_helper ;
intro_monoid_morphism neg disjunction_monoid conjunction_monoid
(* Definition of a left action *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Type -> a: Type -> mult: (_: m -> _: m -> m) -> act: (_: m -> _: a -> a) -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | true | true | let mult_act_lemma (m a: Type) (mult: (m -> m -> m)) (act: (m -> a -> a)) =
| forall (x: m) (x': m) (y: a). (x `mult` x') `act` y == x `act` (x' `act` y) | false |
|
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.int_plus_monoid | val int_plus_monoid:monoid int | val int_plus_monoid:monoid int | let int_plus_monoid : monoid int =
intro_monoid int 0 (+) | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 64,
"start_col": 0,
"start_line": 63
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Algebra.Monoid.monoid Prims.int | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.intro_monoid",
"Prims.int",
"Prims.op_Addition"
] | [] | false | false | false | true | false | let int_plus_monoid:monoid int =
| intro_monoid int 0 ( + ) | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.left_action_morphism | val left_action_morphism : f: (_: a -> b) ->
mf: (_: ma -> mb) ->
la: FStar.Algebra.Monoid.left_action mma a ->
lb: FStar.Algebra.Monoid.left_action mmb b
-> Prims.logical | let left_action_morphism
(#a #b #ma #mb:Type)
(f:a -> b)
(* mf ought to be a monoid morphism but we don't use this fact in the property *)
(mf: ma -> mb)
(#mma:monoid ma)
(#mmb:monoid mb)
(la:left_action mma a)
(lb:left_action mmb b)
= forall (g:ma) (x:a). LAct?.act lb (mf g) (f x) == f (LAct?.act la g x) | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 72,
"end_line": 214,
"start_col": 0,
"start_line": 205
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor
let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult
(* Definition of a morphism of monoid *)
let monoid_morphism_unit_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
f (Monoid?.unit ma) == Monoid?.unit mb
let monoid_morphism_mult_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
forall (x y:a). Monoid?.mult mb (f x) (f y) == f (Monoid?.mult ma x y)
type monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
| MonoidMorphism :
unit:squash (monoid_morphism_unit_lemma f ma mb) ->
mult:squash (monoid_morphism_mult_lemma f ma mb) ->
monoid_morphism f ma mb
let intro_monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True))
=
MonoidMorphism () ()
let embed_nat_int (n:nat) : int = n
let _ = intro_monoid_morphism embed_nat_int nat_plus_monoid int_plus_monoid
let neg (p:prop) : prop = ~p
let _ =
assert (neg True <==> False) ;
PropExt.apply (neg True) False ;
let mult_lemma_helper (p q:prop) : Lemma (neg (p /\ q) == (neg p \/ neg q)) =
assert (neg (p /\ q) <==> (neg p \/ neg q)) ;
PropExt.apply (neg (p /\ q)) (neg p \/ neg q)
in
forall_intro_2 mult_lemma_helper ;
intro_monoid_morphism neg conjunction_monoid disjunction_monoid
let _ =
assert (neg False <==> True) ;
PropExt.apply (neg False) True ;
let mult_lemma_helper (p q:prop) : Lemma (neg (p \/ q) == (neg p /\ neg q)) =
assert (neg (p \/ q) <==> (neg p /\ neg q)) ;
PropExt.apply (neg (p \/ q)) (neg p /\ neg q)
in
forall_intro_2 mult_lemma_helper ;
intro_monoid_morphism neg disjunction_monoid conjunction_monoid
(* Definition of a left action *)
let mult_act_lemma (m a:Type) (mult:m -> m -> m) (act:m -> a -> a) =
forall (x x':m) (y:a). (x `mult` x') `act` y == x `act` (x' `act` y)
let unit_act_lemma (m a:Type) (u:m) (act:m -> a -> a) =
forall (y:a). u `act` y == y
unopteq
type left_action (#m:Type) (mm:monoid m) (a:Type) =
| LAct :
act:(m -> a -> a) ->
mult_lemma: squash (mult_act_lemma m a (Monoid?.mult mm) act) ->
unit_lemma: squash (unit_act_lemma m a (Monoid?.unit mm) act) ->
left_action mm a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: (_: a -> b) ->
mf: (_: ma -> mb) ->
la: FStar.Algebra.Monoid.left_action mma a ->
lb: FStar.Algebra.Monoid.left_action mmb b
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.monoid",
"FStar.Algebra.Monoid.left_action",
"Prims.l_Forall",
"Prims.eq2",
"FStar.Algebra.Monoid.__proj__LAct__item__act",
"Prims.logical"
] | [] | false | false | false | false | true | let left_action_morphism
(#a #b #ma #mb: Type)
(f: (a -> b))
(mf: (ma -> mb))
(#mma: monoid ma)
(#mmb: monoid mb)
(la: left_action mma a)
(lb: left_action mmb b)
=
| forall (g: ma) (x: a). LAct?.act lb (mf g) (f x) == f (LAct?.act la g x) | false |
|
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.unit_act_lemma | val unit_act_lemma : m: Type -> a: Type -> u223: m -> act: (_: m -> _: a -> a) -> Prims.logical | let unit_act_lemma (m a:Type) (u:m) (act:m -> a -> a) =
forall (y:a). u `act` y == y | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 195,
"start_col": 0,
"start_line": 194
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor
let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult
(* Definition of a morphism of monoid *)
let monoid_morphism_unit_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
f (Monoid?.unit ma) == Monoid?.unit mb
let monoid_morphism_mult_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
forall (x y:a). Monoid?.mult mb (f x) (f y) == f (Monoid?.mult ma x y)
type monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
| MonoidMorphism :
unit:squash (monoid_morphism_unit_lemma f ma mb) ->
mult:squash (monoid_morphism_mult_lemma f ma mb) ->
monoid_morphism f ma mb
let intro_monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True))
=
MonoidMorphism () ()
let embed_nat_int (n:nat) : int = n
let _ = intro_monoid_morphism embed_nat_int nat_plus_monoid int_plus_monoid
let neg (p:prop) : prop = ~p
let _ =
assert (neg True <==> False) ;
PropExt.apply (neg True) False ;
let mult_lemma_helper (p q:prop) : Lemma (neg (p /\ q) == (neg p \/ neg q)) =
assert (neg (p /\ q) <==> (neg p \/ neg q)) ;
PropExt.apply (neg (p /\ q)) (neg p \/ neg q)
in
forall_intro_2 mult_lemma_helper ;
intro_monoid_morphism neg conjunction_monoid disjunction_monoid
let _ =
assert (neg False <==> True) ;
PropExt.apply (neg False) True ;
let mult_lemma_helper (p q:prop) : Lemma (neg (p \/ q) == (neg p /\ neg q)) =
assert (neg (p \/ q) <==> (neg p /\ neg q)) ;
PropExt.apply (neg (p \/ q)) (neg p /\ neg q)
in
forall_intro_2 mult_lemma_helper ;
intro_monoid_morphism neg disjunction_monoid conjunction_monoid
(* Definition of a left action *)
let mult_act_lemma (m a:Type) (mult:m -> m -> m) (act:m -> a -> a) =
forall (x x':m) (y:a). (x `mult` x') `act` y == x `act` (x' `act` y) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Type -> a: Type -> u223: m -> act: (_: m -> _: a -> a) -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | true | true | let unit_act_lemma (m a: Type) (u: m) (act: (m -> a -> a)) =
| forall (y: a). u `act` y == y | false |
|
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.intro_monoid | val intro_monoid (m: Type) (u: m) (mult: (m -> m -> m))
: Pure (monoid m)
(requires
(right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\
associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult)) | val intro_monoid (m: Type) (u: m) (mult: (m -> m -> m))
: Pure (monoid m)
(requires
(right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\
associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult)) | let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () () | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 54,
"start_col": 0,
"start_line": 49
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Type -> u85: m -> mult: (_: m -> _: m -> m) -> Prims.Pure (FStar.Algebra.Monoid.monoid m) | Prims.Pure | [] | [] | [
"FStar.Algebra.Monoid.Monoid",
"FStar.Algebra.Monoid.monoid",
"Prims.l_and",
"FStar.Algebra.Monoid.right_unitality_lemma",
"FStar.Algebra.Monoid.left_unitality_lemma",
"FStar.Algebra.Monoid.associativity_lemma",
"Prims.eq2",
"FStar.Algebra.Monoid.__proj__Monoid__item__unit",
"FStar.Algebra.Monoid.__proj__Monoid__item__mult"
] | [] | false | false | false | false | false | let intro_monoid (m: Type) (u: m) (mult: (m -> m -> m))
: Pure (monoid m)
(requires
(right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\
associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult)) =
| Monoid u mult () () () | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.bool_and_monoid | val bool_and_monoid:monoid bool | val bool_and_monoid:monoid bool | let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_ | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 126,
"start_col": 0,
"start_line": 124
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Algebra.Monoid.monoid Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.intro_monoid",
"Prims.bool",
"Prims.op_AmpAmp"
] | [] | false | false | false | true | false | let bool_and_monoid:monoid bool =
| let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_ | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.nat_plus_monoid | val nat_plus_monoid:monoid nat | val nat_plus_monoid:monoid nat | let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 61,
"start_col": 0,
"start_line": 59
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Algebra.Monoid.monoid Prims.nat | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.intro_monoid",
"Prims.nat",
"Prims.op_Addition"
] | [] | false | false | false | true | false | let nat_plus_monoid:monoid nat =
| let add (x y: nat) : nat = x + y in
