file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Steel.Memory.fst | Steel.Memory.frame_preserving_respects_preorder | val frame_preserving_respects_preorder
(#a #e #fp #fp': _)
($f: tot_action_nf_except e fp a fp')
(m0: hmem_with_inv_except e fp)
: Lemma
(let (| x , m1 |) = f m0 in
mem_evolves m0 m1) | val frame_preserving_respects_preorder
(#a #e #fp #fp': _)
($f: tot_action_nf_except e fp a fp')
(m0: hmem_with_inv_except e fp)
: Lemma
(let (| x , m1 |) = f m0 in
mem_evolves m0 m1) | let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0 | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 14,
"end_line": 744,
"start_col": 0,
"start_line": 729
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: Steel.Memory.tot_action_nf_except e fp a fp' -> m0: Steel.Memory.hmem_with_inv_except e fp
-> FStar.Pervasives.Lemma
(ensures
(let _ = f m0 in
(let Prims.Mkdtuple2 #_ #_ _ m1 = _ in
Steel.Memory.mem_evolves m0 m1)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.tot_action_nf_except",
"Steel.Memory.hmem_with_inv_except",
"Steel.Memory.emp",
"Prims.unit",
"Prims._assert",
"Steel.Memory.interp",
"Steel.Memory.star",
"Steel.Memory.linv",
"Steel.Heap.star_congruence",
"Steel.Heap.emp_unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Steel.Memory.locks_invariant",
"Steel.Memory.mem_evolves",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.dtuple2",
"Steel.Memory.ac_reasoning_for_m_frame_preserving"
] | [] | false | false | true | false | false | let frame_preserving_respects_preorder
#a
#e
#fp
#fp'
($f: tot_action_nf_except e fp a fp')
(m0: hmem_with_inv_except e fp)
: Lemma
(let (| x , m1 |) = f m0 in
mem_evolves m0 m1) =
| let aux (frame: slprop) (m0: hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x , m1 |) = f m0 in
interp (((fp' x) `star` frame) `star` (locks_invariant e m1)) m1 /\ mem_evolves m0 m1) =
()
in
H.emp_unit fp;
assert (interp (fp `star` (linv e m0)) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` (linv e m0)) m0);
aux emp m0 | false |
Steel.Memory.fst | Steel.Memory.dep_hprop_is_affine0 | val dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq': squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma (H.disjoint h h' /\ dep_hprop s f (H.join h h')) | val dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq': squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma (H.disjoint h h' /\ dep_hprop s f (H.join h h')) | let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2') | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 41,
"end_line": 423,
"start_col": 0,
"start_line": 389
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2 | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Steel.Memory.slprop ->
f: (_: Steel.Memory.hmem s -> Steel.Memory.slprop) ->
h: Steel.Heap.heap ->
h': Steel.Heap.heap ->
sq': Prims.squash (Steel.Memory.dep_hprop s f h /\ Steel.Heap.disjoint h h')
-> FStar.Pervasives.Lemma
(ensures Steel.Heap.disjoint h h' /\ Steel.Memory.dep_hprop s f (Steel.Heap.join h h')) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.hmem",
"Steel.Heap.heap",
"Prims.squash",
"Prims.l_and",
"Steel.Memory.dep_hprop",
"Steel.Heap.disjoint",
"Prims._assert",
"Prims.eq2",
"Steel.Heap.join",
"Prims.unit",
"Steel.Heap.join_commutative",
"Steel.Heap.join_associative",
"Steel.Memory.interp",
"Steel.Memory.mem_of_heap",
"Steel.Memory.interp_depends_only_on",
"Steel.Memory.mem",
"Steel.Memory.join",
"Steel.Heap.disjoint_join",
"FStar.IndefiniteDescription.indefinite_description_ghost",
"Prims.prop",
"Prims.l_Exists",
"Prims.l_True",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq': squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma (H.disjoint h h' /\ dep_hprop s f (H.join h h')) =
| let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\
h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop = (exists h2. p2 h h1 h2) in
let h1 = FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h) in
let h2 = FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1) in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h';
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == (mem_of_heap h2) `join` (mem_of_heap h'));
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2') | false |
Steel.Memory.fst | Steel.Memory.witnessed | val witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
: Type0 | val witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
: Type0 | let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 52,
"end_line": 1008,
"start_col": 0,
"start_line": 1004
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Memory.ref a pcm -> fact: Steel.Memory.property a -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.ref",
"Steel.Memory.property",
"FStar.Witnessed.Core.witnessed",
"Steel.Memory.full_mem",
"Steel.Memory.mem_evolves",
"Steel.Memory.witnessed_ref"
] | [] | false | false | false | false | true | let witnessed (#a: Type u#1) (#pcm: pcm a) (r: ref a pcm) (fact: property a) =
| W.witnessed _ mem_evolves (witnessed_ref r fact) | false |
Steel.Memory.fst | Steel.Memory.weaken_pure | val weaken_pure (q r: prop) : Lemma (requires (q ==> r)) (ensures H.stronger (H.pure q) (H.pure r)) | val weaken_pure (q r: prop) : Lemma (requires (q ==> r)) (ensures H.stronger (H.pure q) (H.pure r)) | let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
() | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 6,
"end_line": 872,
"start_col": 0,
"start_line": 862
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Prims.prop -> r: Prims.prop
-> FStar.Pervasives.Lemma (requires q ==> r)
(ensures Steel.Heap.stronger (Steel.Heap.pure q) (Steel.Heap.pure r)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.prop",
"Steel.Heap.heap",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Steel.Heap.interp",
"Steel.Heap.pure",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Steel.Heap.pure_interp",
"Steel.Heap.stronger"
] | [] | false | false | true | false | false | let weaken_pure (q r: prop) : Lemma (requires (q ==> r)) (ensures H.stronger (H.pure q) (H.pure r)) =
| let aux (h: H.heap) : Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h)) [SMTPat ()]
=
H.pure_interp q h;
H.pure_interp r h
in
() | false |
Steel.Memory.fst | Steel.Memory.witnessed_name_is_ok | val witnessed_name_is_ok : i: Steel.Memory.iname -> Type0 | let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 84,
"end_line": 1252,
"start_col": 0,
"start_line": 1252
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Steel.Memory.iname -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.iname",
"FStar.Witnessed.Core.witnessed",
"Steel.Memory.full_mem",
"Steel.Memory.mem_evolves",
"Steel.Memory.name_is_ok"
] | [] | false | false | false | true | true | let witnessed_name_is_ok (i: iname) =
| W.witnessed full_mem mem_evolves (name_is_ok i) | false |
|
Steel.Memory.fst | Steel.Memory.mprop_preservation_of_hprop_preservation | val mprop_preservation_of_hprop_preservation (p: slprop) (m0 m1: mem)
: Lemma (requires (forall (hp: H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp: mprop p). mp (core_mem m0) == mp (core_mem m1))) | val mprop_preservation_of_hprop_preservation (p: slprop) (m0 m1: mem)
: Lemma (requires (forall (hp: H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp: mprop p). mp (core_mem m0) == mp (core_mem m1))) | let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
() | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 8,
"end_line": 688,
"start_col": 0,
"start_line": 678
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop -> m0: Steel.Memory.mem -> m1: Steel.Memory.mem
-> FStar.Pervasives.Lemma
(requires
forall (hp: Steel.Heap.hprop p).
hp (Steel.Memory.heap_of_mem m0) == hp (Steel.Memory.heap_of_mem m1))
(ensures
forall (mp: Steel.Memory.mprop p).
mp (Steel.Memory.core_mem m0) == mp (Steel.Memory.core_mem m1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.mem",
"Steel.Memory.mprop",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.prop",
"Steel.Memory.core_mem",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Prims._assert",
"Steel.Memory.as_hprop",
"Steel.Memory.heap_of_mem",
"Prims.l_Forall",
"Steel.Heap.hprop"
] | [] | false | false | true | false | false | let mprop_preservation_of_hprop_preservation (p: slprop) (m0 m1: mem)
: Lemma (requires (forall (hp: H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp: mprop p). mp (core_mem m0) == mp (core_mem m1))) =
| let aux (mp: mprop p) : Lemma (mp (core_mem m0) == mp (core_mem m1)) [SMTPat ()] =
assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
() | false |
Steel.Memory.fst | Steel.Memory.upd_action | val upd_action (#a:Type u#1) (#pcm:_) (e:inames)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:a {FStar.PCM.frame_preserving pcm v0 v1 /\ pcm.refine v1})
: action_except unit e (pts_to r v0) (fun _ -> pts_to r v1) | val upd_action (#a:Type u#1) (#pcm:_) (e:inames)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:a {FStar.PCM.frame_preserving pcm v0 v1 /\ pcm.refine v1})
: action_except unit e (pts_to r v0) (fun _ -> pts_to r v1) | let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 71,
"end_line": 847,
"start_col": 0,
"start_line": 846
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
r: Steel.Memory.ref a pcm ->
v0: FStar.Ghost.erased a ->
v1: a{FStar.PCM.frame_preserving pcm (FStar.Ghost.reveal v0) v1 /\ Mkpcm?.refine pcm v1}
-> Steel.Memory.action_except Prims.unit
e
(Steel.Memory.pts_to r (FStar.Ghost.reveal v0))
(fun _ -> Steel.Memory.pts_to r v1) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"Steel.Memory.ref",
"FStar.Ghost.erased",
"Prims.l_and",
"FStar.PCM.frame_preserving",
"FStar.Ghost.reveal",
"FStar.PCM.__proj__Mkpcm__item__refine",
"Steel.Memory.lift_tot_action",
"Prims.unit",
"Steel.Heap.pts_to",
"Steel.Memory.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.upd_action",
"Steel.Memory.action_except",
"Steel.Memory.pts_to"
] | [] | false | false | false | false | false | let upd_action #a #pcm e r v0 v1 =
| lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1)) | false |
Steel.Memory.fst | Steel.Memory.inv | val inv (p:slprop u#1) : Type0 | val inv (p:slprop u#1) : Type0 | let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 77,
"end_line": 1256,
"start_col": 0,
"start_line": 1256
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.slprop",
"FStar.Pervasives.dtuple3",
"FStar.Ghost.erased",
"Steel.Memory.iname",
"Steel.Memory.witnessed_name_is_ok",
"FStar.Ghost.reveal",
"Steel.Memory.op_Greater_Subtraction_Subtraction_Greater"
] | [] | false | false | false | true | true | let inv (p: slprop u#1) =
| i: erased iname & witnessed_name_is_ok i & (i >--> p) | false |
Steel.Memory.fst | Steel.Memory.split_action | val split_action
(#a:Type u#1)
(#pcm:pcm a)
(e:inames)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a{composable pcm v0 v1})
: action_except unit e (pts_to r (v0 `op pcm` v1)) (fun _ -> pts_to r v0 `star` pts_to r v1) | val split_action
(#a:Type u#1)
(#pcm:pcm a)
(e:inames)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a{composable pcm v0 v1})
: action_except unit e (pts_to r (v0 `op pcm` v1)) (fun _ -> pts_to r v0 `star` pts_to r v1) | let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 73,
"end_line": 853,
"start_col": 0,
"start_line": 852
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
r: Steel.Memory.ref a pcm ->
v0: FStar.Ghost.erased a ->
v1:
FStar.Ghost.erased a
{FStar.PCM.composable pcm (FStar.Ghost.reveal v0) (FStar.Ghost.reveal v1)}
-> Steel.Memory.action_except Prims.unit
e
(Steel.Memory.pts_to r (FStar.PCM.op pcm (FStar.Ghost.reveal v0) (FStar.Ghost.reveal v1)))
(fun _ ->
Steel.Memory.star (Steel.Memory.pts_to r (FStar.Ghost.reveal v0))
(Steel.Memory.pts_to r (FStar.Ghost.reveal v1))) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"Steel.Memory.ref",
"FStar.Ghost.erased",
"FStar.PCM.composable",
"FStar.Ghost.reveal",
"Steel.Memory.lift_tot_action",
"Prims.unit",
"Steel.Heap.pts_to",
"FStar.PCM.op",
"Steel.Heap.star",
"Steel.Memory.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.split_action",
"Steel.Memory.action_except",
"Steel.Memory.pts_to",
"Steel.Memory.star"
] | [] | false | false | false | false | false | let split_action #a #pcm e r v0 v1 =
| lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1)) | false |
Steel.Memory.fst | Steel.Memory.free_action | val free_action (#a:Type u#1) (#pcm:pcm a) (e:inames)
(r:ref a pcm) (x:FStar.Ghost.erased a{FStar.PCM.exclusive pcm x /\ pcm.refine pcm.FStar.PCM.p.one})
: action_except unit e (pts_to r x) (fun _ -> pts_to r pcm.FStar.PCM.p.one) | val free_action (#a:Type u#1) (#pcm:pcm a) (e:inames)
(r:ref a pcm) (x:FStar.Ghost.erased a{FStar.PCM.exclusive pcm x /\ pcm.refine pcm.FStar.PCM.p.one})
: action_except unit e (pts_to r x) (fun _ -> pts_to r pcm.FStar.PCM.p.one) | let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 69,
"end_line": 850,
"start_col": 0,
"start_line": 849
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
r: Steel.Memory.ref a pcm ->
x:
FStar.Ghost.erased a
{ FStar.PCM.exclusive pcm (FStar.Ghost.reveal x) /\
Mkpcm?.refine pcm (Mkpcm'?.one (Mkpcm?.p pcm)) }
-> Steel.Memory.action_except Prims.unit
e
(Steel.Memory.pts_to r (FStar.Ghost.reveal x))
(fun _ -> Steel.Memory.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm))) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"Steel.Memory.ref",
"FStar.Ghost.erased",
"Prims.l_and",
"FStar.PCM.exclusive",
"FStar.Ghost.reveal",
"FStar.PCM.__proj__Mkpcm__item__refine",
"FStar.PCM.__proj__Mkpcm'__item__one",
"FStar.PCM.__proj__Mkpcm__item__p",
"Steel.Memory.lift_tot_action",
"Prims.unit",
"Steel.Heap.pts_to",
"Steel.Memory.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.free_action",
"Steel.Memory.action_except",
"Steel.Memory.pts_to"
] | [] | false | false | false | false | false | let free_action #a #pcm e r v0 =
| lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0)) | false |
Steel.Memory.fst | Steel.Memory.name_is_ok | val name_is_ok (i: iname) (m0: full_mem u#1) : prop | val name_is_ok (i: iname) (m0: full_mem u#1) : prop | let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 80,
"end_line": 1250,
"start_col": 0,
"start_line": 1250
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 ) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Steel.Memory.iname -> m0: Steel.Memory.full_mem -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.iname",
"Steel.Memory.full_mem",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"Steel.Memory.lock_state",
"Steel.Memory.__proj__Mkmem__item__locks",
"Prims.prop"
] | [] | false | false | false | true | true | let name_is_ok (i: iname) (m0: full_mem u#1) : prop =
| i < List.Tot.length m0.locks | false |
Steel.Memory.fst | Steel.Memory.name_of_pre_inv | val name_of_pre_inv (i:pre_inv) : GTot iname | val name_of_pre_inv (i:pre_inv) : GTot iname | let name_of_pre_inv (i:pre_inv) = dfst i | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 40,
"end_line": 1259,
"start_col": 0,
"start_line": 1259
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Steel.Memory.pre_inv -> Prims.GTot Steel.Memory.iname | Prims.GTot | [
"sometrivial"
] | [] | [
"Steel.Memory.pre_inv",
"FStar.Ghost.reveal",
"Steel.Memory.iname",
"FStar.Pervasives.dfst",
"FStar.Ghost.erased",
"Steel.Memory.witnessed_name_is_ok"
] | [] | false | false | false | false | false | let name_of_pre_inv (i: pre_inv) =
| dfst i | false |
Steel.Memory.fst | Steel.Memory.pre_inv_of_inv | val pre_inv_of_inv (#p:slprop) (i:inv p) : pre_inv | val pre_inv_of_inv (#p:slprop) (i:inv p) : pre_inv | let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 64,
"end_line": 1258,
"start_col": 0,
"start_line": 1258
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Steel.Memory.inv p -> Steel.Memory.pre_inv | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.inv",
"FStar.Ghost.erased",
"Steel.Memory.iname",
"Steel.Memory.witnessed_name_is_ok",
"FStar.Ghost.reveal",
"Steel.Memory.op_Greater_Subtraction_Subtraction_Greater",
"Prims.Mkdtuple2",
"Steel.Memory.pre_inv"
] | [] | false | false | false | false | false | let pre_inv_of_inv #p (i: inv p) =
| let (| i , w , _ |) = i in
(| i, w |) | false |
Steel.HigherReference.fst | Steel.HigherReference.atomic_read | val atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a)
(r:ref a)
: SteelAtomic a opened
(pts_to r p v)
(fun x -> pts_to r p x)
(requires fun h -> True)
(ensures fun _ x _ -> x == Ghost.reveal v) | val atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a)
(r:ref a)
: SteelAtomic a opened
(pts_to r p v)
(fun x -> pts_to r p x)
(requires fun h -> True)
(ensures fun _ x _ -> x == Ghost.reveal v) | let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 12,
"end_line": 173,
"start_col": 0,
"start_line": 160
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ref a -> Steel.Effect.Atomic.SteelAtomic a | Steel.Effect.Atomic.SteelAtomic | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.HigherReference.ref",
"Steel.Effect.Atomic.return",
"Steel.HigherReference.pts_to",
"Steel.Effect.Common.vprop",
"Prims.unit",
"Steel.Effect.Atomic.rewrite_slprop",
"FStar.Ghost.reveal",
"Steel.Memory.mem",
"Steel.PCMFrac.fractional",
"Prims._assert",
"FStar.PCM.compatible",
"Steel.PCMFrac.pcm_frac",
"Steel.PCMReference.pts_to",
"Steel.Memory.pure_star_interp",
"Steel.Effect.Common.hp_of",
"Steel.HigherReference.pts_to_raw",
"Steel.HigherReference.perm_ok",
"Steel.Memory.emp_unit",
"Steel.PCMReference.atomic_read",
"Steel.Effect.Atomic.elim_pure",
"Steel.Effect.Common.star",
"Steel.Effect.Common.pure",
"FStar.Ghost.hide",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2"
] | [] | false | true | false | false | false | let atomic_read (#opened: _) (#a: Type) (#p: perm) (#v: erased a) (r: ref a) =
| let v1:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) ((RP.pts_to r v1) `star` (pure (perm_ok p))) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1)
(pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x | false |
Steel.Memory.fst | Steel.Memory.lift_heap_action_with_frame | val lift_heap_action_with_frame
(#fp: slprop u#a)
(#a: Type u#b)
(#fp': (a -> slprop u#a))
(e: inames)
($f: H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp' | val lift_heap_action_with_frame
(#fp: slprop u#a)
(#a: Type u#b)
(#fp': (a -> slprop u#a))
(e: inames)
($f: H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp' | let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 15,
"end_line": 822,
"start_col": 0,
"start_line": 789
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Steel.Memory.inames -> $f: Steel.Heap.action_with_frame fp a fp'
-> Steel.Memory.tot_action_with_frame_except e fp a fp' | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.inames",
"Steel.Heap.action_with_frame",
"Steel.Memory.hmem_with_inv_except",
"Steel.Memory.star",
"Steel.Heap.full_hheap",
"Steel.Heap.star",
"Steel.Memory.locks_invariant",
"Prims.Mkdtuple2",
"Prims.unit",
"Prims._assert",
"Prims.l_Forall",
"Steel.Memory.mprop",
"Prims.eq2",
"Prims.prop",
"Steel.Memory.core_mem",
"Steel.Memory.mprop_preservation_of_hprop_preservation",
"Steel.Memory.mem_evolves",
"Steel.Memory.equiv",
"Steel.Memory.linv",
"Steel.Memory.hmem_of_hheap",
"Steel.Heap.interp",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Memory.star_associative",
"Prims.squash",
"Prims.dtuple2",
"Steel.Heap.hheap",
"Steel.Heap.free_above_addr",
"Steel.Memory.__proj__Mkmem__item__ctr",
"Steel.Memory.hheap_of_hmem",
"Steel.Memory.tot_action_with_frame_except"
] | [] | false | false | false | false | false | let lift_heap_action_with_frame
(#fp: slprop u#a)
(#a: Type u#b)
(#fp': (a -> slprop u#a))
(e: inames)
($f: H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp' =
| fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
(fp `star` frame) `star` (locks_invariant e m0);
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` (locks_invariant e m0));
};
assert (H.interp ((fp `star` frame) `star` (locks_invariant e m0)) h0);
assert (H.interp (fp `star` (frame `star` (locks_invariant e m0))) h0);
let (| x , h1 |) = f (frame `star` (locks_invariant e m0)) h0 in
calc (equiv) {
(fp' x) `star` (frame `star` (locks_invariant e m0));
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
((fp' x) `star` frame) `star` (locks_invariant e m0);
};
assert (H.interp ((fp' x) `star` (frame `star` (locks_invariant e m0))) h1);
assert (H.interp (((fp' x) `star` frame) `star` (locks_invariant e m0)) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` (locks_invariant e m0)) m0 m1;
assert (forall (mp: mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |) | false |
Steel.Memory.fst | Steel.Memory.select_refine | val select_refine (#a:Type u#1) (#p:pcm a)
(e:inames)
(r:ref a p)
(x:erased a)
(f:(v:a{compatible p x v}
-> GTot (y:a{compatible p y v /\
FStar.PCM.frame_compatible p x v y})))
: action_except (v:a{compatible p x v /\ p.refine v}) e
(pts_to r x)
(fun v -> pts_to r (f v)) | val select_refine (#a:Type u#1) (#p:pcm a)
(e:inames)
(r:ref a p)
(x:erased a)
(f:(v:a{compatible p x v}
-> GTot (y:a{compatible p y v /\
FStar.PCM.frame_compatible p x v y})))
: action_except (v:a{compatible p x v /\ p.refine v}) e
(pts_to r x)
(fun v -> pts_to r (f v)) | let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 70,
"end_line": 986,
"start_col": 0,
"start_line": 985
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
r: Steel.Memory.ref a p ->
x: FStar.Ghost.erased a ->
f:
(v: a{FStar.PCM.compatible p (FStar.Ghost.reveal x) v}
-> Prims.GTot (y: a{FStar.PCM.compatible p y v /\ FStar.PCM.frame_compatible p x v y}))
-> Steel.Memory.action_except (v:
a{FStar.PCM.compatible p (FStar.Ghost.reveal x) v /\ Mkpcm?.refine p v})
e
(Steel.Memory.pts_to r (FStar.Ghost.reveal x))
(fun v -> Steel.Memory.pts_to r (f v)) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"Steel.Memory.ref",
"FStar.Ghost.erased",
"FStar.PCM.compatible",
"FStar.Ghost.reveal",
"Prims.l_and",
"FStar.PCM.frame_compatible",
"Steel.Memory.lift_tot_action",
"FStar.PCM.__proj__Mkpcm__item__refine",
"Steel.Heap.pts_to",
"Steel.Memory.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.select_refine",
"Steel.Memory.action_except",
"Steel.Memory.pts_to"
] | [] | false | false | false | false | false | let select_refine #a #p e r x f =
| lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f)) | false |
Steel.Memory.fst | Steel.Memory.sel_action | val sel_action (#a:Type u#1) (#pcm:_) (e:inames) (r:ref a pcm) (v0:erased a)
: action_except (v:a{compatible pcm v0 v}) e (pts_to r v0) (fun _ -> pts_to r v0) | val sel_action (#a:Type u#1) (#pcm:_) (e:inames) (r:ref a pcm) (v0:erased a)
: action_except (v:a{compatible pcm v0 v}) e (pts_to r v0) (fun _ -> pts_to r v0) | let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 68,
"end_line": 844,
"start_col": 0,
"start_line": 843
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Steel.Memory.inames -> r: Steel.Memory.ref a pcm -> v0: FStar.Ghost.erased a
-> Steel.Memory.action_except (v: a{FStar.PCM.compatible pcm (FStar.Ghost.reveal v0) v})
e
(Steel.Memory.pts_to r (FStar.Ghost.reveal v0))
(fun _ -> Steel.Memory.pts_to r (FStar.Ghost.reveal v0)) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"Steel.Memory.ref",
"FStar.Ghost.erased",
"Steel.Memory.lift_tot_action",
"FStar.PCM.compatible",
"FStar.Ghost.reveal",
"Steel.Heap.pts_to",
"Steel.Memory.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.sel_action",
"Steel.Memory.action_except",
"Steel.Memory.pts_to"
] | [] | false | false | false | false | false | let sel_action #a #pcm e r v0 =
| lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0)) | false |
Steel.Memory.fst | Steel.Memory.pre_inv | val pre_inv : Type0 | val pre_inv : Type0 | let pre_inv = i:erased iname & witnessed_name_is_ok i | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 53,
"end_line": 1254,
"start_col": 0,
"start_line": 1254
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.dtuple2",
"FStar.Ghost.erased",
"Steel.Memory.iname",
"Steel.Memory.witnessed_name_is_ok",
"FStar.Ghost.reveal"
] | [] | false | false | false | true | true | let pre_inv =
| i: erased iname & witnessed_name_is_ok i | false |
Steel.Memory.fst | Steel.Memory.refined_pre_action_as_action | val refined_pre_action_as_action
(#fp0: slprop)
(#a: Type)
(#fp1: (a -> slprop))
(#e: _)
($f: refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1 | val refined_pre_action_as_action
(#fp0: slprop)
(#a: Type)
(#fp1: (a -> slprop))
(#e: _)
($f: refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1 | let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 938,
"start_col": 0,
"start_line": 919
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: Steel.Memory.refined_pre_action e fp0 a fp1 -> Steel.Memory.tot_action_nf_except e fp0 a fp1 | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.inames",
"Steel.Memory.refined_pre_action",
"Steel.Memory.hmem_with_inv_except",
"Steel.Memory.star",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Steel.Memory.interp",
"Steel.Memory.locks_invariant",
"Steel.Memory.mem_evolves",
"Prims.l_Forall",
"Steel.Memory.mprop",
"Prims.eq2",
"Prims.prop",
"Steel.Memory.core_mem",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Prims._assert",
"Steel.Memory.full_mem",
"Prims.l_or",
"Steel.Memory.inames_ok",
"Prims.dtuple2",
"Steel.Memory.ac_reasoning_for_m_frame_preserving",
"Steel.Memory.tot_pre_action_nf_except",
"Steel.Memory.tot_action_nf_except"
] | [] | false | false | false | false | false | let refined_pre_action_as_action
(#fp0: slprop)
(#a: Type)
(#fp1: (a -> slprop))
#e
($f: refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1 =
| let g:tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame: slprop) (m0: hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x , m1 |) = g m0 in
interp (((fp1 x) `star` frame) `star` (locks_invariant e m1)) m1 /\ mem_evolves m0 m1 /\
(forall (mp: mprop frame). mp (core_mem m0) == mp (core_mem m1)))) [SMTPat ()] =
ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x' , m1' |) = g m0 in
let (| x , m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g | false |
Steel.Memory.fst | Steel.Memory.inc_ctr | val inc_ctr (#p: slprop) (#e: _) (m: hmem_with_inv_except e p)
: m': hmem_with_inv_except e p {m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')} | val inc_ctr (#p: slprop) (#e: _) (m: hmem_with_inv_except e p)
: m': hmem_with_inv_except e p {m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')} | let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m' | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 6,
"end_line": 902,
"start_col": 0,
"start_line": 874
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
() | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Steel.Memory.hmem_with_inv_except e p
-> m':
Steel.Memory.hmem_with_inv_except e p
{ Mkmem?.ctr m' = Mkmem?.ctr m + 1 /\
Steel.Heap.stronger (Steel.Memory.linv e m) (Steel.Memory.linv e m') } | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.inames",
"Steel.Memory.hmem_with_inv_except",
"Prims.unit",
"Steel.Heap.star_associative",
"Steel.Memory.lock_store_invariant",
"Steel.Memory.__proj__Mkmem__item__locks",
"Steel.Memory.ctr_validity",
"Prims.op_Addition",
"Steel.Memory.__proj__Mkmem__item__ctr",
"Steel.Memory.heap_of_mem",
"Steel.Heap.weaken",
"Steel.Memory.star",
"Steel.Heap.stronger_star",
"Prims._assert",
"Steel.Heap.stronger",
"Steel.Memory.weaken_pure",
"Steel.Memory.heap_ctr_valid",
"Steel.Heap.weaken_free_above",
"Prims.eq2",
"Steel.Memory.linv",
"Steel.Memory.interp",
"Steel.Memory.mem",
"Steel.Memory.Mkmem",
"Steel.Memory.__proj__Mkmem__item__heap",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int"
] | [] | false | false | false | false | false | let inc_ctr (#p: slprop) #e (m: hmem_with_inv_except e p)
: m': hmem_with_inv_except e p {m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')} =
| let m':mem = { m with ctr = m.ctr + 1 } in
assert (interp (p `star` (linv e m)) m');
assert (linv e m == (lock_store_invariant e m.locks) `star` (ctr_validity m.ctr (heap_of_mem m)));
assert (linv e m' ==
(lock_store_invariant e m.locks)
`star`
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger (ctr_validity m.ctr (heap_of_mem m)) (ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` (lock_store_invariant e m.locks))
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks) (ctr_validity (m.ctr + 1) (heap_of_mem m));
let m':hmem_with_inv_except e p = m' in
m' | false |
Steel.Memory.fst | Steel.Memory.weaken | val weaken (p q r: slprop) (h: H.hheap (p `star` q) {H.stronger q r}) : H.hheap (p `star` r) | val weaken (p q r: slprop) (h: H.hheap (p `star` q) {H.stronger q r}) : H.hheap (p `star` r) | let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 860,
"start_col": 0,
"start_line": 858
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Steel.Memory.slprop ->
q: Steel.Memory.slprop ->
r: Steel.Memory.slprop ->
h: Steel.Heap.hheap (Steel.Memory.star p q) {Steel.Heap.stronger q r}
-> Steel.Heap.hheap (Steel.Memory.star p r) | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.slprop",
"Steel.Heap.hheap",
"Steel.Memory.star",
"Steel.Heap.stronger",
"Prims.unit",
"Steel.Heap.weaken"
] | [] | false | false | false | false | false | let weaken (p q r: slprop) (h: H.hheap (p `star` q) {H.stronger q r}) : H.hheap (p `star` r) =
| H.weaken p q r h;
h | false |
Steel.Memory.fst | Steel.Memory.lift_heap_action | val lift_heap_action
(#fp: slprop)
(#a: Type)
(#fp': (a -> slprop))
(e: inames)
($f: H.action fp a fp')
: tot_action_nf_except e fp a fp' | val lift_heap_action
(#fp: slprop)
(#a: Type)
(#fp': (a -> slprop))
(e: inames)
($f: H.action fp a fp')
: tot_action_nf_except e fp a fp' | let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 727,
"start_col": 0,
"start_line": 690
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
() | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Steel.Memory.inames -> $f: Steel.Heap.action fp a fp'
-> Steel.Memory.tot_action_nf_except e fp a fp' | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.inames",
"Steel.Heap.action",
"Prims.unit",
"Prims._assert",
"Steel.Memory.is_frame_preserving",
"Steel.Memory.hmem_with_inv_except",
"Steel.Memory.star",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Steel.Memory.interp",
"Steel.Memory.locks_invariant",
"Steel.Memory.mem_evolves",
"Prims.l_Forall",
"Steel.Memory.mprop",
"Prims.eq2",
"Prims.prop",
"Steel.Memory.core_mem",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Steel.Heap.full_hheap",
"Steel.Memory.mprop_preservation_of_hprop_preservation",
"Steel.Heap.hprop",
"Steel.Memory.with_inv_except",
"Steel.Memory.full_mem",
"Prims.l_or",
"Steel.Memory.inames_ok",
"Steel.Memory.equiv",
"Steel.Memory.linv",
"Steel.Memory.hmem_of_hheap",
"Steel.Heap.hheap",
"Steel.Heap.interp",
"Steel.Memory.star_associative",
"Steel.Heap.action_framing",
"Prims.dtuple2",
"Steel.Heap.free_above_addr",
"Steel.Memory.__proj__Mkmem__item__ctr",
"Steel.Memory.hheap_of_hmem",
"Steel.Memory.ac_reasoning_for_m_frame_preserving",
"Steel.Memory.tot_pre_action_nf_except",
"Prims.Mkdtuple2",
"Steel.Memory.tot_action_nf_except"
] | [] | false | false | false | false | false | let lift_heap_action
(#fp: slprop)
(#a: Type)
(#fp': (a -> slprop))
(e: inames)
($f: H.action fp a fp')
: tot_action_nf_except e fp a fp' =
| let g:tot_pre_action_nf_except e fp a fp' =
fun m ->
let h0 = hheap_of_hmem m in
let (| x , h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame: slprop) (m0: hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x , m1 |) = g m0 in
interp (((fp' x) `star` frame) `star` (locks_invariant e m1)) m1 /\ mem_evolves m0 m1 /\
(forall (mp: mprop frame). mp (core_mem m0) == mp (core_mem m1)))) [SMTPat ()] =
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x , m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x' , h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` (linv e m0)) h0;
assert (H.interp ((fp' x) `star` (frame `star` (linv e m0))) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp (((fp' x) `star` frame) `star` (linv e m0)) h1);
let h1':H.hheap (((fp' x) `star` frame) `star` (linv e m0)) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e ((fp' x) `star` frame));
assert (forall (hp: H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g | false |
Hacl.Spec.Poly1305.Field32xN.Lemmas.fst | Hacl.Spec.Poly1305.Field32xN.Lemmas.load_felem5_le | val load_felem5_le: b:lseq uint8 64 -> Lemma
(let lo0 = vec_from_bytes_le U64 4 (sub b 0 32) in
let hi0 = vec_from_bytes_le U64 4 (sub b 32 32) in
let f = load_felem5_4 lo0 hi0 in
felem_fits5 f (1, 1, 1, 1, 1) /\
felem_less5 f (pow2 128) /\
feval5 f == Vec.load_elem4 b) | val load_felem5_le: b:lseq uint8 64 -> Lemma
(let lo0 = vec_from_bytes_le U64 4 (sub b 0 32) in
let hi0 = vec_from_bytes_le U64 4 (sub b 32 32) in
let f = load_felem5_4 lo0 hi0 in
felem_fits5 f (1, 1, 1, 1, 1) /\
felem_less5 f (pow2 128) /\
feval5 f == Vec.load_elem4 b) | let load_felem5_le b =
let lo0 = vec_from_bytes_le U64 4 (sub b 0 32) in
let hi0 = vec_from_bytes_le U64 4 (sub b 32 32) in
let lo1 = vec_interleave_low_n 2 lo0 hi0 in
let hi1 = vec_interleave_high_n 2 lo0 hi0 in
let lo = vec_interleave_low lo1 hi1 in
let hi = vec_interleave_high lo1 hi1 in
let out = load_felem5_4_compact lo hi in
load_felem5_4_interleave lo0 hi0;
assert (out == load_felem5_4 lo0 hi0);
load_felem5_4_lemma lo hi;
Hacl.Impl.Poly1305.Lemmas.uints_from_bytes_le_lemma64_4 b;
eq_intro (feval5 out) (Vec.load_elem4 b) | {
"file_name": "code/poly1305/Hacl.Spec.Poly1305.Field32xN.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 764,
"start_col": 0,
"start_line": 750
} | module Hacl.Spec.Poly1305.Field32xN.Lemmas
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open FStar.Mul
open Hacl.Spec.Poly1305.Field32xN
open Hacl.Poly1305.Field32xN.Lemmas0
open Hacl.Poly1305.Field32xN.Lemmas1
open Hacl.Poly1305.Field32xN.Lemmas2
module Vec = Hacl.Spec.Poly1305.Vec
#set-options "--z3rlimit 100 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --using_facts_from '* -FStar.Seq'"
val lemma_feval_is_fas_nat_i:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)}
-> i:size_nat{i < w} ->
Lemma ((feval5 f).[i] == (fas_nat5 f).[i])
let lemma_feval_is_fas_nat_i #w f i =
assert_norm (pow2 128 < Vec.prime);
assert ((feval5 f).[i] == (as_nat5 (transpose f).[i]) % Vec.prime);
FStar.Math.Lemmas.modulo_lemma (as_nat5 (transpose f).[i]) Vec.prime
val lemma_feval_is_fas_nat:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)} ->
Lemma (forall (i:nat). i < w ==> (fas_nat5 f).[i] == (feval5 f).[i])
let lemma_feval_is_fas_nat #w f =
FStar.Classical.forall_intro (lemma_feval_is_fas_nat_i #w f)
val precomp_r5_fits_lemma:
#w:lanes
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (5, 5, 5, 5, 5))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_fits_lemma2:
#w:lanes
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (10, 10, 10, 10, 10))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma2 #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_zeros: w:lanes -> Lemma
(let r = (zero w, zero w, zero w, zero w, zero w) in
precomp_r5 r == (zero w, zero w, zero w, zero w, zero w))
let precomp_r5_zeros w =
let r = (zero w, zero w, zero w, zero w, zero w) in
let (r0, r1, r2, r3, r4) = precomp_r5 r in
let aux (i:nat{i < w}) : Lemma ((vec_v (vec_smul_mod (zero w) (u64 5))).[i] == u64 0) = () in
Classical.forall_intro aux;
eq_intro (vec_v (vec_smul_mod (zero w) (u64 5))) (vec_v (zero w));
vecv_extensionality (vec_smul_mod (zero w) (u64 5)) (zero w)
val fadd5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (felem_fits5 (fadd5 f1 f2) (3,3,3,3,3))
[SMTPat (fadd5 f1 f2)]
let fadd5_fits_lemma #w f1 f2 =
let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o = fadd5 f1 f2 in
vec_add_mod_lemma f10 f20;
vec_add_mod_lemma f11 f21;
vec_add_mod_lemma f12 f22;
vec_add_mod_lemma f13 f23;
vec_add_mod_lemma f14 f24
val fadd5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (feval5 (fadd5 f1 f2) == map2 Vec.pfadd (feval5 f1) (feval5 f2))
[SMTPat (fadd5 f1 f2)]
let fadd5_eval_lemma #w f1 f2 =
let o = fadd5 f1 f2 in
FStar.Classical.forall_intro (fadd5_eval_lemma_i f1 f2);
eq_intro (feval5 o) (map2 Vec.pfadd (feval5 f1) (feval5 f2))
val mul_felem5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_wide_fits5 (mul_felem5 #w f1 r r5) (126, 102, 78, 54, 30))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_fits_lemma #w f1 r r5 =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34)
val mul_felem5_eval_lemma_i:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r}
-> i:nat{i < w} ->
Lemma ((feval5 (mul_felem5 #w f1 r r5)).[i] == (feval5 f1).[i] `Vec.pfmul` (feval5 r).[i])
let mul_felem5_eval_lemma_i #w f1 r r5 i =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_eval_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
assert ((fas_nat5 (a0,a1,a2,a3,a4)).[i] == (uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i]);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_eval_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
assert ((fas_nat5 (a10,a11,a12,a13,a14)).[i] == (fas_nat5 (a0,a1,a2,a3,a4)).[i] + (uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i]);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_eval_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
assert ((fas_nat5 (a20,a21,a22,a23,a24)).[i] == (fas_nat5 (a10,a11,a12,a13,a14)).[i] + (uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i]);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
assert ((fas_nat5 (a30,a31,a32,a33,a34)).[i] == (fas_nat5 (a20,a21,a22,a23,a24)).[i] + (uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i]);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] == (fas_nat5 (a30,a31,a32,a33,a34)).[i] + (uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] ==
(uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i] +
(uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i] +
(uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i] +
(uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i] +
(uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
mul_felem5_eval_as_tup64 #w f1 r r5 i;
mul_felem5_lemma (as_tup64_i f1 i) (as_tup64_i r i)
val mul_felem5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (mul_felem5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_eval_lemma #w f1 r r5 =
let tmp = map2 (Vec.pfmul) (feval5 f1) (feval5 r) in
FStar.Classical.forall_intro (mul_felem5_eval_lemma_i #w f1 r r5);
eq_intro (feval5 (mul_felem5 #w f1 r r5)) tmp
val fmul_r5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_fits5 (fmul_r5 #w f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_fits_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_fits_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fmul_r5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fmul_r5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_eval_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_eval_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val fadd_mul_r5_fits_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5)} ->
Lemma (felem_fits5 (fadd_mul_r5 acc f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_fits_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_fits_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_fits_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fadd_mul_r5_eval_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fadd_mul_r5 acc f1 r r5) ==
map2 (Vec.pfmul) (map2 (Vec.pfadd) (feval5 acc) (feval5 f1)) (feval5 r))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_eval_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_eval_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_eval_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val reduce_felem5_eval_lemma:
#w:lanes
-> f:felem5 w{felem_fits5 f (2, 2, 2, 2, 2)} ->
Lemma
(felem_fits5 (reduce_felem5 f) (1, 1, 1, 1, 1) /\
(feval5 f).[0] == (fas_nat5 (reduce_felem5 f)).[0])
[SMTPat (reduce_felem5 f)]
let reduce_felem5_eval_lemma #w f =
carry_full_felem5_eval_lemma f;
carry_full_felem5_fits_lemma f;
let f = carry_full_felem5 f in
carry_reduce_felem5_lemma #w f;
subtract_p5_felem5_lemma #w (carry_full_felem5 f)
val fmul_r2_normalize50:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures fun a ->
let fr21 = create2 (feval5 r2).[0] (feval5 r).[0] in
feval5 a == Vec.fmul (feval5 acc) fr21 /\
felem_fits5 a (1, 2, 1, 1, 2))
let fmul_r2_normalize50 (a0, a1, a2, a3, a4) (r0, r1, r2, r3, r4) (r20, r21, r22, r23, r24) =
let r210 = vec_interleave_low r20 r0 in
vec_interleave_low_lemma2 r20 r0;
let r211 = vec_interleave_low r21 r1 in
vec_interleave_low_lemma2 r21 r1;
let r212 = vec_interleave_low r22 r2 in
vec_interleave_low_lemma2 r22 r2;
let r213 = vec_interleave_low r23 r3 in
vec_interleave_low_lemma2 r23 r3;
let r214 = vec_interleave_low r24 r4 in
vec_interleave_low_lemma2 r24 r4;
let acc = (a0, a1, a2, a3, a4) in
let fr = (r0, r1, r2, r3, r4) in
let fr2 = (r20, r21, r22, r23, r24) in
assert ((feval5 fr2).[0] == Vec.pfmul ((feval5 fr).[0]) ((feval5 fr).[0]));
let fr21 = (r210, r211, r212, r213, r214) in
eq_intro (feval5 fr21) (create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (feval5 fr21 == create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (felem_fits5 fr21 (2, 2, 2, 2, 2));
let fr215 = precomp_r5 #2 fr21 in
let a = fmul_r5 #2 acc fr21 fr215 in
fmul_r5_eval_lemma acc fr21 fr215;
fmul_r5_fits_lemma acc fr21 fr215;
