file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Vale.Interop.X64.fsti
Vale.Interop.X64.return_val
val return_val (sn: BS.machine_state) : return_val_t sn
val return_val (sn: BS.machine_state) : return_val_t sn
let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn)
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 251, "start_col": 0, "start_line": 250 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sn: Vale.X64.Machine_Semantics_s.machine_state -> Vale.Interop.X64.return_val_t sn
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.machine_state", "FStar.UInt64.uint_to_t", "Vale.X64.Machine_Semantics_s.eval_reg_64", "Vale.X64.Machine_s.rRax", "Vale.Interop.X64.return_val_t" ]
[]
false
false
false
false
false
let return_val (sn: BS.machine_state) : return_val_t sn =
UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn)
false
Vale.Interop.X64.fsti
Vale.Interop.X64.taint_arg_args_b8_mem
val taint_arg_args_b8_mem (args: arg_list) (a: arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args))
val taint_arg_args_b8_mem (args: arg_list) (a: arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args))
let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 184, "start_col": 0, "start_line": 178 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
args: Vale.Interop.X64.arg_list -> a: Vale.Interop.Base.arg -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP a args /\ Some? (Vale.Interop.X64.taint_of_arg a) ==> FStar.List.Tot.Base.memP (Vale.Interop.X64.taint_arg_b8 a) (Vale.Interop.Base.args_b8 args))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Interop.X64.arg_list", "Vale.Interop.Base.arg", "Prims.list", "Vale.Interop.X64.taint_arg_args_b8_mem", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.l_and", "FStar.List.Tot.Base.memP", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Vale.Arch.HeapTypes_s.taint", "Vale.Interop.X64.taint_of_arg", "Vale.Interop.Types.b8", "Vale.Interop.X64.taint_arg_b8", "Vale.Interop.Base.args_b8", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec taint_arg_args_b8_mem (args: arg_list) (a: arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) =
match args with | [] -> () | hd :: tl -> taint_arg_args_b8_mem tl a
false
Vale.Interop.X64.fsti
Vale.Interop.X64.as_lowstar_sig_post
val as_lowstar_sig_post : n: Prims.nat -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> args: Vale.Interop.X64.arg_list -> h0: Vale.Interop.Base.mem_roots args -> predict: Vale.Interop.X64.prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> ret: Vale.Interop.X64.als_ret -> h1: FStar.Monotonic.HyperStack.mem -> Prims.logical
let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1)
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 349, "start_col": 0, "start_line": 324 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> args: Vale.Interop.X64.arg_list -> h0: Vale.Interop.Base.mem_roots args -> predict: Vale.Interop.X64.prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> ret: Vale.Interop.X64.als_ret -> h1: FStar.Monotonic.HyperStack.mem -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Interop.X64.arg_reg_relation", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Machine_Semantics_s.code", "Vale.Interop.X64.arg_list", "Vale.Interop.Base.mem_roots", "Vale.Interop.X64.prediction_pre_rel_t", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.X64.prediction", "Vale.Interop.X64.als_ret", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Vale.Interop.X64.__proj__As_lowstar_sig_ret__item__args", "Vale.Interop.X64.__proj__As_lowstar_sig_ret__item__n", "Vale.Interop.Heap_s.hs_of_mem", "Vale.Interop.X64.prediction_pre", "FStar.Pervasives.Native.tuple3", "FStar.UInt64.t", "Vale.Interop.Heap_s.interop_heap", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.X64.prediction_post", "FStar.HyperStack.ST.equal_domains", "Vale.X64.Machine_Semantics_s.machine_state", "FStar.Pervasives.Native.fst", "Vale.Interop.X64.create_initial_trusted_state", "Vale.Interop.X64.__proj__As_lowstar_sig_ret__item__final_mem", "Vale.Interop.X64.__proj__As_lowstar_sig_ret__item__fuel", "Vale.Interop.X64.as_lowstar_sig_ret", "FStar.Ghost.reveal", "FStar.Pervasives.Native.snd", "FStar.Ghost.erased", "Prims.logical" ]
[]
false
false
false
false
true