intro_monoid nat 0 add | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.conjunction_monoid | val conjunction_monoid:monoid prop | val conjunction_monoid:monoid prop | let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 94,
"start_col": 0,
"start_line": 69
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Algebra.Monoid.monoid Prims.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.intro_monoid",
"Prims.prop",
"Prims.unit",
"Prims._assert",
"FStar.Algebra.Monoid.associativity_lemma",
"FStar.Classical.forall_intro_3",
"Prims.eq2",
"FStar.Algebra.Monoid.left_unitality_lemma",
"FStar.Classical.forall_intro",
"FStar.Algebra.Monoid.right_unitality_lemma",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.PropositionalExtensionality.apply",
"Prims.l_iff",
"Prims.l_and",
"FStar.Pervasives.singleton"
] | [] | false | false | false | true | false | let conjunction_monoid:monoid prop =
| let u:prop = singleton True in
let mult (p q: prop) : prop = p /\ q in
let left_unitality_helper (p: prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p);
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p: prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p);
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3: prop)
: Lemma ((p1 `mult` p2) `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert ((p1 `mult` p2) `mult` p3 <==> p1 `mult` (p2 `mult` p3));
PropExt.apply ((p1 `mult` p2) `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper;
assert (right_unitality_lemma prop u mult);
forall_intro left_unitality_helper;
assert (left_unitality_lemma prop u mult);
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult);
intro_monoid prop u mult | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.lift_monoid_option | val lift_monoid_option (#a: Type) (m: monoid a) : monoid (option a) | val lift_monoid_option (#a: Type) (m: monoid a) : monoid (option a) | let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 142,
"start_col": 0,
"start_line": 136
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Algebra.Monoid.monoid a -> FStar.Algebra.Monoid.monoid (FStar.Pervasives.Native.option a) | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.monoid",
"FStar.Algebra.Monoid.intro_monoid",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Some",
"FStar.Algebra.Monoid.__proj__Monoid__item__unit",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Algebra.Monoid.__proj__Monoid__item__mult",
"FStar.Pervasives.Native.None"
] | [] | false | false | false | true | false | let lift_monoid_option (#a: Type) (m: monoid a) : monoid (option a) =
| let mult (x y: option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.bool_xor_monoid | val bool_xor_monoid:monoid bool | val bool_xor_monoid:monoid bool | let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 134,
"start_col": 0,
"start_line": 132
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Algebra.Monoid.monoid Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.intro_monoid",
"Prims.bool",
"Prims.op_AmpAmp",
"Prims.op_BarBar",
"Prims.op_Negation"
] | [] | false | false | false | true | false | let bool_xor_monoid:monoid bool =
| let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.intro_monoid_morphism | val intro_monoid_morphism (#a #b: Type) (f: (a -> b)) (ma: monoid a) (mb: monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True)) | val intro_monoid_morphism (#a #b: Type) (f: (a -> b)) (ma: monoid a) (mb: monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True)) | let intro_monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True))
=
MonoidMorphism () () | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 163,
"start_col": 0,
"start_line": 158
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_
let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_
let bool_xor_monoid : monoid bool =
let xor b1 b2 = (b1 || b2) && not (b1 && b2) in
intro_monoid bool false xor
let lift_monoid_option (#a:Type) (m:monoid a) : monoid (option a) =
let mult (x y:option a) =
match x, y with
| Some x0, Some y0 -> Some (m.mult x0 y0)
| _, _ -> None
in
intro_monoid (option a) (Some m.unit) mult
(* Definition of a morphism of monoid *)
let monoid_morphism_unit_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
f (Monoid?.unit ma) == Monoid?.unit mb
let monoid_morphism_mult_lemma (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
forall (x y:a). Monoid?.mult mb (f x) (f y) == f (Monoid?.mult ma x y)
type monoid_morphism (#a #b:Type) (f:a -> b) (ma:monoid a) (mb:monoid b) =
| MonoidMorphism :
unit:squash (monoid_morphism_unit_lemma f ma mb) ->
mult:squash (monoid_morphism_mult_lemma f ma mb) ->
monoid_morphism f ma mb | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> b) -> ma: FStar.Algebra.Monoid.monoid a -> mb: FStar.Algebra.Monoid.monoid b
-> Prims.Pure (FStar.Algebra.Monoid.monoid_morphism f ma mb) | Prims.Pure | [] | [] | [
"FStar.Algebra.Monoid.monoid",
"FStar.Algebra.Monoid.MonoidMorphism",
"FStar.Algebra.Monoid.monoid_morphism",
"Prims.l_and",
"FStar.Algebra.Monoid.monoid_morphism_unit_lemma",
"FStar.Algebra.Monoid.monoid_morphism_mult_lemma",
"Prims.l_True"
] | [] | false | false | false | false | false | let intro_monoid_morphism (#a #b: Type) (f: (a -> b)) (ma: monoid a) (mb: monoid b)
: Pure (monoid_morphism f ma mb)
(requires (monoid_morphism_unit_lemma f ma mb /\ monoid_morphism_mult_lemma f ma mb))
(ensures (fun _ -> True)) =
| MonoidMorphism () () | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.bool_or_monoid | val bool_or_monoid:monoid bool | val bool_or_monoid:monoid bool | let bool_or_monoid : monoid bool =
let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_ | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 130,
"start_col": 0,
"start_line": 128
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult
let bool_and_monoid : monoid bool =
let and_ b1 b2 = b1 && b2 in
intro_monoid bool true and_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Algebra.Monoid.monoid Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.intro_monoid",
"Prims.bool",
"Prims.op_BarBar"
] | [] | false | false | false | true | false | let bool_or_monoid:monoid bool =
| let or_ b1 b2 = b1 || b2 in
intro_monoid bool false or_ | false |
FStar.Algebra.Monoid.fst | FStar.Algebra.Monoid.disjunction_monoid | val disjunction_monoid:monoid prop | val disjunction_monoid:monoid prop | let disjunction_monoid : monoid prop =
let u : prop = singleton False in
let mult (p q : prop) : prop = p \/ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult | {
"file_name": "ulib/FStar.Algebra.Monoid.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 122,
"start_col": 0,
"start_line": 97
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Algebra.Monoid
open FStar.Classical
module PropExt = FStar.PropositionalExtensionality
(*
* AR: 05/12: adding calls to equational lemmas from PropositionalExtensionality
* these should go away with proper prop support
* also see the comment in PropositionalExtensionality.fst
*)
(** Definition of a monoid *)
let right_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). x `mult` u == x
let left_unitality_lemma (m:Type) (u:m) (mult:m -> m -> m) =
forall (x:m). u `mult` x == x
let associativity_lemma (m:Type) (mult:m -> m -> m) =
forall (x y z:m). x `mult` y `mult` z == x `mult` (y `mult` z)
unopteq
type monoid (m:Type) =
| Monoid :
unit:m ->
mult:(m -> m -> m) ->
right_unitality:squash (right_unitality_lemma m unit mult) ->
left_unitality:squash (left_unitality_lemma m unit mult) ->
associativity:squash (associativity_lemma m mult) ->
monoid m
let intro_monoid (m:Type) (u:m) (mult:m -> m -> m)
: Pure (monoid m)
(requires (right_unitality_lemma m u mult /\ left_unitality_lemma m u mult /\ associativity_lemma m mult))
(ensures (fun mm -> Monoid?.unit mm == u /\ Monoid?.mult mm == mult))
=
Monoid u mult () () ()
(** Some monoid structures *)
let nat_plus_monoid : monoid nat =
let add (x y : nat) : nat = x + y in
intro_monoid nat 0 add
let int_plus_monoid : monoid int =
intro_monoid int 0 (+)
(* let int_mul_monoid : monoid int = *)
(* intro_monoid int 1 op_Multiply *)
let conjunction_monoid : monoid prop =
let u : prop = singleton True in
let mult (p q : prop) : prop = p /\ q in
let left_unitality_helper (p:prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p) ;
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p:prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p) ;
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3 : prop) : Lemma (p1 `mult` p2 `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert (p1 `mult` p2 `mult` p3 <==> p1 `mult` (p2 `mult` p3)) ;
PropExt.apply (p1 `mult` p2 `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper ;
assert (right_unitality_lemma prop u mult) ;
forall_intro left_unitality_helper ;
assert (left_unitality_lemma prop u mult) ;
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult) ;
intro_monoid prop u mult | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Algebra.Monoid.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.PropositionalExtensionality",
"short_module": "PropExt"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Algebra.Monoid.monoid Prims.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.Algebra.Monoid.intro_monoid",
"Prims.prop",
"Prims.unit",
"Prims._assert",
"FStar.Algebra.Monoid.associativity_lemma",
"FStar.Classical.forall_intro_3",
"Prims.eq2",
"FStar.Algebra.Monoid.left_unitality_lemma",