assert (feval5 a == Vec.fmul (feval5 acc) (feval5 fr21));
assert (felem_fits5 a (1, 2, 1, 1, 2));
a
#push-options "--z3rlimit 150"
val fmul_r2_normalize51:
a:felem5 2
-> fa1:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 a (1, 2, 1, 1, 2) /\
felem_fits5 fa1 (1, 2, 1, 1, 2) /\
feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1])
(ensures fun out ->
(feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1] /\
felem_fits5 out (2, 4, 2, 2, 4))
let fmul_r2_normalize51 a fa1 =
let (a0, a1, a2, a3, a4) = a in
let (a10, a11, a12, a13, a14) = fa1 in
let o0 = vec_add_mod a0 a10 in
let o1 = vec_add_mod a1 a11 in
let o2 = vec_add_mod a2 a12 in
let o3 = vec_add_mod a3 a13 in
let o4 = vec_add_mod a4 a14 in
let out = (o0, o1, o2, o3, o4) in
let (a0, a1, a2, a3, a4) = as_tup64_i a 0 in
let (a10, a11, a12, a13, a14) = as_tup64_i fa1 0 in
let (o0, o1, o2, o3, o4) = as_tup64_i out 0 in
FStar.Math.Lemmas.modulo_lemma (v a0 + v a10) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a1 + v a11) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a2 + v a12) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a3 + v a13) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a4 + v a14) (pow2 64);
assert (felem_fits5 out (2, 4, 2, 2, 4));
calc (==) {
((feval5 a).[0] + (feval5 a).[1]) % Vec.prime;
(==) { }
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime + as_nat5 (a10, a11, a12, a13, a14) % Vec.prime) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (a0, a1, a2, a3, a4)) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime }
(as_nat5 (a0, a1, a2, a3, a4) + as_nat5 (a10, a11, a12, a13, a14)) % Vec.prime;
(==) { }
(feval5 out).[0];
};
out
#pop-options
val fmul_r2_normalize5_lemma:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures
(let out = fmul_r2_normalize5 acc r r2 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_2 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r2_normalize5 acc r r2)]
let fmul_r2_normalize5_lemma acc r r2 =
let a = fmul_r2_normalize50 acc r r2 in
let (a0, a1, a2, a3, a4) = a in
let a10 = vec_interleave_high a0 a0 in
vec_interleave_high_lemma2 a0 a0;
let a11 = vec_interleave_high a1 a1 in
vec_interleave_high_lemma2 a1 a1;
let a12 = vec_interleave_high a2 a2 in
vec_interleave_high_lemma2 a2 a2;
let a13 = vec_interleave_high a3 a3 in
vec_interleave_high_lemma2 a3 a3;
let a14 = vec_interleave_high a4 a4 in
vec_interleave_high_lemma2 a4 a4;
let fa1 = (a10, a11, a12, a13, a14) in
eq_intro (feval5 fa1) (create2 (feval5 a).[1] (feval5 a).[1]);
assert (feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1]);
assert (felem_fits5 fa1 (1, 2, 1, 1, 2));
let out = fmul_r2_normalize51 a fa1 in
assert ((feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1]);
let res = carry_full_felem5 out in
carry_full_felem5_lemma out
val fmul_r4_normalize50:
acc:felem5 4
-> r:felem5 4
-> r2:felem5 4
-> r3:felem5 4
-> r4:felem5 4 ->
Pure (felem5 4)
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
felem_fits5 r3 (2, 2, 2, 2, 2) /\
felem_fits5 r4 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.fmul (feval5 r) (feval5 r) /\
feval5 r3 == Vec.fmul (feval5 r2) (feval5 r) /\
feval5 r4 == Vec.compute_r4 (feval5 r).[0])
(ensures fun out ->
let fr4321 = create4 (feval5 r4).[0] (feval5 r3).[0] (feval5 r2).[0] (feval5 r).[0] in
feval5 out == Vec.fmul (feval5 acc) fr4321 /\
felem_fits5 out (1, 2, 1, 1, 2))
let fmul_r4_normalize50 acc fr fr2 fr3 fr4 =
let (r10, r11, r12, r13, r14) = fr in
let (r20, r21, r22, r23, r24) = fr2 in
let (r30, r31, r32, r33, r34) = fr3 in
let (r40, r41, r42, r43, r44) = fr4 in
let (a0, a1, a2, a3, a4) = acc in
let v12120 = vec_interleave_low r20 r10 in
vec_interleave_low_lemma_uint64_4 r20 r10;
let v34340 = vec_interleave_low r40 r30 in
vec_interleave_low_lemma_uint64_4 r40 r30;
let r12340 = vec_interleave_low_n 2 v34340 v12120 in
vec_interleave_low_n_lemma_uint64_4_2 v34340 v12120;
let v12121 = vec_interleave_low r21 r11 in
vec_interleave_low_lemma_uint64_4 r21 r11;
let v34341 = vec_interleave_low r41 r31 in
vec_interleave_low_lemma_uint64_4 r41 r31;
let r12341 = vec_interleave_low_n 2 v34341 v12121 in
vec_interleave_low_n_lemma_uint64_4_2 v34341 v12121;
let v12122 = vec_interleave_low r22 r12 in
vec_interleave_low_lemma_uint64_4 r22 r12;
let v34342 = vec_interleave_low r42 r32 in
vec_interleave_low_lemma_uint64_4 r42 r32;
let r12342 = vec_interleave_low_n 2 v34342 v12122 in
vec_interleave_low_n_lemma_uint64_4_2 v34342 v12122;
let v12123 = vec_interleave_low r23 r13 in
vec_interleave_low_lemma_uint64_4 r23 r13;
let v34343 = vec_interleave_low r43 r33 in
vec_interleave_low_lemma_uint64_4 r43 r33;
let r12343 = vec_interleave_low_n 2 v34343 v12123 in
vec_interleave_low_n_lemma_uint64_4_2 v34343 v12123;
let v12124 = vec_interleave_low r24 r14 in
vec_interleave_low_lemma_uint64_4 r24 r14;
let v34344 = vec_interleave_low r44 r34 in
vec_interleave_low_lemma_uint64_4 r44 r34;
let r12344 = vec_interleave_low_n 2 v34344 v12124 in
vec_interleave_low_n_lemma_uint64_4_2 v34344 v12124;
let fr1234 = (r12340, r12341, r12342, r12343, r12344) in
eq_intro (feval5 fr1234) (create4 (feval5 fr4).[0] (feval5 fr3).[0] (feval5 fr2).[0] (feval5 fr).[0]);
let fr12345 = precomp_r5 #4 fr1234 in
let out = fmul_r5 #4 acc fr1234 fr12345 in
fmul_r5_eval_lemma acc fr1234 fr12345;
fmul_r5_fits_lemma acc fr1234 fr12345;
out
val lemma_fmul_r4_normalize51:
#m:scale32{m <= 2}
-> o:uint64xN 4{felem_fits1 o m} ->
Lemma
(let v00 = vec_interleave_high_n 2 o o in
let v10 = vec_add_mod o v00 in
let v10h = vec_interleave_high v10 v10 in
let v20 = vec_add_mod v10 v10h in
felem_fits1 v20 (4 * m) /\
(uint64xN_v v20).[0] == (uint64xN_v o).[0] + (uint64xN_v o).[1] + (uint64xN_v o).[2] + (uint64xN_v o).[3])
let lemma_fmul_r4_normalize51 #m o =
let v00 = vec_interleave_high_n 2 o o in
vec_interleave_high_n_lemma_uint64_4_2 o o;
let (o0, o1, o2, o3) = ((vec_v o).[0], (vec_v o).[1], (vec_v o).[2], (vec_v o).[3]) in
assert (vec_v v00 == create4 o2 o3 o2 o3);
let v10 = vec_add_mod o v00 in
FStar.Math.Lemmas.modulo_lemma (v o0 + v o2) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v o1 + v o3) (pow2 64);
assert (v (vec_v v10).[0] == v o0 + v o2);
assert (v (vec_v v10).[1] == v o1 + v o3);
let v10h = vec_interleave_high v10 v10 in
vec_interleave_high_lemma_uint64_4 v10 v10;
assert (v (vec_v v10h).[0] == v (vec_v v10).[1]);
let v20 = vec_add_mod v10 v10h in
FStar.Math.Lemmas.modulo_lemma (v o0 + v o2 + v o1 + v o3) (pow2 64)
val lemma_fmul_r4_normalize51_expand:
v2:felem5 4
-> out:felem5 4 ->
Lemma
(requires
(let (v20, v21, v22, v23, v24) = v2 in
let (o0, o1, o2, o3, o4) = out in
(uint64xN_v v20).[0] == (uint64xN_v o0).[0] + (uint64xN_v o0).[1] + (uint64xN_v o0).[2] + (uint64xN_v o0).[3] /\
(uint64xN_v v21).[0] == (uint64xN_v o1).[0] + (uint64xN_v o1).[1] + (uint64xN_v o1).[2] + (uint64xN_v o1).[3] /\
(uint64xN_v v22).[0] == (uint64xN_v o2).[0] + (uint64xN_v o2).[1] + (uint64xN_v o2).[2] + (uint64xN_v o2).[3] /\
(uint64xN_v v23).[0] == (uint64xN_v o3).[0] + (uint64xN_v o3).[1] + (uint64xN_v o3).[2] + (uint64xN_v o3).[3] /\
(uint64xN_v v24).[0] == (uint64xN_v o4).[0] + (uint64xN_v o4).[1] + (uint64xN_v o4).[2] + (uint64xN_v o4).[3]))
(ensures
(let (v20, v21, v22, v23, v24) = v2 in
let (o0, o1, o2, o3, o4) = out in
(feval5 v2).[0] == Vec.pfadd (Vec.pfadd (Vec.pfadd (feval5 out).[0] (feval5 out).[1]) (feval5 out).[2]) (feval5 out).[3]))
let lemma_fmul_r4_normalize51_expand v2 out =
let (v20, v21, v22, v23, v24) = as_tup64_i v2 0 in
let (o0, o1, o2, o3, o4) = out in
calc (==) {
as_nat5 (v20, v21, v22, v23, v24) % Vec.prime;
(==) { }
(as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1) + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1))
(as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) Vec.prime }
((as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1)) % Vec.prime + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.modulo_distributivity (as_nat5 (as_tup64_i out 0)) (as_nat5 (as_tup64_i out 1)) Vec.prime }
(((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l (((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2))
(as_nat5 (as_tup64_i out 3)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2)) % Vec.prime + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (((feval5 out).[0] + (feval5 out).[1]) % Vec.prime) (as_nat5 (as_tup64_i out 2)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r ((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime)
(as_nat5 (as_tup64_i out 3)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + (feval5 out).[3]) % Vec.prime;
};
assert ((feval5 v2).[0] ==
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + (feval5 out).[3]) % Vec.prime)
val fmul_r4_normalize51: a:felem5 4 ->
Pure (felem5 4)
(requires felem_fits5 a (1, 2, 1, 1, 2))
(ensures fun res ->
felem_fits5 res (4, 8, 4, 4, 8) /\
(feval5 res).[0] == Vec.pfadd (Vec.pfadd (Vec.pfadd (feval5 a).[0] (feval5 a).[1]) (feval5 a).[2]) (feval5 a).[3])
let fmul_r4_normalize51 fa =
let (o0, o1, o2, o3, o4) = fa in
let v00 = vec_interleave_high_n 2 o0 o0 in
let v10 = vec_add_mod o0 v00 in
let v10h = vec_interleave_high v10 v10 in
let v20 = vec_add_mod v10 v10h in
lemma_fmul_r4_normalize51 #1 o0;
let v01 = vec_interleave_high_n 2 o1 o1 in
let v11 = vec_add_mod o1 v01 in
let v11h = vec_interleave_high v11 v11 in
let v21 = vec_add_mod v11 v11h in
lemma_fmul_r4_normalize51 #2 o1;
let v02 = vec_interleave_high_n 2 o2 o2 in
let v12 = vec_add_mod o2 v02 in
let v12h = vec_interleave_high v12 v12 in
let v22 = vec_add_mod v12 v12h in
lemma_fmul_r4_normalize51 #1 o2;
let v03 = vec_interleave_high_n 2 o3 o3 in
let v13 = vec_add_mod o3 v03 in
let v13h = vec_interleave_high v13 v13 in
let v23 = vec_add_mod v13 v13h in
lemma_fmul_r4_normalize51 #1 o3;
let v04 = vec_interleave_high_n 2 o4 o4 in
let v14 = vec_add_mod o4 v04 in
let v14h = vec_interleave_high v14 v14 in
let v24 = vec_add_mod v14 v14h in
lemma_fmul_r4_normalize51 #2 o4;
let res = (v20, v21, v22, v23, v24) in
lemma_fmul_r4_normalize51_expand res fa;
res
val fmul_r4_normalize5_lemma:
acc:felem5 4
-> r:felem5 4
-> r_5:felem5 4
-> r4:felem5 4 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r4 (2, 2, 2, 2, 2) /\
r_5 == precomp_r5 r /\
feval5 r4 == Vec.compute_r4 (feval5 r).[0])
(ensures
(let out = fmul_r4_normalize5 acc r r_5 r4 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_4 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r4_normalize5 acc r r_5 r4)]
#restart-solver
#push-options "--z3rlimit 500"
let fmul_r4_normalize5_lemma acc fr fr_5 fr4 =
let fr2 = fmul_r5 #4 fr fr fr_5 in
let fr3 = fmul_r5 #4 fr2 fr fr_5 in
let out = fmul_r4_normalize50 acc fr fr2 fr3 fr4 in
let v2 = fmul_r4_normalize51 out in
let res = carry_full_felem5 v2 in
carry_full_felem5_lemma v2
#pop-options
val load_felem5_lemma:
#w:lanes
-> lo:uint64xN w
-> hi:uint64xN w ->
Lemma
(let f = load_felem5 #w lo hi in
felem_fits5 f (1, 1, 1, 1, 1) /\
felem_less5 f (pow2 128) /\
feval5 f == createi #Vec.pfelem w
(fun i -> (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]))
let load_felem5_lemma #w lo hi =
let f = load_felem5 #w lo hi in
assert_norm (pow2 64 * pow2 64 = pow2 128);
assert_norm (pow2 128 < Vec.prime);
let res = createi #Vec.pfelem w
(fun i -> (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) in
match w with
| 1 ->
load_felem5_lemma_i #w lo hi 0;
eq_intro (feval5 f) res
| 2 ->
load_felem5_lemma_i #w lo hi 0;
load_felem5_lemma_i #w lo hi 1;
eq_intro (feval5 f) res
| 4 ->
load_felem5_lemma_i #w lo hi 0;
load_felem5_lemma_i #w lo hi 1;
load_felem5_lemma_i #w lo hi 2;
load_felem5_lemma_i #w lo hi 3;
eq_intro (feval5 f) res
val load_felem5_4_interleave: lo:uint64xN 4 -> hi:uint64xN 4 -> Lemma
(let m0 = vec_interleave_low_n 2 lo hi in
let m1 = vec_interleave_high_n 2 lo hi in
let m2 = cast U64 4 (vec_shift_right (cast U128 2 m0) 48ul) in
let m3 = cast U64 4 (vec_shift_right (cast U128 2 m1) 48ul) in
let m4 = vec_interleave_high m0 m1 in
let t0 = vec_interleave_low m0 m1 in
let t3 = vec_interleave_low m2 m3 in
vec_v m4 == create4 (vec_v lo).[1] (vec_v lo).[3] (vec_v hi).[1] (vec_v hi).[3] /\
vec_v t0 == create4 (vec_v lo).[0] (vec_v lo).[2] (vec_v hi).[0] (vec_v hi).[2] /\
t3 == vec_or (vec_shift_right t0 48ul) (vec_shift_left m4 16ul))
let load_felem5_4_interleave lo hi =
let m0 = vec_interleave_low_n 2 lo hi in
vec_interleave_low_n_lemma_uint64_4_2 lo hi;
//assert (vec_v m0 == create4 (vec_v lo).[0] (vec_v lo).[1] (vec_v hi).[0] (vec_v hi).[1]);
let m1 = vec_interleave_high_n 2 lo hi in
vec_interleave_high_n_lemma_uint64_4_2 lo hi;
//assert (vec_v m1 == create4 (vec_v lo).[2] (vec_v lo).[3] (vec_v hi).[2] (vec_v hi).[3]);
let m4 = vec_interleave_high m0 m1 in
vec_interleave_high_lemma_uint64_4 m0 m1;
//assert (vec_v m4 == create4 (vec_v m0).[1] (vec_v m1).[1] (vec_v m0).[3] (vec_v m1).[3]);
assert (vec_v m4 == create4 (vec_v lo).[1] (vec_v lo).[3] (vec_v hi).[1] (vec_v hi).[3]);
let t0 = vec_interleave_low m0 m1 in
vec_interleave_low_lemma_uint64_4 m0 m1;
//assert (vec_v t0 == create4 (vec_v m0).[0] (vec_v m1).[0] (vec_v m0).[2] (vec_v m1).[2]);
assert (vec_v t0 == create4 (vec_v lo).[0] (vec_v lo).[2] (vec_v hi).[0] (vec_v hi).[2]);
let m2 = cast U64 4 (vec_shift_right (cast U128 2 m0) 48ul) in
vec_shift_right_uint128_small2 m0 48ul;
assert ((vec_v m2).[0] == (((vec_v lo).[0] >>. 48ul) |. ((vec_v lo).[1] <<. 16ul)));
assert ((vec_v m2).[2] == (((vec_v hi).[0] >>. 48ul) |. ((vec_v hi).[1] <<. 16ul)));
let m3 = cast U64 4 (vec_shift_right (cast U128 2 m1) 48ul) in
vec_shift_right_uint128_small2 m1 48ul;
assert ((vec_v m3).[0] == (((vec_v lo).[2] >>. 48ul) |. ((vec_v lo).[3] <<. 16ul)));
assert ((vec_v m3).[2] == (((vec_v hi).[2] >>. 48ul) |. ((vec_v hi).[3] <<. 16ul)));
let t3 = vec_interleave_low m2 m3 in
vec_interleave_low_lemma_uint64_4 m2 m3;
eq_intro (vec_v t3) (vec_v (vec_or (vec_shift_right t0 48ul) (vec_shift_left m4 16ul)));
vecv_extensionality t3 (vec_or (vec_shift_right t0 48ul) (vec_shift_left m4 16ul))
noextract
val load_felem5_4_compact: lo:uint64xN 4 -> hi:uint64xN 4 -> felem5 4
let load_felem5_4_compact lo hi =
let mask26 = mask26 4 in
let t3 = vec_or (vec_shift_right lo 48ul) (vec_shift_left hi 16ul) in
let o0 = vec_and lo mask26 in
let o1 = vec_and (vec_shift_right lo 26ul) mask26 in
let o2 = vec_and (vec_shift_right t3 4ul) mask26 in
let o3 = vec_and (vec_shift_right t3 30ul) mask26 in
let o4 = vec_shift_right hi 40ul in
(o0, o1, o2, o3, o4)
val load_felem5_4_compact_lemma_i: lo:uint64xN 4 -> hi:uint64xN 4 -> i:nat{i < 4} ->
Lemma
(let f = as_tup64_i (load_felem5_4_compact lo hi) i in
tup64_fits5 f (1, 1, 1, 1, 1) /\
as_nat5 f < pow2 128 /\
as_nat5 f % Vec.prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i])
let load_felem5_4_compact_lemma_i lo hi i =
assert (as_tup64_i (load_felem5_4_compact lo hi) i == load_tup64_4_compact (vec_v lo).[i] (vec_v hi).[i]);
load_tup64_4_compact_lemma (vec_v lo).[i] (vec_v hi).[i]
val load_felem5_4_lemma: lo:uint64xN 4 -> hi:uint64xN 4 ->
Lemma
(let f = load_felem5_4_compact lo hi in
felem_fits5 f (1, 1, 1, 1, 1) /\
felem_less5 f (pow2 128) /\
feval5 f == createi #Vec.pfelem 4 (fun i -> (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]))
let load_felem5_4_lemma lo hi =
let f = load_felem5_4_compact lo hi in
assert_norm (pow2 64 * pow2 64 = pow2 128);
assert_norm (pow2 128 < Vec.prime);
let res = createi #Vec.pfelem 4
(fun i -> (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) in
load_felem5_4_compact_lemma_i lo hi 0;
load_felem5_4_compact_lemma_i lo hi 1;
load_felem5_4_compact_lemma_i lo hi 2;
load_felem5_4_compact_lemma_i lo hi 3;
eq_intro (feval5 f) res
val load_felem5_le: b:lseq uint8 64 -> Lemma
(let lo0 = vec_from_bytes_le U64 4 (sub b 0 32) in
let hi0 = vec_from_bytes_le U64 4 (sub b 32 32) in
let f = load_felem5_4 lo0 hi0 in
felem_fits5 f (1, 1, 1, 1, 1) /\
felem_less5 f (pow2 128) /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Poly1305.Vec.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas2.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas1.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas0.fst.checked",
"Hacl.Impl.Poly1305.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Poly1305.Vec",
"short_module": "Vec"
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas1",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas0",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq Lib.IntTypes.uint8 64
-> FStar.Pervasives.Lemma
(ensures
(let lo0 = Lib.IntVector.vec_from_bytes_le Lib.IntTypes.U64 4 (Lib.Sequence.sub b 0 32) in
let hi0 = Lib.IntVector.vec_from_bytes_le Lib.IntTypes.U64 4 (Lib.Sequence.sub b 32 32) in
let f = Hacl.Spec.Poly1305.Field32xN.load_felem5_4 lo0 hi0 in
Hacl.Spec.Poly1305.Field32xN.felem_fits5 f (1, 1, 1, 1, 1) /\
Hacl.Spec.Poly1305.Field32xN.felem_less5 f (Prims.pow2 128) /\
Hacl.Spec.Poly1305.Field32xN.feval5 f == Hacl.Spec.Poly1305.Vec.load_elem4 b)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Lib.Sequence.eq_intro",
"Hacl.Spec.Poly1305.Vec.pfelem",
"Hacl.Spec.Poly1305.Field32xN.feval5",
"Hacl.Spec.Poly1305.Vec.load_elem4",
"Prims.unit",
"Hacl.Impl.Poly1305.Lemmas.uints_from_bytes_le_lemma64_4",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.load_felem5_4_lemma",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Poly1305.Field32xN.felem5",
"Hacl.Spec.Poly1305.Field32xN.load_felem5_4",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.load_felem5_4_interleave",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.load_felem5_4_compact",
"Lib.IntVector.vec_t",
"Lib.IntTypes.U64",
"Lib.IntVector.vec_interleave_high",
"Lib.IntVector.vec_interleave_low",
"Lib.IntVector.vec_interleave_high_n",
"Lib.IntVector.vec_interleave_low_n",
"Lib.IntVector.vec_from_bytes_le",
"Lib.Sequence.sub"
] | [] | true | false | true | false | false | let load_felem5_le b =
| let lo0 = vec_from_bytes_le U64 4 (sub b 0 32) in
let hi0 = vec_from_bytes_le U64 4 (sub b 32 32) in
let lo1 = vec_interleave_low_n 2 lo0 hi0 in
let hi1 = vec_interleave_high_n 2 lo0 hi0 in
let lo = vec_interleave_low lo1 hi1 in
let hi = vec_interleave_high lo1 hi1 in
let out = load_felem5_4_compact lo hi in
load_felem5_4_interleave lo0 hi0;
assert (out == load_felem5_4 lo0 hi0);
load_felem5_4_lemma lo hi;
Hacl.Impl.Poly1305.Lemmas.uints_from_bytes_le_lemma64_4 b;
eq_intro (feval5 out) (Vec.load_elem4 b) | false |
Steel.Memory.fst | Steel.Memory.witnessed_ref_stability | val witnessed_ref_stability (#a #pcm: _) (r: ref a pcm) (fact: property a)
: Lemma (requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves) | val witnessed_ref_stability (#a #pcm: _) (r: ref a pcm) (fact: property a)
: Lemma (requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves) | let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 44,
"end_line": 1002,
"start_col": 0,
"start_line": 998
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Memory.ref a pcm -> fact: Steel.Memory.property a
-> FStar.Pervasives.Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (Steel.Memory.witnessed_ref r fact) Steel.Memory.mem_evolves) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.ref",
"Steel.Memory.property",
"Steel.Heap.witnessed_ref_stability",
"Prims.unit",
"FStar.Preorder.stable",
"Steel.Preorder.preorder_of_pcm",
"Prims.squash",
"Steel.Memory.full_mem",
"Steel.Memory.witnessed_ref",
"Steel.Memory.mem_evolves",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let witnessed_ref_stability #a #pcm (r: ref a pcm) (fact: property a)
: Lemma (requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves) =
| H.witnessed_ref_stability #a #pcm r fact | false |
Steel.Memory.fst | Steel.Memory.witnessed_ref | val witnessed_ref : r: Steel.Memory.ref a pcm -> fact: Steel.Memory.property a -> m: Steel.Memory.full_mem
-> Prims.logical | let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 50,
"end_line": 996,
"start_col": 0,
"start_line": 995
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Memory.ref a pcm -> fact: Steel.Memory.property a -> m: Steel.Memory.full_mem
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.ref",
"Steel.Memory.property",
"Steel.Memory.full_mem",
"Steel.Heap.witnessed_ref",
"Steel.Memory.heap_of_mem",
"Prims.logical"
] | [] | false | false | false | false | true | let witnessed_ref #a #pcm (r: ref a pcm) (fact: property a) (m: full_mem) =
| H.witnessed_ref #a #pcm r fact (heap_of_mem m) | false |
|
Steel.Memory.fst | Steel.Memory.gather_action | val gather_action
(#a:Type u#1)
(#pcm:pcm a)
(e:inames)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a)
: action_except (_:unit{composable pcm v0 v1}) e (pts_to r v0 `star` pts_to r v1) (fun _ -> pts_to r (op pcm v0 v1)) | val gather_action
(#a:Type u#1)
(#pcm:pcm a)
(e:inames)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a)
: action_except (_:unit{composable pcm v0 v1}) e (pts_to r v0 `star` pts_to r v1) (fun _ -> pts_to r (op pcm v0 v1)) | let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 74,
"end_line": 856,
"start_col": 0,
"start_line": 855
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
r: Steel.Memory.ref a pcm ->
v0: FStar.Ghost.erased a ->
v1: FStar.Ghost.erased a
-> Steel.Memory.action_except (_:
Prims.unit{FStar.PCM.composable pcm (FStar.Ghost.reveal v0) (FStar.Ghost.reveal v1)})
e
(Steel.Memory.star (Steel.Memory.pts_to r (FStar.Ghost.reveal v0))
(Steel.Memory.pts_to r (FStar.Ghost.reveal v1)))
(fun _ ->
Steel.Memory.pts_to r (FStar.PCM.op pcm (FStar.Ghost.reveal v0) (FStar.Ghost.reveal v1))) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"Steel.Memory.ref",
"FStar.Ghost.erased",
"Steel.Memory.lift_tot_action",
"Prims.unit",
"FStar.PCM.composable",
"FStar.Ghost.reveal",
"Steel.Heap.star",
"Steel.Heap.pts_to",
"FStar.PCM.op",
"Steel.Memory.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.gather_action",
"Steel.Memory.action_except",
"Steel.Memory.star",
"Steel.Memory.pts_to"
] | [] | false | false | false | false | false | let gather_action #a #pcm e r v0 v1 =
| lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1)) | false |
Steel.Memory.fst | Steel.Memory.pure_true_equiv | val pure_true_equiv (p: slprop) : Lemma ((p `star` (pure True)) `equiv` p) | val pure_true_equiv (p: slprop) : Lemma ((p `star` (pure True)) `equiv` p) | let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 43,
"end_line": 1062,
"start_col": 0,
"start_line": 1058
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
() | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop
-> FStar.Pervasives.Lemma
(ensures Steel.Memory.equiv (Steel.Memory.star p (Steel.Memory.pure Prims.l_True)) p) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"Prims._assert",
"Steel.Memory.equiv",
"Steel.Memory.star",
"Steel.Memory.pure",
"Prims.l_True",
"Prims.unit",
"Steel.Memory.emp_unit",
"FStar.Classical.forall_intro",
"Steel.Memory.mem",
"Prims.l_iff",
"Steel.Memory.interp",
"Prims.l_and",
"Steel.Memory.emp",
"Steel.Memory.pure_star_interp",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let pure_true_equiv (p: slprop) : Lemma ((p `star` (pure True)) `equiv` p) =
| FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` (pure True)) `equiv` p) | false |
Steel.Memory.fst | Steel.Memory.rearrange_pqr_prq | val rearrange_pqr_prq (p q r: slprop)
: Lemma (((p `star` q) `star` r) `equiv` ((p `star` r) `star` q)) | val rearrange_pqr_prq (p q r: slprop)
: Lemma (((p `star` q) `star` r) `equiv` ((p `star` r) `star` q)) | let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
} | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 9,
"end_line": 1025,
"start_col": 0,
"start_line": 1010
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop -> q: Steel.Memory.slprop -> r: Steel.Memory.slprop
-> FStar.Pervasives.Lemma
(ensures
Steel.Memory.equiv (Steel.Memory.star (Steel.Memory.star p q) r)
(Steel.Memory.star (Steel.Memory.star p r) q)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"FStar.Calc.calc_finish",
"Steel.Memory.equiv",
"Steel.Memory.star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Memory.star_associative",
"Prims.squash",
"Steel.Memory.star_congruence",
"Steel.Memory.star_commutative",
"Prims.l_True",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let rearrange_pqr_prq (p q r: slprop)
: Lemma (((p `star` q) `star` r) `equiv` ((p `star` r) `star` q)) =
| calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) { (star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)) }
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
} | false |
Steel.Memory.fst | Steel.Memory.preserves_frame_star_pure | val preserves_frame_star_pure (e: inames) (p q: slprop) (r s: prop) (m: mem)
: Lemma (requires r /\ s)
(ensures
preserves_frame e p q m m <==> preserves_frame e (p `star` (pure r)) (q `star` (pure s)) m m
) | val preserves_frame_star_pure (e: inames) (p q: slprop) (r s: prop) (m: mem)
: Lemma (requires r /\ s)
(ensures
preserves_frame e p q m m <==> preserves_frame e (p `star` (pure r)) (q `star` (pure s)) m m
) | let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
() | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 6,
"end_line": 1090,
"start_col": 0,
"start_line": 1064
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
p: Steel.Memory.slprop ->
q: Steel.Memory.slprop ->
r: Prims.prop ->
s: Prims.prop ->
m: Steel.Memory.mem
-> FStar.Pervasives.Lemma (requires r /\ s)
(ensures
Steel.Memory.preserves_frame e p q m m <==>
Steel.Memory.preserves_frame e
(Steel.Memory.star p (Steel.Memory.pure r))
(Steel.Memory.star q (Steel.Memory.pure s))
m
m) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Prims.prop",
"Steel.Memory.mem",
"Prims.unit",
"Steel.Memory.preserves_frame",
"Steel.Memory.star",
"Steel.Memory.pure",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Steel.Memory.preserves_frame_cong",
"Steel.Memory.pure_true_equiv",
"Steel.Memory.star_congruence",
"Prims.l_True",
"Steel.Memory.pure_equiv",
"Prims.l_and",
"Prims.l_iff"
] | [] | false | false | true | false | false | let preserves_frame_star_pure (e: inames) (p q: slprop) (r s: prop) (m: mem)
: Lemma (requires r /\ s)
(ensures
preserves_frame e p q m m <==> preserves_frame e (p `star` (pure r)) (q `star` (pure s)) m m
) =
| pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma (requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` (pure r)) (q `star` (pure s)) m m)
[SMTPat ()] =
preserves_frame_cong e p q (p `star` (pure r)) (q `star` (pure s)) m m
in
let bk ()
: Lemma (requires preserves_frame e (p `star` (pure r)) (q `star` (pure s)) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()] =
preserves_frame_cong e (p `star` (pure r)) (q `star` (pure s)) p q m m
in
() | false |
Steel.Memory.fst | Steel.Memory.preserves_frame_cong | val preserves_frame_cong (e: inames) (p q r s: slprop) (m0 m1: mem)
: Lemma (requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures preserves_frame e r s m0 m1) | val preserves_frame_cong (e: inames) (p q r s: slprop) (m0 m1: mem)
: Lemma (requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures preserves_frame e r s m0 m1) | let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
() | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 6,
"end_line": 1056,
"start_col": 0,
"start_line": 1028
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
} | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
p: Steel.Memory.slprop ->
q: Steel.Memory.slprop ->
r: Steel.Memory.slprop ->
s: Steel.Memory.slprop ->
m0: Steel.Memory.mem ->
m1: Steel.Memory.mem
-> FStar.Pervasives.Lemma
(requires
Steel.Memory.equiv p r /\ Steel.Memory.equiv q s /\ Steel.Memory.preserves_frame e p q m0 m1
) (ensures Steel.Memory.preserves_frame e r s m0 m1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.mem",
"Prims.unit",
"Steel.Memory.interp",
"Steel.Memory.star",
"Steel.Memory.locks_invariant",
"Prims.squash",
"Prims.l_and",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Prims._assert",
"Steel.Memory.equiv",
"Steel.Memory.star_congruence",
"Steel.Memory.preserves_frame"
] | [] | false | false | true | false | false | let preserves_frame_cong (e: inames) (p q r s: slprop) (m0 m1: mem)
: Lemma (requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures preserves_frame e r s m0 m1) =
| let aux0 (p q r s: slprop)
: Lemma (requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv` ((s `star` q) `star` r))) =
star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame: slprop)
: Lemma (requires interp ((r `star` frame) `star` (locks_invariant e m0)) m0)
(ensures
interp ((s `star` frame) `star` (locks_invariant e m1)) m1 /\
interp ((p `star` frame) `star` (locks_invariant e m0)) m0)
[SMTPat (r `star` frame)] =
aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` (locks_invariant e m0))
`equiv`
((r `star` frame) `star` (locks_invariant e m0)));
assert (interp ((p `star` frame) `star` (locks_invariant e m0)) m0);
assert (interp ((q `star` frame) `star` (locks_invariant e m1)) m1);
assert (((q `star` frame) `star` (locks_invariant e m1))
`equiv`
((s `star` frame) `star` (locks_invariant e m1)));
()
in
() | false |
Steel.Memory.fst | Steel.Memory.alloc_action | val alloc_action (#a:Type u#1) (#pcm:pcm a) (e:inames) (x:a{compatible pcm x x /\ pcm.refine x})
: action_except (ref a pcm) e emp (fun r -> pts_to r x) | val alloc_action (#a:Type u#1) (#pcm:pcm a) (e:inames) (x:a{compatible pcm x x /\ pcm.refine x})
: action_except (ref a pcm) e emp (fun r -> pts_to r x) | let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 52,
"end_line": 982,
"start_col": 0,
"start_line": 940
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Steel.Memory.inames -> x: a{FStar.PCM.compatible pcm x x /\ Mkpcm?.refine pcm x}
-> Steel.Memory.action_except (Steel.Memory.ref a pcm)
e
Steel.Memory.emp
(fun r -> Steel.Memory.pts_to r x) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"Prims.l_and",
"FStar.PCM.compatible",
"FStar.PCM.__proj__Mkpcm__item__refine",
"Steel.Memory.lift_tot_action",
"Steel.Memory.ref",
"Steel.Memory.emp",
"Steel.Memory.pts_to",
"Steel.Memory.slprop",
"Steel.Memory.refined_pre_action_as_action",
"Steel.Memory.refined_pre_action",
"Steel.Memory.hmem_with_inv_except",
"Steel.Heap.ref",
"Steel.Heap.full_heap",
"Prims.l_Forall",
"Steel.Heap.slprop",
"Steel.Heap.frame_related_heaps",
"Steel.Heap.emp",
"Steel.Heap.pts_to",
"Steel.Heap.free_above_addr",
"Prims.op_Addition",
"Steel.Memory.__proj__Mkmem__item__ctr",
"Steel.Heap.heap_evolves",
"Prims.Mkdtuple2",
"Prims.unit",
"Prims._assert",
"Steel.Memory.frame_related_mems",
"Steel.Memory.interp",
"Steel.Memory.star",
"Steel.Memory.linv",
"Prims.squash",
"Steel.Memory.mem_evolves",
"Steel.Memory.mprop",
"Prims.eq2",
"Prims.prop",
"Steel.Memory.core_mem",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Steel.Memory.mprop_preservation_of_hprop_preservation",
"Steel.Heap.hprop",
"Steel.Heap.interp",
"Steel.Heap.hheap",
"Steel.Memory.weaken",
"Steel.Heap.stronger",
"Steel.Heap.equiv",
"Steel.Memory.star_associative",
"Steel.Memory.hmem_of_hheap",
"Steel.Memory.inc_ctr",
"Prims.dtuple2",
"Steel.Heap.extend",
"Steel.Memory.hheap_of_hmem",
"Steel.Memory.action_except"
] | [] | false | false | false | false | false | let alloc_action #a #pcm e x =
| let f:refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x) =
fun m0 ->
let h:Heap.full_heap = hheap_of_hmem m0 in
let (| r , h' |) = H.extend #a #pcm x m0.ctr h in
let m':hmem_with_inv_except e emp = inc_ctr m0 in
let h':H.hheap ((pts_to #a #pcm r x) `star` (linv e m')) =
weaken _ (linv e m0) (linv e m') h'
in
let m1:hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame: slprop)
: Lemma (requires interp ((emp `star` frame) `star` (linv e m0)) m0)
(ensures
interp (((pts_to #a #pcm r x) `star` frame) `star` (linv e m1)) m1 /\ mem_evolves m0 m1 /\
(forall (mp: mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)] =
star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` (linv e m0))) h);
assert (H.interp ((pts_to #a #pcm r x) `star` (frame `star` (linv e m0))) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp (((pts_to #a #pcm r x) `star` frame) `star` (linv e m0)) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h':H.hheap (((pts_to #a #pcm r x) `star` frame) `star` (linv e m1)) =
weaken _ (linv e m0) (linv e m1) h'
in
assert (H.interp (((pts_to #a #pcm r x) `star` frame) `star` (linv e m1)) h');
assert (forall (mp: H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp: mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f) | false |
Steel.Memory.fst | Steel.Memory.upd_gen | val upd_gen (#a:Type) (#p:pcm a) (e:inames) (r:ref a p) (x y:Ghost.erased a)
(f:FStar.PCM.frame_preserving_upd p x y)
: action_except unit e
(pts_to r x)
(fun _ -> pts_to r y) | val upd_gen (#a:Type) (#p:pcm a) (e:inames) (r:ref a p) (x y:Ghost.erased a)
(f:FStar.PCM.frame_preserving_upd p x y)
: action_except unit e
(pts_to r x)
(fun _ -> pts_to r y) | let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 67,
"end_line": 989,
"start_col": 0,
"start_line": 988
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
r: Steel.Memory.ref a p ->
x: FStar.Ghost.erased a ->
y: FStar.Ghost.erased a ->
f: FStar.PCM.frame_preserving_upd p (FStar.Ghost.reveal x) (FStar.Ghost.reveal y)
-> Steel.Memory.action_except Prims.unit
e
(Steel.Memory.pts_to r (FStar.Ghost.reveal x))
(fun _ -> Steel.Memory.pts_to r (FStar.Ghost.reveal y)) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"Steel.Memory.ref",
"FStar.Ghost.erased",
"FStar.PCM.frame_preserving_upd",
"FStar.Ghost.reveal",
"Steel.Memory.lift_tot_action",
"Prims.unit",
"Steel.Heap.pts_to",
"Steel.Memory.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.upd_gen_action",
"Steel.Memory.action_except",
"Steel.Memory.pts_to"
] | [] | false | false | false | false | false | let upd_gen #a #p e r x y f =
| lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f)) | false |
Steel.Memory.fst | Steel.Memory.new_invariant | val new_invariant (e:inames) (p:slprop)
: action_except (inv p) e p (fun _ -> emp) | val new_invariant (e:inames) (p:slprop)
: action_except (inv p) e p (fun _ -> emp) | let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 32,
"end_line": 1292,
"start_col": 0,
"start_line": 1290
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Steel.Memory.inames -> p: Steel.Memory.slprop
-> Steel.Memory.action_except (Steel.Memory.inv p) e p (fun _ -> Steel.Memory.emp) | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.fresh_invariant",
"Prims.Nil",
"Steel.Memory.pre_inv",
"Steel.Memory.inv",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Negation",
"FStar.Ghost.reveal",
"Prims.bool",
"Steel.Memory.mem_inv",
"Steel.Memory.fresh_wrt",
"Steel.Memory.name_of_inv",
"Steel.Memory.emp",
"Steel.Memory.mem",
"Prims.l_True",
"Prims.prop"
] | [] | false | false | false | false | false | let new_invariant (e: inames) (p frame: slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True) =
| fresh_invariant e p [] frame | false |
Hacl.Spec.Poly1305.Field32xN.Lemmas.fst | Hacl.Spec.Poly1305.Field32xN.Lemmas.fmul_r2_normalize5_lemma | val fmul_r2_normalize5_lemma:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures
(let out = fmul_r2_normalize5 acc r r2 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_2 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r2_normalize5 acc r r2)] | val fmul_r2_normalize5_lemma:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures
(let out = fmul_r2_normalize5 acc r r2 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_2 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r2_normalize5 acc r r2)] | let fmul_r2_normalize5_lemma acc r r2 =
let a = fmul_r2_normalize50 acc r r2 in
let (a0, a1, a2, a3, a4) = a in
let a10 = vec_interleave_high a0 a0 in
vec_interleave_high_lemma2 a0 a0;
let a11 = vec_interleave_high a1 a1 in
vec_interleave_high_lemma2 a1 a1;
let a12 = vec_interleave_high a2 a2 in
vec_interleave_high_lemma2 a2 a2;
let a13 = vec_interleave_high a3 a3 in
vec_interleave_high_lemma2 a3 a3;
let a14 = vec_interleave_high a4 a4 in
vec_interleave_high_lemma2 a4 a4;
let fa1 = (a10, a11, a12, a13, a14) in
eq_intro (feval5 fa1) (create2 (feval5 a).[1] (feval5 a).[1]);
assert (feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1]);
assert (felem_fits5 fa1 (1, 2, 1, 1, 2));
let out = fmul_r2_normalize51 a fa1 in
assert ((feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1]);
let res = carry_full_felem5 out in
carry_full_felem5_lemma out | {
"file_name": "code/poly1305/Hacl.Spec.Poly1305.Field32xN.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 404,
"start_col": 0,
"start_line": 381
} | module Hacl.Spec.Poly1305.Field32xN.Lemmas
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open FStar.Mul
open Hacl.Spec.Poly1305.Field32xN
open Hacl.Poly1305.Field32xN.Lemmas0
open Hacl.Poly1305.Field32xN.Lemmas1
open Hacl.Poly1305.Field32xN.Lemmas2
module Vec = Hacl.Spec.Poly1305.Vec
#set-options "--z3rlimit 100 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --using_facts_from '* -FStar.Seq'"
val lemma_feval_is_fas_nat_i:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)}
-> i:size_nat{i < w} ->
Lemma ((feval5 f).[i] == (fas_nat5 f).[i])
let lemma_feval_is_fas_nat_i #w f i =
assert_norm (pow2 128 < Vec.prime);
assert ((feval5 f).[i] == (as_nat5 (transpose f).[i]) % Vec.prime);
FStar.Math.Lemmas.modulo_lemma (as_nat5 (transpose f).[i]) Vec.prime
val lemma_feval_is_fas_nat:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)} ->
Lemma (forall (i:nat). i < w ==> (fas_nat5 f).[i] == (feval5 f).[i])
let lemma_feval_is_fas_nat #w f =
FStar.Classical.forall_intro (lemma_feval_is_fas_nat_i #w f)
val precomp_r5_fits_lemma:
#w:lanes
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (5, 5, 5, 5, 5))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_fits_lemma2:
#w:lanes
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (10, 10, 10, 10, 10))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma2 #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_zeros: w:lanes -> Lemma
(let r = (zero w, zero w, zero w, zero w, zero w) in
precomp_r5 r == (zero w, zero w, zero w, zero w, zero w))
let precomp_r5_zeros w =
let r = (zero w, zero w, zero w, zero w, zero w) in
let (r0, r1, r2, r3, r4) = precomp_r5 r in
let aux (i:nat{i < w}) : Lemma ((vec_v (vec_smul_mod (zero w) (u64 5))).[i] == u64 0) = () in
Classical.forall_intro aux;
eq_intro (vec_v (vec_smul_mod (zero w) (u64 5))) (vec_v (zero w));
vecv_extensionality (vec_smul_mod (zero w) (u64 5)) (zero w)
val fadd5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (felem_fits5 (fadd5 f1 f2) (3,3,3,3,3))
[SMTPat (fadd5 f1 f2)]
let fadd5_fits_lemma #w f1 f2 =
let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o = fadd5 f1 f2 in
vec_add_mod_lemma f10 f20;
vec_add_mod_lemma f11 f21;
vec_add_mod_lemma f12 f22;
vec_add_mod_lemma f13 f23;
vec_add_mod_lemma f14 f24
val fadd5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (feval5 (fadd5 f1 f2) == map2 Vec.pfadd (feval5 f1) (feval5 f2))
[SMTPat (fadd5 f1 f2)]
let fadd5_eval_lemma #w f1 f2 =
let o = fadd5 f1 f2 in
FStar.Classical.forall_intro (fadd5_eval_lemma_i f1 f2);
eq_intro (feval5 o) (map2 Vec.pfadd (feval5 f1) (feval5 f2))
val mul_felem5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_wide_fits5 (mul_felem5 #w f1 r r5) (126, 102, 78, 54, 30))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_fits_lemma #w f1 r r5 =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34)
val mul_felem5_eval_lemma_i:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r}
-> i:nat{i < w} ->
Lemma ((feval5 (mul_felem5 #w f1 r r5)).[i] == (feval5 f1).[i] `Vec.pfmul` (feval5 r).[i])
let mul_felem5_eval_lemma_i #w f1 r r5 i =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_eval_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
assert ((fas_nat5 (a0,a1,a2,a3,a4)).[i] == (uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i]);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_eval_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
assert ((fas_nat5 (a10,a11,a12,a13,a14)).[i] == (fas_nat5 (a0,a1,a2,a3,a4)).[i] + (uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i]);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_eval_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
assert ((fas_nat5 (a20,a21,a22,a23,a24)).[i] == (fas_nat5 (a10,a11,a12,a13,a14)).[i] + (uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i]);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
assert ((fas_nat5 (a30,a31,a32,a33,a34)).[i] == (fas_nat5 (a20,a21,a22,a23,a24)).[i] + (uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i]);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] == (fas_nat5 (a30,a31,a32,a33,a34)).[i] + (uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] ==
(uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i] +
(uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i] +
(uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i] +
(uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i] +
(uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
mul_felem5_eval_as_tup64 #w f1 r r5 i;
mul_felem5_lemma (as_tup64_i f1 i) (as_tup64_i r i)
val mul_felem5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (mul_felem5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_eval_lemma #w f1 r r5 =
let tmp = map2 (Vec.pfmul) (feval5 f1) (feval5 r) in
FStar.Classical.forall_intro (mul_felem5_eval_lemma_i #w f1 r r5);
eq_intro (feval5 (mul_felem5 #w f1 r r5)) tmp