let as_lowstar_sig_post (n: nat) (arg_reg: arg_reg_relation n) (regs_modified: (MS.reg_64 -> bool)) (xmms_modified: (MS.reg_xmm -> bool)) (c: BS.code) (args: arg_list) (h0: mem_roots args) (#pre_rel #post_rel: _) (predict: prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret: als_ret) (h1: HS.mem) =
let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1)
false
Vale.Interop.X64.fsti
Vale.Interop.X64.prediction_post
val prediction_post : n: Prims.nat -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> args: Vale.Interop.X64.arg_list -> post_rel: Vale.Interop.X64.prediction_post_rel_t c args -> h0: Vale.Interop.Base.mem_roots args -> s0: Vale.X64.Machine_Semantics_s.machine_state -> rax_fuel_mem: ((FStar.UInt64.t * Prims.nat) * Vale.Interop.Heap_s.interop_heap) -> Prims.logical
let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 )
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 295, "start_col": 0, "start_line": 274 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> args: Vale.Interop.X64.arg_list -> post_rel: Vale.Interop.X64.prediction_post_rel_t c args -> h0: Vale.Interop.Base.mem_roots args -> s0: Vale.X64.Machine_Semantics_s.machine_state -> rax_fuel_mem: ((FStar.UInt64.t * Prims.nat) * Vale.Interop.Heap_s.interop_heap) -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Machine_Semantics_s.code", "Vale.Interop.X64.arg_list", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.Base.mem_roots", "Vale.X64.Machine_Semantics_s.machine_state", "FStar.Pervasives.Native.tuple3", "FStar.UInt64.t", "Vale.Interop.Heap_s.interop_heap", "Prims.l_and", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Vale.X64.Machine_Semantics_s.machine_eval_code", "FStar.HyperStack.ST.equal_domains", "LowStar.Monotonic.Buffer.modifies", "Vale.Interop.Base.loc_modified_args", "Vale.Interop.Base.mem_roots_p", "Prims.eq2", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.Heap.heap_create_machine", "Vale.Interop.Base.mk_mem", "Vale.Arch.Heap.heap_get", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.Interop.X64.calling_conventions", "Vale.Interop.X64.return_val", "FStar.Monotonic.HyperStack.mem", "Vale.Interop.Heap_s.hs_of_mem", "FStar.Pervasives.Native.__proj__Some__item__v", "Prims.logical" ]
[]
false
false
false
false
true
let prediction_post (n: nat) (regs_modified: (MS.reg_64 -> bool)) (xmms_modified: (MS.reg_xmm -> bool)) (c: BS.code) (args: arg_list) (post_rel: prediction_post_rel_t c args) (h0: mem_roots args) (s0: BS.machine_state) (rax_fuel_mem: (UInt64.t & nat & interop_heap)) =
let rax, fuel, final_mem = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ (let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1)
false
Vale.Interop.X64.fsti
Vale.Interop.X64.as_lowstar_sig_t_weak_stdcall
val as_lowstar_sig_t_weak_stdcall : c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Prims.list Vale.Interop.Base.arg {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length dom <= 20} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> predict: Vale.Interop.X64.prediction_t Vale.Interop.X64.max_stdcall Vale.Interop.X64.arg_reg_stdcall Vale.Interop.X64.regs_modified_stdcall Vale.Interop.X64.xmms_modified_stdcall c dom args pre_rel post_rel -> Type0
let as_lowstar_sig_t_weak_stdcall = as_lowstar_sig_t_weak' max_stdcall arg_reg_stdcall regs_modified_stdcall xmms_modified_stdcall
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 130, "end_line": 680, "start_col": 0, "start_line": 680 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p [@__reduce__] let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p [@__reduce__] let rec as_lowstar_sig_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict [@__reduce__] private let rec as_lowstar_sig_t_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post_weak n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict (* These two functions are the ones that are available from outside the module. The arity_ok restriction ensures that all arguments are passed in registers for inline assembly *) [@__reduce__] let as_lowstar_sig_t_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= n}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel predict val wrap_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:arity_ok n td) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict let register_of_arg_i (i:reg_nat (if IA.win then 4 else 6)) : MS.reg_64 = let