"FStar.Classical.forall_intro",
"FStar.Algebra.Monoid.right_unitality_lemma",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.PropositionalExtensionality.apply",
"Prims.l_iff",
"Prims.l_or",
"FStar.Pervasives.singleton",
"Prims.l_False"
] | [] | false | false | false | true | false | let disjunction_monoid:monoid prop =
| let u:prop = singleton False in
let mult (p q: prop) : prop = p \/ q in
let left_unitality_helper (p: prop) : Lemma ((u `mult` p) == p) =
assert ((u `mult` p) <==> p);
PropExt.apply (u `mult` p) p
in
let right_unitality_helper (p: prop) : Lemma ((p `mult` u) == p) =
assert ((p `mult` u) <==> p);
PropExt.apply (p `mult` u) p
in
let associativity_helper (p1 p2 p3: prop)
: Lemma ((p1 `mult` p2) `mult` p3 == p1 `mult` (p2 `mult` p3)) =
assert ((p1 `mult` p2) `mult` p3 <==> p1 `mult` (p2 `mult` p3));
PropExt.apply ((p1 `mult` p2) `mult` p3) (p1 `mult` (p2 `mult` p3))
in
forall_intro right_unitality_helper;
assert (right_unitality_lemma prop u mult);
forall_intro left_unitality_helper;
assert (left_unitality_lemma prop u mult);
forall_intro_3 associativity_helper;
assert (associativity_lemma prop mult);
intro_monoid prop u mult | false |
Spec.SHA2.fst | Spec.SHA2.shuffle_pre | val shuffle_pre (a: sha2_alg) (hash: words_state a) (block: block_w a) : Tot (words_state a) | val shuffle_pre (a: sha2_alg) (hash: words_state a) (block: block_w a) : Tot (words_state a) | let shuffle_pre (a:sha2_alg) (hash:words_state a) (block:block_w a): Tot (words_state a) =
let ws = ws_pre a block in
let k = k0 a in
Lib.LoopCombinators.repeati (size_k_w a)
(fun i h -> shuffle_core_pre a k.[i] ws.[i] h) hash | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 208,
"start_col": 0,
"start_line": 204
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i)
let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < size_k_w a}) (ws:k_w a) : k_w a =
if i < block_word_length a then
ws0_pre_inner a block i ws
else
wsi_pre_inner a i ws
let ws_pre_ (a:sha2_alg) (block:block_w a) : k_w a =
Lib.LoopCombinators.repeati (size_k_w a) (ws_pre_inner a block) (Seq.create (size_k_w a) (to_word a 0))
[@"opaque_to_smt"]
let ws_pre = ws_pre_ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
hash: Spec.Hash.Definitions.words_state a ->
block: Spec.SHA2.block_w a
-> Spec.Hash.Definitions.words_state a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.words_state",
"Spec.SHA2.block_w",
"Lib.LoopCombinators.repeati",
"Spec.SHA2.size_k_w",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.SHA2.shuffle_core_pre",
"Spec.SHA2.op_String_Access",
"Spec.Hash.Definitions.word",
"FStar.Seq.Base.seq",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"Spec.SHA2.k0",
"Spec.SHA2.k_w",
"Spec.SHA2.ws_pre"
] | [] | false | false | false | false | false | let shuffle_pre (a: sha2_alg) (hash: words_state a) (block: block_w a) : Tot (words_state a) =
| let ws = ws_pre a block in
let k = k0 a in
Lib.LoopCombinators.repeati (size_k_w a) (fun i h -> shuffle_core_pre a k.[ i ] ws.[ i ] h) hash | false |
Spec.SHA2.fst | Spec.SHA2.shuffle_core_pre_ | val shuffle_core_pre_ (a: sha2_alg) (k_t ws_t: word a) (hash: words_state a) : Tot (words_state a) | val shuffle_core_pre_ (a: sha2_alg) (k_t ws_t: word a) (hash: words_state a) : Tot (words_state a) | let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 170,
"start_col": 0,
"start_line": 153
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
k_t: Spec.Hash.Definitions.word a ->
ws_t: Spec.Hash.Definitions.word a ->
hash: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Spec.Hash.Definitions.words_state",
"FStar.Seq.Base.seq_of_list",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.list",
"Prims.Cons",
"Spec.SHA2.op_Plus_Dot",
"Prims.Nil",
"Spec.SHA2._Sigma0",
"Spec.SHA2._Maj",
"Spec.SHA2._Sigma1",
"Spec.SHA2._Ch",
"Prims._assert",
"Prims.nat",
"FStar.Seq.Base.length",
"Spec.SHA2.k0",
"Spec.SHA2.size_k_w",
"Spec.SHA2.op_String_Access",
"Prims.op_LessThanOrEqual"
] | [] | false | false | false | false | false | let shuffle_core_pre_ (a: sha2_alg) (k_t ws_t: word a) (hash: words_state a) : Tot (words_state a) =
| assert (7 <= S.length hash);
let a0 = hash.[ 0 ] in
let b0 = hash.[ 1 ] in
let c0 = hash.[ 2 ] in
let d0 = hash.[ 3 ] in
let e0 = hash.[ 4 ] in
let f0 = hash.[ 5 ] in
let g0 = hash.[ 6 ] in
let h0 = hash.[ 7 ] in
assert (S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l | false |
Spec.SHA2.fst | Spec.SHA2.update_pre | val update_pre (a: sha2_alg) (hash: words_state a) (block: bytes{S.length block = block_length a})
: Tot (words_state a) | val update_pre (a: sha2_alg) (hash: words_state a) (block: bytes{S.length block = block_length a})
: Tot (words_state a) | let update_pre (a:sha2_alg) (hash:words_state a) (block:bytes{S.length block = block_length a}): Tot (words_state a) =
let block_w = words_of_bytes a #(block_word_length a) block in
let hash_1 = shuffle a hash block_w in
Spec.Loops.seq_map2 ( +. ) (hash <: Lib.Sequence.lseq (word a) (state_word_length a)) hash_1 | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 94,
"end_line": 217,
"start_col": 0,
"start_line": 214
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i)
let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < size_k_w a}) (ws:k_w a) : k_w a =
if i < block_word_length a then
ws0_pre_inner a block i ws
else
wsi_pre_inner a i ws
let ws_pre_ (a:sha2_alg) (block:block_w a) : k_w a =
Lib.LoopCombinators.repeati (size_k_w a) (ws_pre_inner a block) (Seq.create (size_k_w a) (to_word a 0))
[@"opaque_to_smt"]
let ws_pre = ws_pre_
(* Full shuffling function *)
let shuffle_pre (a:sha2_alg) (hash:words_state a) (block:block_w a): Tot (words_state a) =
let ws = ws_pre a block in
let k = k0 a in
Lib.LoopCombinators.repeati (size_k_w a)
(fun i h -> shuffle_core_pre a k.[i] ws.[i] h) hash
[@"opaque_to_smt"]
let shuffle = shuffle_pre
let init a = h0 a | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.sha2_alg ->
hash: Spec.Hash.Definitions.words_state a ->
block:
Spec.Hash.Definitions.bytes
{FStar.Seq.Base.length block = Spec.Hash.Definitions.block_length a}
-> Spec.Hash.Definitions.words_state a | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.words_state",
"Spec.Hash.Definitions.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Prims.op_disEquality",
"FStar.Seq.Base.length",
"Lib.IntTypes.uint8",
"Spec.Hash.Definitions.block_length",
"Spec.Loops.seq_map2",
"Spec.Hash.Definitions.word",
"Spec.SHA2.op_Plus_Dot",
"Lib.Sequence.lseq",
"Spec.Hash.Definitions.state_word_length",
"Spec.SHA2.shuffle",
"Spec.Hash.Definitions.block_word_length",
"Spec.Hash.Definitions.words_of_bytes"
] | [] | false | false | false | false | false | let update_pre (a: sha2_alg) (hash: words_state a) (block: bytes{S.length block = block_length a})
: Tot (words_state a) =
| let block_w = words_of_bytes a #(block_word_length a) block in
let hash_1 = shuffle a hash block_w in
Spec.Loops.seq_map2 ( +. ) (hash <: Lib.Sequence.lseq (word a) (state_word_length a)) hash_1 | false |
Spec.SHA2.fst | Spec.SHA2.update | val update: a:sha2_alg -> update_t a | val update: a:sha2_alg -> update_t a | let update = update_pre | {
"file_name": "specs/Spec.SHA2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 220,
"start_col": 0,
"start_line": 220
} | module Spec.SHA2
open Lib.IntTypes
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
let v' (#a: sha2_alg) (x:word a) = match a with
| SHA2_224 | SHA2_256 -> uint_v #U32 #SEC x
| SHA2_384 | SHA2_512 -> uint_v #U64 #SEC x
let k_w (a: sha2_alg) = m:S.seq (word a) {S.length m = size_k_w a}
let block_w (a: sha2_alg) = m:S.seq (word a) {S.length m = block_word_length a}
let counter = nat
inline_for_extraction
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
inline_for_extraction
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
inline_for_extraction
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre_ (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
[@"opaque_to_smt"]
let shuffle_core_pre = shuffle_core_pre_
(* Scheduling function *)
(* Incremental Version *)
let ws0_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < block_word_length a}) (ws:k_w a) : k_w a =
Seq.upd ws i (Seq.index block i)
let wsi_pre_inner (a:sha2_alg) (i:nat{i >= block_word_length a /\ i < size_k_w a}) (ws:k_w a) : k_w a =
let t16 = ws.[i - 16] in
let t15 = ws.[i - 15] in
let t7 = ws.[i - 7] in
let t2 = ws.[i - 2] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_pre_inner (a:sha2_alg) (block:block_w a) (i:nat{i < size_k_w a}) (ws:k_w a) : k_w a =
if i < block_word_length a then
ws0_pre_inner a block i ws
else
wsi_pre_inner a i ws
let ws_pre_ (a:sha2_alg) (block:block_w a) : k_w a =
Lib.LoopCombinators.repeati (size_k_w a) (ws_pre_inner a block) (Seq.create (size_k_w a) (to_word a 0))
[@"opaque_to_smt"]
let ws_pre = ws_pre_
(* Full shuffling function *)
let shuffle_pre (a:sha2_alg) (hash:words_state a) (block:block_w a): Tot (words_state a) =
let ws = ws_pre a block in
let k = k0 a in
Lib.LoopCombinators.repeati (size_k_w a)
(fun i h -> shuffle_core_pre a k.[i] ws.[i] h) hash
[@"opaque_to_smt"]
let shuffle = shuffle_pre
let init a = h0 a
let update_pre (a:sha2_alg) (hash:words_state a) (block:bytes{S.length block = block_length a}): Tot (words_state a) =
let block_w = words_of_bytes a #(block_word_length a) block in
let hash_1 = shuffle a hash block_w in
Spec.Loops.seq_map2 ( +. ) (hash <: Lib.Sequence.lseq (word a) (state_word_length a)) hash_1 | {