val fmul_r5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_fits5 (fmul_r5 #w f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_fits_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_fits_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fmul_r5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fmul_r5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_eval_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_eval_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val fadd_mul_r5_fits_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5)} ->
Lemma (felem_fits5 (fadd_mul_r5 acc f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_fits_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_fits_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_fits_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fadd_mul_r5_eval_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fadd_mul_r5 acc f1 r r5) ==
map2 (Vec.pfmul) (map2 (Vec.pfadd) (feval5 acc) (feval5 f1)) (feval5 r))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_eval_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_eval_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_eval_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val reduce_felem5_eval_lemma:
#w:lanes
-> f:felem5 w{felem_fits5 f (2, 2, 2, 2, 2)} ->
Lemma
(felem_fits5 (reduce_felem5 f) (1, 1, 1, 1, 1) /\
(feval5 f).[0] == (fas_nat5 (reduce_felem5 f)).[0])
[SMTPat (reduce_felem5 f)]
let reduce_felem5_eval_lemma #w f =
carry_full_felem5_eval_lemma f;
carry_full_felem5_fits_lemma f;
let f = carry_full_felem5 f in
carry_reduce_felem5_lemma #w f;
subtract_p5_felem5_lemma #w (carry_full_felem5 f)
val fmul_r2_normalize50:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures fun a ->
let fr21 = create2 (feval5 r2).[0] (feval5 r).[0] in
feval5 a == Vec.fmul (feval5 acc) fr21 /\
felem_fits5 a (1, 2, 1, 1, 2))
let fmul_r2_normalize50 (a0, a1, a2, a3, a4) (r0, r1, r2, r3, r4) (r20, r21, r22, r23, r24) =
let r210 = vec_interleave_low r20 r0 in
vec_interleave_low_lemma2 r20 r0;
let r211 = vec_interleave_low r21 r1 in
vec_interleave_low_lemma2 r21 r1;
let r212 = vec_interleave_low r22 r2 in
vec_interleave_low_lemma2 r22 r2;
let r213 = vec_interleave_low r23 r3 in
vec_interleave_low_lemma2 r23 r3;
let r214 = vec_interleave_low r24 r4 in
vec_interleave_low_lemma2 r24 r4;
let acc = (a0, a1, a2, a3, a4) in
let fr = (r0, r1, r2, r3, r4) in
let fr2 = (r20, r21, r22, r23, r24) in
assert ((feval5 fr2).[0] == Vec.pfmul ((feval5 fr).[0]) ((feval5 fr).[0]));
let fr21 = (r210, r211, r212, r213, r214) in
eq_intro (feval5 fr21) (create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (feval5 fr21 == create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (felem_fits5 fr21 (2, 2, 2, 2, 2));
let fr215 = precomp_r5 #2 fr21 in
let a = fmul_r5 #2 acc fr21 fr215 in
fmul_r5_eval_lemma acc fr21 fr215;
fmul_r5_fits_lemma acc fr21 fr215;
assert (feval5 a == Vec.fmul (feval5 acc) (feval5 fr21));
assert (felem_fits5 a (1, 2, 1, 1, 2));
a
#push-options "--z3rlimit 150"
val fmul_r2_normalize51:
a:felem5 2
-> fa1:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 a (1, 2, 1, 1, 2) /\
felem_fits5 fa1 (1, 2, 1, 1, 2) /\
feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1])
(ensures fun out ->
(feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1] /\
felem_fits5 out (2, 4, 2, 2, 4))
let fmul_r2_normalize51 a fa1 =
let (a0, a1, a2, a3, a4) = a in
let (a10, a11, a12, a13, a14) = fa1 in
let o0 = vec_add_mod a0 a10 in
let o1 = vec_add_mod a1 a11 in
let o2 = vec_add_mod a2 a12 in
let o3 = vec_add_mod a3 a13 in
let o4 = vec_add_mod a4 a14 in
let out = (o0, o1, o2, o3, o4) in
let (a0, a1, a2, a3, a4) = as_tup64_i a 0 in
let (a10, a11, a12, a13, a14) = as_tup64_i fa1 0 in
let (o0, o1, o2, o3, o4) = as_tup64_i out 0 in
FStar.Math.Lemmas.modulo_lemma (v a0 + v a10) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a1 + v a11) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a2 + v a12) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a3 + v a13) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a4 + v a14) (pow2 64);
assert (felem_fits5 out (2, 4, 2, 2, 4));
calc (==) {
((feval5 a).[0] + (feval5 a).[1]) % Vec.prime;
(==) { }
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime + as_nat5 (a10, a11, a12, a13, a14) % Vec.prime) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (a0, a1, a2, a3, a4)) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime }
(as_nat5 (a0, a1, a2, a3, a4) + as_nat5 (a10, a11, a12, a13, a14)) % Vec.prime;
(==) { }
(feval5 out).[0];
};
out
#pop-options
val fmul_r2_normalize5_lemma:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures
(let out = fmul_r2_normalize5 acc r r2 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_2 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r2_normalize5 acc r r2)] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Poly1305.Vec.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas2.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas1.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas0.fst.checked",
"Hacl.Impl.Poly1305.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Poly1305.Vec",
"short_module": "Vec"
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas1",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas0",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
acc: Hacl.Spec.Poly1305.Field32xN.felem5 2 ->
r: Hacl.Spec.Poly1305.Field32xN.felem5 2 ->
r2: Hacl.Spec.Poly1305.Field32xN.felem5 2
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Poly1305.Field32xN.felem_fits5 acc (3, 3, 3, 3, 3) /\
Hacl.Spec.Poly1305.Field32xN.felem_fits5 r (1, 1, 1, 1, 1) /\
Hacl.Spec.Poly1305.Field32xN.felem_fits5 r2 (2, 2, 2, 2, 2) /\
Hacl.Spec.Poly1305.Field32xN.feval5 r2 ==
Hacl.Spec.Poly1305.Vec.compute_r2 (Hacl.Spec.Poly1305.Field32xN.feval5 r).[ 0 ])
(ensures
(let out = Hacl.Spec.Poly1305.Field32xN.fmul_r2_normalize5 acc r r2 in
Hacl.Spec.Poly1305.Field32xN.felem_fits5 out (2, 1, 1, 1, 1) /\
(Hacl.Spec.Poly1305.Field32xN.feval5 out).[ 0 ] ==
Hacl.Spec.Poly1305.Vec.normalize_2 (Hacl.Spec.Poly1305.Field32xN.feval5 r).[ 0 ]
(Hacl.Spec.Poly1305.Field32xN.feval5 acc)))
[SMTPat (Hacl.Spec.Poly1305.Field32xN.fmul_r2_normalize5 acc r r2)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Poly1305.Field32xN.felem5",
"Hacl.Spec.Poly1305.Field32xN.uint64xN",
"Hacl.Poly1305.Field32xN.Lemmas1.carry_full_felem5_lemma",
"Hacl.Spec.Poly1305.Field32xN.carry_full_felem5",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Poly1305.Vec.pfelem",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Poly1305.Field32xN.feval5",
"Hacl.Spec.Poly1305.Vec.pfadd",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.fmul_r2_normalize51",
"Hacl.Spec.Poly1305.Field32xN.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.Sequence.lseq",
"Lib.Sequence.create2",
"Lib.Sequence.eq_intro",
"FStar.Pervasives.Native.tuple5",
"Lib.IntVector.vec_interleave_high_lemma2",
"Lib.IntTypes.U64",
"Lib.IntVector.vec_t",
"Lib.IntVector.vec_interleave_high",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.fmul_r2_normalize50"
] | [] | false | false | true | false | false | let fmul_r2_normalize5_lemma acc r r2 =
| let a = fmul_r2_normalize50 acc r r2 in
let a0, a1, a2, a3, a4 = a in
let a10 = vec_interleave_high a0 a0 in
vec_interleave_high_lemma2 a0 a0;
let a11 = vec_interleave_high a1 a1 in
vec_interleave_high_lemma2 a1 a1;
let a12 = vec_interleave_high a2 a2 in
vec_interleave_high_lemma2 a2 a2;
let a13 = vec_interleave_high a3 a3 in
vec_interleave_high_lemma2 a3 a3;
let a14 = vec_interleave_high a4 a4 in
vec_interleave_high_lemma2 a4 a4;
let fa1 = (a10, a11, a12, a13, a14) in
eq_intro (feval5 fa1) (create2 (feval5 a).[ 1 ] (feval5 a).[ 1 ]);
assert (feval5 fa1 == create2 (feval5 a).[ 1 ] (feval5 a).[ 1 ]);
assert (felem_fits5 fa1 (1, 2, 1, 1, 2));
let out = fmul_r2_normalize51 a fa1 in
assert ((feval5 out).[ 0 ] == Vec.pfadd (feval5 a).[ 0 ] (feval5 a).[ 1 ]);
let res = carry_full_felem5 out in
carry_full_felem5_lemma out | false |
Steel.Memory.fst | Steel.Memory.rearrange_invariant | val rearrange_invariant (p q r q0 q1: slprop)
: Lemma (requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv` ((q0 `star` p) `star` (q1 `star` r))) | val rearrange_invariant (p q r q0 q1: slprop)
: Lemma (requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv` ((q0 `star` p) `star` (q1 `star` r))) | let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
} | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 1328,
"start_col": 0,
"start_line": 1294
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Steel.Memory.slprop ->
q: Steel.Memory.slprop ->
r: Steel.Memory.slprop ->
q0: Steel.Memory.slprop ->
q1: Steel.Memory.slprop
-> FStar.Pervasives.Lemma (requires Steel.Memory.equiv q (Steel.Memory.star q0 q1))
(ensures
Steel.Memory.equiv (Steel.Memory.star p (Steel.Memory.star q r))
(Steel.Memory.star (Steel.Memory.star q0 p) (Steel.Memory.star q1 r))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"FStar.Calc.calc_finish",
"Steel.Memory.equiv",
"Steel.Memory.star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Memory.star_congruence",
"Prims.squash",
"Steel.Memory.star_associative",
"Steel.Memory.star_commutative",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let rearrange_invariant (p q r q0 q1: slprop)
: Lemma (requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv` ((q0 `star` p) `star` (q1 `star` r))) =
| calc (equiv) {
p `star` (q `star` r);
(equiv) { (calc (equiv) {
(q `star` r);
(equiv) { star_congruence q r (q0 `star` q1) r }
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)) }
(p `star` ((q0 `star` q1) `star` r));
(equiv) { (star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r) p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)) }
(p `star` q0) `star` (q1 `star` r);
(equiv) { (star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r) (q0 `star` p) (q1 `star` r)) }
(q0 `star` p) `star` (q1 `star` r);
} | false |
Steel.Memory.fst | Steel.Memory.hmem_with_inv_equiv | val hmem_with_inv_equiv (e: _) (m: mem) (p: slprop)
: Lemma
(interp (p `star` (linv e m)) m <==>
interp (p `star` (lock_store_invariant e m.locks)) m /\ heap_ctr_valid m.ctr (heap_of_mem m)) | val hmem_with_inv_equiv (e: _) (m: mem) (p: slprop)
: Lemma
(interp (p `star` (linv e m)) m <==>
interp (p `star` (lock_store_invariant e m.locks)) m /\ heap_ctr_valid m.ctr (heap_of_mem m)) | let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
} | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 1174,
"start_col": 0,
"start_line": 1160
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Steel.Memory.inames -> m: Steel.Memory.mem -> p: Steel.Memory.slprop
-> FStar.Pervasives.Lemma
(ensures
Steel.Memory.interp (Steel.Memory.star p (Steel.Memory.linv e m)) m <==>
Steel.Memory.interp (Steel.Memory.star p
(Steel.Memory.lock_store_invariant e (Mkmem?.locks m)))
m /\ Steel.Memory.heap_ctr_valid (Mkmem?.ctr m) (Steel.Memory.heap_of_mem m)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.mem",
"Steel.Memory.slprop",
"FStar.Calc.calc_finish",
"Prims.logical",
"Prims.l_iff",
"Steel.Memory.interp",
"Steel.Memory.star",
"Steel.Memory.linv",
"Prims.l_and",
"Steel.Memory.lock_store_invariant",
"Steel.Memory.__proj__Mkmem__item__locks",
"Steel.Memory.heap_ctr_valid",
"Steel.Memory.__proj__Mkmem__item__ctr",
"Steel.Memory.heap_of_mem",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Steel.Memory.emp",
"Steel.Memory.ctr_validity",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Heap.star_associative",
"Prims.squash",
"Steel.Heap.pure_star_interp",
"Steel.Heap.emp_unit",
"Prims.l_True",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let hmem_with_inv_equiv e (m: mem) (p: slprop)
: Lemma
(interp (p `star` (linv e m)) m <==>
interp (p `star` (lock_store_invariant e m.locks)) m /\ heap_ctr_valid m.ctr (heap_of_mem m)) =
| calc ( <==> ) {
interp (p `star` (linv e m)) m;
( <==> ) { H.star_associative p
(lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` (lock_store_invariant e m.locks)) `star` (ctr_validity m.ctr (heap_of_mem m))) m;
( <==> ) { H.pure_star_interp (p `star` (lock_store_invariant e m.locks))
(heap_ctr_valid m.ctr (heap_of_mem m))
(heap_of_mem m) }
interp ((p `star` (lock_store_invariant e m.locks)) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
( <==> ) { H.emp_unit (p `star` (lock_store_invariant e m.locks)) }
interp (p `star` (lock_store_invariant e m.locks)) m /\ (heap_ctr_valid m.ctr (heap_of_mem m));
} | false |
Steel.Memory.fst | Steel.Memory.recall_all | val recall_all (ctx: list pre_inv)
: NMSTTotal.NMSTATETOT unit
(full_mem u#1)
mem_evolves
(requires fun _ -> True)
(ensures
fun m0 _ m1 ->
m0 == m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0)) | val recall_all (ctx: list pre_inv)
: NMSTTotal.NMSTATETOT unit
(full_mem u#1)
mem_evolves
(requires fun _ -> True)
(ensures
fun m0 _ m1 ->
m0 == m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0)) | let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 19,
"end_line": 1271,
"start_col": 0,
"start_line": 1261
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ctx: Prims.list Steel.Memory.pre_inv -> FStar.NMSTTotal.NMSTATETOT Prims.unit | FStar.NMSTTotal.NMSTATETOT | [] | [] | [
"Prims.list",
"Steel.Memory.pre_inv",
"Prims.unit",
"FStar.Ghost.erased",
"Steel.Memory.iname",
"Steel.Memory.witnessed_name_is_ok",
"FStar.Ghost.reveal",
"Steel.Memory.recall_all",
"FStar.NMSTTotal.recall",
"Steel.Memory.full_mem",
"Steel.Memory.mem_evolves",
"Steel.Memory.name_is_ok",
"FStar.Witnessed.Core.witnessed",
"Prims.l_True",
"Prims.l_and",
"Prims.eq2",
"Prims.l_Forall",
"Prims.l_imp",
"FStar.List.Tot.Base.memP",
"Steel.Memory.name_of_pre_inv"
] | [
"recursion"
] | false | true | false | false | false | let rec recall_all (ctx: list pre_inv)
: NMSTTotal.NMSTATETOT unit
(full_mem u#1)
mem_evolves
(requires fun _ -> True)
(ensures
fun m0 _ m1 ->
m0 == m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0)) =
| match ctx with
| [] -> ()
| hd :: tl ->
let (| q , i |) = hd in
let i:W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl | false |
Hacl.Spec.Poly1305.Field32xN.Lemmas.fst | Hacl.Spec.Poly1305.Field32xN.Lemmas.fmul_r2_normalize51 | val fmul_r2_normalize51:
a:felem5 2
-> fa1:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 a (1, 2, 1, 1, 2) /\
felem_fits5 fa1 (1, 2, 1, 1, 2) /\
feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1])
(ensures fun out ->
(feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1] /\
felem_fits5 out (2, 4, 2, 2, 4)) | val fmul_r2_normalize51:
a:felem5 2
-> fa1:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 a (1, 2, 1, 1, 2) /\
felem_fits5 fa1 (1, 2, 1, 1, 2) /\
feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1])
(ensures fun out ->
(feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1] /\
felem_fits5 out (2, 4, 2, 2, 4)) | let fmul_r2_normalize51 a fa1 =
let (a0, a1, a2, a3, a4) = a in
let (a10, a11, a12, a13, a14) = fa1 in
let o0 = vec_add_mod a0 a10 in
let o1 = vec_add_mod a1 a11 in
let o2 = vec_add_mod a2 a12 in
let o3 = vec_add_mod a3 a13 in
let o4 = vec_add_mod a4 a14 in
let out = (o0, o1, o2, o3, o4) in
let (a0, a1, a2, a3, a4) = as_tup64_i a 0 in
let (a10, a11, a12, a13, a14) = as_tup64_i fa1 0 in
let (o0, o1, o2, o3, o4) = as_tup64_i out 0 in
FStar.Math.Lemmas.modulo_lemma (v a0 + v a10) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a1 + v a11) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a2 + v a12) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a3 + v a13) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a4 + v a14) (pow2 64);
assert (felem_fits5 out (2, 4, 2, 2, 4));
calc (==) {
((feval5 a).[0] + (feval5 a).[1]) % Vec.prime;
(==) { }
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime + as_nat5 (a10, a11, a12, a13, a14) % Vec.prime) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (a0, a1, a2, a3, a4)) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime }
(as_nat5 (a0, a1, a2, a3, a4) + as_nat5 (a10, a11, a12, a13, a14)) % Vec.prime;
(==) { }
(feval5 out).[0];
};
out | {
"file_name": "code/poly1305/Hacl.Spec.Poly1305.Field32xN.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 361,
"start_col": 0,
"start_line": 328
} | module Hacl.Spec.Poly1305.Field32xN.Lemmas
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open FStar.Mul
open Hacl.Spec.Poly1305.Field32xN
open Hacl.Poly1305.Field32xN.Lemmas0
open Hacl.Poly1305.Field32xN.Lemmas1
open Hacl.Poly1305.Field32xN.Lemmas2
module Vec = Hacl.Spec.Poly1305.Vec
#set-options "--z3rlimit 100 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --using_facts_from '* -FStar.Seq'"
val lemma_feval_is_fas_nat_i:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)}
-> i:size_nat{i < w} ->
Lemma ((feval5 f).[i] == (fas_nat5 f).[i])
let lemma_feval_is_fas_nat_i #w f i =
assert_norm (pow2 128 < Vec.prime);
assert ((feval5 f).[i] == (as_nat5 (transpose f).[i]) % Vec.prime);
FStar.Math.Lemmas.modulo_lemma (as_nat5 (transpose f).[i]) Vec.prime
val lemma_feval_is_fas_nat:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)} ->
Lemma (forall (i:nat). i < w ==> (fas_nat5 f).[i] == (feval5 f).[i])
let lemma_feval_is_fas_nat #w f =
FStar.Classical.forall_intro (lemma_feval_is_fas_nat_i #w f)
val precomp_r5_fits_lemma:
#w:lanes
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (5, 5, 5, 5, 5))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_fits_lemma2:
#w:lanes
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (10, 10, 10, 10, 10))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma2 #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_zeros: w:lanes -> Lemma
(let r = (zero w, zero w, zero w, zero w, zero w) in
precomp_r5 r == (zero w, zero w, zero w, zero w, zero w))
let precomp_r5_zeros w =
let r = (zero w, zero w, zero w, zero w, zero w) in
let (r0, r1, r2, r3, r4) = precomp_r5 r in
let aux (i:nat{i < w}) : Lemma ((vec_v (vec_smul_mod (zero w) (u64 5))).[i] == u64 0) = () in
Classical.forall_intro aux;
eq_intro (vec_v (vec_smul_mod (zero w) (u64 5))) (vec_v (zero w));
vecv_extensionality (vec_smul_mod (zero w) (u64 5)) (zero w)
val fadd5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (felem_fits5 (fadd5 f1 f2) (3,3,3,3,3))
[SMTPat (fadd5 f1 f2)]
let fadd5_fits_lemma #w f1 f2 =
let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o = fadd5 f1 f2 in
vec_add_mod_lemma f10 f20;
vec_add_mod_lemma f11 f21;
vec_add_mod_lemma f12 f22;
vec_add_mod_lemma f13 f23;
vec_add_mod_lemma f14 f24
val fadd5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (feval5 (fadd5 f1 f2) == map2 Vec.pfadd (feval5 f1) (feval5 f2))
[SMTPat (fadd5 f1 f2)]
let fadd5_eval_lemma #w f1 f2 =
let o = fadd5 f1 f2 in
FStar.Classical.forall_intro (fadd5_eval_lemma_i f1 f2);
eq_intro (feval5 o) (map2 Vec.pfadd (feval5 f1) (feval5 f2))
val mul_felem5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_wide_fits5 (mul_felem5 #w f1 r r5) (126, 102, 78, 54, 30))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_fits_lemma #w f1 r r5 =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34)
val mul_felem5_eval_lemma_i:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r}
-> i:nat{i < w} ->
Lemma ((feval5 (mul_felem5 #w f1 r r5)).[i] == (feval5 f1).[i] `Vec.pfmul` (feval5 r).[i])
let mul_felem5_eval_lemma_i #w f1 r r5 i =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_eval_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
assert ((fas_nat5 (a0,a1,a2,a3,a4)).[i] == (uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i]);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_eval_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
assert ((fas_nat5 (a10,a11,a12,a13,a14)).[i] == (fas_nat5 (a0,a1,a2,a3,a4)).[i] + (uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i]);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_eval_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
assert ((fas_nat5 (a20,a21,a22,a23,a24)).[i] == (fas_nat5 (a10,a11,a12,a13,a14)).[i] + (uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i]);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
assert ((fas_nat5 (a30,a31,a32,a33,a34)).[i] == (fas_nat5 (a20,a21,a22,a23,a24)).[i] + (uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i]);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] == (fas_nat5 (a30,a31,a32,a33,a34)).[i] + (uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] ==
(uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i] +
(uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i] +
(uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i] +
(uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i] +
(uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
mul_felem5_eval_as_tup64 #w f1 r r5 i;
mul_felem5_lemma (as_tup64_i f1 i) (as_tup64_i r i)
val mul_felem5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (mul_felem5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_eval_lemma #w f1 r r5 =
let tmp = map2 (Vec.pfmul) (feval5 f1) (feval5 r) in
FStar.Classical.forall_intro (mul_felem5_eval_lemma_i #w f1 r r5);
eq_intro (feval5 (mul_felem5 #w f1 r r5)) tmp
val fmul_r5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_fits5 (fmul_r5 #w f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_fits_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_fits_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fmul_r5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fmul_r5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_eval_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_eval_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val fadd_mul_r5_fits_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5)} ->
Lemma (felem_fits5 (fadd_mul_r5 acc f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_fits_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_fits_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_fits_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fadd_mul_r5_eval_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fadd_mul_r5 acc f1 r r5) ==
map2 (Vec.pfmul) (map2 (Vec.pfadd) (feval5 acc) (feval5 f1)) (feval5 r))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_eval_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_eval_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_eval_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val reduce_felem5_eval_lemma:
#w:lanes
-> f:felem5 w{felem_fits5 f (2, 2, 2, 2, 2)} ->
Lemma
(felem_fits5 (reduce_felem5 f) (1, 1, 1, 1, 1) /\
(feval5 f).[0] == (fas_nat5 (reduce_felem5 f)).[0])
[SMTPat (reduce_felem5 f)]
let reduce_felem5_eval_lemma #w f =
carry_full_felem5_eval_lemma f;
carry_full_felem5_fits_lemma f;
let f = carry_full_felem5 f in
carry_reduce_felem5_lemma #w f;
subtract_p5_felem5_lemma #w (carry_full_felem5 f)
val fmul_r2_normalize50:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures fun a ->
let fr21 = create2 (feval5 r2).[0] (feval5 r).[0] in
feval5 a == Vec.fmul (feval5 acc) fr21 /\
felem_fits5 a (1, 2, 1, 1, 2))
let fmul_r2_normalize50 (a0, a1, a2, a3, a4) (r0, r1, r2, r3, r4) (r20, r21, r22, r23, r24) =
let r210 = vec_interleave_low r20 r0 in
vec_interleave_low_lemma2 r20 r0;
let r211 = vec_interleave_low r21 r1 in
vec_interleave_low_lemma2 r21 r1;
let r212 = vec_interleave_low r22 r2 in
vec_interleave_low_lemma2 r22 r2;
let r213 = vec_interleave_low r23 r3 in
vec_interleave_low_lemma2 r23 r3;
let r214 = vec_interleave_low r24 r4 in
vec_interleave_low_lemma2 r24 r4;
let acc = (a0, a1, a2, a3, a4) in
let fr = (r0, r1, r2, r3, r4) in
let fr2 = (r20, r21, r22, r23, r24) in
assert ((feval5 fr2).[0] == Vec.pfmul ((feval5 fr).[0]) ((feval5 fr).[0]));
let fr21 = (r210, r211, r212, r213, r214) in
eq_intro (feval5 fr21) (create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (feval5 fr21 == create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (felem_fits5 fr21 (2, 2, 2, 2, 2));
let fr215 = precomp_r5 #2 fr21 in
let a = fmul_r5 #2 acc fr21 fr215 in
fmul_r5_eval_lemma acc fr21 fr215;
fmul_r5_fits_lemma acc fr21 fr215;
assert (feval5 a == Vec.fmul (feval5 acc) (feval5 fr21));
assert (felem_fits5 a (1, 2, 1, 1, 2));
a
#push-options "--z3rlimit 150"
val fmul_r2_normalize51:
a:felem5 2
-> fa1:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 a (1, 2, 1, 1, 2) /\
felem_fits5 fa1 (1, 2, 1, 1, 2) /\
feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1])
(ensures fun out ->
(feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1] /\
felem_fits5 out (2, 4, 2, 2, 4)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Poly1305.Vec.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas2.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas1.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas0.fst.checked",
"Hacl.Impl.Poly1305.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Poly1305.Vec",
"short_module": "Vec"
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas1",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas0",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 150,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Hacl.Spec.Poly1305.Field32xN.felem5 2 -> fa1: Hacl.Spec.Poly1305.Field32xN.felem5 2
-> Prims.Pure (Hacl.Spec.Poly1305.Field32xN.felem5 2) | Prims.Pure | [] | [] | [
"Hacl.Spec.Poly1305.Field32xN.felem5",
"Hacl.Spec.Poly1305.Field32xN.uint64xN",
"Lib.IntTypes.uint64",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Addition",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Poly1305.Vec.pfelem",
"Hacl.Spec.Poly1305.Field32xN.feval5",
"Hacl.Spec.Poly1305.Vec.prime",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Hacl.Spec.Poly1305.Field32xN.as_nat5",
"FStar.Pervasives.Native.Mktuple5",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_plus_distr_r",
"FStar.Math.Lemmas.lemma_mod_plus_distr_l",
"Prims._assert",
"Hacl.Spec.Poly1305.Field32xN.felem_fits5",
"Prims.nat",
"FStar.Math.Lemmas.modulo_lemma",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Hacl.Spec.Poly1305.Field32xN.tup64_5",
"Hacl.Spec.Poly1305.Field32xN.as_tup64_i",
"FStar.Pervasives.Native.tuple5",
"Lib.IntVector.vec_t",
"Lib.IntVector.vec_add_mod"
] | [] | false | false | false | false | false | let fmul_r2_normalize51 a fa1 =
| let a0, a1, a2, a3, a4 = a in
let a10, a11, a12, a13, a14 = fa1 in
let o0 = vec_add_mod a0 a10 in
let o1 = vec_add_mod a1 a11 in
let o2 = vec_add_mod a2 a12 in
let o3 = vec_add_mod a3 a13 in
let o4 = vec_add_mod a4 a14 in
let out = (o0, o1, o2, o3, o4) in
let a0, a1, a2, a3, a4 = as_tup64_i a 0 in
let a10, a11, a12, a13, a14 = as_tup64_i fa1 0 in
let o0, o1, o2, o3, o4 = as_tup64_i out 0 in
FStar.Math.Lemmas.modulo_lemma (v a0 + v a10) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a1 + v a11) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a2 + v a12) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a3 + v a13) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a4 + v a14) (pow2 64);
assert (felem_fits5 out (2, 4, 2, 2, 4));
calc ( == ) {
((feval5 a).[ 0 ] + (feval5 a).[ 1 ]) % Vec.prime;
( == ) { () }
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime + as_nat5 (a10, a11, a12, a13, a14) % Vec.prime) %
Vec.prime;
( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (a0, a1, a2, a3, a4))
(as_nat5 (a10, a11, a12, a13, a14))
Vec.prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r (as_nat5 (a0, a1, a2, a3, a4) % Vec.prime)
(as_nat5 (a10, a11, a12, a13, a14))
Vec.prime) }
(as_nat5 (a0, a1, a2, a3, a4) + as_nat5 (a10, a11, a12, a13, a14)) % Vec.prime;
( == ) { () }
(feval5 out).[ 0 ];
};
out | false |
Steel.Memory.fst | Steel.Memory.witness | val witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
: action_except (witnessed r fact) e (pts_to r v) (fun _ -> pts_to r v) | val witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
: action_except (witnessed r fact) e (pts_to r v) (fun _ -> pts_to r v) | let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 1117,
"start_col": 0,
"start_line": 1093
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
() | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
r: FStar.Ghost.erased (Steel.Memory.ref a pcm) ->
fact: Steel.Memory.stable_property pcm ->
v: FStar.Ghost.erased a ->
_: Prims.squash (forall (z: a). FStar.PCM.compatible pcm (FStar.Ghost.reveal v) z ==> fact z)
-> Steel.Memory.action_except (Steel.Memory.witnessed (FStar.Ghost.reveal r) fact)
e
(Steel.Memory.pts_to (FStar.Ghost.reveal r) (FStar.Ghost.reveal v))
(fun _ -> Steel.Memory.pts_to (FStar.Ghost.reveal r) (FStar.Ghost.reveal v)) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.inames",
"FStar.Ghost.erased",
"Steel.Memory.ref",
"Steel.Memory.stable_property",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"FStar.PCM.compatible",
"FStar.Ghost.reveal",
"Steel.Memory.slprop",
"Steel.Memory.witnessed",
"FStar.Witnessed.Core.witnessed",
"Steel.Memory.full_mem",
"Steel.Memory.mem_evolves",
"Steel.Memory.witnessed_ref",
"FStar.NMSTTotal.witness",
"Prims.unit",
"Prims._assert",
"FStar.Preorder.stable",
"Steel.Memory.witnessed_ref_stability",
"Prims.l_and",
"Steel.Memory.interp",
"Steel.Heap.ptr",
"Prims.eq2",
"Steel.Heap.sel",
"Steel.Memory.heap_of_mem",
"FStar.PCM.__proj__Mkpcm__item__refine",
"Steel.Heap.interp",
"Steel.Heap.sel_v",
"Steel.Heap.ref",
"FStar.NMSTTotal.get",
"Steel.Memory.pts_to",
"Steel.Memory.mem",
"Prims.l_True",
"Prims.prop"
] | [] | false | false | false | false | false | let witness
(#a: Type)
(#pcm: pcm a)
(e: inames)
(r: erased (ref a pcm))
(fact: stable_property pcm)
(v: Ghost.erased a)
(_: squash (forall z. compatible pcm v z ==> fact z))
(frame: slprop)
: MstTot (witnessed r fact)
e
(pts_to r v)
(fun _ -> pts_to r v)
frame
(fun _ -> True)
(fun _ _ _ -> True) =
| let m0 = NMSTTotal.get () in
let _:unit =
let hr:H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w | false |
Steel.Memory.fst | Steel.Memory.equiv_ext_right | val equiv_ext_right (p q r: slprop)
: Lemma (requires q `equiv` r) (ensures (p `star` q) `equiv` (p `star` r)) | val equiv_ext_right (p q r: slprop)
: Lemma (requires q `equiv` r) (ensures (p `star` q) `equiv` (p `star` r)) | let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
} | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 1386,
"start_col": 0,
"start_line": 1374
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
() | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop -> q: Steel.Memory.slprop -> r: Steel.Memory.slprop
-> FStar.Pervasives.Lemma (requires Steel.Memory.equiv q r)
(ensures Steel.Memory.equiv (Steel.Memory.star p q) (Steel.Memory.star p r)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"FStar.Calc.calc_finish",
"Steel.Memory.equiv",
"Steel.Memory.star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Memory.star_commutative",
"Prims.squash",
"Steel.Memory.equiv_extensional_on_star",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let equiv_ext_right (p q r: slprop)
: Lemma (requires q `equiv` r) (ensures (p `star` q) `equiv` (p `star` r)) =
| calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
} | false |
Steel.Memory.fst | Steel.Memory.with_inv_helper | val with_inv_helper (fp frame ls1 ctr p ls2: slprop)
: Lemma (requires ls1 `equiv` (p `star` ls2))
(ensures
((fp `star` frame) `star` (ls1 `star` ctr))
`equiv`
(((p `star` fp) `star` frame) `star` (ls2 `star` ctr))) | val with_inv_helper (fp frame ls1 ctr p ls2: slprop)
: Lemma (requires ls1 `equiv` (p `star` ls2))
(ensures
((fp `star` frame) `star` (ls1 `star` ctr))
`equiv`
(((p `star` fp) `star` frame) `star` (ls2 `star` ctr))) | let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
} | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 1428,
"start_col": 0,
"start_line": 1388
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
} | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
fp: Steel.Memory.slprop ->
frame: Steel.Memory.slprop ->
ls1: Steel.Memory.slprop ->
ctr: Steel.Memory.slprop ->
p: Steel.Memory.slprop ->
ls2: Steel.Memory.slprop
-> FStar.Pervasives.Lemma (requires Steel.Memory.equiv ls1 (Steel.Memory.star p ls2))
(ensures
Steel.Memory.equiv (Steel.Memory.star (Steel.Memory.star fp frame)
(Steel.Memory.star ls1 ctr))
(Steel.Memory.star (Steel.Memory.star (Steel.Memory.star p fp) frame)
(Steel.Memory.star ls2 ctr))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"FStar.Calc.calc_finish",
"Steel.Memory.equiv",
"Steel.Memory.star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Memory.equiv_ext_right",
"Prims.squash",
"Steel.Memory.star_associative",
"Steel.Memory.equiv_extensional_on_star",
"Steel.Memory.star_commutative",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let with_inv_helper (fp frame ls1 ctr p ls2: slprop)
: Lemma (requires ls1 `equiv` (p `star` ls2))
(ensures
((fp `star` frame) `star` (ls1 `star` ctr))
`equiv`
(((p `star` fp) `star` frame) `star` (ls2 `star` ctr))) =
| calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
(p `star` ls2) `star` ctr;
};
calc (equiv) {
(p `star` ls2) `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
(fp `star` frame) `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
(p `star` fp) `star` frame;
};
calc (equiv) {
(fp `star` frame) `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame) (ls1 `star` ctr) ((p `star` ls2) `star` ctr) }
(fp `star` frame) `star` ((p `star` ls2) `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
((p `star` ls2) `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
((fp `star` frame) `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star ((fp `star` frame) `star` p)
((p `star` fp) `star` frame)
(ls2 `star` ctr) }
((p `star` fp) `star` frame) `star` (ls2 `star` ctr);
} | false |
Platform.Bytes.fst | Platform.Bytes.byte | val byte:Type0 | val byte:Type0 | let byte:Type0 = FStar.UInt8.t | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 54,
"start_col": 7,
"start_line": 54
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) ) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.t"
] | [] | false | false | false | true | true | let byte:Type0 =
| FStar.UInt8.t | false |
Steel.Memory.fst | Steel.Memory.lift_h_exists | val lift_h_exists (#opened_invariants:_) (#a:_) (p:a -> slprop)
: action_except unit opened_invariants
(h_exists p)
(fun _a -> h_exists #(U.raise_t a) (U.lift_dom p)) | val lift_h_exists (#opened_invariants:_) (#a:_) (p:a -> slprop)
: action_except unit opened_invariants
(h_exists p)
(fun _a -> h_exists #(U.raise_t a) (U.lift_dom p)) | let lift_h_exists #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 113,
"end_line": 1556,
"start_col": 0,
"start_line": 1556
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f)
let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: a -> Steel.Memory.slprop)
-> Steel.Memory.action_except Prims.unit
opened_invariants
(Steel.Memory.h_exists p)
(fun _ -> Steel.Memory.h_exists (FStar.Universe.lift_dom p)) | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.lift_tot_action",
"Prims.unit",
"Steel.Heap.h_exists",
"FStar.Universe.raise_t",
"FStar.Universe.lift_dom",
"Steel.Heap.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.lift_h_exists",
"Steel.Memory.action_except",
"Steel.Memory.h_exists"
] | [] | false | false | false | false | false | let lift_h_exists #opened_invariants p =
| lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p)) | false |
Steel.Memory.fst | Steel.Memory.token_of_inv | val token_of_inv (#p: _) (i: inv p) : (name_of_inv i >--> p) | val token_of_inv (#p: _) (i: inv p) : (name_of_inv i >--> p) | let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 87,
"end_line": 1430,
"start_col": 0,
"start_line": 1430
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
} | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Steel.Memory.inv p -> Steel.Memory.name_of_inv i >--> p | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.inv",
"FStar.Ghost.erased",
"Steel.Memory.iname",
"Steel.Memory.witnessed_name_is_ok",
"FStar.Ghost.reveal",
"Steel.Memory.op_Greater_Subtraction_Subtraction_Greater",
"Steel.Memory.name_of_inv"
] | [] | false | false | false | false | false | let token_of_inv #p (i: inv p) : (name_of_inv i >--> p) =
| let (| _ , _ , tok |) = i in
tok | false |
Steel.Memory.fst | Steel.Memory.preserves_frame_invariant | val preserves_frame_invariant
(fp fp': slprop)
(opened_invariants: inames)
(p: slprop)
(i: inv p {not (mem_inv opened_invariants i)})
(m0: hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1: mem)
: Lemma
(requires
preserves_frame (set_add (name_of_inv i) opened_invariants)
(p `star` fp)
(p `star` fp')
m0
m1 /\ interp (fp' `star` (linv opened_invariants m1)) m1 /\ inames_ok opened_invariants m1 /\
((lock_store_invariant opened_invariants m0.locks)
`equiv`
(p `star` (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks))) /\
((lock_store_invariant opened_invariants m1.locks)
`equiv`
(p `star` (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks))))
(ensures preserves_frame opened_invariants fp fp' m0 m1) | val preserves_frame_invariant
(fp fp': slprop)
(opened_invariants: inames)
(p: slprop)
(i: inv p {not (mem_inv opened_invariants i)})
(m0: hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1: mem)
: Lemma
(requires
preserves_frame (set_add (name_of_inv i) opened_invariants)
(p `star` fp)
(p `star` fp')
m0
m1 /\ interp (fp' `star` (linv opened_invariants m1)) m1 /\ inames_ok opened_invariants m1 /\
((lock_store_invariant opened_invariants m0.locks)
`equiv`
(p `star` (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks))) /\
((lock_store_invariant opened_invariants m1.locks)
`equiv`
(p `star` (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks))))
(ensures preserves_frame opened_invariants fp fp' m0 m1) | let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
() | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 8,
"end_line": 1371,
"start_col": 0,
"start_line": 1330
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
} | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
fp: Steel.Memory.slprop ->
fp': Steel.Memory.slprop ->
opened_invariants: Steel.Memory.inames ->
p: Steel.Memory.slprop ->
i:
Steel.Memory.inv p
{Prims.op_Negation (FStar.Ghost.reveal (Steel.Memory.mem_inv opened_invariants i))} ->
m0:
Steel.Memory.hmem_with_inv_except (Steel.Memory.add_inv opened_invariants i)
(Steel.Memory.star p fp) ->
m1: Steel.Memory.mem
-> FStar.Pervasives.Lemma
(requires
Steel.Memory.preserves_frame (FStar.Ghost.hide (Steel.Memory.set_add (Steel.Memory.name_of_inv
i)
opened_invariants))
(Steel.Memory.star p fp)
(Steel.Memory.star p fp')
m0
m1 /\
Steel.Memory.interp (Steel.Memory.star fp' (Steel.Memory.linv opened_invariants m1)) m1 /\
Steel.Memory.inames_ok opened_invariants m1 /\
Steel.Memory.equiv (Steel.Memory.lock_store_invariant opened_invariants (Mkmem?.locks m0))
(Steel.Memory.star p
(Steel.Memory.lock_store_invariant (FStar.Ghost.hide (Steel.Memory.set_add (Steel.Memory.name_of_inv
i)
opened_invariants))
(Mkmem?.locks m0))) /\
Steel.Memory.equiv (Steel.Memory.lock_store_invariant opened_invariants (Mkmem?.locks m1))
(Steel.Memory.star p
(Steel.Memory.lock_store_invariant (FStar.Ghost.hide (Steel.Memory.set_add (Steel.Memory.name_of_inv
i)
opened_invariants))
(Mkmem?.locks m1))))
(ensures Steel.Memory.preserves_frame opened_invariants fp fp' m0 m1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.inames",
"Steel.Memory.inv",
"Prims.b2t",
"Prims.op_Negation",
"FStar.Ghost.reveal",
"Prims.bool",
"Steel.Memory.mem_inv",
"Steel.Memory.hmem_with_inv_except",
"Steel.Memory.add_inv",
"Steel.Memory.star",
"Steel.Memory.mem",
"Prims.unit",
"Steel.Memory.interp",
"Steel.Memory.linv",
"Prims.squash",
"Prims.l_and",
"Prims.l_Forall",
"Steel.Memory.mprop",
"Prims.eq2",
"Prims.prop",
"Steel.Memory.core_mem",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Prims._assert",
"Steel.Memory.rearrange_invariant",
"Steel.Memory.lock_store_invariant",
"Steel.Memory.__proj__Mkmem__item__locks",
"Steel.Memory.ctr_validity",
"Steel.Memory.__proj__Mkmem__item__ctr",
"Steel.Memory.heap_of_mem",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"Steel.Memory.set_add",
"Steel.Memory.name_of_inv",
"Steel.Memory.star_congruence",
"Steel.Memory.star_associative",
"Steel.Memory.preserves_frame",
"Steel.Memory.inames_ok",
"Steel.Memory.equiv"
] | [] | false | false | true | false | false | let preserves_frame_invariant
(fp fp': slprop)
(opened_invariants: inames)
(p: slprop)
(i: inv p {not (mem_inv opened_invariants i)})
(m0: hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1: mem)
: Lemma
(requires
preserves_frame (set_add (name_of_inv i) opened_invariants)
(p `star` fp)
(p `star` fp')
m0
m1 /\ interp (fp' `star` (linv opened_invariants m1)) m1 /\ inames_ok opened_invariants m1 /\
((lock_store_invariant opened_invariants m0.locks)
`equiv`
(p `star` (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks))) /\
((lock_store_invariant opened_invariants m1.locks)
`equiv`
(p `star` (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks))))
(ensures preserves_frame opened_invariants fp fp' m0 m1) =
| let aux (frame: slprop)
: Lemma (requires interp ((fp `star` frame) `star` (linv opened_invariants m0)) m0)
(ensures
interp ((fp' `star` frame) `star` (linv opened_invariants m1)) m1 /\
(forall (f_frame: mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat ()] =
rearrange_invariant (fp `star` frame)
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame))
`star`
(linv (set_add (name_of_inv i) opened_invariants) m0))