open MS in if IA.win then match i with | 0 -> rRcx | 1 -> rRdx | 2 -> rR8 | 3 -> rR9 else match i with | 0 -> rRdi | 1 -> rRsi | 2 -> rRdx | 3 -> rRcx | 4 -> rR8 | 5 -> rR9 //A partial inverse of the above function [@__reduce__] let arg_of_register (r:MS.reg_64) : option (reg_nat (if IA.win then 4 else 6)) = let open MS in if IA.win then match r with | 2 -> Some 0 // rcx | 3 -> Some 1 // rdx | 8 -> Some 2 // r8 | 9 -> Some 3 // r9 | _ -> None else match r with | 5 -> Some 0 // rdi | 4 -> Some 1 // rsi | 3 -> Some 2 // rdx | 2 -> Some 3 // rcx | 8 -> Some 4 // r8 | 9 -> Some 5 // r9 | _ -> None let max_stdcall : nat = if IA.win then 4 else 6 let arity_ok_stdcall = arity_ok max_stdcall let arg_reg_stdcall : arg_reg_relation max_stdcall = Rel arg_of_register register_of_arg_i let regs_modified_stdcall:MS.reg_64 -> bool = fun (r:MS.reg_64) -> let open MS in if IA.win then ( // These registers are callee-saved on Windows if r = rRbx || r = rRbp || r = rRdi || r = rRsi || r = rRsp || r = rR12 || r = rR13 || r = rR14 || r = rR15 then false // All the other ones may be modified else true ) else ( // These registers are callee-saved on Linux if r = rRbx || r = rRbp || r = rR12 || r = rR13 || r = rR14 || r = rR15 then false // All the other ones may be modified else true ) let xmms_modified_stdcall:MS.reg_xmm -> bool = fun (x:MS.reg_xmm) -> let open MS in if IA.win then ( // These xmms are callee-saved on Windows if x = 6 || x = 7 || x = 8 || x = 9 || x = 10 || x = 11 || x = 12 || x = 13 || x = 14 || x = 15 then false else true ) else // No xmm needs to be callee-saved on Linux true // For stdcalls, we do not have the arity_ok restriction: We can pass as many arguments as we want, the extra arguments will be passed on the stack
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Prims.list Vale.Interop.Base.arg {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length dom <= 20} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> predict: Vale.Interop.X64.prediction_t Vale.Interop.X64.max_stdcall Vale.Interop.X64.arg_reg_stdcall Vale.Interop.X64.regs_modified_stdcall Vale.Interop.X64.xmms_modified_stdcall c dom args pre_rel post_rel -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.Interop.X64.as_lowstar_sig_t_weak'", "Vale.Interop.X64.max_stdcall", "Vale.Interop.X64.arg_reg_stdcall", "Vale.Interop.X64.regs_modified_stdcall", "Vale.Interop.X64.xmms_modified_stdcall" ]
[]
false
false
false
false
true
let as_lowstar_sig_t_weak_stdcall =
as_lowstar_sig_t_weak' max_stdcall arg_reg_stdcall regs_modified_stdcall xmms_modified_stdcall
false
Vale.Interop.X64.fsti
Vale.Interop.X64.mk_taint_equiv
val mk_taint_equiv (args: arg_list_sb{disjoint_or_eq args}) (a: arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a))
val mk_taint_equiv (args: arg_list_sb{disjoint_or_eq args}) (a: arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a))
let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 200, "start_col": 0, "start_line": 186 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
args: Vale.Interop.X64.arg_list_sb{Vale.Interop.Base.disjoint_or_eq args} -> a: Vale.Interop.Base.arg -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP a args /\ Some? (Vale.Interop.X64.taint_of_arg a) ==> Some?.v (Vale.Interop.X64.taint_of_arg a) == Vale.Interop.X64.mk_taint args Vale.Interop.X64.init_taint (Vale.Interop.X64.taint_arg_b8 a))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Interop.X64.arg_list_sb", "Vale.Interop.Base.disjoint_or_eq", "Vale.Interop.Base.arg", "Prims.list", "Vale.Interop.Base.td", "Vale.Interop.Base.td_as_type", "Vale.Interop.Base.valid_base_type", "Vale.Arch.HeapTypes_s.base_typ", "Vale.Interop.Base.buffer_qualifiers", "FStar.BigOps.big_and'_forall", "Vale.Interop.Base.disjoint_or_eq_1", "Prims.unit", "Vale.Interop.Base.disjoint_or_eq_cons", "Vale.Interop.X64.mk_taint_equiv", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.l_and", "FStar.List.Tot.Base.memP", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Vale.Arch.HeapTypes_s.taint", "Vale.Interop.X64.taint_of_arg", "Prims.eq2", "FStar.Pervasives.Native.__proj__Some__item__v", "Vale.Interop.X64.mk_taint", "Vale.Interop.X64.init_taint", "Vale.Interop.X64.taint_arg_b8", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec mk_taint_equiv (args: arg_list_sb{disjoint_or_eq args}) (a: arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) =