"checked_file": "/",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Spec.SHA2.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.sha2_alg -> Spec.Hash.Definitions.update_t a | Prims.Tot | [
"total"
] | [] | [
"Spec.SHA2.update_pre"
] | [] | false | false | false | false | false | let update =
| update_pre | false |
Spec.HMAC_DRBG.Test.fst | Spec.HMAC_DRBG.Test.test_vec | val test_vec : _: Spec.HMAC_DRBG.Test.Vectors.vec -> FStar.All.ALL Prims.bool | let test_vec
{a; entropy_input; entropy_input_reseed; nonce; personalization_string;
additional_input_reseed; additional_input_1; additional_input_2;
returned_bits}
=
let returned_bytes_len = String.strlen returned_bits / 2 in
let entropy_input_len = String.strlen entropy_input / 2 in
let entropy_input_reseed_len = String.strlen entropy_input_reseed / 2 in
let nonce_len = String.strlen nonce / 2 in
let personalization_string_len = String.strlen personalization_string / 2 in
let additional_input_reseed_len = String.strlen additional_input_reseed / 2 in
let additional_input_1_len = String.strlen additional_input_1 / 2 in
let additional_input_2_len = String.strlen additional_input_2 / 2 in
let returned_bits_len = String.strlen returned_bits / 2 in
if not (is_supported_alg a &&
min_length a <= entropy_input_len &&
entropy_input_len <= max_length &&
min_length a / 2 <= nonce_len &&
nonce_len <= max_length &&
personalization_string_len <= max_personalization_string_length &&
entropy_input_reseed_len <= max_length &&
additional_input_reseed_len <= max_additional_input_length &&
additional_input_1_len <= max_additional_input_length &&
additional_input_2_len <= max_additional_input_length &&
0 < returned_bits_len &&
returned_bits_len <= max_output_length)
then false
else
let _ = hmac_input_bound a in
let st = instantiate #a
(from_hex entropy_input) (from_hex nonce) (from_hex personalization_string)
in
let st = reseed st
(from_hex entropy_input_reseed) (from_hex additional_input_reseed)
in
match generate st returned_bytes_len (from_hex additional_input_1) with
| None -> false
| Some (_, st) ->
match generate st returned_bytes_len (from_hex additional_input_2) with
| None -> false
| Some (out, st) -> PS.print_compare true returned_bytes_len (from_hex returned_bits) out | {
"file_name": "specs/tests/Spec.HMAC_DRBG.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 95,
"end_line": 55,
"start_col": 0,
"start_line": 15
} | module Spec.HMAC_DRBG.Test
open FStar.Seq
open Lib.IntTypes
open Lib.Meta
open Spec.Agile.HMAC
open Spec.HMAC_DRBG
open Spec.HMAC_DRBG.Test.Vectors
module PS = Lib.PrintSequence
#set-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50" | {
"checked_file": "/",
"dependencies": [
"Spec.HMAC_DRBG.Test.Vectors.fst.checked",
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.Meta.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG.Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Spec.HMAC_DRBG.Test.Vectors.vec -> FStar.All.ALL Prims.bool | FStar.All.ALL | [] | [] | [
"Spec.HMAC_DRBG.Test.Vectors.vec",
"Spec.HMAC_DRBG.Test.Vectors.supported_alg",
"Lib.Meta.hex_string",
"Prims.op_Negation",
"Prims.op_AmpAmp",
"Spec.HMAC_DRBG.Test.Vectors.is_supported_alg",
"Prims.op_LessThanOrEqual",
"Spec.HMAC_DRBG.min_length",
"Spec.HMAC_DRBG.max_length",
"Prims.op_Division",
"Spec.HMAC_DRBG.max_personalization_string_length",
"Spec.HMAC_DRBG.max_additional_input_length",
"Prims.op_LessThan",
"Spec.HMAC_DRBG.max_output_length",
"Prims.bool",
"Spec.HMAC_DRBG.generate",
"Lib.Meta.from_hex",
"Spec.Agile.HMAC.lbytes",
"Spec.HMAC_DRBG.state",
"Lib.PrintSequence.print_compare",
"Spec.HMAC_DRBG.reseed",
"Spec.HMAC_DRBG.instantiate",
"Prims.unit",
"Spec.HMAC_DRBG.hmac_input_bound",
"Prims.int",
"FStar.String.strlen"
] | [] | false | true | false | false | false | let test_vec
{ a = a ;
entropy_input = entropy_input ;
entropy_input_reseed = entropy_input_reseed ;
nonce = nonce ;
personalization_string = personalization_string ;
additional_input_reseed = additional_input_reseed ;
additional_input_1 = additional_input_1 ;
additional_input_2 = additional_input_2 ;
returned_bits = returned_bits }
=
| let returned_bytes_len = String.strlen returned_bits / 2 in
let entropy_input_len = String.strlen entropy_input / 2 in
let entropy_input_reseed_len = String.strlen entropy_input_reseed / 2 in
let nonce_len = String.strlen nonce / 2 in
let personalization_string_len = String.strlen personalization_string / 2 in
let additional_input_reseed_len = String.strlen additional_input_reseed / 2 in
let additional_input_1_len = String.strlen additional_input_1 / 2 in
let additional_input_2_len = String.strlen additional_input_2 / 2 in
let returned_bits_len = String.strlen returned_bits / 2 in
if
not (is_supported_alg a && min_length a <= entropy_input_len && entropy_input_len <= max_length &&
min_length a / 2 <= nonce_len &&
nonce_len <= max_length &&
personalization_string_len <= max_personalization_string_length &&
entropy_input_reseed_len <= max_length &&
additional_input_reseed_len <= max_additional_input_length &&
additional_input_1_len <= max_additional_input_length &&
additional_input_2_len <= max_additional_input_length &&
0 < returned_bits_len &&
returned_bits_len <= max_output_length)
then false
else
let _ = hmac_input_bound a in
let st =
instantiate #a (from_hex entropy_input) (from_hex nonce) (from_hex personalization_string)
in
let st = reseed st (from_hex entropy_input_reseed) (from_hex additional_input_reseed) in
match generate st returned_bytes_len (from_hex additional_input_1) with
| None -> false
| Some (_, st) ->
match generate st returned_bytes_len (from_hex additional_input_2) with
| None -> false
| Some (out, st) -> PS.print_compare true returned_bytes_len (from_hex returned_bits) out | false |
|
Spec.HMAC_DRBG.Test.fst | Spec.HMAC_DRBG.Test.test | val test : _: Prims.unit -> FStar.All.ALL Prims.bool | let test () =
let result = List.for_all test_vec test_vectors in
if result then
begin
IO.print_string "\n\n[HMAC-DRBG] PASS\n";
true
end
else
begin
IO.print_string "\n\n[HMAC-DRBG] FAIL\n";
false
end | {
"file_name": "specs/tests/Spec.HMAC_DRBG.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 7,
"end_line": 68,
"start_col": 0,
"start_line": 57
} | module Spec.HMAC_DRBG.Test
open FStar.Seq
open Lib.IntTypes
open Lib.Meta
open Spec.Agile.HMAC
open Spec.HMAC_DRBG
open Spec.HMAC_DRBG.Test.Vectors
module PS = Lib.PrintSequence
#set-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
let test_vec
{a; entropy_input; entropy_input_reseed; nonce; personalization_string;
additional_input_reseed; additional_input_1; additional_input_2;
returned_bits}
=
let returned_bytes_len = String.strlen returned_bits / 2 in
let entropy_input_len = String.strlen entropy_input / 2 in
let entropy_input_reseed_len = String.strlen entropy_input_reseed / 2 in
let nonce_len = String.strlen nonce / 2 in
let personalization_string_len = String.strlen personalization_string / 2 in
let additional_input_reseed_len = String.strlen additional_input_reseed / 2 in
let additional_input_1_len = String.strlen additional_input_1 / 2 in
let additional_input_2_len = String.strlen additional_input_2 / 2 in
let returned_bits_len = String.strlen returned_bits / 2 in
if not (is_supported_alg a &&
min_length a <= entropy_input_len &&
entropy_input_len <= max_length &&
min_length a / 2 <= nonce_len &&
nonce_len <= max_length &&
personalization_string_len <= max_personalization_string_length &&
entropy_input_reseed_len <= max_length &&
additional_input_reseed_len <= max_additional_input_length &&
additional_input_1_len <= max_additional_input_length &&
additional_input_2_len <= max_additional_input_length &&
0 < returned_bits_len &&
returned_bits_len <= max_output_length)
then false
else
let _ = hmac_input_bound a in
let st = instantiate #a
(from_hex entropy_input) (from_hex nonce) (from_hex personalization_string)
in
let st = reseed st
(from_hex entropy_input_reseed) (from_hex additional_input_reseed)
in
match generate st returned_bytes_len (from_hex additional_input_1) with
| None -> false
| Some (_, st) ->
match generate st returned_bytes_len (from_hex additional_input_2) with
| None -> false
| Some (out, st) -> PS.print_compare true returned_bytes_len (from_hex returned_bits) out | {
"checked_file": "/",
"dependencies": [
"Spec.HMAC_DRBG.Test.Vectors.fst.checked",
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.Meta.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG.Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ALL Prims.bool | FStar.All.ALL | [] | [] | [
"Prims.unit",
"Prims.bool",
"FStar.IO.print_string",
"FStar.List.for_all",
"Spec.HMAC_DRBG.Test.Vectors.vec",
"Spec.HMAC_DRBG.Test.test_vec",
"Spec.HMAC_DRBG.Test.Vectors.test_vectors"
] | [] | false | true | false | false | false | let test () =
| let result = List.for_all test_vec test_vectors in
if result
then
(IO.print_string "\n\n[HMAC-DRBG] PASS\n";
true)
else
(IO.print_string "\n\n[HMAC-DRBG] FAIL\n";
false) | false |
|
Steel.MonotonicHigherReference.fst | Steel.MonotonicHigherReference.share | val share (#inames:_)
(#a:Type)
(#p:Preorder.preorder a)
(r:ref a p)
(f:perm)
(v:Ghost.erased a)
: SteelGhostT unit inames
(pts_to r f v)
(fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v) | val share (#inames:_)
(#a:Type)
(#p:Preorder.preorder a)
(r:ref a p)
(f:perm)
(v:Ghost.erased a)
: SteelGhostT unit inames
(pts_to r f v)
(fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v) | let share #o (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:Ghost.erased a)
: SteelGhostT unit o
(pts_to r f v)
(fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v)
= let open Steel.Effect.Atomic in
elim_pts_to r f v;
let h : erased (history a p) = witness_exists () in
elim_pure _;
let sh = split_current h in
PR.split r h sh sh;
intro_pure (history_val sh v (half_perm f));
intro_exists #(history a p) sh (pts_to_body r (half_perm f) v);
intro_pts_to r (half_perm f) v;
intro_pure (history_val sh v (half_perm f));
intro_exists #(history a p) sh (pts_to_body r (half_perm f) v);
intro_pts_to r (half_perm f) v | {
"file_name": "lib/steel/Steel.MonotonicHigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 34,
"end_line": 251,
"start_col": 0,
"start_line": 236
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.MonotonicHigherReference
open FStar.Ghost
open FStar.PCM
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.PCMReference
open Steel.FractionalPermission
open Steel.Preorder
module Preorder = FStar.Preorder
module Q = Steel.Preorder
module M = Steel.Memory
module PR = Steel.PCMReference
open FStar.Real
#set-options "--ide_id_info_off"
let ref a p = M.ref (history a p) pcm_history
[@@__reduce__]
let pts_to_body #a #p (r:ref a p) (f:perm) (v:Ghost.erased a) (h:history a p) =
PR.pts_to r h `star`
pure (history_val h v f)
let pts_to' (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:Ghost.erased a) =
h_exists (pts_to_body r f v)
let pts_to_sl r f v = hp_of (pts_to' r f v)
let intro_pure #a #p #f
(r:ref a p)
(v:a)
(h:history a p { history_val h v f })
: SteelT unit
(PR.pts_to r h)
(fun _ -> pts_to_body r f v h)
= rewrite_slprop (PR.pts_to r h) (pts_to_body _ _ _ _) (fun m ->
emp_unit (M.pts_to r h);
pure_star_interp (M.pts_to r h) (history_val h v f) m)
let intro_pure_full #a #p #f
(r:ref a p)
(v:a)
(h:history a p { history_val h v f })
: SteelT unit
(PR.pts_to r h)
(fun _ -> pts_to r f v)
= intro_pure #a #p #f r v h;
intro_exists h (pts_to_body r f v)
let alloc (#a:Type) (p:Preorder.preorder a) (v:a)
= let h = Current [v] full_perm in
assert (compatible pcm_history h h);
let x : ref a p = alloc h in
intro_pure_full x v h;
x
let extract_pure #a #uses #p #f
(r:ref a p)
(v:Ghost.erased a)
(h:Ghost.erased (history a p))
: SteelGhostT (_:unit{history_val h v f})
uses
(pts_to_body r f v h)
(fun _ -> pts_to_body r f v h)
= rewrite_slprop
(pts_to_body r f v h)
(PR.pts_to r h `star` pure (history_val h v f))
(fun _ -> ());
elim_pure (history_val h v f);
rewrite_slprop (PR.pts_to r h) (pts_to_body r f v h) (fun m ->
emp_unit (M.pts_to r h);
pure_star_interp (M.pts_to r h) (history_val h v f) m
)
let elim_pure #a #uses #p #f
(r:ref a p)
(v:Ghost.erased a)
(h:Ghost.erased (history a p))
: SteelGhostT (_:unit{history_val h v f})
uses
(pts_to_body r f v h)
(fun _ -> PR.pts_to r h)
= let _ = extract_pure r v h in
drop (pure (history_val h v f))
let rewrite_erased #a (p:erased a -> vprop) (x:erased a) (y:a)
: Steel unit (p x) (fun _ -> p (Ghost.hide y))
(requires fun _ -> reveal x == y)
(ensures fun _ _ _ -> True)
= rewrite_slprop (p x) (p (Ghost.hide y)) (fun _ -> ())
let rewrite_reveal_hide #a (x:a) (p:a -> vprop) ()
: SteelT unit (p (Ghost.reveal (Ghost.hide x))) (fun _ -> p x)
= rewrite_slprop (p (Ghost.reveal (Ghost.hide x))) (p x) (fun _ -> ())
let read_refine (#a:Type) (#q:perm) (#p:Preorder.preorder a) (#f:a -> vprop)
(r:ref a p)
: SteelT a (h_exists (fun (v:a) -> pts_to r q v `star` f v))
(fun v -> pts_to r q v `star` f v)
= let v = witness_exists () in
rewrite_slprop (pts_to r q (Ghost.hide (Ghost.reveal v)) `star` f v) (h_exists (pts_to_body r q v) `star` f v) (fun _ -> ());
let h = witness_exists () in
let _ = elim_pure r v h in
let hv = read r h in
let _:squash (compatible pcm_history h hv) = () in
rewrite_slprop (PR.pts_to r h) (pts_to_body r q v h) (fun m ->
emp_unit (M.pts_to r h);
pure_star_interp (M.pts_to r h) (history_val h v q) m);
intro_exists_erased h (pts_to_body r q v);
rewrite_erased (fun v -> (pts_to r q v `star` f v)) v (hval_tot hv);
let v = hval_tot hv in
rewrite_slprop
(pts_to r q (hval_tot hv) `star` f (Ghost.reveal (Ghost.hide (hval_tot hv))))
(pts_to r q v `star` f v)
(fun _ -> ());
return v
let write (#a:Type) (#p:Preorder.preorder a) (#v:erased a)
(r:ref a p) (x:a)
: Steel unit (pts_to r full_perm v)
(fun v -> pts_to r full_perm x)
(requires fun _ -> p v x /\ True)
(ensures fun _ _ _ -> True)
= let h_old_e = witness_exists #_ #_ #(pts_to_body r full_perm v) () in
let _ = elim_pure r v h_old_e in
let h_old = read r h_old_e in
let h: history a p = extend_history' h_old x in
write r h_old_e h;
intro_pure_full r x h
let witnessed #a #p r fact =
M.witnessed r (lift_fact fact)
let get_squash (#p:prop) (_:unit{p}) : squash p = ()
let witness_thunk (#inames: _) (#a:Type) (#pcm:FStar.PCM.pcm a)
(r:Ghost.erased (M.ref a pcm))
(fact:M.stable_property pcm)
(v:Ghost.erased a)
(_:squash (fact_valid_compat #_ #pcm fact v))
(_:unit)
: SteelAtomicUT (M.witnessed r fact) inames (PR.pts_to r v)
(fun _ -> PR.pts_to r v)
= witness r fact v ()
#push-options "--print_implicits"
let witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a)
(r:Ghost.erased (ref a p))
(fact:stable_property p)
(v:erased a)
(_:squash (fact v))
: SteelAtomicUT (witnessed r fact) inames (pts_to r q v)
(fun _ -> pts_to r q v)
= let h = witness_exists #_ #_ #(pts_to_body r q v) () in
let _ = elim_pure #_ #_ #_ #q r v h in
assert (forall h'. compatible pcm_history h h' ==> lift_fact fact h');
lift_fact_is_stable #a #p fact;
let w = witness_thunk #_ #_ #(pcm_history #a #p) r (lift_fact fact) h () _ in
rewrite_slprop (PR.pts_to r h) (pts_to_body r q v h) (fun m ->
emp_unit (M.pts_to r h);
pure_star_interp (M.pts_to r h) (history_val h v q) m);
intro_exists_erased h (pts_to_body r q v);
return w
let recall (#inames: _) (#a:Type u#1) (#q:perm) (#p:Preorder.preorder a) (fact:property a)
(r:Ghost.erased (ref a p)) (v:erased a) (w:witnessed r fact)
: SteelAtomicU unit inames (pts_to r q v)
(fun _ -> pts_to r q v)
(requires fun _ -> True)
(ensures fun _ _ _ -> fact v)
= let h = witness_exists #_ #_ #(pts_to_body r q v) () in
let _ = elim_pure #_ #_ #_ #q r v h in
let h1 = recall (lift_fact fact) r h w in
rewrite_slprop (PR.pts_to r h) (pts_to_body r q v h) (fun m ->
emp_unit (M.pts_to r h);
pure_star_interp (M.pts_to r h) (history_val h v q) m);
intro_exists_erased h (pts_to_body r q v)
let elim_pts_to #o (#a:Type)
(#p:Preorder.preorder a)
(r:ref a p)
(f:perm)
(v:Ghost.erased a)
: SteelGhostT unit o
(pts_to r f v)
(fun _ -> pts_to' r f v)
= rewrite_slprop _ _ (fun _ -> ())
let intro_pts_to #o (#a:Type)
(#p:Preorder.preorder a)
(r:ref a p)
(f:perm)
(v:Ghost.erased a)
: SteelGhostT unit o
(pts_to' r f v)
(fun _ -> pts_to' r f v)
= rewrite_slprop _ _ (fun _ -> ()) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.PCMReference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.MonotonicHigherReference.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "PR"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "Q"
},
{
"abbrev": false,
"full_module": "Steel.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMReference",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Steel.MonotonicHigherReference.ref a p ->
f: Steel.FractionalPermission.perm ->
v: FStar.Ghost.erased a
-> Steel.Effect.Atomic.SteelGhostT Prims.unit | Steel.Effect.Atomic.SteelGhostT | [] | [] | [
"Steel.Memory.inames",
"FStar.Preorder.preorder",
"Steel.MonotonicHigherReference.ref",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.MonotonicHigherReference.intro_pts_to",
"Steel.FractionalPermission.half_perm",
"Prims.unit",
"Steel.Effect.Atomic.intro_exists",
"Steel.Preorder.history",
"Steel.MonotonicHigherReference.pts_to_body",
"Steel.Effect.Atomic.intro_pure",
"Steel.Preorder.history_val",
"Steel.PCMReference.split",
"Steel.Preorder.pcm_history",
"FStar.Ghost.hide",
"Prims.l_and",
"Prims.b2t",
"Steel.Preorder.uu___is_Current",
"FStar.Ghost.reveal",
"FStar.PCM.composable",
"Prims.eq2",
"FStar.PCM.op",
"Steel.Preorder.vhist",
"Steel.Preorder.__proj__Current__item__h",
"Steel.Preorder.hval",
"Steel.Preorder.__proj__Current__item__f",
"Steel.Preorder.split_current",
"Steel.Effect.Atomic.elim_pure",
"Steel.Effect.Atomic.witness_exists",
"Steel.MonotonicHigherReference.elim_pts_to",
"Steel.MonotonicHigherReference.pts_to",
"Steel.Effect.Common.star",
"Steel.Effect.Common.vprop"
] | [] | false | true | false | false | false | let share #o (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f: perm) (v: Ghost.erased a)
: SteelGhostT unit
o
(pts_to r f v)
(fun _ -> (pts_to r (half_perm f) v) `star` (pts_to r (half_perm f) v)) =
| let open Steel.Effect.Atomic in
elim_pts_to r f v;
let h:erased (history a p) = witness_exists () in
elim_pure _;
let sh = split_current h in
PR.split r h sh sh;
intro_pure (history_val sh v (half_perm f));
intro_exists #(history a p) sh (pts_to_body r (half_perm f) v);
intro_pts_to r (half_perm f) v;
intro_pure (history_val sh v (half_perm f));
intro_exists #(history a p) sh (pts_to_body r (half_perm f) v);
intro_pts_to r (half_perm f) v | false |
OWGCounter.fst | OWGCounter.fst | val fst : x: (_ * _) -> _ | let fst = fst | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 13,
"end_line": 54,
"start_col": 0,
"start_line": 54
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0"
let half_perm = half_perm full_perm
(* Some basic wrappers to avoid issues with normalization.