m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame))
(linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame)
(linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame)
`star`
(linv (set_add (name_of_inv i) opened_invariants) m0))
m0);
assert (interp (((p `star` fp') `star` frame)
`star`
(linv (set_add (name_of_inv i) opened_invariants) m1))
m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame)
(linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame))
(linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame))
`star`
(linv (set_add (name_of_inv i) opened_invariants) m1))
m1);
rearrange_invariant (fp' `star` frame)
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` (linv opened_invariants m1)) m1);
()
in
() | false |
Platform.Bytes.fst | Platform.Bytes.seq_of_bytes | val seq_of_bytes: b:bytes -> GTot (Seq.seq byte) | val seq_of_bytes: b:bytes -> GTot (Seq.seq byte) | let seq_of_bytes b = b | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 62,
"start_col": 0,
"start_line": 62
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Platform.Bytes.bytes -> Prims.GTot (FStar.Seq.Base.seq Platform.Bytes.byte) | Prims.GTot | [
"sometrivial"
] | [] | [
"Platform.Bytes.bytes",
"FStar.Seq.Base.seq",
"Platform.Bytes.byte"
] | [] | false | false | false | false | false | let seq_of_bytes b =
| b | false |
Steel.Memory.fst | Steel.Memory.equiv_pqrs_p_qr_s | val equiv_pqrs_p_qr_s (p q r s: slprop)
: Lemma ((((p `star` q) `star` r) `star` s) `equiv` ((p `star` (q `star` r)) `star` s)) | val equiv_pqrs_p_qr_s (p q r s: slprop)
: Lemma ((((p `star` q) `star` r) `star` s) `equiv` ((p `star` (q `star` r)) `star` s)) | let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 7,
"end_line": 1498,
"start_col": 0,
"start_line": 1491
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop -> q: Steel.Memory.slprop -> r: Steel.Memory.slprop -> s: Steel.Memory.slprop
-> FStar.Pervasives.Lemma
(ensures
Steel.Memory.equiv (Steel.Memory.star (Steel.Memory.star (Steel.Memory.star p q) r) s)
(Steel.Memory.star (Steel.Memory.star p (Steel.Memory.star q r)) s)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.equiv_extensional_on_star",
"Steel.Memory.star",
"Prims.unit",
"Steel.Memory.star_associative",
"Prims.l_True",
"Prims.squash",
"Steel.Memory.equiv",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let equiv_pqrs_p_qr_s (p q r s: slprop)
: Lemma ((((p `star` q) `star` r) `star` s) `equiv` ((p `star` (q `star` r)) `star` s)) =
| star_associative p q r;
equiv_extensional_on_star ((p `star` q) `star` r) (p `star` (q `star` r)) s | false |
Platform.Bytes.fst | Platform.Bytes.op_At_Bar | val op_At_Bar: bytes -> bytes -> Tot bytes | val op_At_Bar: bytes -> bytes -> Tot bytes | let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2 | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 65,
"start_col": 0,
"start_line": 65
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b1: Platform.Bytes.bytes -> b2: Platform.Bytes.bytes -> Platform.Bytes.bytes | Prims.Tot | [
"total"
] | [] | [
"Platform.Bytes.bytes",
"FStar.Seq.Base.append",
"Platform.Bytes.byte"
] | [] | false | false | false | true | false | let ( @| ) (b1 b2: bytes) =
| Seq.append b1 b2 | false |
Steel.Memory.fst | Steel.Memory.pts_to_join | val pts_to_join (#a:Type) (#pcm:pcm a) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m))
(ensures (joinable pcm x y)) | val pts_to_join (#a:Type) (#pcm:pcm a) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m))
(ensures (joinable pcm x y)) | let pts_to_join (#a:Type) (#pcm:pcm a) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m))
(ensures (joinable pcm x y)) =
H.pts_to_join #a #pcm r x y (heap_of_mem m) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 45,
"end_line": 1563,
"start_col": 0,
"start_line": 1560
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f)
let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p))
let lift_h_exists #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p))
let elim_pure #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.elim_pure p)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Memory.ref a pcm -> x: a -> y: a -> m: Steel.Memory.mem
-> FStar.Pervasives.Lemma
(requires
Steel.Memory.interp (Steel.Memory.pts_to r x) m /\
Steel.Memory.interp (Steel.Memory.pts_to r y) m) (ensures FStar.PCM.joinable pcm x y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.ref",
"Steel.Memory.mem",
"Steel.Heap.pts_to_join",
"Steel.Memory.heap_of_mem",
"Prims.unit",
"Prims.l_and",
"Steel.Memory.interp",
"Steel.Memory.pts_to",
"Prims.squash",
"FStar.PCM.joinable",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let pts_to_join (#a: Type) (#pcm: pcm a) (r: ref a pcm) (x y: a) (m: mem)
: Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m)) (ensures (joinable pcm x y)) =
| H.pts_to_join #a #pcm r x y (heap_of_mem m) | false |
Platform.Bytes.fst | Platform.Bytes.length | val length : bytes -> Tot nat | val length : bytes -> Tot nat | let length b = Seq.length b | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 71,
"start_col": 0,
"start_line": 71
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Platform.Bytes.bytes -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Platform.Bytes.bytes",
"FStar.Seq.Base.length",
"Platform.Bytes.byte",
"Prims.nat"
] | [] | false | false | false | true | false | let length b =
| Seq.length b | false |
Steel.Memory.fst | Steel.Memory.change_slprop | val change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
: action_except unit opened_invariants p (fun _ -> q) | val change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
: action_except unit opened_invariants p (fun _ -> q) | let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 93,
"end_line": 1530,
"start_col": 0,
"start_line": 1522
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Steel.Memory.slprop ->
q: Steel.Memory.slprop ->
proof:
(m: Steel.Memory.mem
-> FStar.Pervasives.Lemma (requires Steel.Memory.interp p m)
(ensures Steel.Memory.interp q m))
-> Steel.Memory.action_except Prims.unit opened_invariants p (fun _ -> q) | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.mem",
"Prims.unit",
"Steel.Memory.interp",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Steel.Memory.lift_tot_action",
"Steel.Memory.lift_heap_action",
"Steel.Heap.change_slprop",
"Steel.Heap.heap",
"Steel.Heap.interp",
"Steel.Memory.mem_of_heap",
"Steel.Memory.action_except"
] | [] | false | false | false | false | false | let change_slprop
(#opened_invariants: inames)
(p q: slprop)
(proof: (m: mem -> Lemma (requires interp p m) (ensures interp q m)))
=
| let proof (h: H.heap) : Lemma (requires H.interp p h) (ensures H.interp q h) =
proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof)) | false |
Steel.Memory.fst | Steel.Memory.elim_pure | val elim_pure (#opened_invariants:_) (p:prop)
: action_except (u:unit{p}) opened_invariants (pure p) (fun _ -> emp) | val elim_pure (#opened_invariants:_) (p:prop)
: action_except (u:unit{p}) opened_invariants (pure p) (fun _ -> emp) | let elim_pure #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.elim_pure p)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 105,
"end_line": 1558,
"start_col": 0,
"start_line": 1558
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f)
let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p))
let lift_h_exists #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p)) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Prims.prop
-> Steel.Memory.action_except (u1594: Prims.unit{p})
opened_invariants
(Steel.Memory.pure p)
(fun _ -> Steel.Memory.emp) | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.inames",
"Prims.prop",
"Steel.Memory.lift_tot_action",
"Prims.unit",
"Steel.Heap.pure",
"Steel.Heap.emp",
"Steel.Memory.slprop",
"Steel.Memory.lift_heap_action",
"Steel.Heap.elim_pure",
"Steel.Memory.action_except",
"Steel.Memory.pure",
"Steel.Memory.emp"
] | [] | false | false | false | false | false | let elim_pure #opened_invariants p =
| lift_tot_action (lift_heap_action opened_invariants (H.elim_pure p)) | false |
Steel.Memory.fst | Steel.Memory.witness_h_exists | val witness_h_exists (#opened_invariants:_) (#a:_) (p:a -> slprop)
: action_except (erased a) opened_invariants
(h_exists p)
(fun x -> p x) | val witness_h_exists (#opened_invariants:_) (#a:_) (p:a -> slprop)
: action_except (erased a) opened_invariants
(h_exists p)
(fun x -> p x) | let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p)) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 99,
"end_line": 1554,
"start_col": 0,
"start_line": 1553
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: a -> Steel.Memory.slprop)
-> Steel.Memory.action_except (FStar.Ghost.erased a)
opened_invariants
(Steel.Memory.h_exists p)
(fun x -> p (FStar.Ghost.reveal x)) | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.lift_tot_action_with_frame",
"FStar.Ghost.erased",
"Steel.Heap.h_exists",
"FStar.Ghost.reveal",
"Steel.Memory.lift_heap_action_with_frame",
"Steel.Heap.witness_h_exists",
"Steel.Memory.action_except",
"Steel.Memory.h_exists"
] | [] | false | false | false | false | false | let witness_h_exists #opened_invariants #a p =
| lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p)) | false |
Platform.Bytes.fst | Platform.Bytes.abyte2 | val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes | val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes | let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2) | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 68,
"end_line": 88,
"start_col": 0,
"start_line": 88
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: (FStar.UInt8.t * FStar.UInt8.t) -> Platform.Bytes.bytes | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple2",
"FStar.UInt8.t",
"FStar.Seq.Base.append",
"Platform.Bytes.byte",
"FStar.Seq.Base.create",
"Platform.Bytes.bytes"
] | [] | false | false | false | true | false | let abyte2 (b1, b2) =
| Seq.append (Seq.create 1 b1) (Seq.create 1 b2) | false |
Steel.Memory.fst | Steel.Memory.new_invariant_tot_action | val new_invariant_tot_action
(e: inames)
(p: slprop)
(m0: hmem_with_inv_except e p {e `inames_in` m0.locks})
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures
fun (i, m1) ->
iname_for_p_mem i p m1 /\ frame_related_mems p emp e m0 m1 /\ mem_evolves m0 m1) | val new_invariant_tot_action
(e: inames)
(p: slprop)
(m0: hmem_with_inv_except e p {e `inames_in` m0.locks})
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures
fun (i, m1) ->
iname_for_p_mem i p m1 /\ frame_related_mems p emp e m0 m1 /\ mem_evolves m0 m1) | let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 ) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 13,
"end_line": 1248,
"start_col": 0,
"start_line": 1177
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
} | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
p: Steel.Memory.slprop ->
m0: Steel.Memory.hmem_with_inv_except e p {Steel.Memory.inames_in e (Mkmem?.locks m0)}
-> Prims.Pure (Steel.Memory.iname * Steel.Memory.hmem_with_inv_except e Steel.Memory.emp) | Prims.Pure | [] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.hmem_with_inv_except",
"Steel.Memory.inames_in",
"Steel.Memory.__proj__Mkmem__item__locks",
"Steel.Memory.iname",
"Steel.Memory.lock_store",
"Prims.l_and",
"Prims.eq2",
"Steel.Memory.lock_store_invariant",
"Steel.Memory.star",
"Steel.Memory.iname_for_p",
"FStar.Pervasives.Native.Mktuple2",
"Steel.Memory.emp",
"Prims.unit",
"Prims._assert",
"Steel.Memory.frame_related_mems",
"Steel.Memory.interp",
"Steel.Memory.linv",
"Prims.squash",
"Steel.Memory.mem_evolves",
"Prims.l_Forall",
"Steel.Memory.mprop",
"Prims.l_iff",
"Steel.Memory.core_mem",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"FStar.Calc.calc_finish",
"Steel.Memory.equiv",
"FStar.Preorder.relation",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Heap.star_associative",
"Steel.Heap.star_congruence",
"Steel.Heap.star_commutative",
"Steel.Heap.emp_unit",
"Steel.Memory.hmem_with_inv_equiv",
"Steel.Memory.lock_store_evolves",
"Steel.Memory.iname_for_p_mem",
"Steel.Memory.ctr_validity",
"Steel.Memory.__proj__Mkmem__item__ctr",
"Steel.Memory.heap_of_mem",
"Steel.Memory.mem",
"Steel.Memory.Mkmem",
"Steel.Memory.__proj__Mkmem__item__heap",
"FStar.Pervasives.Native.tuple2",
"Prims.dtuple2",
"Steel.Memory.extend_lock_store",
"Prims.l_True"
] | [] | false | false | false | false | false | let new_invariant_tot_action
(e: inames)
(p: slprop)
(m0: hmem_with_inv_except e p {e `inames_in` m0.locks})
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures
fun (i, m1) ->
iname_for_p_mem i p m1 /\ frame_related_mems p emp e m0 m1 /\ mem_evolves m0 m1) =
| let (| i , l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks == p `star` (lock_store_invariant e m0.locks));
calc (equiv) {
linv e m1;
(equiv) { () }
((lock_store_invariant e m1.locks) `star` (ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { () }
((p `star` (lock_store_invariant e m0.locks)) `star` (ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { H.star_associative p
(lock_store_invariant e m0.locks)
(ctr_validity m1.ctr (heap_of_mem m1)) }
(p `star` ((lock_store_invariant e m0.locks) `star` (ctr_validity m1.ctr (heap_of_mem m1))));
(equiv) { () }
(p `star` (linv e m0));
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` (lock_store_invariant e m0.locks)) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` (lock_store_invariant e m1.locks)) m1);
hmem_with_inv_equiv e m1 emp;
let m1:hmem_with_inv_except e emp = m1 in
let aux (frame: slprop)
: Lemma (requires interp ((p `star` frame) `star` (linv e m0)) m0)
(ensures
interp ((emp `star` frame) `star` (linv e m1)) m1 /\ mem_evolves m0 m1 /\
(forall (mp: mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)] =
assert (interp ((p `star` frame) `star` (linv e m0)) m1);
calc (equiv) {
((p `star` frame) `star` (linv e m0));
(equiv) { (H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)) }
(frame `star` (p `star` (linv e m0)));
(equiv) { H.star_congruence frame (p `star` (linv e m0)) frame (linv e m1) }
(frame `star` (linv e m1));
(equiv) { (H.emp_unit (frame `star` (linv e m1));
H.star_commutative (frame `star` (linv e m1)) emp;
H.star_associative emp frame (linv e m1)) }
((emp `star` frame) `star` (linv e m1));
};
assert (interp ((emp `star` frame) `star` (linv e m1)) m1)
in
assert (frame_related_mems p emp e m0 m1);
(i, m1) | false |
Steel.Memory.fst | Steel.Memory.recall | val recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
: action_except (v1:Ghost.erased a{compatible pcm v v1}) e
(pts_to r v)
(fun v1 -> pts_to r v `star` pure (fact v1)) | val recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
: action_except (v1:Ghost.erased a{compatible pcm v v1}) e
(pts_to r v)
(fun v1 -> pts_to r v `star` pure (fact v1)) | let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1 | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 17,
"end_line": 1149,
"start_col": 0,
"start_line": 1119
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Steel.Memory.inames ->
r: FStar.Ghost.erased (Steel.Memory.ref a pcm) ->
v: FStar.Ghost.erased a ->
w: Steel.Memory.witnessed (FStar.Ghost.reveal r) fact
-> Steel.Memory.action_except (v1:
FStar.Ghost.erased a
{FStar.PCM.compatible pcm (FStar.Ghost.reveal v) (FStar.Ghost.reveal v1)})
e
(Steel.Memory.pts_to (FStar.Ghost.reveal r) (FStar.Ghost.reveal v))
(fun v1 ->
Steel.Memory.star (Steel.Memory.pts_to (FStar.Ghost.reveal r) (FStar.Ghost.reveal v))
(Steel.Memory.pure (fact (FStar.Ghost.reveal v1)))) | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.property",
"Steel.Memory.inames",
"FStar.Ghost.erased",
"Steel.Memory.ref",
"Steel.Memory.witnessed",
"FStar.Ghost.reveal",
"Steel.Memory.slprop",
"FStar.Ghost.hide",
"Prims.unit",
"Steel.Memory.star_congruence",
"Steel.Memory.star",
"Steel.Memory.pts_to",
"Steel.Memory.pure",
"Steel.Memory.locks_invariant",
"Steel.Memory.rearrange_pqr_prq",
"Prims._assert",
"Steel.Memory.interp",
"Steel.Memory.pure_star_interp",
"Steel.Memory.emp_unit",
"Prims.eq2",
"Steel.Heap.sel",
"Steel.Memory.heap_of_mem",
"FStar.PCM.compatible",
"Prims.l_and",
"FStar.PCM.__proj__Mkpcm__item__refine",
"Steel.Heap.interp",
"Steel.Heap.ptr",
"Steel.Heap.sel_v",
"Steel.Memory.witnessed_ref",
"Steel.Heap.ref",
"FStar.NMSTTotal.recall",
"Steel.Memory.full_mem",
"Steel.Memory.mem_evolves",
"Steel.Memory.mem",
"Steel.Memory.full_mem_pred",
"FStar.NMSTTotal.get"
] | [] | false | false | false | false | false | let recall
(#a: Type u#1)
(#pcm: pcm a)
(#fact: property a)
(e: inames)
(r: erased (ref a pcm))
(v: Ghost.erased a)
(w: witnessed r fact)
(frame: slprop)
=
| let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr:H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp (((pts_to r v) `star` frame) `star` (locks_invariant e m0)) m0);
emp_unit (((pts_to r v) `star` frame) `star` (locks_invariant e m0));
pure_star_interp (((pts_to r v) `star` frame) `star` (locks_invariant e m0)) (fact v1) m0;
assert (interp ((((pts_to r v) `star` frame) `star` (locks_invariant e m0)) `star` (pure (fact v1)))
m0);
rearrange_pqr_prq ((pts_to r v) `star` frame) (locks_invariant e m0) (pure (fact v1));
assert (interp ((((pts_to r v) `star` frame) `star` (pure (fact v1))) `star` (locks_invariant e m0))
m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence (((pts_to r v) `star` frame) `star` (pure (fact v1)))
(locks_invariant e m0)
(((pts_to r v) `star` (pure (fact v1))) `star` frame)
(locks_invariant e m0);
Ghost.hide v1 | false |
Platform.Bytes.fst | Platform.Bytes.abyte | val abyte : (FStar.UInt8.t -> Tot bytes) | val abyte : (FStar.UInt8.t -> Tot bytes) | let abyte b = Seq.create 1 b | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 85,
"start_col": 0,
"start_line": 85
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.UInt8.t -> Platform.Bytes.bytes | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.t",
"FStar.Seq.Base.create",
"Platform.Bytes.byte",
"Platform.Bytes.bytes"
] | [] | false | false | false | true | false | let abyte b =
| Seq.create 1 b | false |
Steel.Memory.fst | Steel.Memory.pts_to_evolve | val pts_to_evolve (#a:Type u#a) (#pcm:_) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ compatible pcm y x))
(ensures (interp (pts_to r y) m)) | val pts_to_evolve (#a:Type u#a) (#pcm:_) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ compatible pcm y x))
(ensures (interp (pts_to r y) m)) | let pts_to_evolve (#a:Type u#a) (#pcm:_) (r:ref a pcm) (x y : a) (m:mem)
: Lemma (requires (interp (pts_to r x) m /\ compatible pcm y x))
(ensures (interp (pts_to r y) m))
= H.pts_to_evolve #a #pcm r x y (heap_of_mem m) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 49,
"end_line": 1568,
"start_col": 0,
"start_line": 1565
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f)
let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p))
let lift_h_exists #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p))
let elim_pure #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.elim_pure p))
let pts_to_join (#a:Type) (#pcm:pcm a) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m))
(ensures (joinable pcm x y)) =
H.pts_to_join #a #pcm r x y (heap_of_mem m) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Memory.ref a pcm -> x: a -> y: a -> m: Steel.Memory.mem
-> FStar.Pervasives.Lemma
(requires Steel.Memory.interp (Steel.Memory.pts_to r x) m /\ FStar.PCM.compatible pcm y x)
(ensures Steel.Memory.interp (Steel.Memory.pts_to r y) m) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.PCM.pcm",
"Steel.Memory.ref",
"Steel.Memory.mem",
"Steel.Heap.pts_to_evolve",
"Steel.Memory.heap_of_mem",
"Prims.unit",
"Prims.l_and",
"Steel.Memory.interp",
"Steel.Memory.pts_to",
"FStar.PCM.compatible",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let pts_to_evolve (#a: Type u#a) (#pcm: _) (r: ref a pcm) (x y: a) (m: mem)
: Lemma (requires (interp (pts_to r x) m /\ compatible pcm y x))
(ensures (interp (pts_to r y) m)) =
| H.pts_to_evolve #a #pcm r x y (heap_of_mem m) | false |
Steel.Memory.fst | Steel.Memory.star_is_frame_monotonic | val star_is_frame_monotonic (#a:Type)
(f g : a -> slprop)
: Lemma (requires (is_frame_monotonic f /\ is_frame_monotonic g))
(ensures (is_frame_monotonic (fun x -> f x `star` g x))) | val star_is_frame_monotonic (#a:Type)
(f g : a -> slprop)
: Lemma (requires (is_frame_monotonic f /\ is_frame_monotonic g))
(ensures (is_frame_monotonic (fun x -> f x `star` g x))) | let star_is_frame_monotonic (#a:Type)
(f g : a -> slprop)
: Lemma (requires (is_frame_monotonic f /\ is_frame_monotonic g))
(ensures (is_frame_monotonic (fun x -> f x `star` g x)))
= let aux (x y : a) (m:mem) (frame : slprop)
: Lemma (requires interp ((f x `star` g x) `star` frame) m
/\ interp (f y `star` g y) m)
(ensures (interp ((f y `star` g y) `star` frame) m))
= star_associative (f x) (g x) frame;
let (m1, m23) = id_elim_star (f x) (g x `star` frame) m in
let (m2, m3) = id_elim_star (g x) frame m23 in
affine_star (f y) (g y) m;
assert (interp (f y) m);
assert (interp (g y) m);
assert (interp (f x `star` (g x `star` frame)) m);
assert (interp (f y `star` (g x `star` frame)) m);
(* flip and do the same reasoning *)
star_associative (f y) (g x) frame;
star_commutative (f y) (g x);
star_congruence (f y `star` g x) frame (g x `star` f y) frame;
star_associative (g x) (f y) frame;
assert (interp (g x `star` (f y `star` frame)) m);
assert (interp (g y `star` (f y `star` frame)) m);
(* get back in shape *)
star_associative (f y) (g y) frame;
star_commutative (f y) (g y);
star_congruence (f y `star` g y) frame (g y `star` f y) frame;
star_associative (g y) (f y) frame;
assert (interp (f y `star` (g y `star` frame)) m);
()
in
Classical.forall_intro_4 (fun x y m -> Classical.move_requires (aux x y m));
() | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 6,
"end_line": 1648,
"start_col": 0,
"start_line": 1614
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f)
let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p))
let lift_h_exists #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p))
let elim_pure #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.elim_pure p))
let pts_to_join (#a:Type) (#pcm:pcm a) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m))
(ensures (joinable pcm x y)) =
H.pts_to_join #a #pcm r x y (heap_of_mem m)
let pts_to_evolve (#a:Type u#a) (#pcm:_) (r:ref a pcm) (x y : a) (m:mem)
: Lemma (requires (interp (pts_to r x) m /\ compatible pcm y x))
(ensures (interp (pts_to r y) m))
= H.pts_to_evolve #a #pcm r x y (heap_of_mem m)
let id_elim_star p q m =
let starprop (ml:mem) (mr:mem) =
disjoint ml mr
/\ m == join ml mr
/\ interp p ml
/\ interp q mr
in
elim_star p q m;
let p1 : mem -> prop = fun ml -> (exists mr. starprop ml mr) in
let ml = IndefiniteDescription.indefinite_description_tot _ p1 in
let starpropml mr : prop = starprop ml mr in // this prop annotation seems needed
let mr = IndefiniteDescription.indefinite_description_tot _ starpropml in
(ml, mr)
let id_elim_exists #a p m =
let existsprop (x:a) =
interp (p x) m
in
elim_h_exists p m;
let x = IndefiniteDescription.indefinite_description_tot _ existsprop in
x
let slimp_star (p q r s : slprop)
: Lemma (requires (slimp p q /\ slimp r s))
(ensures (slimp (p `star` r) (q `star` s)))
= let aux (m:mem) : Lemma (requires (interp (p `star` r) m))
(ensures (interp (q `star` s) m))
=
let (ml, mr) = id_elim_star p r m in
intro_star q s ml mr
in
Classical.forall_intro (Classical.move_requires aux)
let elim_wi #a (p : a -> slprop{is_witness_invariant p}) (x y : a) (m : mem)
: Lemma (requires (interp (p x) m /\ interp (p y) m))
(ensures (x == y))
= ()
let witinv_framon (#a:Type) (p : a -> slprop)
: Lemma (is_witness_invariant p ==> is_frame_monotonic p)
[SMTPatOr [[SMTPat (is_witness_invariant p)]; [SMTPat (is_frame_monotonic p)]]]
= () | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> Steel.Memory.slprop) -> g: (_: a -> Steel.Memory.slprop)
-> FStar.Pervasives.Lemma
(requires Steel.Memory.is_frame_monotonic f /\ Steel.Memory.is_frame_monotonic g)
(ensures Steel.Memory.is_frame_monotonic (fun x -> Steel.Memory.star (f x) (g x))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"Prims.unit",
"FStar.Classical.forall_intro_4",
"Steel.Memory.mem",
"Prims.l_imp",
"Prims.l_and",
"Steel.Memory.interp",
"Steel.Memory.star",
"FStar.Classical.move_requires",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Ghost.erased",
"Prims._assert",
"Steel.Memory.star_associative",
"Steel.Memory.star_congruence",
"Steel.Memory.star_commutative",
"Steel.Memory.affine_star",
"FStar.Pervasives.Native.tuple2",
"Steel.Memory.id_elim_star",
"FStar.Ghost.reveal",
"Steel.Memory.is_frame_monotonic"
] | [] | false | false | true | false | false | let star_is_frame_monotonic (#a: Type) (f g: (a -> slprop))
: Lemma (requires (is_frame_monotonic f /\ is_frame_monotonic g))
(ensures (is_frame_monotonic (fun x -> (f x) `star` (g x)))) =
| let aux (x y: a) (m: mem) (frame: slprop)
: Lemma (requires interp (((f x) `star` (g x)) `star` frame) m /\ interp ((f y) `star` (g y)) m)
(ensures (interp (((f y) `star` (g y)) `star` frame) m)) =
star_associative (f x) (g x) frame;
let m1, m23 = id_elim_star (f x) ((g x) `star` frame) m in
let m2, m3 = id_elim_star (g x) frame m23 in
affine_star (f y) (g y) m;
assert (interp (f y) m);
assert (interp (g y) m);
assert (interp ((f x) `star` ((g x) `star` frame)) m);
assert (interp ((f y) `star` ((g x) `star` frame)) m);
star_associative (f y) (g x) frame;
star_commutative (f y) (g x);
star_congruence ((f y) `star` (g x)) frame ((g x) `star` (f y)) frame;
star_associative (g x) (f y) frame;
assert (interp ((g x) `star` ((f y) `star` frame)) m);
assert (interp ((g y) `star` ((f y) `star` frame)) m);
star_associative (f y) (g y) frame;
star_commutative (f y) (g y);
star_congruence ((f y) `star` (g y)) frame ((g y) `star` (f y)) frame;
star_associative (g y) (f y) frame;
assert (interp ((f y) `star` ((g y) `star` frame)) m);
()
in
Classical.forall_intro_4 (fun x y m -> Classical.move_requires (aux x y m));
() | false |
Steel.Memory.fst | Steel.Memory.id_elim_exists | val id_elim_exists (#a:Type) (p : a -> slprop) (m:mem)
: Pure (erased a)
(requires (interp (h_exists p) m))
(ensures (fun x -> interp (p x) m)) | val id_elim_exists (#a:Type) (p : a -> slprop) (m:mem)
: Pure (erased a)
(requires (interp (h_exists p) m))
(ensures (fun x -> interp (p x) m)) | let id_elim_exists #a p m =
let existsprop (x:a) =
interp (p x) m
in
elim_h_exists p m;
let x = IndefiniteDescription.indefinite_description_tot _ existsprop in
x | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 3,
"end_line": 1590,
"start_col": 0,
"start_line": 1584
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f)
let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p))
let lift_h_exists #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p))
let elim_pure #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.elim_pure p))
let pts_to_join (#a:Type) (#pcm:pcm a) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m))
(ensures (joinable pcm x y)) =
H.pts_to_join #a #pcm r x y (heap_of_mem m)
let pts_to_evolve (#a:Type u#a) (#pcm:_) (r:ref a pcm) (x y : a) (m:mem)
: Lemma (requires (interp (pts_to r x) m /\ compatible pcm y x))
(ensures (interp (pts_to r y) m))
= H.pts_to_evolve #a #pcm r x y (heap_of_mem m)
let id_elim_star p q m =
let starprop (ml:mem) (mr:mem) =
disjoint ml mr
/\ m == join ml mr
/\ interp p ml
/\ interp q mr
in
elim_star p q m;
let p1 : mem -> prop = fun ml -> (exists mr. starprop ml mr) in
let ml = IndefiniteDescription.indefinite_description_tot _ p1 in
let starpropml mr : prop = starprop ml mr in // this prop annotation seems needed
let mr = IndefiniteDescription.indefinite_description_tot _ starpropml in
(ml, mr) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: a -> Steel.Memory.slprop) -> m: Steel.Memory.mem -> Prims.Pure (FStar.Ghost.erased a) | Prims.Pure | [] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.mem",
"FStar.Ghost.erased",
"FStar.Ghost.reveal",
"FStar.IndefiniteDescription.indefinite_description_tot",
"Prims.unit",
"Steel.Memory.elim_h_exists",
"Prims.prop",
"Steel.Memory.interp"
] | [] | false | false | false | false | false | let id_elim_exists #a p m =
| let existsprop (x: a) = interp (p x) m in
elim_h_exists p m;
let x = IndefiniteDescription.indefinite_description_tot _ existsprop in
x | false |
Steel.Memory.fst | Steel.Memory.id_elim_star | val id_elim_star (p q:slprop) (m:mem)
: Pure (erased mem & erased mem)
(requires (interp (p `star` q) m))
(ensures (fun (ml, mr) -> disjoint ml mr
/\ m == join ml mr
/\ interp p ml
/\ interp q mr)) | val id_elim_star (p q:slprop) (m:mem)
: Pure (erased mem & erased mem)
(requires (interp (p `star` q) m))
(ensures (fun (ml, mr) -> disjoint ml mr
/\ m == join ml mr
/\ interp p ml
/\ interp q mr)) | let id_elim_star p q m =
let starprop (ml:mem) (mr:mem) =
disjoint ml mr
/\ m == join ml mr
/\ interp p ml
/\ interp q mr
in
elim_star p q m;
let p1 : mem -> prop = fun ml -> (exists mr. starprop ml mr) in
let ml = IndefiniteDescription.indefinite_description_tot _ p1 in
let starpropml mr : prop = starprop ml mr in // this prop annotation seems needed
let mr = IndefiniteDescription.indefinite_description_tot _ starpropml in
(ml, mr) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 10,
"end_line": 1582,
"start_col": 0,
"start_line": 1570
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f)
let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p))
let lift_h_exists #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p))
let elim_pure #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.elim_pure p))
let pts_to_join (#a:Type) (#pcm:pcm a) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m))
(ensures (joinable pcm x y)) =
H.pts_to_join #a #pcm r x y (heap_of_mem m)
let pts_to_evolve (#a:Type u#a) (#pcm:_) (r:ref a pcm) (x y : a) (m:mem)
: Lemma (requires (interp (pts_to r x) m /\ compatible pcm y x))
(ensures (interp (pts_to r y) m))
= H.pts_to_evolve #a #pcm r x y (heap_of_mem m) | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop -> q: Steel.Memory.slprop -> m: Steel.Memory.mem
-> Prims.Pure (FStar.Ghost.erased Steel.Memory.mem * FStar.Ghost.erased Steel.Memory.mem) | Prims.Pure | [] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.mem",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Ghost.erased",
"FStar.Ghost.reveal",
"FStar.IndefiniteDescription.indefinite_description_tot",
"Prims.prop",
"Prims.l_Exists",
"Prims.unit",
"Steel.Memory.elim_star",
"Prims.logical",
"Prims.l_and",
"Steel.Memory.disjoint",
"Prims.eq2",
"Steel.Memory.join",
"Steel.Memory.interp",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let id_elim_star p q m =
| let starprop (ml mr: mem) = disjoint ml mr /\ m == join ml mr /\ interp p ml /\ interp q mr in
elim_star p q m;
let p1: mem -> prop = fun ml -> (exists mr. starprop ml mr) in
let ml = IndefiniteDescription.indefinite_description_tot _ p1 in
let starpropml mr : prop = starprop ml mr in
let mr = IndefiniteDescription.indefinite_description_tot _ starpropml in
(ml, mr) | false |
Steel.Memory.fst | Steel.Memory.slimp_star | val slimp_star (p q r s : slprop)
: Lemma (requires (slimp p q /\ slimp r s))
(ensures (slimp (p `star` r) (q `star` s))) | val slimp_star (p q r s : slprop)
: Lemma (requires (slimp p q /\ slimp r s))
(ensures (slimp (p `star` r) (q `star` s))) | let slimp_star (p q r s : slprop)
: Lemma (requires (slimp p q /\ slimp r s))
(ensures (slimp (p `star` r) (q `star` s)))
= let aux (m:mem) : Lemma (requires (interp (p `star` r) m))
(ensures (interp (q `star` s) m))
=
let (ml, mr) = id_elim_star p r m in
intro_star q s ml mr
in
Classical.forall_intro (Classical.move_requires aux) | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 55,
"end_line": 1602,
"start_col": 0,
"start_line": 1593
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s
let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x
let change_slprop (#opened_invariants:inames)
(p q:slprop)
(proof: (m:mem -> Lemma (requires interp p m) (ensures interp q m)))
= let proof (h:H.heap)
: Lemma (requires H.interp p h)
(ensures H.interp q h)
= proof (mem_of_heap h)
in
lift_tot_action (lift_heap_action opened_invariants (Steel.Heap.change_slprop p q proof))
(* This module reuses is_frame_monotonic from Heap, but does not expose that
to clients, so we need this lemma to typecheck witness_h_exists below. *)
let relate_frame_monotonic_1 #a p
: Lemma (requires (H.is_frame_monotonic p))
(ensures (is_frame_monotonic p))
= ()
let relate_frame_monotonic_2 #a p
: Lemma (requires (is_frame_monotonic p))
(ensures (H.is_frame_monotonic p))
= let aux (x y : a) (h : H.heap) (f : H.slprop) :
Lemma (requires (H.interp (p x `H.star` f) h /\ H.interp (p y) h))
(ensures (H.interp (p y `H.star` f) h))
=
let m = mem_of_heap h in
assert (interp (p x `star` f) m);
assert (interp (p y) m);
assert (interp (p y `star` f) m)
in
Classical.forall_intro_4 (fun x y h f -> Classical.move_requires (aux x y h) f)
let witness_h_exists #opened_invariants #a p =
lift_tot_action_with_frame (lift_heap_action_with_frame opened_invariants (H.witness_h_exists p))
let lift_h_exists #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.lift_h_exists p))
let elim_pure #opened_invariants p = lift_tot_action (lift_heap_action opened_invariants (H.elim_pure p))
let pts_to_join (#a:Type) (#pcm:pcm a) (r:ref a pcm) (x y : a) (m:mem) :
Lemma (requires (interp (pts_to r x) m /\ interp (pts_to r y) m))
(ensures (joinable pcm x y)) =
H.pts_to_join #a #pcm r x y (heap_of_mem m)
let pts_to_evolve (#a:Type u#a) (#pcm:_) (r:ref a pcm) (x y : a) (m:mem)
: Lemma (requires (interp (pts_to r x) m /\ compatible pcm y x))
(ensures (interp (pts_to r y) m))
= H.pts_to_evolve #a #pcm r x y (heap_of_mem m)
let id_elim_star p q m =
let starprop (ml:mem) (mr:mem) =
disjoint ml mr
/\ m == join ml mr
/\ interp p ml
/\ interp q mr
in
elim_star p q m;
let p1 : mem -> prop = fun ml -> (exists mr. starprop ml mr) in
let ml = IndefiniteDescription.indefinite_description_tot _ p1 in
let starpropml mr : prop = starprop ml mr in // this prop annotation seems needed
let mr = IndefiniteDescription.indefinite_description_tot _ starpropml in
(ml, mr)
let id_elim_exists #a p m =
let existsprop (x:a) =
interp (p x) m
in
elim_h_exists p m;
let x = IndefiniteDescription.indefinite_description_tot _ existsprop in
x | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop -> q: Steel.Memory.slprop -> r: Steel.Memory.slprop -> s: Steel.Memory.slprop
-> FStar.Pervasives.Lemma (requires Steel.Memory.slimp p q /\ Steel.Memory.slimp r s)
(ensures Steel.Memory.slimp (Steel.Memory.star p r) (Steel.Memory.star q s)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"FStar.Classical.forall_intro",
"Steel.Memory.mem",
"Prims.l_imp",
"Steel.Memory.interp",
"Steel.Memory.star",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Ghost.erased",
"Steel.Memory.intro_star",
"FStar.Ghost.reveal",
"FStar.Pervasives.Native.tuple2",
"Steel.Memory.id_elim_star",
"Prims.l_and",
"Steel.Memory.slimp"
] | [] | false | false | true | false | false | let slimp_star (p q r s: slprop)
: Lemma (requires (slimp p q /\ slimp r s)) (ensures (slimp (p `star` r) (q `star` s))) =
| let aux (m: mem) : Lemma (requires (interp (p `star` r) m)) (ensures (interp (q `star` s) m)) =
let ml, mr = id_elim_star p r m in
intro_star q s ml mr
in
Classical.forall_intro (Classical.move_requires aux) | false |
Steel.Memory.fst | Steel.Memory.frame | val frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
: action_except_full a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) req ens | val frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
: action_except_full a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) req ens | let frame (#a:Type)
(#opened_invariants:inames)
(#pre:slprop)
(#post:a -> slprop)
(#req:mprop pre)
(#ens:mprop2 pre post)
(frame:slprop)
($f:action_except_full a opened_invariants pre post req ens)
(frame0:slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> post x `star` frame) frame0
req ens
= let m0 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (pre `star` frame `star` frame0 `star` linv opened_invariants m0) m0);
assert (interp (pre `star` (frame `star` frame0) `star` linv opened_invariants m0) m0);
let x = f (frame `star` frame0) in
let m1 : full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (post x `star` (frame `star` frame0) `star` linv opened_invariants m1) m1);
assert (interp (post x `star` frame `star` frame0 `star` linv opened_invariants m1) m1);
x | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 1520,
"start_col": 0,
"start_line": 1500
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0
let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x
let lift_tot_action #a #e #fp #fp'
($f:tot_action_nf_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get #(full_mem) #_ () in
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
lift_tot_action_nf f
(**
Now defining the lift for heap actions with explicit frame
*)
let tot_action_with_frame_except
(e:inames)
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
m0:hmem_with_inv_except e (fp `star` frame) ->
Pure (x:a & hmem_with_inv_except e (fp' x `star` frame))
(requires True)
(ensures fun (| x, m1 |) ->
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_with_frame = tot_action_with_frame_except S.empty
let lift_heap_action_with_frame
(#fp:slprop u#a)
(#a:Type u#b)
(#fp':a -> slprop u#a)
(e:inames)
($f:H.action_with_frame fp a fp')
: tot_action_with_frame_except e fp a fp'
= fun frame m0 ->
let h0 = hheap_of_hmem m0 in
calc (equiv) {
fp `star` frame `star` locks_invariant e m0;
(equiv) { star_associative fp frame (locks_invariant e m0) }
fp `star` (frame `star` locks_invariant e m0);
};
assert (H.interp (fp `star` frame `star` locks_invariant e m0) h0);
assert (H.interp (fp `star` (frame `star` locks_invariant e m0)) h0);
//key: apply the heap action with frame * locks_invariant e m0
let (| x, h1 |) = f (frame `star` locks_invariant e m0) h0 in
calc (equiv) {
fp' x `star` (frame `star` locks_invariant e m0);
(equiv) { star_associative (fp' x) frame (locks_invariant e m0) }
fp' x `star` frame `star` locks_invariant e m0;
};
assert (H.interp (fp' x `star` (frame `star` locks_invariant e m0)) h1);
assert (H.interp (fp' x `star` frame `star` locks_invariant e m0) h1);
let m1 = hmem_of_hheap m0 h1 in
assert (mem_evolves m0 m1);
mprop_preservation_of_hprop_preservation (frame `star` locks_invariant e m0) m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1));
(| x, m1 |)
let lift_tot_action_with_frame #a #e #fp #fp'
($f:tot_action_with_frame_except e fp a fp')
(frame:slprop)
: MstTot a e fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
assert (inames_ok e m0);
ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
assert (interp (fp `star` frame `star` locks_invariant e m0) m0);
assert (interp (fp `star` locks_invariant e m0) m0);
let m0' : hmem_with_inv_except e fp = m0 in
let r = f frame m0' in
let (| x, m1 |) = r in
ac_reasoning_for_m_frame_preserving (fp' x) frame (locks_invariant e m1) m1;
assert (interp (fp' x `star` frame `star` locks_invariant e m1) m1);
assert (interp (fp' x `star` locks_invariant e m1) m1);
let m1' : hmem_with_inv_except e (fp' x) = m1 in
NMSTTotal.put #_ #(mem_evolves) m1;
x
let sel_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.sel_action #a #pcm r v0))
let upd_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.upd_action #a #pcm r v0 v1))
let free_action #a #pcm e r v0
= lift_tot_action (lift_heap_action e (H.free_action #a #pcm r v0))
let split_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.split_action #a #pcm r v0 v1))
let gather_action #a #pcm e r v0 v1
= lift_tot_action (lift_heap_action e (H.gather_action #a #pcm r v0 v1))
let weaken (p q r:slprop) (h:H.hheap (p `star` q) { H.stronger q r })
: H.hheap (p `star` r)
= H.weaken p q r h; h
let weaken_pure (q r: prop)
: Lemma
(requires (q ==> r))
(ensures H.stronger (H.pure q) (H.pure r))
= let aux (h:H.heap)
: Lemma (ensures (H.interp (H.pure q) h ==> H.interp (H.pure r) h))
[SMTPat ()]
= H.pure_interp q h;
H.pure_interp r h
in
()
let inc_ctr (#p:slprop) #e (m:hmem_with_inv_except e p)
: m':hmem_with_inv_except e p{m'.ctr = m.ctr + 1 /\ H.stronger (linv e m) (linv e m')}
= let m' : mem = { m with ctr = m.ctr + 1} in
assert (interp (p `star` linv e m) m');
assert (linv e m == lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m));
assert (linv e m' == lock_store_invariant e m.locks
`star`
ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken_free_above (heap_of_mem m) m.ctr (m.ctr + 1);
weaken_pure (heap_ctr_valid m.ctr (heap_of_mem m))
(heap_ctr_valid (m.ctr + 1) (heap_of_mem m));
assert (H.stronger
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m)));
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m));
H.stronger_star (lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m));
H.weaken (p `star` lock_store_invariant e m.locks)
(ctr_validity m.ctr (heap_of_mem m))
(ctr_validity (m.ctr + 1) (heap_of_mem m))
(heap_of_mem m');
H.star_associative p (lock_store_invariant e m.locks)
(ctr_validity (m.ctr + 1) (heap_of_mem m));
let m' : hmem_with_inv_except e p = m' in
m'
let frame_related_mems (fp0 fp1:slprop u#a) e (m0:hmem_with_inv_except e fp0) (m1:hmem_with_inv_except e fp1) =
forall (frame:slprop u#a).