match args with | [] -> () | hd :: tl -> mk_taint_equiv tl a; let (| tag , x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl
false
Vale.Interop.X64.fsti
Vale.Interop.X64.elim_predict_t_cons
val elim_predict_t_cons (#n: nat) (#arg_reg: arg_reg_relation n) (#regs_modified: (MS.reg_64 -> bool)) (#xmms_modified: (MS.reg_xmm -> bool)) (#c: BS.code) (hd: td) (tl: list td) (#args: arg_list{List.length args + List.length tl <= 19}) (#pre_rel #post_rel: _) (p: prediction_t n arg_reg regs_modified xmms_modified c (hd :: tl) args pre_rel post_rel) (x: td_as_type hd) : prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x)
val elim_predict_t_cons (#n: nat) (#arg_reg: arg_reg_relation n) (#regs_modified: (MS.reg_64 -> bool)) (#xmms_modified: (MS.reg_xmm -> bool)) (#c: BS.code) (hd: td) (tl: list td) (#args: arg_list{List.length args + List.length tl <= 19}) (#pre_rel #post_rel: _) (p: prediction_t n arg_reg regs_modified xmms_modified c (hd :: tl) args pre_rel post_rel) (x: td_as_type hd) : prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x)
let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 6, "end_line": 481, "start_col": 0, "start_line": 465 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hd: Vale.Interop.Base.td -> tl: Prims.list Vale.Interop.Base.td -> p: Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c (hd :: tl) args pre_rel post_rel -> x: Vale.Interop.Base.td_as_type hd -> Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (Vale.Interop.X64.elim_rel_gen_t_cons hd tl pre_rel x) (Vale.Interop.X64.elim_rel_gen_t_cons hd tl post_rel x)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Interop.X64.arg_reg_relation", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Machine_Semantics_s.code", "Vale.Interop.Base.td", "Prims.list", "Vale.Interop.X64.arg_list", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.arg", "Vale.Interop.X64.rel_gen_t", "Prims.Cons", "Vale.Interop.X64.prediction_pre_rel_t", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.X64.prediction_t", "Vale.Interop.Base.td_as_type", "Vale.Interop.X64.op_Plus_Plus", "Vale.Interop.X64.elim_rel_gen_t_cons" ]
[]
false
false
false
false
false
let elim_predict_t_cons (#n: nat) (#arg_reg: arg_reg_relation n) (#regs_modified: (MS.reg_64 -> bool)) (#xmms_modified: (MS.reg_xmm -> bool)) (#c: BS.code) (hd: td) (tl: list td) (#args: arg_list{List.length args + List.length tl <= 19}) (#pre_rel #post_rel: _) (p: prediction_t n arg_reg regs_modified xmms_modified c (hd :: tl) args pre_rel post_rel) (x: td_as_type hd) : prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) =
p
false
Vale.Interop.X64.fsti
Vale.Interop.X64.rel_gen_t
val rel_gen_t : c: Vale.X64.Machine_Semantics_s.code -> td: Prims.list Vale.Interop.Base.td -> args: Vale.Interop.X64.arg_list {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length td <= 20} -> f: (_: Vale.Interop.X64.arg_list -> Type) -> Type
let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 409, "start_col": 0, "start_line": 400 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.X64.Machine_Semantics_s.code -> td: Prims.list Vale.Interop.Base.td -> args: Vale.Interop.X64.arg_list {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length td <= 20} -> f: (_: Vale.Interop.X64.arg_list -> Type) -> Type
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Prims.list", "Vale.Interop.Base.td", "Vale.Interop.X64.arg_list", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.arg", "Vale.Interop.Base.td_as_type", "Vale.Interop.X64.rel_gen_t", "Vale.Interop.X64.op_Plus_Plus" ]
[ "recursion" ]
false
false
false
false
true
let rec rel_gen_t (c: BS.code) (td: list td) (args: arg_list{List.length args + List.length td <= 20}) (f: (arg_list -> Type)) =
match td with | [] -> f args | hd :: tl -> x: td_as_type hd -> rel_gen_t c tl (x ++ args) f
false
Vale.Interop.X64.fsti
Vale.Interop.X64.as_lowstar_sig
val as_lowstar_sig : c: Vale.X64.Machine_Semantics_s.code -> Type
let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1)
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 117, "end_line": 392, "start_col": 0, "start_line": 381 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1))
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.X64.Machine_Semantics_s.code -> Type