TODO: The frame inference tactic should not normalize fst and snd*) | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: (_ * _) -> _ | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.fst",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | true | false | let fst =
| fst | false |
|
OWGCounter.fst | OWGCounter.snd | val snd : x: (_ * _) -> _ | let snd = snd | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 13,
"end_line": 57,
"start_col": 0,
"start_line": 57
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0"
let half_perm = half_perm full_perm
(* Some basic wrappers to avoid issues with normalization.
TODO: The frame inference tactic should not normalize fst and snd*)
noextract
let fst = fst | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: (_ * _) -> _ | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.snd",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | true | false | let snd =
| snd | false |
|
OWGCounter.fst | OWGCounter.half_perm | val half_perm : Steel.FractionalPermission.perm | let half_perm = half_perm full_perm | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 35,
"end_line": 48,
"start_col": 0,
"start_line": 48
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Steel.FractionalPermission.perm | Prims.Tot | [
"total"
] | [] | [
"Steel.FractionalPermission.half_perm",
"Steel.FractionalPermission.full_perm"
] | [] | false | false | false | true | false | let half_perm =
| half_perm full_perm | false |
|
OWGCounter.fst | OWGCounter.lock_inv_pred | val lock_inv_pred : r: Steel.Reference.ref Prims.int ->
r1: Steel.Reference.ghost_ref Prims.int ->
r2: Steel.Reference.ghost_ref Prims.int ->
x: (Prims.int * Prims.int)
-> Steel.Effect.Common.vprop | let lock_inv_pred (r:ref int) (r1 r2:ghost_ref int) =
fun (x:int & int) -> lock_inv_slprop r r1 r2 x | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 48,
"end_line": 73,
"start_col": 0,
"start_line": 72
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0"
let half_perm = half_perm full_perm
(* Some basic wrappers to avoid issues with normalization.
TODO: The frame inference tactic should not normalize fst and snd*)
noextract
let fst = fst
noextract
let snd = snd
/// The core invariant of the Owicki-Gries counter, shared by the two parties.
/// The concrete counter [r] is shared, and the full permission is stored in the invariant.
/// Each party also has half permission to their own ghost counter [r1] or [r2], ensuring that
/// only them can modify it by retrieving the other half of the permission when accessing the invariant.
/// The `__reduce__` attribute indicates the frame inference tactic to unfold this predicate for frame inference only
[@@ __reduce__]
let lock_inv_slprop (r:ref int) (r1 r2:ghost_ref int) (w:int & int) =
ghost_pts_to r1 half_perm (fst w) `star`
ghost_pts_to r2 half_perm (snd w) `star`
pts_to r full_perm (fst w + snd w) | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Steel.Reference.ref Prims.int ->
r1: Steel.Reference.ghost_ref Prims.int ->
r2: Steel.Reference.ghost_ref Prims.int ->
x: (Prims.int * Prims.int)
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"Steel.Reference.ref",
"Prims.int",
"Steel.Reference.ghost_ref",
"FStar.Pervasives.Native.tuple2",
"OWGCounter.lock_inv_slprop",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | true | false | let lock_inv_pred (r: ref int) (r1 r2: ghost_ref int) =
| fun (x: int & int) -> lock_inv_slprop r r1 r2 x | false |
|
OWGCounter.fst | OWGCounter.lock_inv_slprop | val lock_inv_slprop : r: Steel.Reference.ref Prims.int ->
r1: Steel.Reference.ghost_ref Prims.int ->
r2: Steel.Reference.ghost_ref Prims.int ->
w: (Prims.int * Prims.int)
-> Steel.Effect.Common.vprop | let lock_inv_slprop (r:ref int) (r1 r2:ghost_ref int) (w:int & int) =
ghost_pts_to r1 half_perm (fst w) `star`
ghost_pts_to r2 half_perm (snd w) `star`
pts_to r full_perm (fst w + snd w) | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 36,
"end_line": 69,
"start_col": 0,
"start_line": 66
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0"
let half_perm = half_perm full_perm
(* Some basic wrappers to avoid issues with normalization.
TODO: The frame inference tactic should not normalize fst and snd*)
noextract
let fst = fst
noextract
let snd = snd
/// The core invariant of the Owicki-Gries counter, shared by the two parties.
/// The concrete counter [r] is shared, and the full permission is stored in the invariant.
/// Each party also has half permission to their own ghost counter [r1] or [r2], ensuring that
/// only them can modify it by retrieving the other half of the permission when accessing the invariant.
/// The `__reduce__` attribute indicates the frame inference tactic to unfold this predicate for frame inference only | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Steel.Reference.ref Prims.int ->
r1: Steel.Reference.ghost_ref Prims.int ->
r2: Steel.Reference.ghost_ref Prims.int ->
w: (Prims.int * Prims.int)
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"Steel.Reference.ref",
"Prims.int",
"Steel.Reference.ghost_ref",
"FStar.Pervasives.Native.tuple2",
"Steel.Effect.Common.star",
"Steel.Reference.ghost_pts_to",
"OWGCounter.half_perm",
"OWGCounter.fst",
"OWGCounter.snd",
"Steel.Reference.pts_to",
"Steel.FractionalPermission.full_perm",
"Prims.op_Addition",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | true | false | let lock_inv_slprop (r: ref int) (r1 r2: ghost_ref int) (w: int & int) =
| ((ghost_pts_to r1 half_perm (fst w)) `star` (ghost_pts_to r2 half_perm (snd w)))
`star`
(pts_to r full_perm (fst w + snd w)) | false |
|
OWGCounter.fst | OWGCounter.lock_inv | val lock_inv (r: ref int) (r1 r2: ghost_ref int) : vprop | val lock_inv (r: ref int) (r1 r2: ghost_ref int) : vprop | let lock_inv (r:ref int) (r1 r2:ghost_ref int) : vprop =
h_exists (lock_inv_pred r r1 r2) | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 34,
"end_line": 78,
"start_col": 0,
"start_line": 77
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0"
let half_perm = half_perm full_perm
(* Some basic wrappers to avoid issues with normalization.
TODO: The frame inference tactic should not normalize fst and snd*)
noextract
let fst = fst
noextract
let snd = snd
/// The core invariant of the Owicki-Gries counter, shared by the two parties.
/// The concrete counter [r] is shared, and the full permission is stored in the invariant.
/// Each party also has half permission to their own ghost counter [r1] or [r2], ensuring that
/// only them can modify it by retrieving the other half of the permission when accessing the invariant.
/// The `__reduce__` attribute indicates the frame inference tactic to unfold this predicate for frame inference only
[@@ __reduce__]
let lock_inv_slprop (r:ref int) (r1 r2:ghost_ref int) (w:int & int) =
ghost_pts_to r1 half_perm (fst w) `star`
ghost_pts_to r2 half_perm (snd w) `star`
pts_to r full_perm (fst w + snd w)
[@@ __reduce__]
let lock_inv_pred (r:ref int) (r1 r2:ghost_ref int) =
fun (x:int & int) -> lock_inv_slprop r r1 r2 x
/// The actual invariant, existentially quantifying over the values currently stored in the two ghost references | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Steel.Reference.ref Prims.int ->
r1: Steel.Reference.ghost_ref Prims.int ->
r2: Steel.Reference.ghost_ref Prims.int
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"Steel.Reference.ref",
"Prims.int",
"Steel.Reference.ghost_ref",
"Steel.Effect.Atomic.h_exists",
"FStar.Pervasives.Native.tuple2",
"OWGCounter.lock_inv_pred",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | true | false | let lock_inv (r: ref int) (r1 r2: ghost_ref int) : vprop =
| h_exists (lock_inv_pred r r1 r2) | false |
StlcCbvDbParSubst.fst | StlcCbvDbParSubst.shift_up_above | val shift_up_above : nat -> exp -> Tot exp | val shift_up_above : nat -> exp -> Tot exp | let shift_up_above n e = subst (sub_inc_above n) e | {
"file_name": "examples/metatheory/StlcCbvDbParSubst.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 34,
"start_col": 0,
"start_line": 34
} | (*
Copyright 2008-2014 Catalin Hritcu, Nikhil Swamy, Microsoft Research and Inria
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module StlcCbvDbParSubst
(* Constructive style progress and preservation proof for STLC with
CBV reduction, using deBruijn indices and parallel substitution.
An awkward special case of stlc_strong...; in fact this proof
is _more_ complex than the one in stlc_strong...! *)
open FStar.Classical
open FStar.FunctionalExtensionality
open StlcStrongDbParSubst
(* Weakening (or shifting preserves typing) *)
(* Useless now, showing that it follows from substitution lemma *)
val sub_inc_above : nat -> var -> Tot exp
let sub_inc_above n y = if y<n then EVar y else EVar (y+1) | {
"checked_file": "/",
"dependencies": [
"StlcStrongDbParSubst.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "StlcCbvDbParSubst.fst"
} | [
{
"abbrev": false,
"full_module": "StlcStrongDbParSubst",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> e: StlcStrongDbParSubst.exp -> StlcStrongDbParSubst.exp | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"StlcStrongDbParSubst.exp",
"StlcStrongDbParSubst.subst",
"StlcCbvDbParSubst.sub_inc_above"
] | [] | false | false | false | true | false | let shift_up_above n e =
| subst (sub_inc_above n) e | false |
StlcCbvDbParSubst.fst | StlcCbvDbParSubst.closed | val closed : exp -> Tot bool | val closed : exp -> Tot bool | let closed e = below 0 e | {
"file_name": "examples/metatheory/StlcCbvDbParSubst.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 136,
"start_col": 0,
"start_line": 136
} | (*
Copyright 2008-2014 Catalin Hritcu, Nikhil Swamy, Microsoft Research and Inria
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module StlcCbvDbParSubst
(* Constructive style progress and preservation proof for STLC with
CBV reduction, using deBruijn indices and parallel substitution.