interp ((fp0 `star` frame) `star` linv e m0) m0 ==>
interp ((fp1 `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
let refined_pre_action e (fp0:slprop) (a:Type) (fp1:a -> slprop) =
m0:hmem_with_inv_except e fp0 ->
Pure (x:a &
hmem_with_inv_except e (fp1 x))
(requires True)
(ensures fun (| x, m1 |) ->
frame_related_mems fp0 (fp1 x) e m0 m1)
let refined_pre_action_as_action (#fp0:slprop) (#a:Type) (#fp1:a -> slprop)
#e ($f:refined_pre_action e fp0 a fp1)
: tot_action_nf_except e fp0 a fp1
= let g : tot_pre_action_nf_except e fp0 a fp1 = fun m -> f m in
let aux (frame:slprop)
(m0:hmem_with_inv_except e (fp0 `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp1 x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp0 frame (locks_invariant e m0) m0;
let (| x', m1' |) = g m0 in
let (| x, m1 |) = f m0 in
assert (x == x' /\ m1 == m1')
in
g
let alloc_action #a #pcm e x
= let f : refined_pre_action e emp (ref a pcm) (fun r -> pts_to r x)
= fun m0 ->
(* NS: 9/29/22 I needed to annotate h : Heap.full_heap, for use with the Core checker
which generates a guard for checking the implicit pattern "dot" term in the dependent
pair pattern on the next line. That guard expects `h` to be a full_heap, which is it,
because it is a projection of m0. However, this is not reflected in `h`'s type. So,
the Core checker, which produces a guard for the pat_dot_term in isolation, cannot
recheck the term. If we were to fold in the checking of pat_dot_terms and their guards
with the rest of the VC, this would work. *)
let h : Heap.full_heap = hheap_of_hmem m0 in
let (|r, h'|) = H.extend #a #pcm x m0.ctr h in
let m' : hmem_with_inv_except e emp = inc_ctr m0 in
let h' : H.hheap (pts_to #a #pcm r x `star` linv e m') = weaken _ (linv e m0) (linv e m') h' in
let m1 : hmem_with_inv_except e (pts_to #a #pcm r x) = hmem_of_hheap m' h' in
assert (forall frame. H.frame_related_heaps h h' emp (pts_to #a #pcm r x) frame true);
let aux (frame:slprop)
: Lemma
(requires
interp ((emp `star` frame) `star` linv e m0) m0)
(ensures
interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
[SMTPat (emp `star` frame)]
= star_associative emp frame (linv e m0);
assert (H.interp (emp `star` (frame `star` linv e m0)) h);
assert (H.interp (pts_to #a #pcm r x `star` (frame `star` linv e m0)) h');
star_associative (pts_to #a #pcm r x) frame (linv e m0);
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m0) h');
assert (H.stronger (linv e m0) (linv e m'));
assert (H.equiv (linv e m') (linv e m1));
assert (H.stronger (linv e m0) (linv e m1));
let h' : H.hheap ((pts_to #a #pcm r x `star` frame) `star` linv e m1) = weaken _ (linv e m0) (linv e m1) h' in
assert (H.interp ((pts_to #a #pcm r x `star` frame) `star` linv e m1) h');
assert (forall (mp:H.hprop frame). mp h == mp h');
mprop_preservation_of_hprop_preservation frame m0 m1;
assert (forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))
in
assert (frame_related_mems emp (pts_to r x) e m0 m1);
(| r, m1 |)
in
lift_tot_action (refined_pre_action_as_action f)
let select_refine #a #p e r x f
= lift_tot_action (lift_heap_action e (H.select_refine #a #p r x f))
let upd_gen #a #p e r x y f
= lift_tot_action (lift_heap_action e (H.upd_gen_action r x y f))
////////////////////////////////////////////////////////////////////////////////
// witness / recall
////////////////////////////////////////////////////////////////////////////////
let witnessed_ref #a #pcm (r:ref a pcm) (fact:property a) (m:full_mem)
= H.witnessed_ref #a #pcm r fact (heap_of_mem m)
let witnessed_ref_stability #a #pcm (r:ref a pcm) (fact:property a)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
= H.witnessed_ref_stability #a #pcm r fact
let witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
= W.witnessed _ mem_evolves (witnessed_ref r fact)
let rearrange_pqr_prq (p q r:slprop)
: Lemma (((p `star` q) `star` r) `equiv`
((p `star` r) `star` q))
= calc (equiv)
{
(p `star` q) `star` r;
(equiv) { star_associative p q r }
p `star` (q `star` r);
(equiv) {
star_commutative q r;
star_congruence p (q `star` r) p (r `star` q)
}
p `star` (r `star` q);
(equiv) { star_associative p r q }
(p `star` r) `star` q;
}
let preserves_frame_cong (e:inames) (p q:slprop) (r s:slprop) (m0 m1:mem)
: Lemma
(requires p `equiv` r /\ q `equiv` s /\ preserves_frame e p q m0 m1)
(ensures
preserves_frame e r s m0 m1)
= let aux0 (p q r s:slprop)
: Lemma
(requires p `equiv` s)
(ensures (((p `star` q) `star` r) `equiv`
((s `star` q) `star` r)))
= star_congruence p q s q;
star_congruence (p `star` q) r (s `star` q) r
in
let aux (frame:slprop)
: Lemma (requires interp ((r `star` frame) `star` locks_invariant e m0) m0)
(ensures interp ((s `star` frame) `star` locks_invariant e m1) m1 /\
interp ((p `star` frame) `star` locks_invariant e m0) m0)
[SMTPat (r `star` frame)]
= aux0 p frame (locks_invariant e m0) r;
aux0 q frame (locks_invariant e m1) s;
assert (((p `star` frame) `star` locks_invariant e m0) `equiv`
((r `star` frame) `star` locks_invariant e m0));
assert (interp ((p `star` frame) `star` locks_invariant e m0) m0);
assert (interp ((q `star` frame) `star` locks_invariant e m1) m1);
assert (((q `star` frame) `star` locks_invariant e m1) `equiv`
((s `star` frame) `star` locks_invariant e m1));
()
in
()
let pure_true_equiv (p:slprop)
: Lemma ((p `star` pure True) `equiv` p)
= FStar.Classical.forall_intro (pure_star_interp p True);
emp_unit p;
assert ((p `star` pure True) `equiv` p)
let preserves_frame_star_pure (e:inames) (p q:slprop) (r s:prop) (m:mem)
: Lemma
(requires r /\ s)
(ensures
preserves_frame e p q m m <==>
preserves_frame e (p `star` pure r) (q `star` pure s) m m)
= pure_equiv r True;
star_congruence p (pure r) p (pure True);
pure_equiv s True;
star_congruence q (pure s) q (pure True);
pure_true_equiv p;
pure_true_equiv q;
let fwd ()
: Lemma
(requires preserves_frame e p q m m)
(ensures preserves_frame e (p `star` pure r) (q `star` pure s) m m)
[SMTPat ()]
= preserves_frame_cong e p q (p `star` pure r) (q `star` pure s) m m
in
let bk ()
: Lemma
(requires preserves_frame e (p `star` pure r) (q `star` pure s) m m)
(ensures preserves_frame e p q m m)
[SMTPat ()]
= preserves_frame_cong e (p `star` pure r) (q `star` pure s) p q m m
in
()
let witness (#a:Type) (#pcm:pcm a)
(e:inames)
(r:erased (ref a pcm))
(fact:stable_property pcm)
(v:Ghost.erased a)
(_:squash (forall z. compatible pcm v z ==> fact z))
(frame:slprop)
: MstTot (witnessed r fact) e
(pts_to r v)
(fun _ -> pts_to r v) frame
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
let _ : unit =
let hr : H.ref a pcm = r in
let v' = H.sel_v hr v (heap_of_mem m0) in
assert (interp (H.ptr hr) m0 /\ H.sel #a #pcm hr (heap_of_mem m0) == v');
assert (compatible pcm v v');
assert (fact v');
assert (witnessed_ref r fact m0);
witnessed_ref_stability r fact;
assert (FStar.Preorder.stable (witnessed_ref r fact) mem_evolves)
in
let w = NMSTTotal.witness _ mem_evolves (witnessed_ref r fact) in
w
let recall (#a:Type u#1) (#pcm:pcm a) (#fact:property a)
(e:inames)
(r:erased (ref a pcm))
(v:Ghost.erased a)
(w:witnessed r fact)
(frame:slprop)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (witnessed_ref r fact) w;
let hr : H.ref a pcm = r in
assert (witnessed_ref r fact m0);
let v1 = H.sel_v hr v (heap_of_mem m0) in
assert (compatible pcm v v1);
assert (H.sel hr (heap_of_mem m0) == v1);
assert (fact v1);
assert (interp ((pts_to r v `star` frame) `star` locks_invariant e m0) m0);
emp_unit ((pts_to r v `star` frame) `star` locks_invariant e m0);
pure_star_interp ((pts_to r v `star` frame) `star` locks_invariant e m0) (fact v1) m0;
assert (interp (((pts_to r v `star` frame)
`star` locks_invariant e m0)
`star` pure (fact v1)) m0);
rearrange_pqr_prq (pts_to r v `star` frame)
(locks_invariant e m0)
(pure (fact v1));
assert (interp (((pts_to r v `star` frame) `star` pure (fact v1))
`star` locks_invariant e m0) m0);
rearrange_pqr_prq (pts_to r v) frame (pure (fact v1));
star_congruence ((pts_to r v `star` frame) `star` pure (fact v1))
(locks_invariant e m0)
((pts_to r v `star` pure (fact v1)) `star` frame)
(locks_invariant e m0);
Ghost.hide v1
let iname_for_p_mem (i:iname) (p:slprop) : W.s_predicate mem =
fun m -> iname_for_p i p m.locks
let iname_for_p_stable (i:iname) (p:slprop)
: Lemma (W.stable full_mem mem_evolves (iname_for_p_mem i p))
= ()
let ( >--> ) (i:iname) (p:slprop) : Type0 = W.witnessed full_mem mem_evolves (iname_for_p_mem i p)
let hmem_with_inv_equiv e (m:mem) (p:slprop)
: Lemma (interp (p `star` linv e m) m <==>
interp (p `star` lock_store_invariant e m.locks) m /\
heap_ctr_valid m.ctr (heap_of_mem m))
= calc (<==>) {
interp (p `star` linv e m) m;
(<==>) { H.star_associative p (lock_store_invariant e m.locks) (ctr_validity m.ctr (heap_of_mem m)) }
interp ((p `star` lock_store_invariant e m.locks) `star` ctr_validity m.ctr (heap_of_mem m)) m;
(<==>) { H.pure_star_interp (p `star` lock_store_invariant e m.locks) (heap_ctr_valid m.ctr (heap_of_mem m)) (heap_of_mem m) }
interp ((p `star` lock_store_invariant e m.locks) `star` emp) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
(<==>) { H.emp_unit (p `star` lock_store_invariant e m.locks) }
interp (p `star` lock_store_invariant e m.locks) m /\
(heap_ctr_valid m.ctr (heap_of_mem m));
}
let new_invariant_tot_action (e:inames) (p:slprop) (m0:hmem_with_inv_except e p{ e `inames_in` m0.locks })
: Pure (iname & hmem_with_inv_except e emp)
(requires True)
(ensures fun (i, m1) ->
iname_for_p_mem i p m1 /\
frame_related_mems p emp e m0 m1 /\
mem_evolves m0 m1)
= let (| i, l1 |) = extend_lock_store e m0.locks p in
let m1 = { m0 with locks = l1 } in
assert (lock_store_invariant e m1.locks ==
p `star` lock_store_invariant e m0.locks);
calc (equiv) {
linv e m1;
(equiv) {}
(lock_store_invariant e m1.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {}
((p `star` lock_store_invariant e m0.locks)
`star`
ctr_validity m1.ctr (heap_of_mem m1));
(equiv) {
H.star_associative p (lock_store_invariant e m0.locks) (ctr_validity m1.ctr (heap_of_mem m1))
}
(p `star` (lock_store_invariant e m0.locks
`star`
ctr_validity m1.ctr (heap_of_mem m1)));
(equiv) { }
(p `star` linv e m0);
};
assert (iname_for_p_mem i p m1);
assert (lock_store_evolves m0.locks l1);
assert (mem_evolves m0 m1);
hmem_with_inv_equiv e m0 p;
assert (interp (p `star` lock_store_invariant e m0.locks) m1);
assert (interp (lock_store_invariant e m1.locks) m1);
H.emp_unit (lock_store_invariant e m1.locks);
H.star_commutative (lock_store_invariant e m1.locks) emp;
assert (interp (emp `star` lock_store_invariant e m1.locks) m1);
hmem_with_inv_equiv e m1 emp;
let m1 : hmem_with_inv_except e emp = m1 in
let aux (frame:slprop)
: Lemma
(requires interp ((p `star` frame) `star` linv e m0) m0)
(ensures interp ((emp `star` frame) `star` linv e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) <==> mp (core_mem m1)))
[SMTPat (p `star` frame)]
= assert (interp ((p `star` frame) `star` linv e m0) m1);
calc (equiv) {
((p `star` frame) `star` linv e m0);
(equiv) {
H.star_commutative p frame;
H.star_congruence (p `star` frame) (linv e m0) (frame `star` p) (linv e m0);
H.star_associative frame p (linv e m0)
}
(frame `star` (p `star` linv e m0));
(equiv) {
H.star_congruence frame (p `star` linv e m0) frame (linv e m1)
}
(frame `star` linv e m1);
(equiv) {
H.emp_unit (frame `star` linv e m1);
H.star_commutative (frame `star` linv e m1) emp;
H.star_associative emp frame (linv e m1)
}
((emp `star` frame) `star` linv e m1);
};
assert (interp ((emp `star` frame) `star` linv e m1) m1)
in
assert (frame_related_mems p emp e m0 m1);
( i, m1 )
let name_is_ok (i:iname) (m0:full_mem u#1) : prop = i < List.Tot.length m0.locks
let witnessed_name_is_ok (i:iname) = W.witnessed full_mem mem_evolves (name_is_ok i)
let pre_inv = i:erased iname & witnessed_name_is_ok i
let inv (p:slprop u#1) = i:erased iname & witnessed_name_is_ok i & (i >--> p)
let pre_inv_of_inv #p (i:inv p) = let (|i, w, _|) = i in (|i,w|)
let name_of_pre_inv (i:pre_inv) = dfst i
let rec recall_all (ctx:list pre_inv)
: NMSTTotal.NMSTATETOT unit (full_mem u#1) mem_evolves
(requires fun _ -> True)
(ensures fun m0 _ m1 -> m0==m1 /\ (forall i. i `List.Tot.memP` ctx ==> name_is_ok (name_of_pre_inv i) m0))
= match ctx with
| [] -> ()
| hd::tl ->
let (| q, i |) = hd in
let i : W.witnessed full_mem mem_evolves (name_is_ok q) = i in
NMSTTotal.recall _ mem_evolves (name_is_ok q) i;
recall_all tl
let fresh_invariant (e:inames) (p:slprop) (ctx:list pre_inv) (frame:slprop)
: MstTot (i:inv p { not (mem_inv e i) /\ fresh_wrt ctx (name_of_inv i)}) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
recall_all ctx;
ac_reasoning_for_m_frame_preserving p frame (locks_invariant e m0) m0;
assert (interp (p `star` locks_invariant e m0) m0);
let r = new_invariant_tot_action e p m0 in
let ( i, m1 ) = r in
assert (i == List.Tot.length m0.locks);
assert (not (Set.mem i e));
assert (mem_evolves m0 m1);
NMSTTotal.put #full_mem #mem_evolves m1;
iname_for_p_stable i p;
let w = NMSTTotal.witness full_mem mem_evolves (iname_for_p_mem i p) in
let w0 = NMSTTotal.witness full_mem mem_evolves (name_is_ok i) in
(| hide i, w0, w |)
let new_invariant (e:inames) (p:slprop) (frame:slprop)
: MstTot (inv p) e p (fun _ -> emp) frame (fun _ -> True) (fun _ _ _ -> True)
= fresh_invariant e p [] frame
let rearrange_invariant (p q r : slprop) (q0 q1:slprop)
: Lemma
(requires q `equiv` (q0 `star` q1))
(ensures (p `star` (q `star` r)) `equiv`
((q0 `star` p) `star` (q1 `star` r)))
= calc (equiv)
{
p `star` (q `star` r);
(equiv)
{
calc (equiv)
{
(q `star` r);
(equiv) {
star_congruence q r (q0 `star` q1) r
}
(q0 `star` q1) `star` r;
};
star_congruence p (q `star` r) p ((q0 `star` q1) `star` r)
}
(p `star` ((q0 `star` q1) `star` r));
(equiv) {
star_associative q0 q1 r;
star_congruence p ((q0 `star` q1) `star` r)
p (q0 `star` (q1 `star` r));
star_associative p q0 (q1 `star` r)
}
(p `star` q0) `star` (q1 `star` r);
(equiv) {
star_commutative p q0;
star_congruence (p `star` q0) (q1 `star` r)
(q0 `star` p) (q1 `star` r)
}
(q0 `star` p) `star` (q1 `star` r);
}
let preserves_frame_invariant (fp fp':slprop)
(opened_invariants:inames)
(p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(m0:hmem_with_inv_except (add_inv opened_invariants i) (p `star` fp))
(m1:mem)
: Lemma
(requires preserves_frame (set_add (name_of_inv i) opened_invariants) (p `star` fp) (p `star` fp') m0 m1 /\
interp (fp' `star` linv opened_invariants m1) m1 /\
inames_ok opened_invariants m1 /\
(lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks)) /\
(lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks)))
(ensures preserves_frame opened_invariants fp fp' m0 m1)
=
let aux (frame:slprop)
: Lemma
(requires
interp ((fp `star` frame) `star` linv opened_invariants m0) m0)
(ensures
interp ((fp' `star` frame) `star` linv opened_invariants m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
[SMTPat()]
= rearrange_invariant (fp `star` frame) (lock_store_invariant opened_invariants m0.locks) (ctr_validity m0.ctr (heap_of_mem m0))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp ((p `star` (fp `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
star_associative p fp frame;
star_congruence (p `star` (fp `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m0)
((p `star` fp) `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m0);
assert (interp (((p `star` fp) `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m0) m0);
assert (interp (((p `star` fp') `star` frame) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
star_associative p fp' frame;
star_congruence ((p `star` fp') `star` frame) (linv (set_add (name_of_inv i) opened_invariants) m1)
(p `star` (fp' `star` frame)) (linv (set_add (name_of_inv i) opened_invariants) m1);
assert (interp ((p `star` (fp' `star` frame)) `star` linv (set_add (name_of_inv i) opened_invariants) m1) m1);
rearrange_invariant (fp' `star` frame) (lock_store_invariant opened_invariants m1.locks) (ctr_validity m1.ctr (heap_of_mem m1))
p (lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp ((fp' `star` frame) `star` linv opened_invariants m1) m1);
()
in
()
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `equiv` r)
(ensures (p `star` q) `equiv` (p `star` r))
= calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let with_inv_helper (fp frame ls1 ctr p ls2:slprop)
: Lemma
(requires ls1 `equiv` (p `star` ls2))
(ensures
(fp `star` frame `star` (ls1 `star` ctr)) `equiv`
(p `star` fp `star` frame `star` (ls2 `star` ctr)))
= calc (equiv) {
ls1 `star` ctr;
(equiv) { equiv_extensional_on_star ls1 (p `star` ls2) ctr }
p `star` ls2 `star` ctr;
};
calc (equiv) {
p `star` ls2 `star` ctr;
(equiv) { star_associative p ls2 ctr }
p `star` (ls2 `star` ctr);
};
calc (equiv) {
fp `star` frame `star` p;
(equiv) { star_commutative (fp `star` frame) p }
p `star` (fp `star` frame);
(equiv) { star_associative p fp frame }
p `star` fp `star` frame;
};
calc (equiv) {
fp `star` frame `star` (ls1 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(ls1 `star` ctr)
(p `star` ls2 `star` ctr) }
(fp `star` frame) `star` (p `star` ls2 `star` ctr);
(equiv) { equiv_ext_right (fp `star` frame)
(p `star` ls2 `star` ctr)
(p `star` (ls2 `star` ctr)) }
(fp `star` frame) `star` (p `star` (ls2 `star` ctr));
(equiv) { star_associative (fp `star` frame) p (ls2 `star` ctr) }
(fp `star` frame `star` p) `star` (ls2 `star` ctr);
(equiv) { equiv_extensional_on_star
(fp `star` frame `star` p)
(p `star` fp `star` frame)
(ls2 `star` ctr) }
(p `star` fp `star` frame) `star` (ls2 `star` ctr);
}
let token_of_inv #p (i:inv p) : (name_of_inv i >--> p) = let (| _, _, tok |) = i in tok
let with_invariant (#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#opened_invariants:inames)
(#p:slprop)
(i:inv p{not (mem_inv opened_invariants i)})
(f:action_except a (add_inv opened_invariants i) (p `star` fp) (fun x -> p `star` fp' x))
(frame:slprop)
: MstTot a opened_invariants fp fp' frame (fun _ -> True) (fun _ _ _ -> True)
= let m0 = NMSTTotal.get () in
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
assert (iname_for_p (name_of_inv i) p m0.locks);
assert (interp (fp `star` frame `star` locks_invariant opened_invariants m0) m0);
assert (interp (fp `star` frame `star`
(lock_store_invariant opened_invariants m0.locks `star`
ctr_validity m0.ctr (heap_of_mem m0))) m0);
move_invariant opened_invariants m0.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m0.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks));
with_inv_helper
fp
frame
(lock_store_invariant opened_invariants m0.locks)
(ctr_validity m0.ctr (heap_of_mem m0))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m0.locks);
assert (interp (p `star` fp `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m0) m0);
let r = f frame in
let m1 : full_mem = NMSTTotal.get () in
assert (interp (p `star` fp' r `star` frame `star` locks_invariant (set_add (name_of_inv i) opened_invariants) m1) m1);
assert (interp (p `star` fp' r `star` frame `star`
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks `star`
ctr_validity m1.ctr (heap_of_mem m1))) m1);
NMSTTotal.recall _ mem_evolves (iname_for_p_mem (name_of_inv i) p) (token_of_inv i);
move_invariant opened_invariants m1.locks p (name_of_inv i);
assert (lock_store_invariant opened_invariants m1.locks `equiv`
(p `star` lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks));
with_inv_helper
(fp' r)
frame
(lock_store_invariant opened_invariants m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
p
(lock_store_invariant (set_add (name_of_inv i) opened_invariants) m1.locks);
assert (interp (fp' r `star` frame `star` locks_invariant opened_invariants m1) m1);
assert (inames_ok opened_invariants m1);
r
let equiv_pqrs_p_qr_s (p q r s:slprop)
: Lemma ((p `star` q `star` r `star` s) `equiv`
(p `star` (q `star` r) `star` s))
= star_associative p q r;
equiv_extensional_on_star
(p `star` q `star` r)
(p `star` (q `star` r))
s | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
frame: Steel.Memory.slprop ->
$f: Steel.Memory.action_except_full a opened_invariants pre post req ens
-> Steel.Memory.action_except_full a
opened_invariants
(Steel.Memory.star pre frame)
(fun x -> Steel.Memory.star (post x) frame)
req
ens | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.mprop",
"Steel.Memory.mprop2",
"Steel.Memory.action_except_full",
"Prims.unit",
"Prims._assert",
"Steel.Memory.interp",
"Steel.Memory.star",
"Steel.Memory.linv",
"Steel.Memory.equiv_pqrs_p_qr_s",
"Steel.Memory.full_mem",
"FStar.NMSTTotal.get",
"Steel.Memory.mem_evolves"
] | [] | false | false | false | false | false | let frame
(#a: Type)
(#opened_invariants: inames)
(#pre: slprop)
(#post: (a -> slprop))
(#req: mprop pre)
(#ens: mprop2 pre post)
(frame: slprop)
($f: action_except_full a opened_invariants pre post req ens)
(frame0: slprop)
: MstTot a opened_invariants (pre `star` frame) (fun x -> (post x) `star` frame) frame0 req ens =
| let m0:full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s pre frame frame0 (linv opened_invariants m0);
assert (interp (((pre `star` frame) `star` frame0) `star` (linv opened_invariants m0)) m0);
assert (interp ((pre `star` (frame `star` frame0)) `star` (linv opened_invariants m0)) m0);
let x = f (frame `star` frame0) in
let m1:full_mem = NMSTTotal.get () in
equiv_pqrs_p_qr_s (post x) frame frame0 (linv opened_invariants m1);
assert (interp (((post x) `star` (frame `star` frame0)) `star` (linv opened_invariants m1)) m1);
assert (interp ((((post x) `star` frame) `star` frame0) `star` (linv opened_invariants m1)) m1);
x | false |
IfcRecursiveReify.fst | IfcRecursiveReify.p1_r | val p1_r : lo: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
h: FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.DM4F.Heap.IntStoreFixed.heap | let p1_r lo hi n h = (* normalize_term *) (snd (reify (p1 lo hi n) h)) | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 37,
"start_col": 0,
"start_line": 37
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x)
val p1 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
lo: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
h: FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.DM4F.Heap.IntStoreFixed.heap | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"FStar.Pervasives.Native.snd",
"Prims.unit",
"IfcRecursiveReify.p1"
] | [] | false | false | false | true | false | let p1_r lo hi n h =
| (snd (reify (p1 lo hi n) h)) | false |
|
Platform.Bytes.fst | Platform.Bytes.empty_bytes | val empty_bytes : lbytes 0 | val empty_bytes : lbytes 0 | let empty_bytes = Seq.empty #byte | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 78,
"start_col": 0,
"start_line": 78
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Platform.Bytes.lbytes 0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Seq.Base.empty",
"Platform.Bytes.byte"
] | [] | false | false | false | false | false | let empty_bytes =
| Seq.empty #byte | false |
Platform.Bytes.fst | Platform.Bytes.cbyte2 | val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t) | val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t) | let cbyte2 b = (Seq.index b 0, Seq.index b 1) | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 97,
"start_col": 0,
"start_line": 97
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Platform.Bytes.bytes{FStar.Seq.Base.length b >= 2} -> FStar.UInt8.t * FStar.UInt8.t | Prims.Tot | [
"total"
] | [] | [
"Platform.Bytes.bytes",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Seq.Base.length",
"Platform.Bytes.byte",
"FStar.Pervasives.Native.Mktuple2",
"FStar.UInt8.t",
"FStar.Seq.Base.index",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let cbyte2 b =
| (Seq.index b 0, Seq.index b 1) | false |
IfcRecursiveReify.fst | IfcRecursiveReify.p2_r | val p2_r : lo: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
h: FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.DM4F.Heap.IntStoreFixed.heap | let p2_r lo hi n h = (* normalize_term *) (snd (reify (p2 lo hi n) h)) | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 62,
"start_col": 0,
"start_line": 62
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x)
val p1 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1))
let p1_r lo hi n h = (* normalize_term *) (snd (reify (p1 lo hi n) h))
val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p1_r lo hi n (R?.l h)) (p1_r lo hi n (R?.r h)))))
let rec ni_p1 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi - 1)) in
let hr' = (upd hr hi (sel hr hi - 1)) in
ni_p1 lo hi (n-1) env (R hl' hr')
end
val p2 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p2 lo hi n =
if n > 0 then
(write hi (read hi + 1);
p2 lo hi (n - 1)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
lo: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
h: FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.DM4F.Heap.IntStoreFixed.heap | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"FStar.Pervasives.Native.snd",
"Prims.unit",
"IfcRecursiveReify.p2"
] | [] | false | false | false | true | false | let p2_r lo hi n h =
| (snd (reify (p2 lo hi n) h)) | false |
|
IfcRecursiveReify.fst | IfcRecursiveReify.p3 | val p3 : lo1: FStar.DM4F.Heap.IntStoreFixed.id ->
lo2: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int
-> FStar.DM4F.IntStoreFixed.INT_STORE Prims.unit | let p3 lo1 lo2 hi n =
p1 lo1 hi n ;
p2 lo2 hi n | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 83,
"start_col": 1,
"start_line": 81
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x)
val p1 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1))
let p1_r lo hi n h = (* normalize_term *) (snd (reify (p1 lo hi n) h))
val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p1_r lo hi n (R?.l h)) (p1_r lo hi n (R?.r h)))))
let rec ni_p1 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi - 1)) in
let hr' = (upd hr hi (sel hr hi - 1)) in
ni_p1 lo hi (n-1) env (R hl' hr')
end
val p2 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p2 lo hi n =
if n > 0 then
(write hi (read hi + 1);
p2 lo hi (n - 1))
let p2_r lo hi n h = (* normalize_term *) (snd (reify (p2 lo hi n) h))
val ni_p2 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p2_r lo hi n (R?.l h)) (p2_r lo hi n (R?.r h)))))
let rec ni_p2 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi + 1)) in
let hr' = (upd hr hi (sel hr hi + 1)) in
ni_p2 lo hi (n-1) env (R hl' hr')
end | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
lo1: FStar.DM4F.Heap.IntStoreFixed.id ->
lo2: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int
-> FStar.DM4F.IntStoreFixed.INT_STORE Prims.unit | FStar.DM4F.IntStoreFixed.INT_STORE | [] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"IfcRecursiveReify.p2",
"Prims.unit",
"IfcRecursiveReify.p1"
] | [] | false | true | false | false | false | let p3 lo1 lo2 hi n =
| p1 lo1 hi n;
p2 lo2 hi n | false |
|
Platform.Bytes.fst | Platform.Bytes.cbyte | val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t | val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t | let cbyte b = Seq.index b 0 | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 94,
"start_col": 0,
"start_line": 94
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Platform.Bytes.bytes{FStar.Seq.Base.length b > 0} -> FStar.UInt8.t | Prims.Tot | [
"total"
] | [] | [
"Platform.Bytes.bytes",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.Seq.Base.length",
"Platform.Bytes.byte",
"FStar.Seq.Base.index",
"FStar.UInt8.t"
] | [] | false | false | false | false | false | let cbyte b =
| Seq.index b 0 | false |
Config.fst | Config.emit_config_as_fstar_module | val emit_config_as_fstar_module : module_name: Prims.string -> c: Config.config -> FStar.All.ALL Prims.string | let emit_config_as_fstar_module (module_name:string) (c:config) =
let flags =
List.map
(Printf.sprintf "[@@ CIfDef]\nassume\nval ___%s : bool" )
c.compile_time_flags.flags
in
let assumes = String.concat "\n\n" flags in
Printf.sprintf "module %s\n%s\n" module_name assumes | {
"file_name": "src/3d/Config.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 54,
"end_line": 21,
"start_col": 0,
"start_line": 14
} | module Config
module O = Options
[@@ PpxDerivingYoJson]
type compile_time_flags = {
flags : list string;
include_file : string;
}
[@@ PpxDerivingYoJson]
type config = {
compile_time_flags : compile_time_flags
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Options.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.fst.checked"
],
"interface_file": false,
"source_file": "Config.fst"
} | [
{
"abbrev": true,
"full_module": "Options",
"short_module": "O"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | module_name: Prims.string -> c: Config.config -> FStar.All.ALL Prims.string | FStar.All.ALL | [
"trivial_postcondition"
] | [] | [
"Prims.string",
"Config.config",
"FStar.Printf.sprintf",
"FStar.String.concat",
"Prims.list",
"FStar.List.map",
"Config.__proj__Mkcompile_time_flags__item__flags",
"Config.__proj__Mkconfig__item__compile_time_flags"
] | [] | false | true | false | false | false | let emit_config_as_fstar_module (module_name: string) (c: config) =
| let flags =
List.map (Printf.sprintf "[@@ CIfDef]\nassume\nval ___%s : bool") c.compile_time_flags.flags
in
let assumes = String.concat "\n\n" flags in
Printf.sprintf "module %s\n%s\n" module_name assumes | false |
|
Platform.Bytes.fst | Platform.Bytes.index | val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t | val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t | let index b i = Seq.index b i | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 100,
"start_col": 0,
"start_line": 100
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Platform.Bytes.bytes -> i: Prims.nat{FStar.Seq.Base.length b > i} -> FStar.UInt8.t | Prims.Tot | [
"total"
] | [] | [
"Platform.Bytes.bytes",
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.Seq.Base.length",
"Platform.Bytes.byte",
"FStar.Seq.Base.index",
"FStar.UInt8.t"
] | [] | false | false | false | false | false | let index b i =
| Seq.index b i | false |
FStar.Pointer.Derived3.fst | FStar.Pointer.Derived3.fill_buffer_precond' | val fill_buffer_precond' (#t: typ) (b: buffer t) (h: HS.mem) : GTot Type0 | val fill_buffer_precond' (#t: typ) (b: buffer t) (h: HS.mem) : GTot Type0 | let fill_buffer_precond'
(#t: typ)
(b: buffer t) (* destination *)
(h: HS.mem)
: GTot Type0
= buffer_live h b | {
"file_name": "ulib/legacy/FStar.Pointer.Derived3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 28,
"start_col": 0,
"start_line": 23
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived3
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Pointer.Derived3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Pointer.Base.buffer t -> h: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.Monotonic.HyperStack.mem",
"FStar.Pointer.Base.buffer_live"
] | [] | false | false | false | false | true | let fill_buffer_precond' (#t: typ) (b: buffer t) (h: HS.mem) : GTot Type0 =
| buffer_live h b | false |
IfcRecursiveReify.fst | IfcRecursiveReify.p3_r | val p3_r : lo1: FStar.DM4F.Heap.IntStoreFixed.id ->
lo2: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
h: FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.DM4F.Heap.IntStoreFixed.heap | let p3_r lo1 lo2 hi n h = (* normalize_term *) (snd (reify (p3 lo1 lo2 hi n) h)) | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 80,
"end_line": 86,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x)
val p1 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1))
let p1_r lo hi n h = (* normalize_term *) (snd (reify (p1 lo hi n) h))
val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p1_r lo hi n (R?.l h)) (p1_r lo hi n (R?.r h)))))
let rec ni_p1 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi - 1)) in
let hr' = (upd hr hi (sel hr hi - 1)) in
ni_p1 lo hi (n-1) env (R hl' hr')
end
val p2 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p2 lo hi n =
if n > 0 then
(write hi (read hi + 1);
p2 lo hi (n - 1))
let p2_r lo hi n h = (* normalize_term *) (snd (reify (p2 lo hi n) h))
val ni_p2 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p2_r lo hi n (R?.l h)) (p2_r lo hi n (R?.r h)))))
let rec ni_p2 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi + 1)) in
let hr' = (upd hr hi (sel hr hi + 1)) in
ni_p2 lo hi (n-1) env (R hl' hr')
end
let p3 lo1 lo2 hi n =
p1 lo1 hi n ;
p2 lo2 hi n | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
lo1: FStar.DM4F.Heap.IntStoreFixed.id ->
lo2: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
h: FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.DM4F.Heap.IntStoreFixed.heap | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"FStar.Pervasives.Native.snd",
"Prims.unit",
"IfcRecursiveReify.p3"
] | [] | false | false | false | true | false | let p3_r lo1 lo2 hi n h =
| (snd (reify (p3 lo1 lo2 hi n) h)) | false |
|
FStar.Pointer.Derived3.fst | FStar.Pointer.Derived3.fill_buffer | val fill_buffer
(#t: typ)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(v: type_of_typ t)
: HST.Stack unit
(requires (fun h ->
fill_buffer_precond b idx_b len h
))
(ensures (fun h0 _ h1 ->
fill_buffer_postcond b idx_b len v h0 h1
)) | val fill_buffer
(#t: typ)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(v: type_of_typ t)
: HST.Stack unit
(requires (fun h ->
fill_buffer_precond b idx_b len h
))
(ensures (fun h0 _ h1 ->
fill_buffer_postcond b idx_b len v h0 h1
)) | let fill_buffer = fill_buffer' | {
"file_name": "ulib/legacy/FStar.Pointer.Derived3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 163,
"start_col": 0,
"start_line": 163
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived3
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
private
let fill_buffer_precond'
(#t: typ)
(b: buffer t) (* destination *)
(h: HS.mem)
: GTot Type0
= buffer_live h b
private
let fill_buffer_postcond'
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
buffer_readable h' b /\
buffer_as_seq h' b == Seq.create (UInt32.v (buffer_length b)) v
private
let fill_buffer_inv
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
UInt32.v len' <= UInt32.v (buffer_length b) /\
buffer_readable h' (gsub_buffer b 0ul len') /\
buffer_as_seq h' (gsub_buffer b 0ul len') == Seq.create (UInt32.v len') v
private
val fill_buffer_init
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
: Lemma
(requires (fill_buffer_precond' b h))
(ensures (fill_buffer_inv b 0ul v h h))
let fill_buffer_init #t b v h =
buffer_readable_intro_empty h (gsub_buffer b 0ul 0ul);
Seq.lemma_eq_intro (buffer_as_seq h (gsub_buffer b 0ul 0ul)) (Seq.create 0 v)
private
val fill_buffer_advance
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
UInt32.v len' < UInt32.v (buffer_length b)
))
(ensures (fun h1 _ h2 ->
fill_buffer_inv b len' v (Ghost.reveal h) h1 /\
UInt32.v len' < UInt32.v (buffer_length b) /\
fill_buffer_inv b (UInt32.add len' 1ul) v (Ghost.reveal h) h2
))
#set-options "--z3rlimit 16"
let fill_buffer_advance #t b len' v h =
buffer_snoc b 0ul len' v;
Seq.lemma_eq_intro (Seq.snoc (Seq.create (UInt32.v len') v) v) (Seq.create (UInt32.v (UInt32.add len' 1ul)) v)
private
val fill_buffer_aux
(#t: typ)
(b: buffer t) (* destination *)
(len: UInt32.t)
(len': UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
len == buffer_length b
))
(ensures (fun h0 _ h1 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
fill_buffer_postcond' b v (Ghost.reveal h) h1
))
(decreases (UInt32.v (buffer_length b) - UInt32.v len'))
let rec fill_buffer_aux #t b len len' v h =
if len = len'
then ()
else begin
fill_buffer_advance b len' v h;
fill_buffer_aux b len (UInt32.add len' 1ul) v h
end
let fill_buffer_fin
(#t: typ)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: Lemma
(requires (
fill_buffer_precond b idx_b len h /\
fill_buffer_postcond' (gsub_buffer b idx_b len) v h h'
))
(ensures (
fill_buffer_precond b idx_b len h /\
fill_buffer_postcond b idx_b len v h h'
))
= ()
let fill_buffer'
(#t: typ)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(v: type_of_typ t)
: HST.Stack unit
(requires (fun h ->
fill_buffer_precond b idx_b len h
))
(ensures (fun h0 _ h1 ->
fill_buffer_postcond b idx_b len v h0 h1
))
= let h0 = HST.get () in
let b' = sub_buffer b idx_b len in
fill_buffer_init b' v h0;
fill_buffer_aux b' len 0ul v (Ghost.hide h0);
let h1 = HST.get () in
fill_buffer_fin b idx_b len v h0 h1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Pointer.Derived3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: FStar.Pointer.Base.buffer t ->
idx_b: FStar.UInt32.t ->
len: FStar.UInt32.t ->
v: FStar.Pointer.Base.type_of_typ t
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"FStar.Pointer.Derived3.fill_buffer'"
] | [] | false | true | false | false | false | let fill_buffer =
| fill_buffer' | false |
Platform.Bytes.fst | Platform.Bytes.split | val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) | val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) | let split b (n:nat { n <= Seq.length b}) = Seq.split b n | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 56,
"end_line": 129,
"start_col": 0,
"start_line": 129
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*)
val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l)
let createBytes l b = Seq.create l b
// TODO: not implemented in ML
val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l)
let initBytes l f = Seq.init l f
(*@ assume val equalBytes : (b0:bytes -> (b1:bytes -> (r:bool){r = True /\ B (b0) = B (b1) \/ r = False /\ B (b0) <> B (b1)})) @*)
assume val equalBytes : b1:bytes -> b2:bytes -> Tot (b:bool{b = (b1=b2)})
(*@ assume val xor : (bytes -> (bytes -> (nb:nat -> (b3:bytes){Length (b3) = nb}))) @*)
assume val xor: l:nat -> lbytes l -> lbytes l -> Tot (lbytes l)
// consider making the length implicit
val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) //(lbytes n * lbytes (length b - n)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Platform.Bytes.bytes -> n: Prims.nat{n <= FStar.Seq.Base.length b}
-> x:
(Platform.Bytes.bytes * Platform.Bytes.bytes)
{ FStar.Seq.Base.length (FStar.Pervasives.Native.fst x) = n /\
FStar.Seq.Base.length (FStar.Pervasives.Native.snd x) == FStar.Seq.Base.length b - n } | Prims.Tot | [
"total"
] | [] | [
"Platform.Bytes.bytes",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"Platform.Bytes.byte",
"FStar.Seq.Properties.split",
"FStar.Pervasives.Native.tuple2",
"Prims.l_and",
"Prims.op_Equality",
"FStar.Pervasives.Native.fst",
"Prims.eq2",
"Prims.int",
"FStar.Pervasives.Native.snd",
"Prims.op_Subtraction"
] | [] | false | false | false | false | false | let split b (n: nat{n <= Seq.length b}) =
| Seq.split b n | false |
Platform.Bytes.fst | Platform.Bytes.createBytes | val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l) | val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l) | let createBytes l b = Seq.create l b | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 112,
"start_col": 0,
"start_line": 112
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.nat -> b: FStar.UInt8.t -> Platform.Bytes.lbytes l | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt8.t",
"FStar.Seq.Base.create",
"Platform.Bytes.byte",
"Platform.Bytes.lbytes"
] | [] | false | false | false | false | false | let createBytes l b =
| Seq.create l b | false |
Steel.Memory.fst | Steel.Memory.lift_tot_action_nf | val lift_tot_action_nf (#a #e #fp #fp': _) ($f: tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp' | val lift_tot_action_nf (#a #e #fp #fp': _) ($f: tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp' | let lift_tot_action_nf #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp')
: MstTotNF a e fp fp'
= let m0 = NMSTTotal.get () in
let m0' : hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x, m1 |) = r in
let m1' : hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x | {
"file_name": "lib/steel/Steel.Memory.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 757,
"start_col": 0,
"start_line": 746
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Memory
module F = FStar.FunctionalExtensionality
open FStar.FunctionalExtensionality
open FStar.PCM
module H = Steel.Heap
noeq
type lock_state : Type u#(a + 1) =
| Invariant : inv:H.slprop u#a -> lock_state
let lock_store : Type u#(a+1) = list (lock_state u#a)
noeq
type mem : Type u#(a + 1) =
{
ctr: nat;
heap: H.heap u#a;
locks: lock_store u#a;
}
let heap_of_mem (x:mem) : H.heap = x.heap
let mem_of_heap (h:H.heap) : mem = {
ctr = 0;
heap = h;
locks = []
}
let mem_set_heap (m:mem) (h:H.heap) : mem = {
ctr = m.ctr;
heap = h;
locks = m.locks;
}
let core_mem (m:mem) : mem = mem_of_heap (heap_of_mem m)
let core_mem_invol m = ()
let disjoint (m0 m1:mem u#h)
: prop
= m0.ctr == m1.ctr /\
H.disjoint m0.heap m1.heap /\
m0.locks == m1.locks
let disjoint_sym m0 m1 = ()
let join m0 m1 = {
ctr = m0.ctr;
heap = H.join m0.heap m1.heap;
locks = m0.locks
}
let join_commutative m0 m1 =
H.join_commutative m0.heap m1.heap
let disjoint_join m0 m1 m2 =
H.disjoint_join m0.heap m1.heap m2.heap
let join_associative m0 m1 m2 =
H.join_associative m0.heap m1.heap m2.heap
let slprop = H.slprop
let interp p m = H.interp p m.heap
let equiv p1 p2 = forall m. interp p1 m <==> interp p2 m
let slprop_extensionality p q =
assert (forall m. interp p m <==> interp q m);
let aux (h:H.heap)
: Lemma (H.interp p h <==> H.interp q h)
[SMTPat (H.interp p h)]
= let m : mem = { ctr = 0; heap = h; locks = [] } in
assert (interp p m <==> interp q m)
in
assert (forall h. H.interp p h <==> H.interp q h);
Steel.Heap.slprop_extensionality p q
let reveal_equiv p1 p2 = ()
let core_ref = H.core_ref
let core_ref_null = H.core_ref_null
let core_ref_is_null r = H.core_ref_is_null r
let emp : slprop u#a = H.emp
let pure = H.pure
let pts_to = H.pts_to
let h_and = H.h_and
let h_or = H.h_or
let star = H.star
let wand = H.wand
let h_exists = H.h_exists
let h_forall = H.h_forall
////////////////////////////////////////////////////////////////////////////////
//properties of equiv
////////////////////////////////////////////////////////////////////////////////
let equiv_symmetric (p1 p2:slprop u#a) = H.equiv_symmetric p1 p2
#push-options "--warn_error -271"
let equiv_heap_iff_equiv (p1 p2:slprop u#a)
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat (equiv p1 p2)]
= let aux_lr ()
: Lemma
(requires H.equiv p1 p2)
(ensures equiv p1 p2)
[SMTPat ()]
= ()
in
let aux_rl_helper1 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p1 h)
(ensures H.interp p2 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl_helper2 (h:H.heap)
: Lemma
(requires equiv p1 p2 /\ H.interp p2 h)
(ensures H.interp p1 h)
[SMTPat ()]
= assert (interp p2 (mem_of_heap h))
in
let aux_rl ()
: Lemma
(requires equiv p1 p2)
(ensures H.equiv p1 p2)
[SMTPat ()]
= () in
()
let equiv_heap_iff_equiv_forall ()
: Lemma (ensures (forall p1 p2. H.equiv p1 p2 <==> equiv p1 p2))
= let aux p1 p2
: Lemma (ensures (H.equiv p1 p2 <==> equiv p1 p2))
[SMTPat ()]
= equiv_heap_iff_equiv p1 p2
in
()
#pop-options
let equiv_extensional_on_star (p1 p2 p3:slprop u#a) =
equiv_heap_iff_equiv_forall ();
H.equiv_extensional_on_star p1 p2 p3
let emp_unit p = H.emp_unit p
let intro_emp m = H.intro_emp (heap_of_mem m)
let pure_equiv p q = H.pure_equiv p q
let pure_interp q m = H.pure_interp q (heap_of_mem m)
let pure_star_interp p q m = H.pure_star_interp p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
//pts_to
////////////////////////////////////////////////////////////////////////////////
let pts_to_compatible #a #pcm x v0 v1 m
= H.pts_to_compatible #a #pcm x v0 v1 (heap_of_mem m)
let pts_to_compatible_equiv #a #pcm x v0 v1
= H.pts_to_compatible_equiv #a #pcm x v0 v1
let pts_to_not_null #a #pcm x v m
= H.pts_to_not_null #a #pcm x v (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// star
////////////////////////////////////////////////////////////////////////////////
let intro_star p q mp mq =
H.intro_star p q (heap_of_mem mp) (heap_of_mem mq)
let elim_star p q m =
let h = heap_of_mem m in
H.elim_star p q h;
assert (exists hl hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr);
let hl = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hl ->
exists hr. H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let hr = FStar.IndefiniteDescription.indefinite_description_tot H.heap (fun hr ->
H.disjoint hl hr /\ H.join hl hr == h /\ H.interp p hl /\ H.interp q hr) in
let ml = mem_set_heap m hl in
let mr = mem_set_heap m hr in
assert (disjoint ml mr);
assert (m == join ml mr);
assert (interp p ml);
assert (interp q mr);
()
let interp_star
(p q: slprop)
(m: mem)
: Lemma
(interp (p `star` q) m <==> (exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m))
= let left = interp (p `star` q) m in
let right = exists (mp: mem) (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m in
let f ()
: Lemma
(requires left)
(ensures right)
=
elim_star p q m
in
let g ()
: Lemma
(requires right)
(ensures left)
=
Classical.exists_elim left #_ #(fun mp -> exists (mq: mem) . disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mp ->
Classical.exists_elim left #_ #(fun mq -> disjoint mp mq /\ interp p mp /\ interp q mq /\ join mp mq == m) () (fun mq ->
intro_star p q mp mq
)
)
in
Classical.move_requires f ();
Classical.move_requires g ()
let star_commutative (p1 p2:slprop) =
H.star_commutative p1 p2
let star_associative (p1 p2 p3:slprop) =
H.star_associative p1 p2 p3
let star_congruence (p1 p2 p3 p4:slprop) =
equiv_heap_iff_equiv_forall ();
H.star_congruence p1 p2 p3 p4
let affine_star (p q:slprop) (m:mem) =
H.affine_star p q (heap_of_mem m)
////////////////////////////////////////////////////////////////////////////////
// Invariants on the lock store
////////////////////////////////////////////////////////////////////////////////
let iname = nat
module S = FStar.Set
module L = FStar.List.Tot
module W = FStar.Witnessed.Core
let rec lock_store_invariant (e:inames) (l:lock_store u#a) : slprop u#a =
let current_addr = L.length l - 1 in
match l with
| [] -> emp
| Invariant p :: tl ->
if current_addr `S.mem` e then
lock_store_invariant e tl
else
p `star` lock_store_invariant e tl
let lock_i (i:iname) (l:lock_store { i < L.length l }) =
let ix = L.length l - i - 1 in
L.index l ix
let iname_for_p (i:iname) (p:slprop) : W.s_predicate lock_store =
fun l ->
i < L.length l /\
(lock_i i l).inv == p
let lock_store_evolves : FStar.Preorder.preorder lock_store =
fun (l1 l2 : lock_store) ->
L.length l2 >= L.length l1 /\
(forall (i:nat{i < L.length l1}).