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Prims.nat", "Vale.Interop.X64.arg_reg_relation", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.Interop.X64.arg_list", "Vale.Interop.X64.prediction_pre_rel_t", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.X64.prediction", "Vale.Interop.X64.als_ret", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Vale.Interop.Base.mem_roots_p", "Vale.Interop.X64.as_lowstar_sig_post" ]
[]
false
false
false
true
true
let as_lowstar_sig (c: BS.code) =
n: nat -> arg_reg: arg_reg_relation n -> regs_modified: (MS.reg_64 -> bool) -> xmms_modified: (MS.reg_xmm -> bool) -> args: arg_list -> #pre_rel: _ -> #post_rel: _ -> predict: prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1)
false
Vale.Interop.X64.fsti
Vale.Interop.X64.elim_predict_t_nil
val elim_predict_t_nil (#n: nat) (#arg_reg: arg_reg_relation n) (#regs_modified: (MS.reg_64 -> bool)) (#xmms_modified: (MS.reg_xmm -> bool)) (#c: BS.code) (#args: arg_list) (#pre_rel #post_rel: _) (p: prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel
val elim_predict_t_nil (#n: nat) (#arg_reg: arg_reg_relation n) (#regs_modified: (MS.reg_64 -> bool)) (#xmms_modified: (MS.reg_xmm -> bool)) (#c: BS.code) (#args: arg_list) (#pre_rel #post_rel: _) (p: prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel
let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 6, "end_line": 462, "start_col": 0, "start_line": 451 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel -> Vale.Interop.X64.prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Interop.X64.arg_reg_relation", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Machine_Semantics_s.code", "Vale.Interop.X64.arg_list", "Vale.Interop.X64.rel_gen_t", "Prims.Nil", "Vale.Interop.Base.td", "Vale.Interop.X64.prediction_pre_rel_t", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.X64.prediction_t", "Vale.Interop.X64.prediction" ]
[]
false
false
false
false
false
let elim_predict_t_nil (#n: nat) (#arg_reg: arg_reg_relation n) (#regs_modified: (MS.reg_64 -> bool)) (#xmms_modified: (MS.reg_xmm -> bool)) (#c: BS.code) (#args: arg_list) (#pre_rel #post_rel: _) (p: prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel =
p
false
Vale.Interop.X64.fsti
Vale.Interop.X64.register_of_arg_i
val register_of_arg_i (i: reg_nat (if IA.win then 4 else 6)) : MS.reg_64
val register_of_arg_i (i: reg_nat (if IA.win then 4 else 6)) : MS.reg_64
let register_of_arg_i (i:reg_nat (if IA.win then 4 else 6)) : MS.reg_64 = let open MS in if IA.win then match i with | 0 -> rRcx | 1 -> rRdx | 2 -> rR8 | 3 -> rR9 else match i with | 0 -> rRdi | 1 -> rRsi | 2 -> rRdx | 3 -> rRcx | 4 -> rR8 | 5 -> rR9
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 624, "start_col": 0, "start_line": 609 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p [@__reduce__] let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p [@__reduce__] let rec as_lowstar_sig_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict [@__reduce__] private let rec as_lowstar_sig_t_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post_weak n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict (* These two functions are the ones that are available from outside the module. The arity_ok restriction ensures that all arguments are passed in registers for inline assembly *) [@__reduce__] let as_lowstar_sig_t_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= n}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel predict val wrap_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:arity_ok n td) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Vale.Interop.X64.reg_nat (match Vale.Interop.Assumptions.win with | true -> 4 | _ -> 6) -> Vale.X64.Machine_s.reg_64
Prims.Tot
[ "total" ]
[]
[ "Vale.Interop.X64.reg_nat", "Vale.Interop.Assumptions.win", "Prims.bool", "Prims.nat", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRsi" ]
[]
false
false
false
false
false
let register_of_arg_i (i: reg_nat (if IA.win then 4 else 6)) : MS.reg_64 =
let open MS in if IA.win then match i with | 0 -> rRcx | 1 -> rRdx | 2 -> rR8 | 3 -> rR9 else match i with | 0 -> rRdi | 1 -> rRsi | 2 -> rRdx | 3 -> rRcx | 4 -> rR8 | 5 -> rR9
false
Vale.Interop.X64.fsti
Vale.Interop.X64.elim_rel_gen_t_cons
val elim_rel_gen_t_cons (#c hd tl #args #f: _) (p: rel_gen_t c (hd :: tl) args f) : (x: td_as_type hd -> rel_gen_t c tl (x ++ args) f)