An awkward special case of stlc_strong...; in fact this proof
is _more_ complex than the one in stlc_strong...! *)
open FStar.Classical
open FStar.FunctionalExtensionality
open StlcStrongDbParSubst
(* Weakening (or shifting preserves typing) *)
(* Useless now, showing that it follows from substitution lemma *)
val sub_inc_above : nat -> var -> Tot exp
let sub_inc_above n y = if y<n then EVar y else EVar (y+1)
val shift_up_above : nat -> exp -> Tot exp
let shift_up_above n e = subst (sub_inc_above n) e
val extend_gen : var -> typ -> env -> Tot env
let extend_gen x t g = if x = 0 then extend t g
else (fun y -> if y < x then g y
else if y = x then Some t
else g (y-1))
irreducible val weakening : n:nat -> #g:env -> #e:exp -> #t:typ -> t':typ ->
h:typing g e t -> Tot (typing (extend_gen n t' g) (shift_up_above n e) t)
(decreases h)
let rec weakening n #g #v #t t' h =
let hs : subst_typing (sub_inc_above n) g (extend_gen n t' g) =
fun y -> if y < n then TyVar y else TyVar (y+1)
in substitution (sub_inc_above n) h hs
val step : exp -> Tot (option exp)
let rec step e =
match e with
| EApp e1 e2 ->
if is_value e1 then
if is_value e2 then
match e1 with
| ELam t e' -> Some (subst (sub_beta e2) e')
| _ -> None
else
match (step e2) with
| Some e2' -> Some (EApp e1 e2')
| None -> None
else
(match (step e1) with
| Some e1' -> Some (EApp e1' e2)
| None -> None)
| _ -> None
val progress : #e:exp -> #t:typ -> h:typing empty e t ->
Lemma (ensures (is_value e \/ (Some? (step e)))) (decreases h)
let rec progress #e #t h =
if TyApp? h then let TyApp h1 h2 = h in progress h1; progress h2
(* Typing extensional (weaker) and context invariance (stronger) lemmas *)
(* Typing extensional follows directly from functional extensionality
(it's also a special case of context invariance below) *)
irreducible val typing_extensional : #e:exp -> #g:env -> #t:typ ->
h:(typing g e t) -> g':env{feq g g'} -> Tot (typing g' e t) (decreases h)
let rec typing_extensional #e #g #t h g' =
match h with
| TyVar x -> TyVar x
| TyLam t h -> TyLam t (typing_extensional h (extend t g'))
| TyApp h1 h2 -> TyApp (typing_extensional h1 g') (typing_extensional h2 g')
| TyUnit -> TyUnit
val appears_free_in : x:var -> e:exp -> Tot bool (decreases e)
let rec appears_free_in x e =
match e with
| EVar y -> x = y
| EApp e1 e2 -> appears_free_in x e1 || appears_free_in x e2
| ELam _ e1 -> appears_free_in (x+1) e1
| EUnit -> false
type envEqualE (e:exp) (g1:env) (g2:env) =
(forall (x:var). appears_free_in x e ==> g1 x = g2 x)
(* Context invariance (actually used in a single place within substitution,
for in a specific form of weakening when typing variables) *)
val context_invariance : #e:exp -> #g:env -> #t:typ ->
h:(typing g e t) -> g':env{envEqualE e g g'} ->
Tot (typing g' e t) (decreases h)
let rec context_invariance #e #g #t h g' =
match h with
| TyVar x -> TyVar x
| TyLam t_y h1 ->
TyLam t_y (context_invariance h1 (extend t_y g'))
| TyApp h1 h2 ->
TyApp (context_invariance h1 g') (context_invariance h2 g')
| TyUnit -> TyUnit
val free_in_context : x:var -> #e:exp -> #g:env -> #t:typ -> h:typing g e t ->
Lemma (requires True) (ensures (appears_free_in x e ==> Some? (g x))) (decreases h)
let rec free_in_context x #e #g #t h =
match h with
| TyVar x -> ()
| TyLam t h1 -> free_in_context (x+1) h1
| TyApp h1 h2 -> free_in_context x h1; free_in_context x h2
| TyUnit -> ()
val typable_empty_not_free : x:var -> #e:exp -> #t:typ -> typing empty e t ->
Lemma (ensures (not (appears_free_in x e)))
(* [SMTPat (appears_free_in x e)] -- CH: adding this makes it fail! *)
let typable_empty_not_free x #e #t h = free_in_context x h
val below : x:var -> e:exp -> Tot bool (decreases e)
let rec below x e =
match e with
| EVar y -> y < x
| EApp e1 e2 -> below x e1 && below x e2
| ELam _ e1 -> below (x+1) e1
| EUnit -> true | {
"checked_file": "/",
"dependencies": [
"StlcStrongDbParSubst.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "StlcCbvDbParSubst.fst"
} | [
{
"abbrev": false,
"full_module": "StlcStrongDbParSubst",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: StlcStrongDbParSubst.exp -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"StlcStrongDbParSubst.exp",
"StlcCbvDbParSubst.below",
"Prims.bool"
] | [] | false | false | false | true | false | let closed e =
| below 0 e | false |
StlcCbvDbParSubst.fst | StlcCbvDbParSubst.step | val step : exp -> Tot (option exp) | val step : exp -> Tot (option exp) | let rec step e =
match e with
| EApp e1 e2 ->
if is_value e1 then
if is_value e2 then
match e1 with
| ELam t e' -> Some (subst (sub_beta e2) e')
| _ -> None
else
match (step e2) with
| Some e2' -> Some (EApp e1 e2')
| None -> None
else
(match (step e1) with
| Some e1' -> Some (EApp e1' e2)
| None -> None)
| _ -> None | {
"file_name": "examples/metatheory/StlcCbvDbParSubst.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 67,
"start_col": 0,
"start_line": 51
} | (*
Copyright 2008-2014 Catalin Hritcu, Nikhil Swamy, Microsoft Research and Inria
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module StlcCbvDbParSubst
(* Constructive style progress and preservation proof for STLC with
CBV reduction, using deBruijn indices and parallel substitution.
An awkward special case of stlc_strong...; in fact this proof
is _more_ complex than the one in stlc_strong...! *)
open FStar.Classical
open FStar.FunctionalExtensionality
open StlcStrongDbParSubst
(* Weakening (or shifting preserves typing) *)
(* Useless now, showing that it follows from substitution lemma *)
val sub_inc_above : nat -> var -> Tot exp
let sub_inc_above n y = if y<n then EVar y else EVar (y+1)
val shift_up_above : nat -> exp -> Tot exp
let shift_up_above n e = subst (sub_inc_above n) e
val extend_gen : var -> typ -> env -> Tot env
let extend_gen x t g = if x = 0 then extend t g
else (fun y -> if y < x then g y
else if y = x then Some t
else g (y-1))
irreducible val weakening : n:nat -> #g:env -> #e:exp -> #t:typ -> t':typ ->
h:typing g e t -> Tot (typing (extend_gen n t' g) (shift_up_above n e) t)
(decreases h)
let rec weakening n #g #v #t t' h =
let hs : subst_typing (sub_inc_above n) g (extend_gen n t' g) =
fun y -> if y < n then TyVar y else TyVar (y+1)
in substitution (sub_inc_above n) h hs | {
"checked_file": "/",
"dependencies": [
"StlcStrongDbParSubst.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "StlcCbvDbParSubst.fst"
} | [
{
"abbrev": false,
"full_module": "StlcStrongDbParSubst",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: StlcStrongDbParSubst.exp -> FStar.Pervasives.Native.option StlcStrongDbParSubst.exp | Prims.Tot | [
"total"
] | [] | [
"StlcStrongDbParSubst.exp",
"StlcStrongDbParSubst.is_value",
"StlcStrongDbParSubst.typ",
"FStar.Pervasives.Native.Some",
"StlcStrongDbParSubst.subst",
"StlcStrongDbParSubst.sub_beta",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Prims.bool",
"StlcCbvDbParSubst.step",
"StlcStrongDbParSubst.EApp"
] | [
"recursion"
] | false | false | false | true | false | let rec step e =
| match e with
| EApp e1 e2 ->
if is_value e1
then
if is_value e2
then
match e1 with
| ELam t e' -> Some (subst (sub_beta e2) e')
| _ -> None
else
match (step e2) with
| Some e2' -> Some (EApp e1 e2')
| None -> None
else
(match (step e1) with
| Some e1' -> Some (EApp e1' e2)
| None -> None)
| _ -> None | false |
StlcCbvDbParSubst.fst | StlcCbvDbParSubst.extend_gen | val extend_gen : var -> typ -> env -> Tot env | val extend_gen : var -> typ -> env -> Tot env | let extend_gen x t g = if x = 0 then extend t g
else (fun y -> if y < x then g y
else if y = x then Some t
else g (y-1)) | {
"file_name": "examples/metatheory/StlcCbvDbParSubst.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 48,
"end_line": 40,
"start_col": 0,
"start_line": 37
} | (*
Copyright 2008-2014 Catalin Hritcu, Nikhil Swamy, Microsoft Research and Inria
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module StlcCbvDbParSubst
(* Constructive style progress and preservation proof for STLC with
CBV reduction, using deBruijn indices and parallel substitution.