(lock_i i l1).inv == (lock_i i l2).inv)
let inames_in (e:inames) (l:lock_store) : prop = forall i. Set.mem i e ==> i < L.length l
let inames_ok e m = inames_in e m.locks
let inames_ok_empty m = ()
let extend_lock_store (e:inames) (l:lock_store{e `inames_in` l}) (p:slprop)
: i:iname &
l':lock_store {
lock_store_invariant e l' == p `star` lock_store_invariant e l /\
iname_for_p i p l'
}
= (| L.length l, Invariant p :: l |)
let set_add (i:iname) (s:inames) = Set.union (Set.singleton i) s
let rec move_invariant (e:inames) (l:lock_store) (p:slprop)
(i:iname{iname_for_p i p l /\ ~(i `Set.mem` e)})
: Lemma (H.equiv (lock_store_invariant e l)
(p `star` lock_store_invariant (set_add i e) l))
= let rec aux (i:iname) (m:lock_store)
: Lemma (requires i >= L.length m)
(ensures (lock_store_invariant e m `H.equiv` lock_store_invariant (set_add i e) m))
= match m with
| [] -> ()
| Invariant p::tl ->
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl)
in
let current_addr = L.length l - 1 in
match l with
| [] -> ()
| Invariant q::tl ->
if i = current_addr
then begin
assert (lock_store_invariant e l == p `star` lock_store_invariant e tl);
aux i tl;
H.star_congruence p (lock_store_invariant e tl) p (lock_store_invariant (set_add i e) tl);
()
end
else begin
move_invariant e tl p i;
assert (lock_store_invariant e tl `equiv`
(p `star` lock_store_invariant (set_add i e) tl));
H.star_congruence q (lock_store_invariant e tl) q (p `star` lock_store_invariant (set_add i e) tl);
if Set.mem current_addr e
then ()
else begin
let r = lock_store_invariant (set_add i e) tl in
assert (lock_store_invariant e l `equiv`
(q `star` (p `star` r)));
H.star_associative q p r;
H.star_commutative q p;
H.star_congruence (q `star` p) r (p `star` q) r;
H.star_associative p q r
end
end
let heap_ctr_valid (ctr:nat) (h:H.heap u#a) : prop =
h `H.free_above_addr` ctr
let ctr_validity (ctr:nat) (h:H.heap) : slprop =
H.pure (heap_ctr_valid ctr h)
let locks_invariant (e:inames) (m:mem u#a) : slprop u#a =
lock_store_invariant e m.locks
`star`
ctr_validity m.ctr (heap_of_mem m)
let full_mem_pred (m:mem) = H.full_heap_pred (heap_of_mem m)
(***** Following lemmas are needed in Steel.Effect *****)
let core_mem_interp (hp:slprop u#a) (m:mem u#a) = ()
let interp_depends_only_on (hp:slprop u#a) = H.interp_depends_only_on hp
let a_mem_prop_as_a_heap_prop
(sl: slprop u#a)
(f: a_mem_prop sl)
: Tot (H.a_heap_prop u#a)
=
let g (h: H.heap u#a) : Tot prop = interp sl (mem_of_heap h) /\ f (mem_of_heap h) in
let phi0 (h0 h1: H.heap u#a) : Lemma
(requires (g h0 /\ H.disjoint h0 h1))
(ensures (g h0 /\ H.disjoint h0 h1 /\ g (H.join h0 h1)))
= assert (mem_of_heap (H.join h0 h1) == mem_of_heap h0 `join` mem_of_heap h1);
interp_depends_only_on sl
in
let phi1 (h0 h1: H.heap u#a) : Lemma
(ensures ((g h0 /\ H.disjoint h0 h1) ==> g (H.join h0 h1)))
=
Classical.move_requires (phi0 h0) h1
in
Classical.forall_intro_2 phi1;
g
let refine_slprop sl f = H.as_slprop (a_mem_prop_as_a_heap_prop sl f)
let interp_refine_slprop sl f m =
assert ((interp sl m /\ f m) <==> interp sl (core_mem m) /\ f (core_mem m))
let dep_hprop
(s: slprop)
(f: (hmem s -> Tot slprop))
(h: H.heap)
: Tot prop
= exists (h1: H.heap) . exists (h2: H.heap) . interp s (mem_of_heap h1) /\ H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
let dep_hprop_is_affine0
(s: slprop)
(f: (hmem s -> Tot slprop))
(h h': H.heap)
(sq' : squash (dep_hprop s f h /\ H.disjoint h h'))
: Lemma
(H.disjoint h h' /\ dep_hprop s f (H.join h h'))
=
let p2 (h h1 h2: H.heap) : Tot prop =
interp s (mem_of_heap h1) /\
H.disjoint h1 h2 /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ h == h1 `H.join` h2
in
let p1 (h h1: H.heap) : Tot prop =
(exists h2 . p2 h h1 h2)
in
let h1 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p1 h)
in
let h2 =
FStar.IndefiniteDescription.indefinite_description_ghost H.heap (p2 h h1)
in
H.disjoint_join h' h1 h2;
assert (H.disjoint h2 h');
let h2' = H.join h2 h' in
H.join_commutative h2 h' ;
assert (h2' == H.join h' h2);
assert (H.disjoint h1 h2');
assert (mem_of_heap h2' == mem_of_heap h2 `join` mem_of_heap h');
interp_depends_only_on (f (mem_of_heap h1));
assert (interp (f (mem_of_heap h1)) (mem_of_heap h2'));
H.join_commutative h1 h2;
H.join_associative h' h2 h1;
H.join_commutative h' h;
H.join_commutative h2' h1;
assert (H.join h h' == h1 `H.join` h2')
let impl_intro_gen (#p: Type0) (#q: Type0) ($prf: (squash p -> Lemma (q )))
: Lemma (p ==> q)
= Classical.impl_intro_gen #p #(fun _ -> q) prf
let dep_hprop_is_affine1
(s: slprop)
(f: (hmem s -> Tot slprop))
(h0 h1: H.heap)
: Lemma
((dep_hprop s f h0 /\ H.disjoint h0 h1) ==> (H.disjoint h0 h1 /\ dep_hprop s f (H.join h0 h1)))
= impl_intro_gen (dep_hprop_is_affine0 s f h0 h1)
let dep_hprop_is_affine
(s: slprop)
(f: (hmem s -> Tot slprop))
: Lemma
(H.heap_prop_is_affine (dep_hprop s f))
= Classical.forall_intro_2 (dep_hprop_is_affine1 s f)
let sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
: Tot slprop
=
dep_hprop_is_affine s f;
H.as_slprop (dep_hprop s f)
let interp_sdep
(s: slprop)
(f: (hmem s -> Tot slprop))
(m: mem)
: Lemma
(requires (dep_slprop_is_affine s f))
(ensures (
interp (sdep s f) m <==> (exists m1 m2 . interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m)
))
=
dep_hprop_is_affine s f;
assert (forall m1 m2 . (interp s m1 /\ interp (f m1) m2 /\ disjoint m1 m2 /\ join m1 m2 == m) ==> (
interp s (mem_of_heap m1.heap) /\ interp (f (mem_of_heap m1.heap)) (mem_of_heap m2.heap) /\
H.disjoint m1.heap m2.heap /\
H.join m1.heap m2.heap == m.heap
));
interp_depends_only_on s;
Classical.forall_intro (fun m -> interp_depends_only_on (f m));
assert (forall h1 h2 . (interp s (mem_of_heap h1) /\ interp (f (mem_of_heap h1)) (mem_of_heap h2) /\ H.disjoint h1 h2 /\ H.join h1 h2 == m.heap) ==> (
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
interp s (core_mem (mem_of_heap h1)) /\
interp s (mem_set_heap m h1) /\
core_mem (mem_of_heap h1) == core_mem (mem_set_heap m h1) /\
f (mem_set_heap m h1) `equiv` f (mem_of_heap h1) /\
interp (f (mem_set_heap m h1)) (mem_of_heap h2) /\
interp (f (mem_set_heap m h1)) (mem_set_heap m h2) /\
disjoint (mem_set_heap m h1) (mem_set_heap m h2) /\
join (mem_set_heap m h1) (mem_set_heap m h2) == m
));
()
let h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
= equiv_heap_iff_equiv_forall ();
H.h_exists_cong p q
let intro_h_exists #a x p m = H.intro_h_exists x p (heap_of_mem m)
let elim_h_exists (#a:_) (p:a -> slprop) (m:mem) = H.elim_h_exists p (heap_of_mem m)
let intro_h_forall (#a:_) (p:a -> slprop) (m:mem) = H.intro_h_forall p (heap_of_mem m)
let elim_h_forall (#a:_) (p:a -> slprop) (m:mem) (x:a) = H.elim_h_forall p (heap_of_mem m) x
let intro_h_and (p q: slprop) (m:mem) = H.intro_h_and p q (heap_of_mem m)
let elim_h_and (p q: slprop) (m:mem) = H.elim_h_and p q (heap_of_mem m)
let intro_h_or_left (p q: slprop) (m:mem) = H.intro_h_or_left p q (heap_of_mem m)
let intro_h_or_right (p q: slprop) (m:mem) = H.intro_h_or_right p q (heap_of_mem m)
let elim_h_or (p q: slprop) (m:mem) = H.elim_h_or p q (heap_of_mem m)
let intro_wand (p1 p2: slprop u#a) (m:mem) =
introduce
(forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1))
==> interp (wand p1 p2) m
with _. (
assert (forall m1. m `disjoint` m1 /\ interp p1 m1 ==> interp p2 (join m m1));
H.intro_wand p1 p2 (heap_of_mem m);
let h = heap_of_mem m in
assert ((forall h1. h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
==> H.interp (wand p1 p2) h);
introduce forall h1. (h `H.disjoint` h1 /\ H.interp p1 h1 ==> H.interp p2 (H.join h h1))
with (
introduce (h `H.disjoint` h1 /\ H.interp p1 h1) ==> H.interp p2 (H.join h h1)
with _. (
assert (h `H.disjoint` h1);
let m1 = {
ctr = m.ctr;
heap = h1;
locks = m.locks
}
in assert (m `disjoint` m1)
)
)
)
(** Eliminating a wand by proving a heap that satisfies the LHS **)
let elim_wand (p1 p2: slprop u#a) (m:mem) (m1:mem) = H.elim_wand p1 p2 (heap_of_mem m) (heap_of_mem m1)
////////////////////////////////////////////////////////////////////////////////
// Preorders and effects
////////////////////////////////////////////////////////////////////////////////
module PP = Steel.Preorder
let mem_evolves =
fun (m0 m1:full_mem) ->
H.heap_evolves (heap_of_mem m0) (heap_of_mem m1) /\
m0.ctr <= m1.ctr /\
lock_store_evolves m0.locks m1.locks
(** See [Steel.Heap.is_frame_preserving]. We add in [lock_invariants] now *)
let preserves_frame (e:inames) (pre post:slprop) (m0 m1:mem) =
forall (frame:slprop).
interp ((pre `star` frame) `star` locks_invariant e m0) m0 ==>
(interp ((post `star` frame) `star` locks_invariant e m1) m1 /\
(forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)))
(**
This is a version of MstTot with frame quantified, as part of preserves_frame
*)
effect MstTotNF (a:Type u#a) (except:inames) (expects:slprop u#1) (provides: a -> slprop u#1) =
NMSTTotal.NMSTATETOT a (full_mem u#1) mem_evolves
(requires fun m0 ->
inames_ok except m0 /\
interp (expects `star` locks_invariant except m0) m0)
(ensures fun m0 x m1 ->
inames_ok except m1 /\
interp (provides x `star` locks_invariant except m1) m1 /\
preserves_frame except expects (provides x) m0 m1)
////////////////////////////////////////////////////////////////////////////////
// Lifting heap actions
////////////////////////////////////////////////////////////////////////////////
(**
Heap actions come in two equivalent flavors:
- one that take an explicit frame as argument (action_with_frame)
- and one that quantify over all the frame
We therefore define two lift routes:
- a direct route for those with explicit frame
- via MstTotNF for the rest
*)
let tot_pre_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
hmem_with_inv_except e fp ->
(x:a & hmem_with_inv_except e (fp' x))
let tot_pre_action_nf = tot_pre_action_nf_except S.empty
let ac_reasoning_for_m_frame_preserving
(p q r:slprop u#a) (m:mem u#a)
: Lemma
(requires interp ((p `star` q) `star` r) m)
(ensures interp (p `star` r) m)
= calc (equiv) {
(p `star` q) `star` r;
(equiv) { star_commutative p q;
equiv_extensional_on_star (p `star` q) (q `star` p) r }
(q `star` p) `star` r;
(equiv) { star_associative q p r }
q `star` (p `star` r);
};
assert (interp (q `star` (p `star` r)) m);
affine_star q (p `star` r) m
let is_frame_preserving
(#e:inames)
(#a:Type u#b)
(#fp:slprop u#a)
(#fp':a -> slprop u#a)
(f:tot_pre_action_nf_except e fp a fp') =
forall (frame:slprop u#a) (m0:hmem_with_inv_except e (fp `star` frame)).
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1)))
let tot_action_nf_except (e:inames) (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
f:tot_pre_action_nf_except e fp a fp'{ is_frame_preserving f }
let tot_action_nf = tot_action_nf_except S.empty
let linv e (m:mem) = locks_invariant e m
let hheap_of_hmem #fp #e (m:hmem_with_inv_except e fp)
: h:H.hheap (fp `star` linv e m) { h `H.free_above_addr` m.ctr}
= let h = heap_of_mem m in
H.pure_interp (heap_ctr_valid m.ctr (heap_of_mem m)) h;
h
let hmem_of_hheap #e (#fp0 #fp1:slprop) (m:hmem_with_inv_except e fp0)
(h:H.full_hheap (fp1 `star` linv e m) {
h `Heap.free_above_addr` m.ctr
})
: m1:hmem_with_inv_except e fp1{linv e m `equiv` linv e m1}
= let m1 : mem = { m with heap = h } in
assert (interp (fp1 `star` linv e m) m1);
star_commutative fp1 (linv e m);
assert (interp (linv e m `star` fp1) m1);
assert (linv e m1 == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m1));
assert (linv e m == (lock_store_invariant e m1.locks)
`star` ctr_validity m1.ctr (heap_of_mem m));
H.pure_interp (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_of_mem m);
assert (heap_ctr_valid m1.ctr (heap_of_mem m) <==>
heap_ctr_valid m1.ctr (heap_of_mem m1));
H.pure_equiv (heap_ctr_valid m1.ctr (heap_of_mem m))
(heap_ctr_valid m1.ctr (heap_of_mem m1));
H.star_congruence (lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m1))
(lock_store_invariant e m1.locks)
(ctr_validity m1.ctr (heap_of_mem m));
assert (linv e m `equiv` linv e m1);
let _ = equiv_extensional_on_star (linv e m) (linv e m1) fp1 in
assert ((linv e m `star` fp1) `equiv` (linv e m1 `star` fp1));
assert (interp (linv e m1 `star` fp1) m1);
star_commutative (linv e m1) fp1;
assert (interp (fp1 `star` linv e m1) m1);
m1
let with_inv_except (m:mem) e (fp:slprop) = interp (fp `star` locks_invariant e m) m
#push-options "--warn_error -271"
let as_hprop (frame:slprop) (mp:mprop frame)
: hp:H.hprop frame{forall m. mp (core_mem m) == hp (heap_of_mem m)}
= let f = fun h -> mp (mem_of_heap h) in
assert (forall m. mp (core_mem m) == f (heap_of_mem m));
let aux (m0:H.hheap frame) (m1:H.heap{H.disjoint m0 m1})
: Lemma
(ensures (mem_of_heap (H.join m0 m1) == join (mem_of_heap m0) (mem_of_heap m1)))
[SMTPat ()]
= ()
in
f
let mprop_preservation_of_hprop_preservation
(p:slprop) (m0 m1:mem)
: Lemma
(requires (forall (hp:H.hprop p). hp (heap_of_mem m0) == hp (heap_of_mem m1)))
(ensures (forall (mp:mprop p). mp (core_mem m0) == mp (core_mem m1)))
= let aux (mp:mprop p)
: Lemma (mp (core_mem m0) == mp (core_mem m1))
[SMTPat()]
= assert (as_hprop p mp (heap_of_mem m0) == as_hprop p mp (heap_of_mem m1))
in
()
let lift_heap_action (#fp:slprop) (#a:Type) (#fp':a -> slprop)
(e:inames)
($f:H.action fp a fp')
: tot_action_nf_except e fp a fp'
= let g : tot_pre_action_nf_except e fp a fp' = fun m ->
let h0 = hheap_of_hmem m in
let (| x, h' |) = f h0 in
(| x, hmem_of_hheap m h' |)
in
let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ensures
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1 /\
(forall (mp:mprop frame). mp (core_mem m0) == mp (core_mem m1))))
[SMTPat ()]
= ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = g m0 in
let h0 = hheap_of_hmem m0 in
let (| x', h1 |) = f h0 in
H.action_framing f (linv e m0) h0;
assert (x == x');
star_associative fp frame (linv e m0);
H.action_framing f (frame `star` linv e m0) h0;
assert (H.interp ((fp' x) `star` (frame `star` linv e m0)) h1);
star_associative (fp' x) frame (linv e m0);
assert (H.interp ((fp' x `star` frame) `star` linv e m0) h1);
let h1' : H.hheap ((fp' x `star` frame) `star` linv e m0) = h1 in
assert (m1 == hmem_of_hheap m0 h1');
assert (with_inv_except m1 e (fp' x `star` frame));
assert (forall (hp:H.hprop frame). hp h0 == hp h1);
mprop_preservation_of_hprop_preservation frame m0 m1;
()
in
assert (is_frame_preserving g);
g
let frame_preserving_respects_preorder #a #e #fp #fp' ($f:tot_action_nf_except e fp a fp') (m0:hmem_with_inv_except e fp)
: Lemma (let (| x, m1 |) = f m0 in
mem_evolves m0 m1)
= let aux (frame:slprop) (m0:hmem_with_inv_except e (fp `star` frame))
: Lemma
(ac_reasoning_for_m_frame_preserving fp frame (locks_invariant e m0) m0;
let (| x, m1 |) = f m0 in
interp ((fp' x `star` frame) `star` locks_invariant e m1) m1 /\
mem_evolves m0 m1)
= ()
in
H.emp_unit fp;
assert (interp (fp `star` linv e m0) m0);
H.star_congruence (fp `star` emp) (linv e m0) fp (linv e m0);
assert (interp ((fp `star` emp) `star` linv e m0) m0);
aux emp m0 | {
"checked_file": "/",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Witnessed.Core.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Memory.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.Witnessed.Core",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Steel.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: Steel.Memory.tot_action_nf_except e fp a fp' -> Steel.Memory.MstTotNF a | Steel.Memory.MstTotNF | [] | [] | [
"Steel.Memory.inames",
"Steel.Memory.slprop",
"Steel.Memory.tot_action_nf_except",
"Steel.Memory.hmem_with_inv_except",
"Prims.unit",
"FStar.NMSTTotal.put",
"Steel.Memory.full_mem",
"Steel.Memory.mem_evolves",
"Steel.Memory.frame_preserving_respects_preorder",
"Prims._assert",
"Prims.eq2",
"Prims.l_or",
"Prims.l_and",
"Steel.Memory.inames_ok",
"Steel.Memory.interp",
"Steel.Memory.star",
"Steel.Memory.locks_invariant",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"Steel.Memory.is_frame_preserving",
"Prims.dtuple2",
"FStar.NMSTTotal.get"
] | [] | false | true | false | false | false | let lift_tot_action_nf #a #e #fp #fp' ($f: tot_action_nf_except e fp a fp') : MstTotNF a e fp fp' =
| let m0 = NMSTTotal.get () in
let m0':hmem_with_inv_except e fp = m0 in
let r = f m0' in
let (| x , m1 |) = r in
let m1':hmem_with_inv_except e (fp' x) = m1 in
assert (is_frame_preserving f);
assert (m1 == dsnd (f m0));
frame_preserving_respects_preorder f m0;
NMSTTotal.put #_ #(mem_evolves) m1;
x | false |
Platform.Bytes.fst | Platform.Bytes.split_eq | val split_eq: s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Pure
(x:(bytes * bytes){length (fst x) = i && length (snd x) = length s - i})
(requires True)
(ensures (fun x -> ((fst x) @| (snd x) = s))) | val split_eq: s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Pure
(x:(bytes * bytes){length (fst x) = i && length (snd x) = length s - i})
(requires True)
(ensures (fun x -> ((fst x) @| (snd x) = s))) | let split_eq s i =
let x = split s i in
lemma_split s i;
x | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 143,
"start_col": 0,
"start_line": 140
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*)
val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l)
let createBytes l b = Seq.create l b
// TODO: not implemented in ML
val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l)
let initBytes l f = Seq.init l f
(*@ assume val equalBytes : (b0:bytes -> (b1:bytes -> (r:bool){r = True /\ B (b0) = B (b1) \/ r = False /\ B (b0) <> B (b1)})) @*)
assume val equalBytes : b1:bytes -> b2:bytes -> Tot (b:bool{b = (b1=b2)})
(*@ assume val xor : (bytes -> (bytes -> (nb:nat -> (b3:bytes){Length (b3) = nb}))) @*)
assume val xor: l:nat -> lbytes l -> lbytes l -> Tot (lbytes l)
// consider making the length implicit
val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) //(lbytes n * lbytes (length b - n))
//val split: bytes -> nat -> Tot (bytes * bytes)
let split b (n:nat { n <= Seq.length b}) = Seq.split b n
val lemma_split : s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Lemma
(ensures ((fst (split s i)) @| (snd (split s i)) = s))
let lemma_split s i =
cut (Seq.equal ((fst (split s i)) @| (snd (split s i))) s)
val split_eq: s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Pure
(x:(bytes * bytes){length (fst x) = i && length (snd x) = length s - i})
(requires True) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Platform.Bytes.bytes -> i: Prims.nat{0 <= i /\ i <= Platform.Bytes.length s}
-> Prims.Pure
(x:
(Platform.Bytes.bytes * Platform.Bytes.bytes)
{ Platform.Bytes.length (FStar.Pervasives.Native.fst x) = i &&
Platform.Bytes.length (FStar.Pervasives.Native.snd x) = Platform.Bytes.length s - i }) | Prims.Pure | [] | [] | [
"Platform.Bytes.bytes",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Platform.Bytes.length",
"Prims.unit",
"Platform.Bytes.lemma_split",
"FStar.Pervasives.Native.tuple2",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Pervasives.Native.fst",
"Prims.eq2",
"Prims.int",
"FStar.Pervasives.Native.snd",
"Prims.op_Subtraction",
"Platform.Bytes.split",
"Prims.op_AmpAmp"
] | [] | false | false | false | false | false | let split_eq s i =
| let x = split s i in
lemma_split s i;
x | false |
Platform.Bytes.fst | Platform.Bytes.lemma_split | val lemma_split : s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Lemma
(ensures ((fst (split s i)) @| (snd (split s i)) = s)) | val lemma_split : s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Lemma
(ensures ((fst (split s i)) @| (snd (split s i)) = s)) | let lemma_split s i =
cut (Seq.equal ((fst (split s i)) @| (snd (split s i))) s) | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 134,
"start_col": 0,
"start_line": 133
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*)
val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l)
let createBytes l b = Seq.create l b
// TODO: not implemented in ML
val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l)
let initBytes l f = Seq.init l f
(*@ assume val equalBytes : (b0:bytes -> (b1:bytes -> (r:bool){r = True /\ B (b0) = B (b1) \/ r = False /\ B (b0) <> B (b1)})) @*)
assume val equalBytes : b1:bytes -> b2:bytes -> Tot (b:bool{b = (b1=b2)})
(*@ assume val xor : (bytes -> (bytes -> (nb:nat -> (b3:bytes){Length (b3) = nb}))) @*)
assume val xor: l:nat -> lbytes l -> lbytes l -> Tot (lbytes l)
// consider making the length implicit
val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) //(lbytes n * lbytes (length b - n))
//val split: bytes -> nat -> Tot (bytes * bytes)
let split b (n:nat { n <= Seq.length b}) = Seq.split b n
val lemma_split : s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Lemma | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Platform.Bytes.bytes -> i: Prims.nat{0 <= i /\ i <= Platform.Bytes.length s}
-> FStar.Pervasives.Lemma
(ensures
FStar.Pervasives.Native.fst (Platform.Bytes.split s i) @|
FStar.Pervasives.Native.snd (Platform.Bytes.split s i) =
s) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Platform.Bytes.bytes",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Platform.Bytes.length",
"Prims.cut",
"FStar.Seq.Base.equal",
"Platform.Bytes.byte",
"Platform.Bytes.op_At_Bar",
"FStar.Pervasives.Native.fst",
"Platform.Bytes.split",
"FStar.Pervasives.Native.snd",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_split s i =
| cut (Seq.equal ((fst (split s i)) @| (snd (split s i))) s) | false |
IfcRecursiveReify.fst | IfcRecursiveReify.p2 | val p2 (lo hi :id ): n:int -> ISNull unit (decreases n) | val p2 (lo hi :id ): n:int -> ISNull unit (decreases n) | let rec p2 lo hi n =
if n > 0 then
(write hi (read hi + 1);
p2 lo hi (n - 1)) | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 60,
"start_col": 1,
"start_line": 57
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x)
val p1 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1))
let p1_r lo hi n h = (* normalize_term *) (snd (reify (p1 lo hi n) h))
val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p1_r lo hi n (R?.l h)) (p1_r lo hi n (R?.r h)))))
let rec ni_p1 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi - 1)) in
let hr' = (upd hr hi (sel hr hi - 1)) in
ni_p1 lo hi (n-1) env (R hl' hr')
end | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | lo: FStar.DM4F.Heap.IntStoreFixed.id -> hi: FStar.DM4F.Heap.IntStoreFixed.id -> n: Prims.int
-> FStar.DM4F.IntStoreFixed.ISNull Prims.unit | FStar.DM4F.IntStoreFixed.ISNull | [
""
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"Prims.op_GreaterThan",
"IfcRecursiveReify.p2",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.DM4F.IntStoreFixed.write",
"Prims.op_Addition",
"FStar.DM4F.IntStoreFixed.read",
"Prims.bool"
] | [
"recursion"
] | false | true | false | false | false | let rec p2 lo hi n =
| if n > 0
then
(write hi (read hi + 1);
p2 lo hi (n - 1)) | false |
Platform.Bytes.fst | Platform.Bytes.append_empty_bytes_r | val append_empty_bytes_r (l: bytes) : Lemma (ensures (l @| empty_bytes == l)) | val append_empty_bytes_r (l: bytes) : Lemma (ensures (l @| empty_bytes == l)) | let append_empty_bytes_r (l: bytes): Lemma (ensures (l @| empty_bytes == l)) =
Seq.append_empty_r l | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 154,
"start_col": 0,
"start_line": 153
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*)
val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l)
let createBytes l b = Seq.create l b
// TODO: not implemented in ML
val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l)
let initBytes l f = Seq.init l f
(*@ assume val equalBytes : (b0:bytes -> (b1:bytes -> (r:bool){r = True /\ B (b0) = B (b1) \/ r = False /\ B (b0) <> B (b1)})) @*)
assume val equalBytes : b1:bytes -> b2:bytes -> Tot (b:bool{b = (b1=b2)})
(*@ assume val xor : (bytes -> (bytes -> (nb:nat -> (b3:bytes){Length (b3) = nb}))) @*)
assume val xor: l:nat -> lbytes l -> lbytes l -> Tot (lbytes l)
// consider making the length implicit
val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) //(lbytes n * lbytes (length b - n))
//val split: bytes -> nat -> Tot (bytes * bytes)
let split b (n:nat { n <= Seq.length b}) = Seq.split b n
val lemma_split : s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Lemma
(ensures ((fst (split s i)) @| (snd (split s i)) = s))
let lemma_split s i =
cut (Seq.equal ((fst (split s i)) @| (snd (split s i))) s)
val split_eq: s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Pure
(x:(bytes * bytes){length (fst x) = i && length (snd x) = length s - i})
(requires True)
(ensures (fun x -> ((fst x) @| (snd x) = s)))
let split_eq s i =
let x = split s i in
lemma_split s i;
x
val lemma_append_inj: s1:bytes -> s2:bytes -> t1:bytes -> t2:bytes {Seq.length s1 = Seq.length t1 \/ Seq.length s2 = Seq.length t2} ->
Lemma (requires (Seq.equal (Seq.append s1 s2) (Seq.append t1 t2)))
(ensures (Seq.equal s1 t1 /\ Seq.equal s2 t2))
let lemma_append_inj s1 s2 t1 t2 = admit() (* CH: this used to fail *)
let append_empty_bytes_l (l: bytes): Lemma (ensures ((empty_bytes @| l) == l)) =
Seq.append_empty_l l | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Platform.Bytes.bytes -> FStar.Pervasives.Lemma (ensures l @| Platform.Bytes.empty_bytes == l) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Platform.Bytes.bytes",
"FStar.Seq.Base.append_empty_r",
"Platform.Bytes.byte",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Platform.Bytes.op_At_Bar",
"Platform.Bytes.empty_bytes",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let append_empty_bytes_r (l: bytes) : Lemma (ensures (l @| empty_bytes == l)) =
| Seq.append_empty_r l | false |
Platform.Bytes.fst | Platform.Bytes.byte_of_int | val byte_of_int: n:nat{n < 256} -> Tot byte | val byte_of_int: n:nat{n < 256} -> Tot byte | let byte_of_int n =
lemma_repr_bytes_values n;
Seq.index (bytes_of_int 1 n) 0 | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 202,
"start_col": 0,
"start_line": 200
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*)
val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l)
let createBytes l b = Seq.create l b
// TODO: not implemented in ML
val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l)
let initBytes l f = Seq.init l f
(*@ assume val equalBytes : (b0:bytes -> (b1:bytes -> (r:bool){r = True /\ B (b0) = B (b1) \/ r = False /\ B (b0) <> B (b1)})) @*)
assume val equalBytes : b1:bytes -> b2:bytes -> Tot (b:bool{b = (b1=b2)})
(*@ assume val xor : (bytes -> (bytes -> (nb:nat -> (b3:bytes){Length (b3) = nb}))) @*)
assume val xor: l:nat -> lbytes l -> lbytes l -> Tot (lbytes l)
// consider making the length implicit
val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) //(lbytes n * lbytes (length b - n))
//val split: bytes -> nat -> Tot (bytes * bytes)
let split b (n:nat { n <= Seq.length b}) = Seq.split b n
val lemma_split : s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Lemma
(ensures ((fst (split s i)) @| (snd (split s i)) = s))
let lemma_split s i =
cut (Seq.equal ((fst (split s i)) @| (snd (split s i))) s)
val split_eq: s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Pure
(x:(bytes * bytes){length (fst x) = i && length (snd x) = length s - i})
(requires True)
(ensures (fun x -> ((fst x) @| (snd x) = s)))
let split_eq s i =
let x = split s i in
lemma_split s i;
x
val lemma_append_inj: s1:bytes -> s2:bytes -> t1:bytes -> t2:bytes {Seq.length s1 = Seq.length t1 \/ Seq.length s2 = Seq.length t2} ->
Lemma (requires (Seq.equal (Seq.append s1 s2) (Seq.append t1 t2)))
(ensures (Seq.equal s1 t1 /\ Seq.equal s2 t2))
let lemma_append_inj s1 s2 t1 t2 = admit() (* CH: this used to fail *)
let append_empty_bytes_l (l: bytes): Lemma (ensures ((empty_bytes @| l) == l)) =
Seq.append_empty_l l
let append_empty_bytes_r (l: bytes): Lemma (ensures (l @| empty_bytes == l)) =
Seq.append_empty_r l
let append_assoc (l1 l2 l3: bytes): Lemma
(ensures ((l1 @| l2) @| l3 == l1 @| (l2 @| l3))) =
Seq.append_assoc l1 l2 l3
(*@ assume val split2 : (b:bytes -> (i:nat -> ((j:nat){C_pr_GreaterThanOrEqual(Length (b), C_bop_Addition (i, j))} -> (b1:bytes * b2:bytes * b3:bytes){Length (b1) = i /\ Length (b2) = j /\ B (b) = C_bop_ArrayAppend (B (b1), C_bop_ArrayAppend (B (b2), B (b3)))}))) @*)
assume val split2 : b:bytes -> n1:nat{n1 <= Seq.length b} -> n2:nat{n1 + n2 <= Seq.length b} -> Tot (lbytes n1 * lbytes n2 * lbytes (length b - n1 - n2))
(*@ assume (!x. C_bop_ArrayAppend (x, C_array_of_list C_op_Nil ()) = x) @*)
(*@ assume (!b1. (!b2. (!c1. (!c2. C_bop_ArrayAppend (b1, b2) = C_bop_ArrayAppend (c1, c2) /\ BLength (b1) = BLength (c1) => b1 = c1 /\ b2 = c2)))) @*)
(*@ assume (!b1. (!b2. (!c1. (!c2. C_bop_ArrayAppend (b1, b2) = C_bop_ArrayAppend (c1, c2) /\ BLength (b2) = BLength (c2) => b1 = c1 /\ b2 = c2)))) @*)
(*@ assume (!b1. (!b2. (!b3. C_bop_ArrayAppend (C_bop_ArrayAppend (b1, b2), b3) = C_bop_ArrayAppend (b1, C_bop_ArrayAppend (b2, b3))))) @*)
(*@ function assume val IntBytes : ((int * int) -> bytes) @*)
assume val bytes_of_int : l:nat -> n:nat{repr_bytes n <= l} -> Tot (lbytes l)
assume val int_of_bytes : b:bytes ->
Tot (n:nat{repr_bytes n <= Seq.length b /\
(Seq.length b = 1 ==> n < 256) /\
b=bytes_of_int (Seq.length b) n})
assume val int_of_bytes_of_int : l:nat -> n:nat{repr_bytes n <= l} ->
Lemma (n = int_of_bytes (bytes_of_int l n))
(*@ assume val int_of_bytes : ((b:bytes){C_pr_LessThanOrEqual(Length (b), 8)} -> (i:nat){b = IntBytes (Length (b), i) /\ Length (b) = 1 => C_pr_LessThanOrEqual(0, i) /\ C_pr_LessThan(i, 256)}) @*)
(*@ assume (!l. (!i. Length (IntBytes (l, i)) = l)) @*)
(*@ assume (!l. (!i0. (!i1. IntBytes (l, i0) = IntBytes (l, i1) => i0 = i1))) @*)
(*@ function assume val Utf8 : (string -> bytes) @*)
(*@ assume val utf8 : (s:string -> (b:bytes){b = Utf8 (s)}) @*)
assume val utf8 : string -> Tot bytes
(*@ assume val iutf8 : (b:bytes -> (s:string){b = Utf8 (s)}) @*)
assume val iutf8_opt : m:bytes -> Tot (option (s:string{utf8 s = m}))
assume val iutf8 : m:bytes -> s:string{utf8 s = m}
(*@ assume (!x. (!y. Utf8 (x) = Utf8 (y) => x = y)) @*)
// Pretty printing of bytes for debugging
assume val print_bytes: bytes -> Tot string | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat{n < 256} -> Platform.Bytes.byte | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Platform.Bytes.byte",
"Platform.Bytes.bytes_of_int",
"Prims.unit",
"Platform.Bytes.lemma_repr_bytes_values"
] | [] | false | false | false | false | false | let byte_of_int n =
| lemma_repr_bytes_values n;
Seq.index (bytes_of_int 1 n) 0 | false |
Platform.Bytes.fst | Platform.Bytes.append_empty_bytes_l | val append_empty_bytes_l (l: bytes) : Lemma (ensures ((empty_bytes @| l) == l)) | val append_empty_bytes_l (l: bytes) : Lemma (ensures ((empty_bytes @| l) == l)) | let append_empty_bytes_l (l: bytes): Lemma (ensures ((empty_bytes @| l) == l)) =
Seq.append_empty_l l | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 151,
"start_col": 0,
"start_line": 150
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*)
val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l)
let createBytes l b = Seq.create l b
// TODO: not implemented in ML
val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l)
let initBytes l f = Seq.init l f
(*@ assume val equalBytes : (b0:bytes -> (b1:bytes -> (r:bool){r = True /\ B (b0) = B (b1) \/ r = False /\ B (b0) <> B (b1)})) @*)
assume val equalBytes : b1:bytes -> b2:bytes -> Tot (b:bool{b = (b1=b2)})
(*@ assume val xor : (bytes -> (bytes -> (nb:nat -> (b3:bytes){Length (b3) = nb}))) @*)
assume val xor: l:nat -> lbytes l -> lbytes l -> Tot (lbytes l)
// consider making the length implicit
val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) //(lbytes n * lbytes (length b - n))
//val split: bytes -> nat -> Tot (bytes * bytes)
let split b (n:nat { n <= Seq.length b}) = Seq.split b n
val lemma_split : s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Lemma
(ensures ((fst (split s i)) @| (snd (split s i)) = s))
let lemma_split s i =
cut (Seq.equal ((fst (split s i)) @| (snd (split s i))) s)
val split_eq: s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Pure
(x:(bytes * bytes){length (fst x) = i && length (snd x) = length s - i})
(requires True)
(ensures (fun x -> ((fst x) @| (snd x) = s)))
let split_eq s i =
let x = split s i in
lemma_split s i;
x
val lemma_append_inj: s1:bytes -> s2:bytes -> t1:bytes -> t2:bytes {Seq.length s1 = Seq.length t1 \/ Seq.length s2 = Seq.length t2} ->
Lemma (requires (Seq.equal (Seq.append s1 s2) (Seq.append t1 t2)))
(ensures (Seq.equal s1 t1 /\ Seq.equal s2 t2))
let lemma_append_inj s1 s2 t1 t2 = admit() (* CH: this used to fail *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Platform.Bytes.bytes -> FStar.Pervasives.Lemma (ensures Platform.Bytes.empty_bytes @| l == l) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Platform.Bytes.bytes",
"FStar.Seq.Base.append_empty_l",
"Platform.Bytes.byte",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Platform.Bytes.op_At_Bar",
"Platform.Bytes.empty_bytes",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let append_empty_bytes_l (l: bytes) : Lemma (ensures ((empty_bytes @| l) == l)) =
| Seq.append_empty_l l | false |
Platform.Bytes.fst | Platform.Bytes.append_assoc | val append_assoc (l1 l2 l3: bytes) : Lemma (ensures ((l1 @| l2) @| l3 == l1 @| (l2 @| l3))) | val append_assoc (l1 l2 l3: bytes) : Lemma (ensures ((l1 @| l2) @| l3 == l1 @| (l2 @| l3))) | let append_assoc (l1 l2 l3: bytes): Lemma
(ensures ((l1 @| l2) @| l3 == l1 @| (l2 @| l3))) =
Seq.append_assoc l1 l2 l3 | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 158,
"start_col": 0,
"start_line": 156
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*)
val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l)
let createBytes l b = Seq.create l b
// TODO: not implemented in ML
val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l)
let initBytes l f = Seq.init l f
(*@ assume val equalBytes : (b0:bytes -> (b1:bytes -> (r:bool){r = True /\ B (b0) = B (b1) \/ r = False /\ B (b0) <> B (b1)})) @*)
assume val equalBytes : b1:bytes -> b2:bytes -> Tot (b:bool{b = (b1=b2)})
(*@ assume val xor : (bytes -> (bytes -> (nb:nat -> (b3:bytes){Length (b3) = nb}))) @*)
assume val xor: l:nat -> lbytes l -> lbytes l -> Tot (lbytes l)
// consider making the length implicit
val split: b:bytes -> n:nat{n <= Seq.length b} ->
Tot (x:(bytes * bytes) {Seq.length (fst (x))= n /\ Seq.length (snd (x)) == (Seq.length b) - n }) //(lbytes n * lbytes (length b - n))
//val split: bytes -> nat -> Tot (bytes * bytes)
let split b (n:nat { n <= Seq.length b}) = Seq.split b n
val lemma_split : s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Lemma
(ensures ((fst (split s i)) @| (snd (split s i)) = s))
let lemma_split s i =
cut (Seq.equal ((fst (split s i)) @| (snd (split s i))) s)
val split_eq: s:bytes -> i:nat{(0 <= i /\ i <= length s)} -> Pure
(x:(bytes * bytes){length (fst x) = i && length (snd x) = length s - i})
(requires True)
(ensures (fun x -> ((fst x) @| (snd x) = s)))
let split_eq s i =
let x = split s i in
lemma_split s i;
x
val lemma_append_inj: s1:bytes -> s2:bytes -> t1:bytes -> t2:bytes {Seq.length s1 = Seq.length t1 \/ Seq.length s2 = Seq.length t2} ->
Lemma (requires (Seq.equal (Seq.append s1 s2) (Seq.append t1 t2)))
(ensures (Seq.equal s1 t1 /\ Seq.equal s2 t2))
let lemma_append_inj s1 s2 t1 t2 = admit() (* CH: this used to fail *)
let append_empty_bytes_l (l: bytes): Lemma (ensures ((empty_bytes @| l) == l)) =
Seq.append_empty_l l
let append_empty_bytes_r (l: bytes): Lemma (ensures (l @| empty_bytes == l)) =
Seq.append_empty_r l | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Platform.Bytes.bytes -> l2: Platform.Bytes.bytes -> l3: Platform.Bytes.bytes
-> FStar.Pervasives.Lemma (ensures (l1 @| l2) @| l3 == l1 @| l2 @| l3) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Platform.Bytes.bytes",
"FStar.Seq.Base.append_assoc",
"Platform.Bytes.byte",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Platform.Bytes.op_At_Bar",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let append_assoc (l1 l2 l3: bytes) : Lemma (ensures ((l1 @| l2) @| l3 == l1 @| (l2 @| l3))) =
| Seq.append_assoc l1 l2 l3 | false |
IfcRecursiveReify.fst | IfcRecursiveReify.ni_p1 | val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p1_r lo hi n (R?.l h)) (p1_r lo hi n (R?.r h))))) | val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p1_r lo hi n (R?.l h)) (p1_r lo hi n (R?.r h))))) | let rec ni_p1 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi - 1)) in
let hr' = (upd hr hi (sel hr hi - 1)) in
ni_p1 lo hi (n-1) env (R hl' hr')
end | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 53,
"start_col": 0,
"start_line": 46
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x)
val p1 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1))
let p1_r lo hi n h = (* normalize_term *) (snd (reify (p1 lo hi n) h))
val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
lo: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
env: IfcRecursiveReify.env ->
h: Rel.rel FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma
(requires lo <> hi /\ Low? (env lo) /\ High? (env hi) /\ IfcRecursiveReify.low_equiv env h)
(ensures
IfcRecursiveReify.low_equiv env
(Rel.R (IfcRecursiveReify.p1_r lo hi n (R?.l h)) (IfcRecursiveReify.p1_r lo hi n (R?.r h))
)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"IfcRecursiveReify.env",
"Rel.rel",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.op_GreaterThan",
"IfcRecursiveReify.ni_p1",
"Prims.op_Subtraction",
"Rel.R",
"FStar.DM4F.Heap.IntStoreFixed.upd",
"FStar.DM4F.Heap.IntStoreFixed.sel",
"Prims.unit",
"Prims.bool"
] | [
"recursion"
] | false | false | true | false | false | let rec ni_p1 lo hi n env h =
| if n > 0
then
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi - 1)) in
let hr' = (upd hr hi (sel hr hi - 1)) in
ni_p1 lo hi (n - 1) env (R hl' hr') | false |
Platform.Bytes.fst | Platform.Bytes.initBytes | val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l) | val initBytes: l:nat -> (i:nat {i<l} -> Tot byte) -> Tot (lbytes l) | let initBytes l f = Seq.init l f | {
"file_name": "ucontrib/Platform/fst/Platform.Bytes.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 116,
"start_col": 0,
"start_line": 116
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Bytes
assume val repr_bytes : nat -> GTot (n:nat{n>0})
(* Integer literals are currently extracted to int32, rather than bigint, so the definition below
breaks extraction:
Unexpected error; please file a bug report, ideally with a minimized version of the source program that triggered the error.
int_of_string
Also, defining repr_bytes n <= 8 for all n is dubious
*)
(*
let repr_bytes n =
if n < 256 then 1
else if n < 65536 then 2
else if n < 16777216 then 3
else if n < 4294967296 then 4
else if n < 1099511627776 then 5
else if n < 281474976710656 then 6
else if n < 72057594037927936 then 7
else 8
*)
(* NS:
The two assumes below were previously defined as axioms.
They are evil! They pollute the global environment and
slow down verification enormously.
I've made them assumed lemmas; if you want to
make use of these axioms, call the lemmas as needed in the context.