val elim_rel_gen_t_cons (#c hd tl #args #f: _) (p: rel_gen_t c (hd :: tl) args f) : (x: td_as_type hd -> rel_gen_t c tl (x ++ args) f)
let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 420, "start_col": 0, "start_line": 417 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hd: Vale.Interop.Base.td -> tl: Prims.list Vale.Interop.Base.td -> p: Vale.Interop.X64.rel_gen_t c (hd :: tl) args f -> x: Vale.Interop.Base.td_as_type hd -> Vale.Interop.X64.rel_gen_t c tl (x ++ args) f
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Vale.Interop.Base.td", "Prims.list", "Vale.Interop.X64.arg_list", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.arg", "Prims.Cons", "Vale.Interop.X64.rel_gen_t", "Vale.Interop.Base.td_as_type", "Vale.Interop.X64.op_Plus_Plus" ]
[]
false
false
false
false
false
let elim_rel_gen_t_cons #c hd tl #args #f (p: rel_gen_t c (hd :: tl) args f) : (x: td_as_type hd -> rel_gen_t c tl (x ++ args) f) =
p
false
Vale.Interop.X64.fsti
Vale.Interop.X64.arg_of_register
val arg_of_register (r: MS.reg_64) : option (reg_nat (if IA.win then 4 else 6))
val arg_of_register (r: MS.reg_64) : option (reg_nat (if IA.win then 4 else 6))
let arg_of_register (r:MS.reg_64) : option (reg_nat (if IA.win then 4 else 6)) = let open MS in if IA.win then match r with | 2 -> Some 0 // rcx | 3 -> Some 1 // rdx | 8 -> Some 2 // r8 | 9 -> Some 3 // r9 | _ -> None else match r with | 5 -> Some 0 // rdi | 4 -> Some 1 // rsi | 3 -> Some 2 // rdx | 2 -> Some 3 // rcx | 8 -> Some 4 // r8 | 9 -> Some 5 // r9 | _ -> None
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 18, "end_line": 646, "start_col": 0, "start_line": 628 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p [@__reduce__] let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p [@__reduce__] let rec as_lowstar_sig_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict [@__reduce__] private let rec as_lowstar_sig_t_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post_weak n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict (* These two functions are the ones that are available from outside the module. The arity_ok restriction ensures that all arguments are passed in registers for inline assembly *) [@__reduce__] let as_lowstar_sig_t_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= n}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel predict val wrap_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:arity_ok n td) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict let register_of_arg_i (i:reg_nat (if IA.win then 4 else 6)) : MS.reg_64 = let open MS in if IA.win then match i with | 0 -> rRcx | 1 -> rRdx | 2 -> rR8 | 3 -> rR9 else match i with | 0 -> rRdi | 1 -> rRsi | 2 -> rRdx | 3 -> rRcx | 4 -> rR8 | 5 -> rR9 //A partial inverse of the above function
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.X64.Machine_s.reg_64 -> FStar.Pervasives.Native.option (Vale.Interop.X64.reg_nat (match Vale.Interop.Assumptions.win with | true -> 4 | _ -> 6))
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_s.reg_64", "Vale.Interop.Assumptions.win", "FStar.Pervasives.Native.Some", "Vale.Interop.X64.reg_nat", "Prims.bool", "Prims.nat", "Prims.int", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option" ]
[]
false
false
false
false
false
let arg_of_register (r: MS.reg_64) : option (reg_nat (if IA.win then 4 else 6)) =
let open MS in if IA.win then match r with | 2 -> Some 0 | 3 -> Some 1 | 8 -> Some 2 | 9 -> Some 3 | _ -> None else match r with | 5 -> Some 0 | 4 -> Some 1 | 3 -> Some 2 | 2 -> Some 3 | 8 -> Some 4 | 9 -> Some 5 | _ -> None
false
Vale.Interop.X64.fsti
Vale.Interop.X64.as_lowstar_sig_t_weak
val as_lowstar_sig_t_weak : n: Prims.nat{n <= 20} -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Prims.list Vale.Interop.Base.arg {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length dom <= n} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> predict: Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel -> Type0
let as_lowstar_sig_t_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= n}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel predict