An awkward special case of stlc_strong...; in fact this proof
is _more_ complex than the one in stlc_strong...! *)
open FStar.Classical
open FStar.FunctionalExtensionality
open StlcStrongDbParSubst
(* Weakening (or shifting preserves typing) *)
(* Useless now, showing that it follows from substitution lemma *)
val sub_inc_above : nat -> var -> Tot exp
let sub_inc_above n y = if y<n then EVar y else EVar (y+1)
val shift_up_above : nat -> exp -> Tot exp
let shift_up_above n e = subst (sub_inc_above n) e | {
"checked_file": "/",
"dependencies": [
"StlcStrongDbParSubst.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "StlcCbvDbParSubst.fst"
} | [
{
"abbrev": false,
"full_module": "StlcStrongDbParSubst",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: StlcStrongDbParSubst.var -> t: StlcStrongDbParSubst.typ -> g: StlcStrongDbParSubst.env
-> StlcStrongDbParSubst.env | Prims.Tot | [
"total"
] | [] | [
"StlcStrongDbParSubst.var",
"StlcStrongDbParSubst.typ",
"StlcStrongDbParSubst.env",
"Prims.op_Equality",
"Prims.int",
"StlcStrongDbParSubst.extend",
"Prims.bool",
"Prims.op_LessThan",
"FStar.Pervasives.Native.Some",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.option"
] | [] | false | false | false | true | false | let extend_gen x t g =
| if x = 0 then extend t g else (fun y -> if y < x then g y else if y = x then Some t else g (y - 1)) | false |
StlcCbvDbParSubst.fst | StlcCbvDbParSubst.weakening | val weakening : n:nat -> #g:env -> #e:exp -> #t:typ -> t':typ ->
h:typing g e t -> Tot (typing (extend_gen n t' g) (shift_up_above n e) t)
(decreases h) | val weakening : n:nat -> #g:env -> #e:exp -> #t:typ -> t':typ ->
h:typing g e t -> Tot (typing (extend_gen n t' g) (shift_up_above n e) t)
(decreases h) | let rec weakening n #g #v #t t' h =
let hs : subst_typing (sub_inc_above n) g (extend_gen n t' g) =
fun y -> if y < n then TyVar y else TyVar (y+1)
in substitution (sub_inc_above n) h hs | {
"file_name": "examples/metatheory/StlcCbvDbParSubst.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 48,
"start_col": 0,
"start_line": 45
} | (*
Copyright 2008-2014 Catalin Hritcu, Nikhil Swamy, Microsoft Research and Inria
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module StlcCbvDbParSubst
(* Constructive style progress and preservation proof for STLC with
CBV reduction, using deBruijn indices and parallel substitution.
An awkward special case of stlc_strong...; in fact this proof
is _more_ complex than the one in stlc_strong...! *)
open FStar.Classical
open FStar.FunctionalExtensionality
open StlcStrongDbParSubst
(* Weakening (or shifting preserves typing) *)
(* Useless now, showing that it follows from substitution lemma *)
val sub_inc_above : nat -> var -> Tot exp
let sub_inc_above n y = if y<n then EVar y else EVar (y+1)
val shift_up_above : nat -> exp -> Tot exp
let shift_up_above n e = subst (sub_inc_above n) e
val extend_gen : var -> typ -> env -> Tot env
let extend_gen x t g = if x = 0 then extend t g
else (fun y -> if y < x then g y
else if y = x then Some t
else g (y-1))
irreducible val weakening : n:nat -> #g:env -> #e:exp -> #t:typ -> t':typ ->
h:typing g e t -> Tot (typing (extend_gen n t' g) (shift_up_above n e) t) | {
"checked_file": "/",
"dependencies": [
"StlcStrongDbParSubst.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "StlcCbvDbParSubst.fst"
} | [
{
"abbrev": false,
"full_module": "StlcStrongDbParSubst",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> t': StlcStrongDbParSubst.typ -> h: StlcStrongDbParSubst.typing g e t
-> Prims.Tot
(StlcStrongDbParSubst.typing (StlcCbvDbParSubst.extend_gen n t' g)
(StlcCbvDbParSubst.shift_up_above n e)
t) | Prims.Tot | [
"total",
""
] | [] | [
"Prims.nat",
"StlcStrongDbParSubst.env",
"StlcStrongDbParSubst.exp",
"StlcStrongDbParSubst.typ",
"StlcStrongDbParSubst.typing",
"StlcStrongDbParSubst.substitution",
"StlcCbvDbParSubst.sub_inc_above",
"StlcCbvDbParSubst.extend_gen",
"StlcStrongDbParSubst.subst_typing",
"StlcStrongDbParSubst.var",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_Some",
"Prims.op_LessThan",
"StlcStrongDbParSubst.TyVar",
"Prims.bool",
"Prims.op_Addition",
"FStar.Pervasives.Native.__proj__Some__item__v",
"StlcCbvDbParSubst.shift_up_above"
] | [
"recursion"
] | false | false | false | false | false | let rec weakening n #g #v #t t' h =
| let hs:subst_typing (sub_inc_above n) g (extend_gen n t' g) =
fun y -> if y < n then TyVar y else TyVar (y + 1)
in
substitution (sub_inc_above n) h hs | false |
StlcCbvDbParSubst.fst | StlcCbvDbParSubst.progress | val progress : #e:exp -> #t:typ -> h:typing empty e t ->
Lemma (ensures (is_value e \/ (Some? (step e)))) (decreases h) | val progress : #e:exp -> #t:typ -> h:typing empty e t ->
Lemma (ensures (is_value e \/ (Some? (step e)))) (decreases h) | let rec progress #e #t h =
if TyApp? h then let TyApp h1 h2 = h in progress h1; progress h2 | {
"file_name": "examples/metatheory/StlcCbvDbParSubst.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 66,
"end_line": 72,
"start_col": 0,
"start_line": 71
} | (*
Copyright 2008-2014 Catalin Hritcu, Nikhil Swamy, Microsoft Research and Inria
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module StlcCbvDbParSubst
(* Constructive style progress and preservation proof for STLC with
CBV reduction, using deBruijn indices and parallel substitution.
An awkward special case of stlc_strong...; in fact this proof
is _more_ complex than the one in stlc_strong...! *)
open FStar.Classical
open FStar.FunctionalExtensionality
open StlcStrongDbParSubst
(* Weakening (or shifting preserves typing) *)
(* Useless now, showing that it follows from substitution lemma *)
val sub_inc_above : nat -> var -> Tot exp
let sub_inc_above n y = if y<n then EVar y else EVar (y+1)
val shift_up_above : nat -> exp -> Tot exp
let shift_up_above n e = subst (sub_inc_above n) e
val extend_gen : var -> typ -> env -> Tot env
let extend_gen x t g = if x = 0 then extend t g
else (fun y -> if y < x then g y
else if y = x then Some t
else g (y-1))
irreducible val weakening : n:nat -> #g:env -> #e:exp -> #t:typ -> t':typ ->
h:typing g e t -> Tot (typing (extend_gen n t' g) (shift_up_above n e) t)
(decreases h)
let rec weakening n #g #v #t t' h =
let hs : subst_typing (sub_inc_above n) g (extend_gen n t' g) =
fun y -> if y < n then TyVar y else TyVar (y+1)
in substitution (sub_inc_above n) h hs
val step : exp -> Tot (option exp)
let rec step e =
match e with
| EApp e1 e2 ->
if is_value e1 then
if is_value e2 then
match e1 with
| ELam t e' -> Some (subst (sub_beta e2) e')
| _ -> None
else
match (step e2) with
| Some e2' -> Some (EApp e1 e2')
| None -> None
else
(match (step e1) with
| Some e1' -> Some (EApp e1' e2)
| None -> None)
| _ -> None
val progress : #e:exp -> #t:typ -> h:typing empty e t -> | {
"checked_file": "/",
"dependencies": [
"StlcStrongDbParSubst.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "StlcCbvDbParSubst.fst"
} | [
{
"abbrev": false,
"full_module": "StlcStrongDbParSubst",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: StlcStrongDbParSubst.typing StlcStrongDbParSubst.empty e t
-> FStar.Pervasives.Lemma
(ensures StlcStrongDbParSubst.is_value e \/ Some? (StlcCbvDbParSubst.step e)) (decreases h) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"StlcStrongDbParSubst.exp",
"StlcStrongDbParSubst.typ",
"StlcStrongDbParSubst.typing",
"StlcStrongDbParSubst.empty",
"StlcStrongDbParSubst.uu___is_TyApp",
"StlcStrongDbParSubst.env",
"StlcStrongDbParSubst.TArr",
"StlcCbvDbParSubst.progress",
"Prims.unit",
"Prims.bool"
] | [
"recursion"
] | false | false | true | false | false | let rec progress #e #t h =
| if TyApp? h
then
let TyApp h1 h2 = h in
progress h1;
progress h2 | false |
StlcCbvDbParSubst.fst | StlcCbvDbParSubst.sub_inc_above | val sub_inc_above : nat -> var -> Tot exp | val sub_inc_above : nat -> var -> Tot exp | let sub_inc_above n y = if y<n then EVar y else EVar (y+1) | {
"file_name": "examples/metatheory/StlcCbvDbParSubst.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 31,
"start_col": 0,
"start_line": 31
} | (*
Copyright 2008-2014 Catalin Hritcu, Nikhil Swamy, Microsoft Research and Inria
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module StlcCbvDbParSubst
(* Constructive style progress and preservation proof for STLC with
CBV reduction, using deBruijn indices and parallel substitution.
An awkward special case of stlc_strong...; in fact this proof
is _more_ complex than the one in stlc_strong...! *)
open FStar.Classical
open FStar.FunctionalExtensionality
open StlcStrongDbParSubst
(* Weakening (or shifting preserves typing) *)
(* Useless now, showing that it follows from substitution lemma *) | {
"checked_file": "/",
"dependencies": [
"StlcStrongDbParSubst.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "StlcCbvDbParSubst.fst"
} | [
{
"abbrev": false,
"full_module": "StlcStrongDbParSubst",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> y: StlcStrongDbParSubst.var -> StlcStrongDbParSubst.exp | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"StlcStrongDbParSubst.var",
"Prims.op_LessThan",
"StlcStrongDbParSubst.EVar",
"Prims.bool",
"Prims.op_Addition",
"StlcStrongDbParSubst.exp"
] | [] | false | false | false | true | false | let sub_inc_above n y =
| if y < n then EVar y else EVar (y + 1) | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.