*)
assume val lemma_repr_bytes_values: n:nat ->
Lemma ( ( n < 256 <==> repr_bytes n = 1 )
/\ ( (n >= 256 /\ n < 65536) <==> repr_bytes n = 2 )
/\ ( (n >= 65536 /\ n < 16777216) <==> repr_bytes n = 3 )
/\ ( (n >= 16777216 /\ n < 4294967296) <==> repr_bytes n = 4 )
/\ ( (n >= 4294967296 /\ n < 1099511627776) <==> repr_bytes n = 5 )
/\ ( (n >= 1099511627776 /\ n < 281474976710656) <==> repr_bytes n = 6 )
/\ ( (n >= 281474976710656 /\ n < 72057594037927936) <==> repr_bytes n = 7 )
/\ ( (n >= 72057594037927936 /\ n < 18446744073709551616) <==> repr_bytes n = 8 ) )
unfold let byte:Type0 = FStar.UInt8.t
type cbytes = string
(* abstract *) type bytes = Seq.seq byte
(* AR: adding this *)
assume HasEq_bytes: hasEq bytes
val seq_of_bytes: b:bytes -> GTot (Seq.seq byte)
let seq_of_bytes b = b
val op_At_Bar: bytes -> bytes -> Tot bytes
let op_At_Bar (b1:bytes) (b2:bytes) = Seq.append b1 b2
(*@ function val B : (bytes -> byte array) @*)
(*@ assume val length : (b:bytes -> (l:nat){Length (b) = l}) @*)
val length : bytes -> Tot nat
let length b = Seq.length b
(*@ type (l:nat) lbytes = (b:bytes){Length (b) = l} @*)
type lbytes (l:nat) = b:bytes{length b = l}
(*@ val empty_bytes : (b:bytes){B (b) = C_array_of_list C_op_Nil ()} @*)
val empty_bytes : lbytes 0
let empty_bytes = Seq.empty #byte
(*@ assume val abytes : (b:cbytes -> (a:bytes){B (a) = b}) @*)
assume val abytes : (cbytes -> Tot bytes)
(*@ assume val abyte : (b:byte -> (a:bytes){B (a) = C_array_of_list C_op_ColonColon (b, C_op_Nil ())}) @*)
val abyte : (FStar.UInt8.t -> Tot bytes)
let abyte b = Seq.create 1 b
val abyte2 : (FStar.UInt8.t * FStar.UInt8.t) -> Tot bytes
let abyte2 (b1, b2) = Seq.append (Seq.create 1 b1) (Seq.create 1 b2)
(*@ assume val get_cbytes : (a:bytes -> (b:cbytes){B (a) = b}) @*)
assume val get_cbytes : (bytes -> Tot cbytes)
val cbyte : b:bytes{Seq.length b > 0} -> Tot FStar.UInt8.t
let cbyte b = Seq.index b 0
val cbyte2 : b:bytes{Seq.length b >= 2} -> Tot (FStar.UInt8.t * FStar.UInt8.t)
let cbyte2 b = (Seq.index b 0, Seq.index b 1)
val index : b:bytes -> i:nat{Seq.length b > i} -> Tot FStar.UInt8.t
let index b i = Seq.index b i
(*@ function assume val BLength : (cbytes -> int) @*)
(*@ function assume val Length : (bytes -> int) @*)
(*@ assume (!x. (!y. BLength (C_bop_ArrayAppend (x, y)) = C_bop_Addition (BLength (x), BLength (y)))) @*)
(*@ assume (!x. Length (x) = BLength (B (x))) @*)
(*@ assume val createBytes : (l:int -> ((v:int){C_pr_LessThanOrEqual(0, v) /\ C_pr_LessThan(v, 256)} -> (;l) lbytes)) @*)
val createBytes : l:nat -> FStar.UInt8.t -> Tot (lbytes l)
let createBytes l b = Seq.create l b
// TODO: not implemented in ML | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Platform.Bytes.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.nat -> f: (i: Prims.nat{i < l} -> Platform.Bytes.byte) -> Platform.Bytes.lbytes l | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Platform.Bytes.byte",
"FStar.Seq.Base.init",
"Platform.Bytes.lbytes"
] | [] | false | false | false | false | false | let initBytes l f =
| Seq.init l f | false |
IfcRecursiveReify.fst | IfcRecursiveReify.ni_p2 | val ni_p2 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p2_r lo hi n (R?.l h)) (p2_r lo hi n (R?.r h))))) | val ni_p2 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p2_r lo hi n (R?.l h)) (p2_r lo hi n (R?.r h))))) | let rec ni_p2 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi + 1)) in
let hr' = (upd hr hi (sel hr hi + 1)) in
ni_p2 lo hi (n-1) env (R hl' hr')
end | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 78,
"start_col": 0,
"start_line": 71
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x)
val p1 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1))
let p1_r lo hi n h = (* normalize_term *) (snd (reify (p1 lo hi n) h))
val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p1_r lo hi n (R?.l h)) (p1_r lo hi n (R?.r h)))))
let rec ni_p1 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi - 1)) in
let hr' = (upd hr hi (sel hr hi - 1)) in
ni_p1 lo hi (n-1) env (R hl' hr')
end
val p2 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p2 lo hi n =
if n > 0 then
(write hi (read hi + 1);
p2 lo hi (n - 1))
let p2_r lo hi n h = (* normalize_term *) (snd (reify (p2 lo hi n) h))
val ni_p2 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
lo: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
env: IfcRecursiveReify.env ->
h: Rel.rel FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma
(requires lo <> hi /\ Low? (env lo) /\ High? (env hi) /\ IfcRecursiveReify.low_equiv env h)
(ensures
IfcRecursiveReify.low_equiv env
(Rel.R (IfcRecursiveReify.p2_r lo hi n (R?.l h)) (IfcRecursiveReify.p2_r lo hi n (R?.r h))
)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"IfcRecursiveReify.env",
"Rel.rel",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.op_GreaterThan",
"IfcRecursiveReify.ni_p2",
"Prims.op_Subtraction",
"Rel.R",
"FStar.DM4F.Heap.IntStoreFixed.upd",
"Prims.op_Addition",
"FStar.DM4F.Heap.IntStoreFixed.sel",
"Prims.unit",
"Prims.bool"
] | [
"recursion"
] | false | false | true | false | false | let rec ni_p2 lo hi n env h =
| if n > 0
then
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi + 1)) in
let hr' = (upd hr hi (sel hr hi + 1)) in
ni_p2 lo hi (n - 1) env (R hl' hr') | false |
IfcRecursiveReify.fst | IfcRecursiveReify.p1 | val p1 (lo hi :id ): n:int -> ISNull unit (decreases n) | val p1 (lo hi :id ): n:int -> ISNull unit (decreases n) | let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1)) | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 35,
"start_col": 1,
"start_line": 32
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | lo: FStar.DM4F.Heap.IntStoreFixed.id -> hi: FStar.DM4F.Heap.IntStoreFixed.id -> n: Prims.int
-> FStar.DM4F.IntStoreFixed.ISNull Prims.unit | FStar.DM4F.IntStoreFixed.ISNull | [
""
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"Prims.op_GreaterThan",
"IfcRecursiveReify.p1",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.DM4F.IntStoreFixed.write",
"FStar.DM4F.IntStoreFixed.read",
"Prims.bool"
] | [
"recursion"
] | false | true | false | false | false | let rec p1 lo hi n =
| if n > 0
then
(write hi (read hi - 1);
p1 lo hi (n - 1)) | false |
IfcRecursiveReify.fst | IfcRecursiveReify.ni_p3 | val ni_p3 (lo1 lo2 hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo1 <> lo2 /\ lo1 <> hi /\ lo2 <> hi /\
Low? (env lo1) /\
Low? (env lo2) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p3_r lo1 lo2 hi n (R?.l h)) (p3_r lo1 lo2 hi n (R?.r h))))) | val ni_p3 (lo1 lo2 hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo1 <> lo2 /\ lo1 <> hi /\ lo2 <> hi /\
Low? (env lo1) /\
Low? (env lo2) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p3_r lo1 lo2 hi n (R?.l h)) (p3_r lo1 lo2 hi n (R?.r h))))) | let ni_p3 lo1 lo2 hi n env h =
ni_p1 lo1 hi n env h;
let R hl hr = h in
let hl' = p1_r lo1 hi n hl in
let hr' = p1_r lo1 hi n hr in
ni_p2 lo2 hi n env (R hl' hr') | {
"file_name": "examples/rel/IfcRecursiveReify.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 102,
"start_col": 0,
"start_line": 97
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcRecursiveReify
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
open Rel
type label =
| Low
| High
type env = id -> Tot label
type low_equiv (env:env) (h : rel heap) =
forall (x:id). {:pattern (Low? (env x))} (Low? (env x) ==> sel (R?.l h) x = sel (R?.r h) x)
val p1 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p1 lo hi n =
if n > 0 then
(write hi (read hi -1);
p1 lo hi (n-1))
let p1_r lo hi n h = (* normalize_term *) (snd (reify (p1 lo hi n) h))
val ni_p1 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p1_r lo hi n (R?.l h)) (p1_r lo hi n (R?.r h)))))
let rec ni_p1 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi - 1)) in
let hr' = (upd hr hi (sel hr hi - 1)) in
ni_p1 lo hi (n-1) env (R hl' hr')
end
val p2 (lo hi :id ): n:int -> ISNull unit (decreases n)
let rec p2 lo hi n =
if n > 0 then
(write hi (read hi + 1);
p2 lo hi (n - 1))
let p2_r lo hi n h = (* normalize_term *) (snd (reify (p2 lo hi n) h))
val ni_p2 (lo hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo <> hi /\
Low? (env lo) /\
High? (env hi) /\
low_equiv env h))
(ensures (low_equiv env (R (p2_r lo hi n (R?.l h)) (p2_r lo hi n (R?.r h)))))
let rec ni_p2 lo hi n env h =
if n > 0 then
begin
let R hl hr = h in
let hl' = (upd hl hi (sel hl hi + 1)) in
let hr' = (upd hr hi (sel hr hi + 1)) in
ni_p2 lo hi (n-1) env (R hl' hr')
end
let p3 lo1 lo2 hi n =
p1 lo1 hi n ;
p2 lo2 hi n
let p3_r lo1 lo2 hi n h = (* normalize_term *) (snd (reify (p3 lo1 lo2 hi n) h))
val ni_p3 (lo1 lo2 hi : id) (n:int) (env:env) (h :rel heap) :
Lemma
(requires (lo1 <> lo2 /\ lo1 <> hi /\ lo2 <> hi /\
Low? (env lo1) /\
Low? (env lo2) /\
High? (env hi) /\
low_equiv env h)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcRecursiveReify.fst"
} | [
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
lo1: FStar.DM4F.Heap.IntStoreFixed.id ->
lo2: FStar.DM4F.Heap.IntStoreFixed.id ->
hi: FStar.DM4F.Heap.IntStoreFixed.id ->
n: Prims.int ->
env: IfcRecursiveReify.env ->
h: Rel.rel FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma
(requires
lo1 <> lo2 /\ lo1 <> hi /\ lo2 <> hi /\ Low? (env lo1) /\ Low? (env lo2) /\ High? (env hi) /\
IfcRecursiveReify.low_equiv env h)
(ensures
IfcRecursiveReify.low_equiv env
(Rel.R (IfcRecursiveReify.p3_r lo1 lo2 hi n (R?.l h))
(IfcRecursiveReify.p3_r lo1 lo2 hi n (R?.r h)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"Prims.int",
"IfcRecursiveReify.env",
"Rel.rel",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcRecursiveReify.ni_p2",
"Rel.R",
"IfcRecursiveReify.p1_r",
"Prims.unit",
"IfcRecursiveReify.ni_p1"
] | [] | false | false | true | false | false | let ni_p3 lo1 lo2 hi n env h =
| ni_p1 lo1 hi n env h;
let R hl hr = h in
let hl' = p1_r lo1 hi n hl in
let hr' = p1_r lo1 hi n hr in
ni_p2 lo2 hi n env (R hl' hr') | false |
FStar.Pointer.Derived3.fst | FStar.Pointer.Derived3.fill_buffer_postcond' | val fill_buffer_postcond' (#t: typ) (b: buffer t) (v: type_of_typ t) (h h': HS.mem) : GTot Type0 | val fill_buffer_postcond' (#t: typ) (b: buffer t) (v: type_of_typ t) (h h': HS.mem) : GTot Type0 | let fill_buffer_postcond'
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
buffer_readable h' b /\
buffer_as_seq h' b == Seq.create (UInt32.v (buffer_length b)) v | {
"file_name": "ulib/legacy/FStar.Pointer.Derived3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 65,
"end_line": 41,
"start_col": 0,
"start_line": 31
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived3
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
private
let fill_buffer_precond'
(#t: typ)
(b: buffer t) (* destination *)
(h: HS.mem)
: GTot Type0
= buffer_live h b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Pointer.Derived3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: FStar.Pointer.Base.buffer t ->
v: FStar.Pointer.Base.type_of_typ t ->
h: FStar.Monotonic.HyperStack.mem ->
h': FStar.Monotonic.HyperStack.mem
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.Pointer.Base.type_of_typ",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"FStar.Pointer.Derived3.fill_buffer_precond'",
"FStar.Pointer.Base.modifies",
"FStar.Pointer.Base.loc_buffer",
"FStar.Pointer.Base.buffer_readable",
"Prims.eq2",
"FStar.Seq.Base.seq",
"FStar.Pointer.Base.buffer_as_seq",
"FStar.Seq.Base.create",
"FStar.UInt32.v",
"FStar.Pointer.Base.buffer_length"
] | [] | false | false | false | false | true | let fill_buffer_postcond' (#t: typ) (b: buffer t) (v: type_of_typ t) (h h': HS.mem) : GTot Type0 =
| fill_buffer_precond' b h /\ modifies (loc_buffer b) h h' /\ buffer_readable h' b /\
buffer_as_seq h' b == Seq.create (UInt32.v (buffer_length b)) v | false |
FStar.Pointer.Derived3.fst | FStar.Pointer.Derived3.fill_buffer_inv | val fill_buffer_inv (#t: typ) (b: buffer t) (len': UInt32.t) (v: type_of_typ t) (h h': HS.mem)
: GTot Type0 | val fill_buffer_inv (#t: typ) (b: buffer t) (len': UInt32.t) (v: type_of_typ t) (h h': HS.mem)
: GTot Type0 | let fill_buffer_inv
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
UInt32.v len' <= UInt32.v (buffer_length b) /\
buffer_readable h' (gsub_buffer b 0ul len') /\
buffer_as_seq h' (gsub_buffer b 0ul len') == Seq.create (UInt32.v len') v | {
"file_name": "ulib/legacy/FStar.Pointer.Derived3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 75,
"end_line": 56,
"start_col": 0,
"start_line": 44
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived3
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
private
let fill_buffer_precond'
(#t: typ)
(b: buffer t) (* destination *)
(h: HS.mem)
: GTot Type0
= buffer_live h b
private
let fill_buffer_postcond'
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
buffer_readable h' b /\
buffer_as_seq h' b == Seq.create (UInt32.v (buffer_length b)) v | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Pointer.Derived3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: FStar.Pointer.Base.buffer t ->
len': FStar.UInt32.t ->
v: FStar.Pointer.Base.type_of_typ t ->
h: FStar.Monotonic.HyperStack.mem ->
h': FStar.Monotonic.HyperStack.mem
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Pointer.Base.type_of_typ",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"FStar.Pointer.Derived3.fill_buffer_precond'",
"FStar.Pointer.Base.modifies",
"FStar.Pointer.Base.loc_buffer",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"FStar.Pointer.Base.buffer_length",
"FStar.Pointer.Base.buffer_readable",
"FStar.Pointer.Base.gsub_buffer",
"FStar.UInt32.__uint_to_t",
"Prims.eq2",
"FStar.Seq.Base.seq",
"FStar.Pointer.Base.buffer_as_seq",
"FStar.Seq.Base.create"
] | [] | false | false | false | false | true | let fill_buffer_inv (#t: typ) (b: buffer t) (len': UInt32.t) (v: type_of_typ t) (h h': HS.mem)
: GTot Type0 =
| fill_buffer_precond' b h /\ modifies (loc_buffer b) h h' /\
UInt32.v len' <= UInt32.v (buffer_length b) /\ buffer_readable h' (gsub_buffer b 0ul len') /\
buffer_as_seq h' (gsub_buffer b 0ul len') == Seq.create (UInt32.v len') v | false |
Hacl.Spec.Poly1305.Field32xN.Lemmas.fst | Hacl.Spec.Poly1305.Field32xN.Lemmas.set_bit5_lemma | val set_bit5_lemma:
#w:lanes
-> f:lseq (uint64xN w) 5
-> i:size_nat{i <= 128} ->
Lemma
(requires
lfelem_fits f (1, 1, 1, 1, 1) /\
lfelem_less f (pow2 i))
(ensures
lfelem_fits (set_bit5 f i) (1, 1, 1, 1, 1) /\
lfeval (set_bit5 f i) == map (Vec.pfadd (pow2 i)) (lfeval f)) | val set_bit5_lemma:
#w:lanes
-> f:lseq (uint64xN w) 5
-> i:size_nat{i <= 128} ->
Lemma
(requires
lfelem_fits f (1, 1, 1, 1, 1) /\
lfelem_less f (pow2 i))
(ensures
lfelem_fits (set_bit5 f i) (1, 1, 1, 1, 1) /\
lfeval (set_bit5 f i) == map (Vec.pfadd (pow2 i)) (lfeval f)) | let set_bit5_lemma #w f i =
let tmp = map (Vec.pfadd (pow2 i)) (lfeval f) in
match w with
| 1 ->
set_bit5_lemma_k #w f i 0;
eq_intro (lfeval (set_bit5 f i)) tmp
| 2 ->
set_bit5_lemma_k #w f i 0;
set_bit5_lemma_k #w f i 1;
eq_intro (lfeval (set_bit5 f i)) tmp
| 4 ->
set_bit5_lemma_k #w f i 0;
set_bit5_lemma_k #w f i 1;
set_bit5_lemma_k #w f i 2;
set_bit5_lemma_k #w f i 3;
eq_intro (lfeval (set_bit5 f i)) tmp | {
"file_name": "code/poly1305/Hacl.Spec.Poly1305.Field32xN.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 857,
"start_col": 0,
"start_line": 842
} | module Hacl.Spec.Poly1305.Field32xN.Lemmas
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open FStar.Mul
open Hacl.Spec.Poly1305.Field32xN
open Hacl.Poly1305.Field32xN.Lemmas0
open Hacl.Poly1305.Field32xN.Lemmas1
open Hacl.Poly1305.Field32xN.Lemmas2
module Vec = Hacl.Spec.Poly1305.Vec
#set-options "--z3rlimit 100 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --using_facts_from '* -FStar.Seq'"
val lemma_feval_is_fas_nat_i:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)}
-> i:size_nat{i < w} ->
Lemma ((feval5 f).[i] == (fas_nat5 f).[i])
let lemma_feval_is_fas_nat_i #w f i =
assert_norm (pow2 128 < Vec.prime);
assert ((feval5 f).[i] == (as_nat5 (transpose f).[i]) % Vec.prime);
FStar.Math.Lemmas.modulo_lemma (as_nat5 (transpose f).[i]) Vec.prime
val lemma_feval_is_fas_nat:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)} ->
Lemma (forall (i:nat). i < w ==> (fas_nat5 f).[i] == (feval5 f).[i])
let lemma_feval_is_fas_nat #w f =
FStar.Classical.forall_intro (lemma_feval_is_fas_nat_i #w f)
val precomp_r5_fits_lemma:
#w:lanes
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (5, 5, 5, 5, 5))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_fits_lemma2:
#w:lanes
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (10, 10, 10, 10, 10))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma2 #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_zeros: w:lanes -> Lemma
(let r = (zero w, zero w, zero w, zero w, zero w) in
precomp_r5 r == (zero w, zero w, zero w, zero w, zero w))
let precomp_r5_zeros w =
let r = (zero w, zero w, zero w, zero w, zero w) in
let (r0, r1, r2, r3, r4) = precomp_r5 r in
let aux (i:nat{i < w}) : Lemma ((vec_v (vec_smul_mod (zero w) (u64 5))).[i] == u64 0) = () in
Classical.forall_intro aux;
eq_intro (vec_v (vec_smul_mod (zero w) (u64 5))) (vec_v (zero w));
vecv_extensionality (vec_smul_mod (zero w) (u64 5)) (zero w)
val fadd5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (felem_fits5 (fadd5 f1 f2) (3,3,3,3,3))
[SMTPat (fadd5 f1 f2)]
let fadd5_fits_lemma #w f1 f2 =
let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o = fadd5 f1 f2 in
vec_add_mod_lemma f10 f20;
vec_add_mod_lemma f11 f21;
vec_add_mod_lemma f12 f22;
vec_add_mod_lemma f13 f23;
vec_add_mod_lemma f14 f24
val fadd5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (feval5 (fadd5 f1 f2) == map2 Vec.pfadd (feval5 f1) (feval5 f2))
[SMTPat (fadd5 f1 f2)]
let fadd5_eval_lemma #w f1 f2 =
let o = fadd5 f1 f2 in
FStar.Classical.forall_intro (fadd5_eval_lemma_i f1 f2);
eq_intro (feval5 o) (map2 Vec.pfadd (feval5 f1) (feval5 f2))
val mul_felem5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_wide_fits5 (mul_felem5 #w f1 r r5) (126, 102, 78, 54, 30))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_fits_lemma #w f1 r r5 =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34)
val mul_felem5_eval_lemma_i:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r}
-> i:nat{i < w} ->
Lemma ((feval5 (mul_felem5 #w f1 r r5)).[i] == (feval5 f1).[i] `Vec.pfmul` (feval5 r).[i])
let mul_felem5_eval_lemma_i #w f1 r r5 i =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_eval_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
assert ((fas_nat5 (a0,a1,a2,a3,a4)).[i] == (uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i]);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_eval_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
assert ((fas_nat5 (a10,a11,a12,a13,a14)).[i] == (fas_nat5 (a0,a1,a2,a3,a4)).[i] + (uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i]);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_eval_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
assert ((fas_nat5 (a20,a21,a22,a23,a24)).[i] == (fas_nat5 (a10,a11,a12,a13,a14)).[i] + (uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i]);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
assert ((fas_nat5 (a30,a31,a32,a33,a34)).[i] == (fas_nat5 (a20,a21,a22,a23,a24)).[i] + (uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i]);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] == (fas_nat5 (a30,a31,a32,a33,a34)).[i] + (uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] ==
(uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i] +
(uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i] +
(uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i] +
(uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i] +
(uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
mul_felem5_eval_as_tup64 #w f1 r r5 i;
mul_felem5_lemma (as_tup64_i f1 i) (as_tup64_i r i)
val mul_felem5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (mul_felem5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_eval_lemma #w f1 r r5 =
let tmp = map2 (Vec.pfmul) (feval5 f1) (feval5 r) in
FStar.Classical.forall_intro (mul_felem5_eval_lemma_i #w f1 r r5);
eq_intro (feval5 (mul_felem5 #w f1 r r5)) tmp
val fmul_r5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_fits5 (fmul_r5 #w f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_fits_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_fits_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fmul_r5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fmul_r5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_eval_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_eval_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val fadd_mul_r5_fits_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5)} ->
Lemma (felem_fits5 (fadd_mul_r5 acc f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_fits_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_fits_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_fits_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fadd_mul_r5_eval_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fadd_mul_r5 acc f1 r r5) ==
map2 (Vec.pfmul) (map2 (Vec.pfadd) (feval5 acc) (feval5 f1)) (feval5 r))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_eval_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_eval_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_eval_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val reduce_felem5_eval_lemma:
#w:lanes
-> f:felem5 w{felem_fits5 f (2, 2, 2, 2, 2)} ->
Lemma
(felem_fits5 (reduce_felem5 f) (1, 1, 1, 1, 1) /\
(feval5 f).[0] == (fas_nat5 (reduce_felem5 f)).[0])
[SMTPat (reduce_felem5 f)]
let reduce_felem5_eval_lemma #w f =
carry_full_felem5_eval_lemma f;
carry_full_felem5_fits_lemma f;
let f = carry_full_felem5 f in
carry_reduce_felem5_lemma #w f;
subtract_p5_felem5_lemma #w (carry_full_felem5 f)
val fmul_r2_normalize50:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures fun a ->
let fr21 = create2 (feval5 r2).[0] (feval5 r).[0] in
feval5 a == Vec.fmul (feval5 acc) fr21 /\
felem_fits5 a (1, 2, 1, 1, 2))
let fmul_r2_normalize50 (a0, a1, a2, a3, a4) (r0, r1, r2, r3, r4) (r20, r21, r22, r23, r24) =
let r210 = vec_interleave_low r20 r0 in
vec_interleave_low_lemma2 r20 r0;
let r211 = vec_interleave_low r21 r1 in
vec_interleave_low_lemma2 r21 r1;
let r212 = vec_interleave_low r22 r2 in
vec_interleave_low_lemma2 r22 r2;
let r213 = vec_interleave_low r23 r3 in
vec_interleave_low_lemma2 r23 r3;
let r214 = vec_interleave_low r24 r4 in
vec_interleave_low_lemma2 r24 r4;
let acc = (a0, a1, a2, a3, a4) in
let fr = (r0, r1, r2, r3, r4) in
let fr2 = (r20, r21, r22, r23, r24) in
assert ((feval5 fr2).[0] == Vec.pfmul ((feval5 fr).[0]) ((feval5 fr).[0]));
let fr21 = (r210, r211, r212, r213, r214) in
eq_intro (feval5 fr21) (create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (feval5 fr21 == create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (felem_fits5 fr21 (2, 2, 2, 2, 2));
let fr215 = precomp_r5 #2 fr21 in
let a = fmul_r5 #2 acc fr21 fr215 in
fmul_r5_eval_lemma acc fr21 fr215;
fmul_r5_fits_lemma acc fr21 fr215;
assert (feval5 a == Vec.fmul (feval5 acc) (feval5 fr21));
assert (felem_fits5 a (1, 2, 1, 1, 2));
a
#push-options "--z3rlimit 150"
val fmul_r2_normalize51:
a:felem5 2
-> fa1:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 a (1, 2, 1, 1, 2) /\
felem_fits5 fa1 (1, 2, 1, 1, 2) /\
feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1])
(ensures fun out ->
(feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1] /\
felem_fits5 out (2, 4, 2, 2, 4))
let fmul_r2_normalize51 a fa1 =
let (a0, a1, a2, a3, a4) = a in
let (a10, a11, a12, a13, a14) = fa1 in
let o0 = vec_add_mod a0 a10 in
let o1 = vec_add_mod a1 a11 in
let o2 = vec_add_mod a2 a12 in
let o3 = vec_add_mod a3 a13 in
let o4 = vec_add_mod a4 a14 in
let out = (o0, o1, o2, o3, o4) in
let (a0, a1, a2, a3, a4) = as_tup64_i a 0 in
let (a10, a11, a12, a13, a14) = as_tup64_i fa1 0 in
let (o0, o1, o2, o3, o4) = as_tup64_i out 0 in
FStar.Math.Lemmas.modulo_lemma (v a0 + v a10) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a1 + v a11) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a2 + v a12) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a3 + v a13) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a4 + v a14) (pow2 64);
assert (felem_fits5 out (2, 4, 2, 2, 4));
calc (==) {
((feval5 a).[0] + (feval5 a).[1]) % Vec.prime;
(==) { }
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime + as_nat5 (a10, a11, a12, a13, a14) % Vec.prime) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (a0, a1, a2, a3, a4)) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime }
(as_nat5 (a0, a1, a2, a3, a4) + as_nat5 (a10, a11, a12, a13, a14)) % Vec.prime;
(==) { }
(feval5 out).[0];
};
out
#pop-options
val fmul_r2_normalize5_lemma:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures
(let out = fmul_r2_normalize5 acc r r2 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_2 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r2_normalize5 acc r r2)]
let fmul_r2_normalize5_lemma acc r r2 =
let a = fmul_r2_normalize50 acc r r2 in
let (a0, a1, a2, a3, a4) = a in
let a10 = vec_interleave_high a0 a0 in
vec_interleave_high_lemma2 a0 a0;
let a11 = vec_interleave_high a1 a1 in
vec_interleave_high_lemma2 a1 a1;
let a12 = vec_interleave_high a2 a2 in
vec_interleave_high_lemma2 a2 a2;
let a13 = vec_interleave_high a3 a3 in
vec_interleave_high_lemma2 a3 a3;
let a14 = vec_interleave_high a4 a4 in
vec_interleave_high_lemma2 a4 a4;
let fa1 = (a10, a11, a12, a13, a14) in
eq_intro (feval5 fa1) (create2 (feval5 a).[1] (feval5 a).[1]);
assert (feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1]);
assert (felem_fits5 fa1 (1, 2, 1, 1, 2));
let out = fmul_r2_normalize51 a fa1 in
assert ((feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1]);
let res = carry_full_felem5 out in
carry_full_felem5_lemma out
val fmul_r4_normalize50:
acc:felem5 4
-> r:felem5 4
-> r2:felem5 4
-> r3:felem5 4
-> r4:felem5 4 ->
Pure (felem5 4)
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
felem_fits5 r3 (2, 2, 2, 2, 2) /\
felem_fits5 r4 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.fmul (feval5 r) (feval5 r) /\
feval5 r3 == Vec.fmul (feval5 r2) (feval5 r) /\
feval5 r4 == Vec.compute_r4 (feval5 r).[0])
(ensures fun out ->
let fr4321 = create4 (feval5 r4).[0] (feval5 r3).[0] (feval5 r2).[0] (feval5 r).[0] in
feval5 out == Vec.fmul (feval5 acc) fr4321 /\
felem_fits5 out (1, 2, 1, 1, 2))
let fmul_r4_normalize50 acc fr fr2 fr3 fr4 =
let (r10, r11, r12, r13, r14) = fr in
let (r20, r21, r22, r23, r24) = fr2 in
let (r30, r31, r32, r33, r34) = fr3 in
let (r40, r41, r42, r43, r44) = fr4 in
let (a0, a1, a2, a3, a4) = acc in
let v12120 = vec_interleave_low r20 r10 in
vec_interleave_low_lemma_uint64_4 r20 r10;
let v34340 = vec_interleave_low r40 r30 in
vec_interleave_low_lemma_uint64_4 r40 r30;
let r12340 = vec_interleave_low_n 2 v34340 v12120 in
vec_interleave_low_n_lemma_uint64_4_2 v34340 v12120;
let v12121 = vec_interleave_low r21 r11 in
vec_interleave_low_lemma_uint64_4 r21 r11;
let v34341 = vec_interleave_low r41 r31 in
vec_interleave_low_lemma_uint64_4 r41 r31;
let r12341 = vec_interleave_low_n 2 v34341 v12121 in
vec_interleave_low_n_lemma_uint64_4_2 v34341 v12121;
let v12122 = vec_interleave_low r22 r12 in
vec_interleave_low_lemma_uint64_4 r22 r12;
let v34342 = vec_interleave_low r42 r32 in
vec_interleave_low_lemma_uint64_4 r42 r32;
let r12342 = vec_interleave_low_n 2 v34342 v12122 in
vec_interleave_low_n_lemma_uint64_4_2 v34342 v12122;
let v12123 = vec_interleave_low r23 r13 in
vec_interleave_low_lemma_uint64_4 r23 r13;
let v34343 = vec_interleave_low r43 r33 in
vec_interleave_low_lemma_uint64_4 r43 r33;
let r12343 = vec_interleave_low_n 2 v34343 v12123 in
vec_interleave_low_n_lemma_uint64_4_2 v34343 v12123;
let v12124 = vec_interleave_low r24 r14 in
vec_interleave_low_lemma_uint64_4 r24 r14;
let v34344 = vec_interleave_low r44 r34 in
vec_interleave_low_lemma_uint64_4 r44 r34;
let r12344 = vec_interleave_low_n 2 v34344 v12124 in
vec_interleave_low_n_lemma_uint64_4_2 v34344 v12124;
let fr1234 = (r12340, r12341, r12342, r12343, r12344) in
eq_intro (feval5 fr1234) (create4 (feval5 fr4).[0] (feval5 fr3).[0] (feval5 fr2).[0] (feval5 fr).[0]);
let fr12345 = precomp_r5 #4 fr1234 in
let out = fmul_r5 #4 acc fr1234 fr12345 in
fmul_r5_eval_lemma acc fr1234 fr12345;
fmul_r5_fits_lemma acc fr1234 fr12345;
out
val lemma_fmul_r4_normalize51:
#m:scale32{m <= 2}
-> o:uint64xN 4{felem_fits1 o m} ->
Lemma
(let v00 = vec_interleave_high_n 2 o o in
let v10 = vec_add_mod o v00 in
let v10h = vec_interleave_high v10 v10 in
let v20 = vec_add_mod v10 v10h in
felem_fits1 v20 (4 * m) /\
(uint64xN_v v20).[0] == (uint64xN_v o).[0] + (uint64xN_v o).[1] + (uint64xN_v o).[2] + (uint64xN_v o).[3])
let lemma_fmul_r4_normalize51 #m o =
let v00 = vec_interleave_high_n 2 o o in
vec_interleave_high_n_lemma_uint64_4_2 o o;
let (o0, o1, o2, o3) = ((vec_v o).[0], (vec_v o).[1], (vec_v o).[2], (vec_v o).[3]) in
assert (vec_v v00 == create4 o2 o3 o2 o3);
let v10 = vec_add_mod o v00 in
FStar.Math.Lemmas.modulo_lemma (v o0 + v o2) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v o1 + v o3) (pow2 64);
assert (v (vec_v v10).[0] == v o0 + v o2);
assert (v (vec_v v10).[1] == v o1 + v o3);
let v10h = vec_interleave_high v10 v10 in
vec_interleave_high_lemma_uint64_4 v10 v10;
assert (v (vec_v v10h).[0] == v (vec_v v10).[1]);
let v20 = vec_add_mod v10 v10h in
FStar.Math.Lemmas.modulo_lemma (v o0 + v o2 + v o1 + v o3) (pow2 64)
val lemma_fmul_r4_normalize51_expand:
v2:felem5 4
-> out:felem5 4 ->
Lemma
(requires
(let (v20, v21, v22, v23, v24) = v2 in
let (o0, o1, o2, o3, o4) = out in
(uint64xN_v v20).[0] == (uint64xN_v o0).[0] + (uint64xN_v o0).[1] + (uint64xN_v o0).[2] + (uint64xN_v o0).[3] /\
(uint64xN_v v21).[0] == (uint64xN_v o1).[0] + (uint64xN_v o1).[1] + (uint64xN_v o1).[2] + (uint64xN_v o1).[3] /\
(uint64xN_v v22).[0] == (uint64xN_v o2).[0] + (uint64xN_v o2).[1] + (uint64xN_v o2).[2] + (uint64xN_v o2).[3] /\
(uint64xN_v v23).[0] == (uint64xN_v o3).[0] + (uint64xN_v o3).[1] + (uint64xN_v o3).[2] + (uint64xN_v o3).[3] /\
(uint64xN_v v24).[0] == (uint64xN_v o4).[0] + (uint64xN_v o4).[1] + (uint64xN_v o4).[2] + (uint64xN_v o4).[3]))
(ensures
(let (v20, v21, v22, v23, v24) = v2 in
let (o0, o1, o2, o3, o4) = out in
(feval5 v2).[0] == Vec.pfadd (Vec.pfadd (Vec.pfadd (feval5 out).[0] (feval5 out).[1]) (feval5 out).[2]) (feval5 out).[3]))
let lemma_fmul_r4_normalize51_expand v2 out =
let (v20, v21, v22, v23, v24) = as_tup64_i v2 0 in
let (o0, o1, o2, o3, o4) = out in
calc (==) {
as_nat5 (v20, v21, v22, v23, v24) % Vec.prime;
(==) { }
(as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1) + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1))
(as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) Vec.prime }
((as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1)) % Vec.prime + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.modulo_distributivity (as_nat5 (as_tup64_i out 0)) (as_nat5 (as_tup64_i out 1)) Vec.prime }
(((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l (((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2))
(as_nat5 (as_tup64_i out 3)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2)) % Vec.prime + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (((feval5 out).[0] + (feval5 out).[1]) % Vec.prime) (as_nat5 (as_tup64_i out 2)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r ((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime)
(as_nat5 (as_tup64_i out 3)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + (feval5 out).[3]) % Vec.prime;
};
assert ((feval5 v2).[0] ==
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + (feval5 out).[3]) % Vec.prime)
val fmul_r4_normalize51: a:felem5 4 ->
Pure (felem5 4)
(requires felem_fits5 a (1, 2, 1, 1, 2))
(ensures fun res ->
felem_fits5 res (4, 8, 4, 4, 8) /\
(feval5 res).[0] == Vec.pfadd (Vec.pfadd (Vec.pfadd (feval5 a).[0] (feval5 a).[1]) (feval5 a).[2]) (feval5 a).[3])
let fmul_r4_normalize51 fa =
let (o0, o1, o2, o3, o4) = fa in
let v00 = vec_interleave_high_n 2 o0 o0 in
let v10 = vec_add_mod o0 v00 in
let v10h = vec_interleave_high v10 v10 in
let v20 = vec_add_mod v10 v10h in
lemma_fmul_r4_normalize51 #1 o0;
let v01 = vec_interleave_high_n 2 o1 o1 in
let v11 = vec_add_mod o1 v01 in
let v11h = vec_interleave_high v11 v11 in
let v21 = vec_add_mod v11 v11h in
lemma_fmul_r4_normalize51 #2 o1;
let v02 = vec_interleave_high_n 2 o2 o2 in
let v12 = vec_add_mod o2 v02 in
let v12h = vec_interleave_high v12 v12 in
let v22 = vec_add_mod v12 v12h in
lemma_fmul_r4_normalize51 #1 o2;
let v03 = vec_interleave_high_n 2 o3 o3 in
let v13 = vec_add_mod o3 v03 in
let v13h = vec_interleave_high v13 v13 in
let v23 = vec_add_mod v13 v13h in
lemma_fmul_r4_normalize51 #1 o3;
let v04 = vec_interleave_high_n 2 o4 o4 in
let v14 = vec_add_mod o4 v04 in
let v14h = vec_interleave_high v14 v14 in
let v24 = vec_add_mod v14 v14h in
lemma_fmul_r4_normalize51 #2 o4;
let res = (v20, v21, v22, v23, v24) in
lemma_fmul_r4_normalize51_expand res fa;
res
val fmul_r4_normalize5_lemma:
acc:felem5 4
-> r:felem5 4
-> r_5:felem5 4
-> r4:felem5 4 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r4 (2, 2, 2, 2, 2) /\
r_5 == precomp_r5 r /\
feval5 r4 == Vec.compute_r4 (feval5 r).[0])
(ensures
(let out = fmul_r4_normalize5 acc r r_5 r4 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_4 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r4_normalize5 acc r r_5 r4)]
#restart-solver
#push-options "--z3rlimit 500"
let fmul_r4_normalize5_lemma acc fr fr_5 fr4 =
let fr2 = fmul_r5 #4 fr fr fr_5 in
let fr3 = fmul_r5 #4 fr2 fr fr_5 in
let out = fmul_r4_normalize50 acc fr fr2 fr3 fr4 in
let v2 = fmul_r4_normalize51 out in
let res = carry_full_felem5 v2 in
carry_full_felem5_lemma v2
#pop-options
val load_felem5_lemma:
#w:lanes
-> lo:uint64xN w
-> hi:uint64xN w ->
Lemma
(let f = load_felem5 #w lo hi in
felem_fits5 f (1, 1, 1, 1, 1) /\
felem_less5 f (pow2 128) /\
feval5 f == createi #Vec.pfelem w
(fun i -> (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]))
let load_felem5_lemma #w lo hi =
let f = load_felem5 #w lo hi in
assert_norm (pow2 64 * pow2 64 = pow2 128);
assert_norm (pow2 128 < Vec.prime);
let res = createi #Vec.pfelem w
(fun i -> (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) in
match w with
| 1 ->
load_felem5_lemma_i #w lo hi 0;
eq_intro (feval5 f) res
| 2 ->
load_felem5_lemma_i #w lo hi 0;
load_felem5_lemma_i #w lo hi 1;
eq_intro (feval5 f) res
| 4 ->
load_felem5_lemma_i #w lo hi 0;
load_felem5_lemma_i #w lo hi 1;
load_felem5_lemma_i #w lo hi 2;
load_felem5_lemma_i #w lo hi 3;
eq_intro (feval5 f) res
val load_felem5_4_interleave: lo:uint64xN 4 -> hi:uint64xN 4 -> Lemma
(let m0 = vec_interleave_low_n 2 lo hi in
let m1 = vec_interleave_high_n 2 lo hi in
let m2 = cast U64 4 (vec_shift_right (cast U128 2 m0) 48ul) in
let m3 = cast U64 4 (vec_shift_right (cast U128 2 m1) 48ul) in
let m4 = vec_interleave_high m0 m1 in
let t0 = vec_interleave_low m0 m1 in
let t3 = vec_interleave_low m2 m3 in
vec_v m4 == create4 (vec_v lo).[1] (vec_v lo).[3] (vec_v hi).[1] (vec_v hi).[3] /\
vec_v t0 == create4 (vec_v lo).[0] (vec_v lo).[2] (vec_v hi).[0] (vec_v hi).[2] /\
t3 == vec_or (vec_shift_right t0 48ul) (vec_shift_left m4 16ul))
let load_felem5_4_interleave lo hi =
let m0 = vec_interleave_low_n 2 lo hi in
vec_interleave_low_n_lemma_uint64_4_2 lo hi;
//assert (vec_v m0 == create4 (vec_v lo).[0] (vec_v lo).[1] (vec_v hi).[0] (vec_v hi).[1]);
let m1 = vec_interleave_high_n 2 lo hi in
vec_interleave_high_n_lemma_uint64_4_2 lo hi;
//assert (vec_v m1 == create4 (vec_v lo).[2] (vec_v lo).[3] (vec_v hi).[2] (vec_v hi).[3]);
let m4 = vec_interleave_high m0 m1 in
vec_interleave_high_lemma_uint64_4 m0 m1;
//assert (vec_v m4 == create4 (vec_v m0).[1] (vec_v m1).[1] (vec_v m0).[3] (vec_v m1).[3]);
assert (vec_v m4 == create4 (vec_v lo).[1] (vec_v lo).[3] (vec_v hi).[1] (vec_v hi).[3]);
let t0 = vec_interleave_low m0 m1 in
vec_interleave_low_lemma_uint64_4 m0 m1;
//assert (vec_v t0 == create4 (vec_v m0).[0] (vec_v m1).[0] (vec_v m0).[2] (vec_v m1).[2]);
assert (vec_v t0 == create4 (vec_v lo).[0] (vec_v lo).[2] (vec_v hi).[0] (vec_v hi).[2]);
let m2 = cast U64 4 (vec_shift_right (cast U128 2 m0) 48ul) in
vec_shift_right_uint128_small2 m0 48ul;
assert ((vec_v m2).[0] == (((vec_v lo).[0] >>. 48ul) |. ((vec_v lo).[1] <<. 16ul)));
assert ((vec_v m2).[2] == (((vec_v hi).[0] >>. 48ul) |. ((vec_v hi).[1] <<. 16ul)));
let m3 = cast U64 4 (vec_shift_right (cast U128 2 m1) 48ul) in
vec_shift_right_uint128_small2 m1 48ul;
assert ((vec_v m3).[0] == (((vec_v lo).[2] >>. 48ul) |. ((vec_v lo).[3] <<. 16ul)));
assert ((vec_v m3).[2] == (((vec_v hi).[2] >>. 48ul) |. ((vec_v hi).[3] <<. 16ul)));
let t3 = vec_interleave_low m2 m3 in
vec_interleave_low_lemma_uint64_4 m2 m3;
eq_intro (vec_v t3) (vec_v (vec_or (vec_shift_right t0 48ul) (vec_shift_left m4 16ul)));
vecv_extensionality t3 (vec_or (vec_shift_right t0 48ul) (vec_shift_left m4 16ul))
noextract
val load_felem5_4_compact: lo:uint64xN 4 -> hi:uint64xN 4 -> felem5 4
let load_felem5_4_compact lo hi =
let mask26 = mask26 4 in
let t3 = vec_or (vec_shift_right lo 48ul) (vec_shift_left hi 16ul) in
let o0 = vec_and lo mask26 in
let o1 = vec_and (vec_shift_right lo 26ul) mask26 in
let o2 = vec_and (vec_shift_right t3 4ul) mask26 in
let o3 = vec_and (vec_shift_right t3 30ul) mask26 in
let o4 = vec_shift_right hi 40ul in
(o0, o1, o2, o3, o4)
val load_felem5_4_compact_lemma_i: lo:uint64xN 4 -> hi:uint64xN 4 -> i:nat{i < 4} ->
Lemma
(let f = as_tup64_i (load_felem5_4_compact lo hi) i in
tup64_fits5 f (1, 1, 1, 1, 1) /\
as_nat5 f < pow2 128 /\
as_nat5 f % Vec.prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i])
let load_felem5_4_compact_lemma_i lo hi i =
assert (as_tup64_i (load_felem5_4_compact lo hi) i == load_tup64_4_compact (vec_v lo).[i] (vec_v hi).[i]);
load_tup64_4_compact_lemma (vec_v lo).[i] (vec_v hi).[i]
val load_felem5_4_lemma: lo:uint64xN 4 -> hi:uint64xN 4 ->
Lemma
(let f = load_felem5_4_compact lo hi in
felem_fits5 f (1, 1, 1, 1, 1) /\
felem_less5 f (pow2 128) /\
feval5 f == createi #Vec.pfelem 4 (fun i -> (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]))
let load_felem5_4_lemma lo hi =
let f = load_felem5_4_compact lo hi in
assert_norm (pow2 64 * pow2 64 = pow2 128);
assert_norm (pow2 128 < Vec.prime);
let res = createi #Vec.pfelem 4
(fun i -> (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) in
load_felem5_4_compact_lemma_i lo hi 0;
load_felem5_4_compact_lemma_i lo hi 1;
load_felem5_4_compact_lemma_i lo hi 2;
load_felem5_4_compact_lemma_i lo hi 3;
eq_intro (feval5 f) res
val load_felem5_le: b:lseq uint8 64 -> Lemma
(let lo0 = vec_from_bytes_le U64 4 (sub b 0 32) in
let hi0 = vec_from_bytes_le U64 4 (sub b 32 32) in
let f = load_felem5_4 lo0 hi0 in
felem_fits5 f (1, 1, 1, 1, 1) /\
felem_less5 f (pow2 128) /\
feval5 f == Vec.load_elem4 b)
let load_felem5_le b =
let lo0 = vec_from_bytes_le U64 4 (sub b 0 32) in
let hi0 = vec_from_bytes_le U64 4 (sub b 32 32) in
let lo1 = vec_interleave_low_n 2 lo0 hi0 in
let hi1 = vec_interleave_high_n 2 lo0 hi0 in
let lo = vec_interleave_low lo1 hi1 in
let hi = vec_interleave_high lo1 hi1 in
let out = load_felem5_4_compact lo hi in
load_felem5_4_interleave lo0 hi0;
assert (out == load_felem5_4 lo0 hi0);
load_felem5_4_lemma lo hi;
Hacl.Impl.Poly1305.Lemmas.uints_from_bytes_le_lemma64_4 b;
eq_intro (feval5 out) (Vec.load_elem4 b)
val load_acc5_2_lemma:
f:felem5 2{felem_fits5 f (2, 2, 2, 2, 2)}
-> e:felem5 2{felem_fits5 e (1, 1, 1, 1, 1)} ->
Lemma
(let res = load_acc5_2 f e in
felem_fits5 res (3, 3, 3, 3, 3) /\
feval5 res == Vec.fadd (create2 (feval5 f).[0] 0) (feval5 e))
[SMTPat (load_acc5_2 f e)]
let load_acc5_2_lemma f e =
let (f0, f1, f2, f3, f4) = f in
let r0 = vec_set f0 1ul (u64 0) in
let r1 = vec_set f1 1ul (u64 0) in
let r2 = vec_set f2 1ul (u64 0) in
let r3 = vec_set f3 1ul (u64 0) in
let r4 = vec_set f4 1ul (u64 0) in
let r = (r0, r1, r2, r3, r4) in
//assert ((feval5 r).[0] == (feval5 f).[0]);
assert ((feval5 r).[1] == 0);
eq_intro (feval5 r) (create2 (feval5 f).[0] 0)
val load_acc5_4_lemma:
f:felem5 4{felem_fits5 f (2, 2, 2, 2, 2)}
-> e:felem5 4{felem_fits5 e (1, 1, 1, 1, 1)} ->
Lemma
(let res = load_acc5_4 f e in
felem_fits5 res (3, 3, 3, 3, 3) /\
feval5 res == Vec.fadd (create4 (feval5 f).[0] 0 0 0) (feval5 e))
[SMTPat (load_acc5_4 f e)]
let load_acc5_4_lemma f e =
let (f0, f1, f2, f3, f4) = f in