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 102, "end_line": 595, "start_col": 0, "start_line": 584 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p [@__reduce__] let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p [@__reduce__] let rec as_lowstar_sig_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict [@__reduce__] private let rec as_lowstar_sig_t_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post_weak n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict (* These two functions are the ones that are available from outside the module. The arity_ok restriction ensures that all arguments are passed in registers for inline assembly *)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{n <= 20} -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Prims.list Vale.Interop.Base.arg {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length dom <= n} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> predict: Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Vale.Interop.X64.arg_reg_relation", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Machine_Semantics_s.code", "Prims.list", "Vale.Interop.Base.td", "Vale.Interop.Base.arg", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.X64.rel_gen_t", "Vale.Interop.X64.prediction_pre_rel_t", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.X64.prediction_t", "Vale.Interop.X64.as_lowstar_sig_t_weak'" ]
[]
false
false
false
false
true
let as_lowstar_sig_t_weak (n: nat{n <= 20}) (arg_reg: arg_reg_relation n) (regs_modified: (MS.reg_64 -> bool)) (xmms_modified: (MS.reg_xmm -> bool)) (c: BS.code) (dom: list td) (args: list arg {List.length args + List.length dom <= n}) (pre_rel: rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel: rel_gen_t c dom args (prediction_post_rel_t c)) (predict: prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) =
as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel predict
false
Vale.Interop.X64.fsti
Vale.Interop.X64.arg_reg_stdcall
val arg_reg_stdcall:arg_reg_relation max_stdcall
val arg_reg_stdcall:arg_reg_relation max_stdcall
let arg_reg_stdcall : arg_reg_relation max_stdcall = Rel arg_of_register register_of_arg_i
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 652, "start_col": 0, "start_line": 651 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p [@__reduce__] let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p [@__reduce__] let rec as_lowstar_sig_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict [@__reduce__] private let rec as_lowstar_sig_t_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post_weak n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict (* These two functions are the ones that are available from outside the module. The arity_ok restriction ensures that all arguments are passed in registers for inline assembly *) [@__reduce__] let as_lowstar_sig_t_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= n}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel predict val wrap_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:arity_ok n td) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict let register_of_arg_i (i:reg_nat (if IA.win then 4 else 6)) : MS.reg_64 = let open MS in if IA.win then match i with | 0 -> rRcx | 1 -> rRdx | 2 -> rR8 | 3 -> rR9 else match i with | 0 -> rRdi | 1 -> rRsi | 2 -> rRdx | 3 -> rRcx | 4 -> rR8 | 5 -> rR9 //A partial inverse of the above function [@__reduce__] let arg_of_register (r:MS.reg_64) : option (reg_nat (if IA.win then 4 else 6)) = let open MS in if IA.win then match r with | 2 -> Some 0 // rcx | 3 -> Some 1 // rdx | 8 -> Some 2 // r8 | 9 -> Some 3 // r9 | _ -> None else match r with | 5 -> Some 0 // rdi | 4 -> Some 1 // rsi | 3 -> Some 2 // rdx | 2 -> Some 3 // rcx | 8 -> Some 4 // r8 | 9 -> Some 5 // r9 | _ -> None let max_stdcall : nat = if IA.win then 4 else 6 let arity_ok_stdcall = arity_ok max_stdcall
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Vale.Interop.X64.arg_reg_relation' Vale.Interop.X64.max_stdcall { forall (r: Vale.X64.Machine_s.reg_64). {:pattern Rel?.of_reg v r} Some? (Rel?.of_reg v r) ==> Rel?.of_arg v (Some?.v (Rel?.of_reg v r)) = r }
Prims.Tot
[ "total" ]
[]
[ "Vale.Interop.X64.Rel", "Vale.Interop.Assumptions.win", "Prims.bool", "Prims.nat", "Vale.Interop.X64.arg_of_register", "Vale.Interop.X64.register_of_arg_i" ]
[]
false
false
false
false
false
let arg_reg_stdcall:arg_reg_relation max_stdcall =
Rel arg_of_register register_of_arg_i
false