let (r0, r1, r2, r3, r4) = (zero 4, zero 4, zero 4, zero 4, zero 4) in
let r = (r0, r1, r2, r3, r4) in
assert ((feval5 r).[1] == 0);
assert ((feval5 r).[2] == 0);
assert ((feval5 r).[3] == 0);
let r0 = vec_set r0 0ul (vec_get f0 0ul) in
let r1 = vec_set r1 0ul (vec_get f1 0ul) in
let r2 = vec_set r2 0ul (vec_get f2 0ul) in
let r3 = vec_set r3 0ul (vec_get f3 0ul) in
let r4 = vec_set r4 0ul (vec_get f4 0ul) in
let r = (r0, r1, r2, r3, r4) in
assert ((feval5 r).[0] == (feval5 f).[0]);
assert ((feval5 r).[1] == 0);
assert ((feval5 r).[2] == 0);
assert ((feval5 r).[3] == 0);
eq_intro (feval5 r) (create4 (feval5 f).[0] 0 0 0)
val store_felem5_lemma:
#w:lanes
-> f:felem5 w{felem_fits5 f (1, 1, 1, 1, 1)} ->
Lemma
(let (lo, hi) = store_felem5 f in
v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)
[SMTPat (store_felem5 f)]
let store_felem5_lemma #w f =
store_felem5_lemma #w f
val set_bit5_lemma:
#w:lanes
-> f:lseq (uint64xN w) 5
-> i:size_nat{i <= 128} ->
Lemma
(requires
lfelem_fits f (1, 1, 1, 1, 1) /\
lfelem_less f (pow2 i))
(ensures
lfelem_fits (set_bit5 f i) (1, 1, 1, 1, 1) /\
lfeval (set_bit5 f i) == map (Vec.pfadd (pow2 i)) (lfeval f)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Poly1305.Vec.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas2.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas1.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas0.fst.checked",
"Hacl.Impl.Poly1305.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Poly1305.Vec",
"short_module": "Vec"
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas1",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas0",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: Lib.Sequence.lseq (Hacl.Spec.Poly1305.Field32xN.uint64xN w) 5 ->
i: Lib.IntTypes.size_nat{i <= 128}
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Poly1305.Field32xN.lfelem_fits f (1, 1, 1, 1, 1) /\
Hacl.Spec.Poly1305.Field32xN.lfelem_less f (Prims.pow2 i))
(ensures
Hacl.Spec.Poly1305.Field32xN.lfelem_fits (Hacl.Spec.Poly1305.Field32xN.set_bit5 f i)
(1,
1,
1,
1,
1) /\
Hacl.Spec.Poly1305.Field32xN.lfeval (Hacl.Spec.Poly1305.Field32xN.set_bit5 f i) ==
Lib.Sequence.map (Hacl.Spec.Poly1305.Vec.pfadd (Prims.pow2 i))
(Hacl.Spec.Poly1305.Field32xN.lfeval f)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Poly1305.Field32xN.lanes",
"Lib.Sequence.lseq",
"Hacl.Spec.Poly1305.Field32xN.uint64xN",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.eq_intro",
"Hacl.Spec.Poly1305.Vec.pfelem",
"Hacl.Spec.Poly1305.Field32xN.lfeval",
"Hacl.Spec.Poly1305.Field32xN.set_bit5",
"Prims.unit",
"Hacl.Poly1305.Field32xN.Lemmas2.set_bit5_lemma_k",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.Sequence.index",
"Hacl.Spec.Poly1305.Vec.pfadd",
"Prims.pow2",
"Lib.Sequence.map"
] | [] | false | false | true | false | false | let set_bit5_lemma #w f i =
| let tmp = map (Vec.pfadd (pow2 i)) (lfeval f) in
match w with
| 1 ->
set_bit5_lemma_k #w f i 0;
eq_intro (lfeval (set_bit5 f i)) tmp
| 2 ->
set_bit5_lemma_k #w f i 0;
set_bit5_lemma_k #w f i 1;
eq_intro (lfeval (set_bit5 f i)) tmp
| 4 ->
set_bit5_lemma_k #w f i 0;
set_bit5_lemma_k #w f i 1;
set_bit5_lemma_k #w f i 2;
set_bit5_lemma_k #w f i 3;
eq_intro (lfeval (set_bit5 f i)) tmp | false |
FStar.Pointer.Derived3.fst | FStar.Pointer.Derived3.fill_buffer_init | val fill_buffer_init
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
: Lemma
(requires (fill_buffer_precond' b h))
(ensures (fill_buffer_inv b 0ul v h h)) | val fill_buffer_init
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
: Lemma
(requires (fill_buffer_precond' b h))
(ensures (fill_buffer_inv b 0ul v h h)) | let fill_buffer_init #t b v h =
buffer_readable_intro_empty h (gsub_buffer b 0ul 0ul);
Seq.lemma_eq_intro (buffer_as_seq h (gsub_buffer b 0ul 0ul)) (Seq.create 0 v) | {
"file_name": "ulib/legacy/FStar.Pointer.Derived3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 79,
"end_line": 70,
"start_col": 0,
"start_line": 68
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived3
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
private
let fill_buffer_precond'
(#t: typ)
(b: buffer t) (* destination *)
(h: HS.mem)
: GTot Type0
= buffer_live h b
private
let fill_buffer_postcond'
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
buffer_readable h' b /\
buffer_as_seq h' b == Seq.create (UInt32.v (buffer_length b)) v
private
let fill_buffer_inv
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
UInt32.v len' <= UInt32.v (buffer_length b) /\
buffer_readable h' (gsub_buffer b 0ul len') /\
buffer_as_seq h' (gsub_buffer b 0ul len') == Seq.create (UInt32.v len') v
private
val fill_buffer_init
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
: Lemma
(requires (fill_buffer_precond' b h))
(ensures (fill_buffer_inv b 0ul v h h)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Pointer.Derived3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: FStar.Pointer.Base.buffer t ->
v: FStar.Pointer.Base.type_of_typ t ->
h: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma (requires FStar.Pointer.Derived3.fill_buffer_precond' b h)
(ensures FStar.Pointer.Derived3.fill_buffer_inv b 0ul v h h) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.Pointer.Base.type_of_typ",
"FStar.Monotonic.HyperStack.mem",
"FStar.Seq.Base.lemma_eq_intro",
"FStar.Pointer.Base.buffer_as_seq",
"FStar.Pointer.Base.gsub_buffer",
"FStar.UInt32.__uint_to_t",
"FStar.Seq.Base.create",
"Prims.unit",
"FStar.Pointer.Derived1.buffer_readable_intro_empty"
] | [] | true | false | true | false | false | let fill_buffer_init #t b v h =
| buffer_readable_intro_empty h (gsub_buffer b 0ul 0ul);
Seq.lemma_eq_intro (buffer_as_seq h (gsub_buffer b 0ul 0ul)) (Seq.create 0 v) | false |
FStar.Pointer.Derived3.fst | FStar.Pointer.Derived3.fill_buffer_aux | val fill_buffer_aux
(#t: typ)
(b: buffer t) (* destination *)
(len: UInt32.t)
(len': UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
len == buffer_length b
))
(ensures (fun h0 _ h1 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
fill_buffer_postcond' b v (Ghost.reveal h) h1
))
(decreases (UInt32.v (buffer_length b) - UInt32.v len')) | val fill_buffer_aux
(#t: typ)
(b: buffer t) (* destination *)
(len: UInt32.t)
(len': UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
len == buffer_length b
))
(ensures (fun h0 _ h1 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
fill_buffer_postcond' b v (Ghost.reveal h) h1
))
(decreases (UInt32.v (buffer_length b) - UInt32.v len')) | let rec fill_buffer_aux #t b len len' v h =
if len = len'
then ()
else begin
fill_buffer_advance b len' v h;
fill_buffer_aux b len (UInt32.add len' 1ul) v h
end | {
"file_name": "ulib/legacy/FStar.Pointer.Derived3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 121,
"start_col": 0,
"start_line": 115
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived3
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
private
let fill_buffer_precond'
(#t: typ)
(b: buffer t) (* destination *)
(h: HS.mem)
: GTot Type0
= buffer_live h b
private
let fill_buffer_postcond'
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
buffer_readable h' b /\
buffer_as_seq h' b == Seq.create (UInt32.v (buffer_length b)) v
private
let fill_buffer_inv
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
UInt32.v len' <= UInt32.v (buffer_length b) /\
buffer_readable h' (gsub_buffer b 0ul len') /\
buffer_as_seq h' (gsub_buffer b 0ul len') == Seq.create (UInt32.v len') v
private
val fill_buffer_init
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
: Lemma
(requires (fill_buffer_precond' b h))
(ensures (fill_buffer_inv b 0ul v h h))
let fill_buffer_init #t b v h =
buffer_readable_intro_empty h (gsub_buffer b 0ul 0ul);
Seq.lemma_eq_intro (buffer_as_seq h (gsub_buffer b 0ul 0ul)) (Seq.create 0 v)
private
val fill_buffer_advance
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
UInt32.v len' < UInt32.v (buffer_length b)
))
(ensures (fun h1 _ h2 ->
fill_buffer_inv b len' v (Ghost.reveal h) h1 /\
UInt32.v len' < UInt32.v (buffer_length b) /\
fill_buffer_inv b (UInt32.add len' 1ul) v (Ghost.reveal h) h2
))
#set-options "--z3rlimit 16"
let fill_buffer_advance #t b len' v h =
buffer_snoc b 0ul len' v;
Seq.lemma_eq_intro (Seq.snoc (Seq.create (UInt32.v len') v) v) (Seq.create (UInt32.v (UInt32.add len' 1ul)) v)
private
val fill_buffer_aux
(#t: typ)
(b: buffer t) (* destination *)
(len: UInt32.t)
(len': UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
len == buffer_length b
))
(ensures (fun h0 _ h1 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
fill_buffer_postcond' b v (Ghost.reveal h) h1
))
(decreases (UInt32.v (buffer_length b) - UInt32.v len')) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Pointer.Derived3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: FStar.Pointer.Base.buffer t ->
len: FStar.UInt32.t ->
len': FStar.UInt32.t ->
v: FStar.Pointer.Base.type_of_typ t ->
h: FStar.Ghost.erased FStar.Monotonic.HyperStack.mem
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [
""
] | [] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Pointer.Base.type_of_typ",
"FStar.Ghost.erased",
"FStar.Monotonic.HyperStack.mem",
"Prims.op_Equality",
"Prims.unit",
"Prims.bool",
"FStar.Pointer.Derived3.fill_buffer_aux",
"FStar.UInt32.add",
"FStar.UInt32.__uint_to_t",
"FStar.Pointer.Derived3.fill_buffer_advance"
] | [
"recursion"
] | false | true | false | false | false | let rec fill_buffer_aux #t b len len' v h =
| if len = len'
then ()
else
(fill_buffer_advance b len' v h;
fill_buffer_aux b len (UInt32.add len' 1ul) v h) | false |
Hacl.Spec.K256.PrecompTable.fst | Hacl.Spec.K256.PrecompTable.proj_point_to_list_eval | val proj_point_to_list_eval: p:S.proj_point ->
Lemma (point_eval_list (proj_point_to_list p) == p) | val proj_point_to_list_eval: p:S.proj_point ->
Lemma (point_eval_list (proj_point_to_list p) == p) | let proj_point_to_list_eval p =
let (px, py, pz) = p in
proj_point_to_list_sub p;
felem_to_list_lemma_eval px;
felem_to_list_lemma_eval py;
felem_to_list_lemma_eval pz;
Math.Lemmas.small_mod px S.prime;
Math.Lemmas.small_mod py S.prime;
Math.Lemmas.small_mod pz S.prime | {
"file_name": "code/k256/Hacl.Spec.K256.PrecompTable.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 168,
"start_col": 0,
"start_line": 160
} | module Hacl.Spec.K256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.K256.Field52.Definitions
open Hacl.Impl.K256.Point
module S = Spec.K256
module FL = FStar.List.Tot
module SPT = Hacl.Spec.PrecompBaseTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let create5_lseq (x0 x1 x2 x3 x4:uint64) : lseq uint64 5 =
let l = [x0; x1; x2; x3; x4] in
assert_norm (FL.length l = 5);
Seq.seq_of_list l
val create5_lemma (x0 x1 x2 x3 x4:uint64) :
Lemma (let s = create5_lseq x0 x1 x2 x3 x4 in
s.[0] == x0 /\ s.[1] == x1 /\ s.[2] == x2 /\ s.[3] == x3 /\ s.[4] == x4)
let create5_lemma x0 x1 x2 x3 x4 =
Seq.elim_of_list [x0; x1; x2; x3; x4]
//-----------------------------------
noextract
let list_as_felem5 (f:felem_list) : felem5 =
let x = Seq.seq_of_list f <: lseq uint64 5 in
as_felem5_lseq x
val felem_to_list_index_lemma: x:S.felem ->
Lemma (let (f0, f1, f2, f3, f4) = list_as_felem5 (felem_to_list x) in
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
v f0 == x0 /\ v f1 == x1 /\ v f2 == x2 /\ v f3 == x3 /\ v f4 == x4)
let felem_to_list_index_lemma x =
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
let f = felem_to_list x in
let (f0, f1, f2, f3, f4) = list_as_felem5 f in
create5_lemma (u64 x0) (u64 x1) (u64 x2) (u64 x3) (u64 x4);
assert (v f0 == x0 /\ v f1 == x1 /\ v f2 == x2 /\ v f3 == x3 /\ v f4 == x4)
val felem_to_list_lemma_fits: x:S.felem ->
Lemma (felem_fits5 (list_as_felem5 (felem_to_list x)) (1, 1, 1, 1, 1))
let felem_to_list_lemma_fits x =
felem_to_list_index_lemma x;
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
assert (felem_fits1 (u64 x0) 1);
assert (felem_fits1 (u64 x1) 1);
assert (felem_fits1 (u64 x2) 1);
assert (felem_fits1 (u64 x3) 1);
Math.Lemmas.lemma_div_lt_nat x 256 208;
assert (felem_fits_last1 (u64 x4) 1)
val lemma_mod_pow2_sub: x:nat -> a:nat -> b:nat ->
Lemma (x / pow2 a % pow2 b * pow2 a == x % pow2 (a + b) - x % pow2 a)
let lemma_mod_pow2_sub x a b =
calc (==) {
x / pow2 a % pow2 b * pow2 a;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 x a (a + b) }
x % pow2 (a + b) / pow2 a * pow2 a;
(==) { Math.Lemmas.euclidean_division_definition (x % pow2 (a + b)) (pow2 a) }
x % pow2 (a + b) - x % pow2 (a + b) % pow2 a;
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 x a (a + b) }
x % pow2 (a + b) - x % pow2 a;
}
val felem_to_list_lemma_eval: x:S.felem ->
Lemma (as_nat5 (list_as_felem5 (felem_to_list x)) == x)
let felem_to_list_lemma_eval x =
felem_to_list_index_lemma x;
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
let (f0, f1, f2, f3, f4) = list_as_felem5 (felem_to_list x) in
let nat_x = as_nat5 (f0, f1, f2, f3, f4) in
assert (nat_x == x0 + x1 * pow52 + x2 * pow104 + x3 * pow156 + x4 * pow208);
calc (==) {
x0 + x1 * pow52 + x2 * pow104 + x3 * pow156 + x4 * pow208;
(==) { }
x0 + x1 * pow52 + x2 * pow104 + (x / pow156 % pow52) * pow156 + x / pow208 * pow208;
(==) { lemma_mod_pow2_sub x 156 52 }
x0 + x1 * pow52 + x2 * pow104 + x % pow208 - x % pow156 + x / pow208 * pow208;
(==) { Math.Lemmas.euclidean_division_definition x pow208 }
x0 + x1 * pow52 + (x / pow104 % pow52) * pow104 - x % pow156 + x;
(==) { lemma_mod_pow2_sub x 104 52 }
x0 + (x / pow52 % pow52) * pow52 - x % pow104 + x;
(==) { lemma_mod_pow2_sub x 52 52 }
x;
}
//--------------------------------------------
val proj_point_to_list_sub: p:S.proj_point -> Lemma
(let (px, py, pz) = p in
let px_list = felem_to_list px in
let py_list = felem_to_list py in
let pz_list = felem_to_list pz in
let p_list = FL.(px_list @ py_list @ pz_list) in
let p_lseq = Seq.seq_of_list p_list <: lseq uint64 15 in
let px_lseq = Seq.seq_of_list px_list <: lseq uint64 5 in
let py_lseq = Seq.seq_of_list py_list <: lseq uint64 5 in
let pz_lseq = Seq.seq_of_list pz_list <: lseq uint64 5 in
sub p_lseq 0 5 == px_lseq /\
sub p_lseq 5 5 == py_lseq /\
sub p_lseq 10 5 == pz_lseq)
let proj_point_to_list_sub p =
let (px, py, pz) = p in
let px_list = felem_to_list px in
let py_list = felem_to_list py in
let pz_list = felem_to_list pz in
FL.append_assoc px_list py_list pz_list;
SPT.seq_of_list_append_lemma px_list py_list;
SPT.seq_of_list_append_lemma FL.(px_list @ py_list) pz_list
val proj_point_to_list_fits: p:S.proj_point ->
Lemma (point_inv_list (proj_point_to_list p))
let proj_point_to_list_fits p =
let (px, py, pz) = p in
proj_point_to_list_sub p;
felem_to_list_lemma_fits px;
felem_to_list_lemma_fits py;
felem_to_list_lemma_fits pz
val proj_point_to_list_eval: p:S.proj_point ->
Lemma (point_eval_list (proj_point_to_list p) == p) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.PrecompBaseTable.fsti.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Spec.K256.PrecompTable.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.proj_point
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.K256.PrecompTable.point_eval_list (Hacl.Spec.K256.PrecompTable.proj_point_to_list p) ==
p) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.felem",
"FStar.Math.Lemmas.small_mod",
"Spec.K256.PointOps.prime",
"Prims.unit",
"Hacl.Spec.K256.PrecompTable.felem_to_list_lemma_eval",
"Hacl.Spec.K256.PrecompTable.proj_point_to_list_sub"
] | [] | false | false | true | false | false | let proj_point_to_list_eval p =
| let px, py, pz = p in
proj_point_to_list_sub p;
felem_to_list_lemma_eval px;
felem_to_list_lemma_eval py;
felem_to_list_lemma_eval pz;
Math.Lemmas.small_mod px S.prime;
Math.Lemmas.small_mod py S.prime;
Math.Lemmas.small_mod pz S.prime | false |
Hacl.Spec.K256.PrecompTable.fst | Hacl.Spec.K256.PrecompTable.proj_point_to_list_lemma | val proj_point_to_list_lemma: p:S.proj_point ->
Lemma (point_inv_list (proj_point_to_list p) /\ point_eval_list (proj_point_to_list p) == p) | val proj_point_to_list_lemma: p:S.proj_point ->
Lemma (point_inv_list (proj_point_to_list p) /\ point_eval_list (proj_point_to_list p) == p) | let proj_point_to_list_lemma p =
proj_point_to_list_fits p;
proj_point_to_list_eval p | {
"file_name": "code/k256/Hacl.Spec.K256.PrecompTable.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 173,
"start_col": 0,
"start_line": 171
} | module Hacl.Spec.K256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.K256.Field52.Definitions
open Hacl.Impl.K256.Point
module S = Spec.K256
module FL = FStar.List.Tot
module SPT = Hacl.Spec.PrecompBaseTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let create5_lseq (x0 x1 x2 x3 x4:uint64) : lseq uint64 5 =
let l = [x0; x1; x2; x3; x4] in
assert_norm (FL.length l = 5);
Seq.seq_of_list l
val create5_lemma (x0 x1 x2 x3 x4:uint64) :
Lemma (let s = create5_lseq x0 x1 x2 x3 x4 in
s.[0] == x0 /\ s.[1] == x1 /\ s.[2] == x2 /\ s.[3] == x3 /\ s.[4] == x4)
let create5_lemma x0 x1 x2 x3 x4 =
Seq.elim_of_list [x0; x1; x2; x3; x4]
//-----------------------------------
noextract
let list_as_felem5 (f:felem_list) : felem5 =
let x = Seq.seq_of_list f <: lseq uint64 5 in
as_felem5_lseq x
val felem_to_list_index_lemma: x:S.felem ->
Lemma (let (f0, f1, f2, f3, f4) = list_as_felem5 (felem_to_list x) in
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
v f0 == x0 /\ v f1 == x1 /\ v f2 == x2 /\ v f3 == x3 /\ v f4 == x4)
let felem_to_list_index_lemma x =
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
let f = felem_to_list x in
let (f0, f1, f2, f3, f4) = list_as_felem5 f in
create5_lemma (u64 x0) (u64 x1) (u64 x2) (u64 x3) (u64 x4);
assert (v f0 == x0 /\ v f1 == x1 /\ v f2 == x2 /\ v f3 == x3 /\ v f4 == x4)
val felem_to_list_lemma_fits: x:S.felem ->
Lemma (felem_fits5 (list_as_felem5 (felem_to_list x)) (1, 1, 1, 1, 1))
let felem_to_list_lemma_fits x =
felem_to_list_index_lemma x;
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
assert (felem_fits1 (u64 x0) 1);
assert (felem_fits1 (u64 x1) 1);
assert (felem_fits1 (u64 x2) 1);
assert (felem_fits1 (u64 x3) 1);
Math.Lemmas.lemma_div_lt_nat x 256 208;
assert (felem_fits_last1 (u64 x4) 1)
val lemma_mod_pow2_sub: x:nat -> a:nat -> b:nat ->
Lemma (x / pow2 a % pow2 b * pow2 a == x % pow2 (a + b) - x % pow2 a)
let lemma_mod_pow2_sub x a b =
calc (==) {
x / pow2 a % pow2 b * pow2 a;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 x a (a + b) }
x % pow2 (a + b) / pow2 a * pow2 a;
(==) { Math.Lemmas.euclidean_division_definition (x % pow2 (a + b)) (pow2 a) }
x % pow2 (a + b) - x % pow2 (a + b) % pow2 a;
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 x a (a + b) }
x % pow2 (a + b) - x % pow2 a;
}
val felem_to_list_lemma_eval: x:S.felem ->
Lemma (as_nat5 (list_as_felem5 (felem_to_list x)) == x)
let felem_to_list_lemma_eval x =
felem_to_list_index_lemma x;
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
let (f0, f1, f2, f3, f4) = list_as_felem5 (felem_to_list x) in
let nat_x = as_nat5 (f0, f1, f2, f3, f4) in
assert (nat_x == x0 + x1 * pow52 + x2 * pow104 + x3 * pow156 + x4 * pow208);
calc (==) {
x0 + x1 * pow52 + x2 * pow104 + x3 * pow156 + x4 * pow208;
(==) { }
x0 + x1 * pow52 + x2 * pow104 + (x / pow156 % pow52) * pow156 + x / pow208 * pow208;
(==) { lemma_mod_pow2_sub x 156 52 }
x0 + x1 * pow52 + x2 * pow104 + x % pow208 - x % pow156 + x / pow208 * pow208;
(==) { Math.Lemmas.euclidean_division_definition x pow208 }
x0 + x1 * pow52 + (x / pow104 % pow52) * pow104 - x % pow156 + x;
(==) { lemma_mod_pow2_sub x 104 52 }
x0 + (x / pow52 % pow52) * pow52 - x % pow104 + x;
(==) { lemma_mod_pow2_sub x 52 52 }
x;
}
//--------------------------------------------
val proj_point_to_list_sub: p:S.proj_point -> Lemma
(let (px, py, pz) = p in
let px_list = felem_to_list px in
let py_list = felem_to_list py in
let pz_list = felem_to_list pz in
let p_list = FL.(px_list @ py_list @ pz_list) in
let p_lseq = Seq.seq_of_list p_list <: lseq uint64 15 in
let px_lseq = Seq.seq_of_list px_list <: lseq uint64 5 in
let py_lseq = Seq.seq_of_list py_list <: lseq uint64 5 in
let pz_lseq = Seq.seq_of_list pz_list <: lseq uint64 5 in
sub p_lseq 0 5 == px_lseq /\
sub p_lseq 5 5 == py_lseq /\
sub p_lseq 10 5 == pz_lseq)
let proj_point_to_list_sub p =
let (px, py, pz) = p in
let px_list = felem_to_list px in
let py_list = felem_to_list py in
let pz_list = felem_to_list pz in
FL.append_assoc px_list py_list pz_list;
SPT.seq_of_list_append_lemma px_list py_list;
SPT.seq_of_list_append_lemma FL.(px_list @ py_list) pz_list
val proj_point_to_list_fits: p:S.proj_point ->
Lemma (point_inv_list (proj_point_to_list p))
let proj_point_to_list_fits p =
let (px, py, pz) = p in
proj_point_to_list_sub p;
felem_to_list_lemma_fits px;
felem_to_list_lemma_fits py;
felem_to_list_lemma_fits pz
val proj_point_to_list_eval: p:S.proj_point ->
Lemma (point_eval_list (proj_point_to_list p) == p)
let proj_point_to_list_eval p =
let (px, py, pz) = p in
proj_point_to_list_sub p;
felem_to_list_lemma_eval px;
felem_to_list_lemma_eval py;
felem_to_list_lemma_eval pz;
Math.Lemmas.small_mod px S.prime;
Math.Lemmas.small_mod py S.prime;
Math.Lemmas.small_mod pz S.prime | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.PrecompBaseTable.fsti.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Spec.K256.PrecompTable.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.proj_point
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.K256.PrecompTable.point_inv_list (Hacl.Spec.K256.PrecompTable.proj_point_to_list p) /\
Hacl.Spec.K256.PrecompTable.point_eval_list (Hacl.Spec.K256.PrecompTable.proj_point_to_list p) ==
p) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.K256.PointOps.proj_point",
"Hacl.Spec.K256.PrecompTable.proj_point_to_list_eval",
"Prims.unit",
"Hacl.Spec.K256.PrecompTable.proj_point_to_list_fits"
] | [] | true | false | true | false | false | let proj_point_to_list_lemma p =
| proj_point_to_list_fits p;
proj_point_to_list_eval p | false |
Hacl.Spec.K256.PrecompTable.fst | Hacl.Spec.K256.PrecompTable.proj_point_to_list_fits | val proj_point_to_list_fits: p:S.proj_point ->
Lemma (point_inv_list (proj_point_to_list p)) | val proj_point_to_list_fits: p:S.proj_point ->
Lemma (point_inv_list (proj_point_to_list p)) | let proj_point_to_list_fits p =
let (px, py, pz) = p in
proj_point_to_list_sub p;
felem_to_list_lemma_fits px;
felem_to_list_lemma_fits py;
felem_to_list_lemma_fits pz | {
"file_name": "code/k256/Hacl.Spec.K256.PrecompTable.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 154,
"start_col": 0,
"start_line": 149
} | module Hacl.Spec.K256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.K256.Field52.Definitions
open Hacl.Impl.K256.Point
module S = Spec.K256
module FL = FStar.List.Tot
module SPT = Hacl.Spec.PrecompBaseTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let create5_lseq (x0 x1 x2 x3 x4:uint64) : lseq uint64 5 =
let l = [x0; x1; x2; x3; x4] in
assert_norm (FL.length l = 5);
Seq.seq_of_list l
val create5_lemma (x0 x1 x2 x3 x4:uint64) :
Lemma (let s = create5_lseq x0 x1 x2 x3 x4 in
s.[0] == x0 /\ s.[1] == x1 /\ s.[2] == x2 /\ s.[3] == x3 /\ s.[4] == x4)
let create5_lemma x0 x1 x2 x3 x4 =
Seq.elim_of_list [x0; x1; x2; x3; x4]
//-----------------------------------
noextract
let list_as_felem5 (f:felem_list) : felem5 =
let x = Seq.seq_of_list f <: lseq uint64 5 in
as_felem5_lseq x
val felem_to_list_index_lemma: x:S.felem ->
Lemma (let (f0, f1, f2, f3, f4) = list_as_felem5 (felem_to_list x) in
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
v f0 == x0 /\ v f1 == x1 /\ v f2 == x2 /\ v f3 == x3 /\ v f4 == x4)
let felem_to_list_index_lemma x =
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
let f = felem_to_list x in
let (f0, f1, f2, f3, f4) = list_as_felem5 f in
create5_lemma (u64 x0) (u64 x1) (u64 x2) (u64 x3) (u64 x4);
assert (v f0 == x0 /\ v f1 == x1 /\ v f2 == x2 /\ v f3 == x3 /\ v f4 == x4)
val felem_to_list_lemma_fits: x:S.felem ->
Lemma (felem_fits5 (list_as_felem5 (felem_to_list x)) (1, 1, 1, 1, 1))
let felem_to_list_lemma_fits x =
felem_to_list_index_lemma x;
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
assert (felem_fits1 (u64 x0) 1);
assert (felem_fits1 (u64 x1) 1);
assert (felem_fits1 (u64 x2) 1);
assert (felem_fits1 (u64 x3) 1);
Math.Lemmas.lemma_div_lt_nat x 256 208;
assert (felem_fits_last1 (u64 x4) 1)
val lemma_mod_pow2_sub: x:nat -> a:nat -> b:nat ->
Lemma (x / pow2 a % pow2 b * pow2 a == x % pow2 (a + b) - x % pow2 a)
let lemma_mod_pow2_sub x a b =
calc (==) {
x / pow2 a % pow2 b * pow2 a;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 x a (a + b) }
x % pow2 (a + b) / pow2 a * pow2 a;
(==) { Math.Lemmas.euclidean_division_definition (x % pow2 (a + b)) (pow2 a) }
x % pow2 (a + b) - x % pow2 (a + b) % pow2 a;
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 x a (a + b) }
x % pow2 (a + b) - x % pow2 a;
}
val felem_to_list_lemma_eval: x:S.felem ->
Lemma (as_nat5 (list_as_felem5 (felem_to_list x)) == x)
let felem_to_list_lemma_eval x =
felem_to_list_index_lemma x;
let x0 = x % pow52 in
let x1 = x / pow52 % pow52 in
let x2 = x / pow104 % pow52 in
let x3 = x / pow156 % pow52 in
let x4 = x / pow208 in
let (f0, f1, f2, f3, f4) = list_as_felem5 (felem_to_list x) in
let nat_x = as_nat5 (f0, f1, f2, f3, f4) in
assert (nat_x == x0 + x1 * pow52 + x2 * pow104 + x3 * pow156 + x4 * pow208);
calc (==) {
x0 + x1 * pow52 + x2 * pow104 + x3 * pow156 + x4 * pow208;
(==) { }
x0 + x1 * pow52 + x2 * pow104 + (x / pow156 % pow52) * pow156 + x / pow208 * pow208;
(==) { lemma_mod_pow2_sub x 156 52 }
x0 + x1 * pow52 + x2 * pow104 + x % pow208 - x % pow156 + x / pow208 * pow208;
(==) { Math.Lemmas.euclidean_division_definition x pow208 }
x0 + x1 * pow52 + (x / pow104 % pow52) * pow104 - x % pow156 + x;
(==) { lemma_mod_pow2_sub x 104 52 }
x0 + (x / pow52 % pow52) * pow52 - x % pow104 + x;
(==) { lemma_mod_pow2_sub x 52 52 }
x;
}
//--------------------------------------------
val proj_point_to_list_sub: p:S.proj_point -> Lemma
(let (px, py, pz) = p in
let px_list = felem_to_list px in
let py_list = felem_to_list py in
let pz_list = felem_to_list pz in
let p_list = FL.(px_list @ py_list @ pz_list) in
let p_lseq = Seq.seq_of_list p_list <: lseq uint64 15 in
let px_lseq = Seq.seq_of_list px_list <: lseq uint64 5 in
let py_lseq = Seq.seq_of_list py_list <: lseq uint64 5 in
let pz_lseq = Seq.seq_of_list pz_list <: lseq uint64 5 in
sub p_lseq 0 5 == px_lseq /\
sub p_lseq 5 5 == py_lseq /\
sub p_lseq 10 5 == pz_lseq)
let proj_point_to_list_sub p =
let (px, py, pz) = p in
let px_list = felem_to_list px in
let py_list = felem_to_list py in
let pz_list = felem_to_list pz in
FL.append_assoc px_list py_list pz_list;
SPT.seq_of_list_append_lemma px_list py_list;
SPT.seq_of_list_append_lemma FL.(px_list @ py_list) pz_list
val proj_point_to_list_fits: p:S.proj_point ->
Lemma (point_inv_list (proj_point_to_list p)) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.PrecompBaseTable.fsti.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Spec.K256.PrecompTable.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.proj_point
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.K256.PrecompTable.point_inv_list (Hacl.Spec.K256.PrecompTable.proj_point_to_list p)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.felem",
"Hacl.Spec.K256.PrecompTable.felem_to_list_lemma_fits",
"Prims.unit",
"Hacl.Spec.K256.PrecompTable.proj_point_to_list_sub"
] | [] | false | false | true | false | false | let proj_point_to_list_fits p =
| let px, py, pz = p in
proj_point_to_list_sub p;
felem_to_list_lemma_fits px;
felem_to_list_lemma_fits py;
felem_to_list_lemma_fits pz | false |
Hacl.Impl.Ed25519.PointDecompress.fst | Hacl.Impl.Ed25519.PointDecompress.point_decompress_ | val point_decompress_:
out:point
-> s:lbuffer uint8 32ul
-> tmp:lbuffer uint64 10ul ->
Stack bool
(requires fun h ->
live h out /\ live h s /\ live h tmp /\
disjoint s tmp /\ disjoint out tmp /\
F51.mul_inv_t h (gsub tmp 5ul 5ul)
)
(ensures fun h0 b h1 -> modifies (loc out |+| loc tmp) h0 h1 /\
(b <==> Some? (SE.point_decompress (as_seq h0 s))) /\
(b ==> F51.point_inv_t h1 out) /\
(b ==> (F51.point_eval h1 out == Some?.v (SE.point_decompress (as_seq h0 s))))
) | val point_decompress_:
out:point
-> s:lbuffer uint8 32ul
-> tmp:lbuffer uint64 10ul ->
Stack bool
(requires fun h ->
live h out /\ live h s /\ live h tmp /\
disjoint s tmp /\ disjoint out tmp /\
F51.mul_inv_t h (gsub tmp 5ul 5ul)
)
(ensures fun h0 b h1 -> modifies (loc out |+| loc tmp) h0 h1 /\
(b <==> Some? (SE.point_decompress (as_seq h0 s))) /\
(b ==> F51.point_inv_t h1 out) /\
(b ==> (F51.point_eval h1 out == Some?.v (SE.point_decompress (as_seq h0 s))))
) | let point_decompress_ out s tmp =
let y = sub tmp 0ul 5ul in
let x = sub tmp 5ul 5ul in
let sign = most_significant_bit s in
load_51 y s;
let z = Hacl.Impl.Ed25519.RecoverX.recover_x x y sign in
let res =
if z = false then false
else (
let outx = getx out in
let outy = gety out in
let outz = getz out in
let outt = gett out in
copy outx x;
copy outy y;
make_one outz;
fmul outt x y;
true
) in
res | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.PointDecompress.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 88,
"start_col": 0,
"start_line": 68
} | module Hacl.Impl.Ed25519.PointDecompress
module ST = FStar.HyperStack.ST
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteSequence
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module SC = Spec.Curve25519
module SE = Spec.Ed25519
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val most_significant_bit:
s:lbuffer uint8 32ul ->
Stack uint64
(requires fun h -> live h s)
(ensures fun h0 z h1 -> h0 == h1 /\
(v z = 0 \/ v z = 1) /\
v z == (nat_from_bytes_le (as_seq h0 s) / pow2 255) % 2
)
open FStar.Calc
let most_significant_bit s =
let s31 = s.(31ul) in
let z = s31 >>. 7ul in
(**) let h0 = ST.get() in
(**) FStar.Math.Lemmas.lemma_div_lt_nat (v s31) 8 7;
(**) uints_from_bytes_le_nat_lemma #U8 #SEC #32 (as_seq h0 s);
(**) nat_from_intseq_le_slice_lemma (as_seq h0 s) 31;
(**) nat_from_intseq_le_lemma0 (Seq.slice (as_seq h0 s) 31 32);
(**) assert_norm (31 * 8 == 248);
(**) FStar.Math.Lemmas.lemma_div_mod_plus (nat_from_intseq_le (Seq.slice (as_seq h0 s) 0 31))
(v s31) (pow2 248);
(**) FStar.Math.Lemmas.small_div (nat_from_intseq_le (Seq.slice (as_seq h0 s) 0 31)) (pow2 248);
(**) FStar.Math.Lemmas.division_multiplication_lemma (nat_from_bytes_le (as_seq h0 s)) (pow2 248) (pow2 7);
(**) assert_norm (pow2 248 * pow2 7 = pow2 255);
(**) FStar.Math.Lemmas.small_mod (v s31 / pow2 7) 2;
to_u64 z
inline_for_extraction noextract
val point_decompress_:
out:point
-> s:lbuffer uint8 32ul
-> tmp:lbuffer uint64 10ul ->
Stack bool
(requires fun h ->
live h out /\ live h s /\ live h tmp /\
disjoint s tmp /\ disjoint out tmp /\
F51.mul_inv_t h (gsub tmp 5ul 5ul)
)
(ensures fun h0 b h1 -> modifies (loc out |+| loc tmp) h0 h1 /\
(b <==> Some? (SE.point_decompress (as_seq h0 s))) /\
(b ==> F51.point_inv_t h1 out) /\
(b ==> (F51.point_eval h1 out == Some?.v (SE.point_decompress (as_seq h0 s))))
)
#push-options "--z3rlimit 50" | {
"checked_file": "/",
"dependencies": [
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.RecoverX.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Ed25519.PointDecompress.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
out: Hacl.Bignum25519.point ->
s: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
tmp: Lib.Buffer.lbuffer Lib.IntTypes.uint64 10ul
-> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Bignum25519.point",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.uint64",
"Prims.bool",
"Prims.op_Equality",
"Prims.unit",
"Hacl.Bignum25519.fmul",
"Hacl.Bignum25519.make_one",
"Lib.Buffer.copy",
"Lib.Buffer.MUT",
"Hacl.Bignum25519.felem",
"Hacl.Bignum25519.gett",
"Hacl.Bignum25519.getz",
"Hacl.Bignum25519.gety",
"Hacl.Bignum25519.getx",
"Hacl.Impl.Ed25519.RecoverX.recover_x",
"Hacl.Bignum25519.load_51",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Impl.Ed25519.PointDecompress.most_significant_bit",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.sub"
] | [] | false | true | false | false | false | let point_decompress_ out s tmp =
| let y = sub tmp 0ul 5ul in
let x = sub tmp 5ul 5ul in
let sign = most_significant_bit s in
load_51 y s;
let z = Hacl.Impl.Ed25519.RecoverX.recover_x x y sign in
let res =
if z = false
then false
else
(let outx = getx out in
let outy = gety out in
let outz = getz out in
let outt = gett out in
copy outx x;
copy outy y;
make_one outz;
fmul outt x y;
true)
in
res | false |
FStar.Pointer.Derived3.fst | FStar.Pointer.Derived3.fill_buffer_advance | val fill_buffer_advance
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
UInt32.v len' < UInt32.v (buffer_length b)
))
(ensures (fun h1 _ h2 ->
fill_buffer_inv b len' v (Ghost.reveal h) h1 /\
UInt32.v len' < UInt32.v (buffer_length b) /\
fill_buffer_inv b (UInt32.add len' 1ul) v (Ghost.reveal h) h2
)) | val fill_buffer_advance
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
UInt32.v len' < UInt32.v (buffer_length b)
))
(ensures (fun h1 _ h2 ->
fill_buffer_inv b len' v (Ghost.reveal h) h1 /\
UInt32.v len' < UInt32.v (buffer_length b) /\
fill_buffer_inv b (UInt32.add len' 1ul) v (Ghost.reveal h) h2
)) | let fill_buffer_advance #t b len' v h =
buffer_snoc b 0ul len' v;
Seq.lemma_eq_intro (Seq.snoc (Seq.create (UInt32.v len') v) v) (Seq.create (UInt32.v (UInt32.add len' 1ul)) v) | {
"file_name": "ulib/legacy/FStar.Pointer.Derived3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 112,
"end_line": 94,
"start_col": 0,
"start_line": 92
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived3
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
private
let fill_buffer_precond'
(#t: typ)
(b: buffer t) (* destination *)
(h: HS.mem)
: GTot Type0
= buffer_live h b
private
let fill_buffer_postcond'
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
buffer_readable h' b /\
buffer_as_seq h' b == Seq.create (UInt32.v (buffer_length b)) v
private
let fill_buffer_inv
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
UInt32.v len' <= UInt32.v (buffer_length b) /\
buffer_readable h' (gsub_buffer b 0ul len') /\
buffer_as_seq h' (gsub_buffer b 0ul len') == Seq.create (UInt32.v len') v
private
val fill_buffer_init
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
: Lemma
(requires (fill_buffer_precond' b h))
(ensures (fill_buffer_inv b 0ul v h h))
let fill_buffer_init #t b v h =
buffer_readable_intro_empty h (gsub_buffer b 0ul 0ul);
Seq.lemma_eq_intro (buffer_as_seq h (gsub_buffer b 0ul 0ul)) (Seq.create 0 v)
private
val fill_buffer_advance
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
UInt32.v len' < UInt32.v (buffer_length b)
))
(ensures (fun h1 _ h2 ->
fill_buffer_inv b len' v (Ghost.reveal h) h1 /\
UInt32.v len' < UInt32.v (buffer_length b) /\
fill_buffer_inv b (UInt32.add len' 1ul) v (Ghost.reveal h) h2
))
#set-options "--z3rlimit 16" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Pointer.Derived3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: FStar.Pointer.Base.buffer t ->
len': FStar.UInt32.t ->
v: FStar.Pointer.Base.type_of_typ t ->
h: FStar.Ghost.erased FStar.Monotonic.HyperStack.mem
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Pointer.Base.type_of_typ",
"FStar.Ghost.erased",
"FStar.Monotonic.HyperStack.mem",
"FStar.Seq.Base.lemma_eq_intro",
"FStar.Seq.Properties.snoc",
"FStar.Seq.Base.create",
"FStar.UInt32.v",
"FStar.UInt32.add",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Pointer.Derived1.buffer_snoc"
] | [] | false | true | false | false | false | let fill_buffer_advance #t b len' v h =
| buffer_snoc b 0ul len' v;
Seq.lemma_eq_intro (Seq.snoc (Seq.create (UInt32.v len') v) v)
(Seq.create (UInt32.v (UInt32.add len' 1ul)) v) | false |
FStar.Pointer.Derived3.fst | FStar.Pointer.Derived3.fill_buffer' | val fill_buffer' (#t: typ) (b: buffer t) (idx_b len: UInt32.t) (v: type_of_typ t)
: HST.Stack unit
(requires (fun h -> fill_buffer_precond b idx_b len h))
(ensures (fun h0 _ h1 -> fill_buffer_postcond b idx_b len v h0 h1)) | val fill_buffer' (#t: typ) (b: buffer t) (idx_b len: UInt32.t) (v: type_of_typ t)
: HST.Stack unit
(requires (fun h -> fill_buffer_precond b idx_b len h))
(ensures (fun h0 _ h1 -> fill_buffer_postcond b idx_b len v h0 h1)) | let fill_buffer'
(#t: typ)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(v: type_of_typ t)
: HST.Stack unit
(requires (fun h ->
fill_buffer_precond b idx_b len h
))
(ensures (fun h0 _ h1 ->
fill_buffer_postcond b idx_b len v h0 h1
))
= let h0 = HST.get () in
let b' = sub_buffer b idx_b len in
fill_buffer_init b' v h0;
fill_buffer_aux b' len 0ul v (Ghost.hide h0);
let h1 = HST.get () in
fill_buffer_fin b idx_b len v h0 h1 | {
"file_name": "ulib/legacy/FStar.Pointer.Derived3.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 160,
"start_col": 0,
"start_line": 142
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived3
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
private
let fill_buffer_precond'
(#t: typ)
(b: buffer t) (* destination *)
(h: HS.mem)
: GTot Type0
= buffer_live h b
private
let fill_buffer_postcond'
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
buffer_readable h' b /\
buffer_as_seq h' b == Seq.create (UInt32.v (buffer_length b)) v
private
let fill_buffer_inv
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= fill_buffer_precond' b h /\
modifies (loc_buffer b) h h' /\
UInt32.v len' <= UInt32.v (buffer_length b) /\
buffer_readable h' (gsub_buffer b 0ul len') /\
buffer_as_seq h' (gsub_buffer b 0ul len') == Seq.create (UInt32.v len') v
private
val fill_buffer_init
(#t: typ)
(b: buffer t) (* destination *)
(v: type_of_typ t)
(h: HS.mem)
: Lemma
(requires (fill_buffer_precond' b h))
(ensures (fill_buffer_inv b 0ul v h h))
let fill_buffer_init #t b v h =
buffer_readable_intro_empty h (gsub_buffer b 0ul 0ul);
Seq.lemma_eq_intro (buffer_as_seq h (gsub_buffer b 0ul 0ul)) (Seq.create 0 v)
private
val fill_buffer_advance
(#t: typ)
(b: buffer t) (* destination *)
(len' : UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
UInt32.v len' < UInt32.v (buffer_length b)
))
(ensures (fun h1 _ h2 ->
fill_buffer_inv b len' v (Ghost.reveal h) h1 /\
UInt32.v len' < UInt32.v (buffer_length b) /\
fill_buffer_inv b (UInt32.add len' 1ul) v (Ghost.reveal h) h2
))
#set-options "--z3rlimit 16"
let fill_buffer_advance #t b len' v h =
buffer_snoc b 0ul len' v;
Seq.lemma_eq_intro (Seq.snoc (Seq.create (UInt32.v len') v) v) (Seq.create (UInt32.v (UInt32.add len' 1ul)) v)
private
val fill_buffer_aux
(#t: typ)
(b: buffer t) (* destination *)
(len: UInt32.t)
(len': UInt32.t)
(v: type_of_typ t)
(h: Ghost.erased HS.mem)
: HST.Stack unit
(requires (fun h0 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
len == buffer_length b
))
(ensures (fun h0 _ h1 ->
fill_buffer_inv b len' v (Ghost.reveal h) h0 /\
fill_buffer_postcond' b v (Ghost.reveal h) h1
))
(decreases (UInt32.v (buffer_length b) - UInt32.v len'))
let rec fill_buffer_aux #t b len len' v h =
if len = len'
then ()
else begin
fill_buffer_advance b len' v h;
fill_buffer_aux b len (UInt32.add len' 1ul) v h
end
let fill_buffer_fin
(#t: typ)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(v: type_of_typ t)
(h: HS.mem)
(h' : HS.mem)
: Lemma
(requires (
fill_buffer_precond b idx_b len h /\
fill_buffer_postcond' (gsub_buffer b idx_b len) v h h'
))
(ensures (
fill_buffer_precond b idx_b len h /\
fill_buffer_postcond b idx_b len v h h'
))
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Pointer.Derived3.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: FStar.Pointer.Base.buffer t ->
idx_b: FStar.UInt32.t ->
len: FStar.UInt32.t ->
v: FStar.Pointer.Base.type_of_typ t
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Pointer.Base.type_of_typ",
"FStar.Pointer.Derived3.fill_buffer_fin",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.Pointer.Derived3.fill_buffer_aux",
"FStar.UInt32.__uint_to_t",
"FStar.Ghost.hide",
"FStar.Pointer.Derived3.fill_buffer_init",
"FStar.Pointer.Base.sub_buffer",
"FStar.Pointer.Derived3.fill_buffer_precond",
"FStar.Pointer.Derived3.fill_buffer_postcond"
] | [] | false | true | false | false | false | let fill_buffer' (#t: typ) (b: buffer t) (idx_b len: UInt32.t) (v: type_of_typ t)
: HST.Stack unit
(requires (fun h -> fill_buffer_precond b idx_b len h))
(ensures (fun h0 _ h1 -> fill_buffer_postcond b idx_b len v h0 h1)) =
| let h0 = HST.get () in
let b' = sub_buffer b idx_b len in
fill_buffer_init b' v h0;
fill_buffer_aux b' len 0ul v (Ghost.hide h0);
let h1 = HST.get () in
fill_buffer_fin b idx_b len v h0 h1 | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.