Vale.Interop.X64.fsti
Vale.Interop.X64.as_lowstar_sig_t
val as_lowstar_sig_t : n: Prims.nat -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Vale.Interop.X64.arg_list {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length dom <= 20} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> predict: Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel -> Type0
let rec as_lowstar_sig_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x)
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 517, "start_col": 0, "start_line": 484 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p [@__reduce__] let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Vale.Interop.X64.arg_list {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length dom <= 20} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> predict: Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Interop.X64.arg_reg_relation", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Machine_Semantics_s.code", "Prims.list", "Vale.Interop.Base.td", "Vale.Interop.X64.arg_list", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.arg", "Vale.Interop.X64.rel_gen_t", "Vale.Interop.X64.prediction_pre_rel_t", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.X64.prediction_t", "Prims.unit", "Vale.Interop.X64.als_ret", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Vale.Interop.Base.mem_roots_p", "Vale.Interop.X64.elim_rel_gen_t_nil", "Vale.Interop.X64.as_lowstar_sig_post", "Vale.Interop.X64.elim_predict_t_nil", "Vale.Interop.Base.td_as_type", "Vale.Interop.X64.as_lowstar_sig_t", "Vale.Interop.X64.op_Plus_Plus", "Vale.Interop.X64.elim_rel_gen_t_cons", "Vale.Interop.X64.elim_predict_t_cons" ]
[ "recursion" ]
false
false
false
false
true
let rec as_lowstar_sig_t (n: nat) (arg_reg: arg_reg_relation n) (regs_modified: (MS.reg_64 -> bool)) (xmms_modified: (MS.reg_xmm -> bool)) (c: BS.code) (dom: list td) (args: arg_list{List.length args + List.length dom <= 20}) (pre_rel: rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel: rel_gen_t c dom args (prediction_post_rel_t c)) (predict: prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) =
match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd :: tl -> x: td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x)
false
Vale.Interop.X64.fsti
Vale.Interop.X64.prediction_t
val prediction_t : n: Prims.nat -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Vale.Interop.X64.arg_list {FStar.List.Tot.Base.length dom + FStar.List.Tot.Base.length args <= 20} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> Type
let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x)
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 448, "start_col": 0, "start_line": 422 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Vale.Interop.X64.arg_list {FStar.List.Tot.Base.length dom + FStar.List.Tot.Base.length args <= 20} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Interop.X64.arg_reg_relation", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Machine_Semantics_s.code", "Prims.list", "Vale.Interop.Base.td", "Vale.Interop.X64.arg_list", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.arg", "Vale.Interop.X64.rel_gen_t", "Vale.Interop.X64.prediction_pre_rel_t", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.X64.prediction", "Vale.Interop.Base.td_as_type", "Vale.Interop.X64.prediction_t", "Vale.Interop.X64.op_Plus_Plus", "Vale.Interop.X64.elim_rel_gen_t_cons" ]
[ "recursion" ]
false
false
false
false
true
let rec prediction_t (n: nat) (arg_reg: arg_reg_relation n) (regs_modified: (MS.reg_64 -> bool)) (xmms_modified: (MS.reg_xmm -> bool)) (c: BS.code) (dom: list td) (args: arg_list{List.length dom + List.length args <= 20}) (pre_rel: rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel: rel_gen_t c dom args (prediction_post_rel_t c)) =
match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd :: tl -> x: td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x)
false
Vale.Interop.X64.fsti
Vale.Interop.X64.regs_modified_stdcall
val regs_modified_stdcall: MS.reg_64 -> bool
val regs_modified_stdcall: MS.reg_64 -> bool
let regs_modified_stdcall:MS.reg_64 -> bool = fun (r:MS.reg_64) -> let open MS in if IA.win then ( // These registers are callee-saved on Windows if r = rRbx || r = rRbp || r = rRdi || r = rRsi || r = rRsp || r = rR12 || r = rR13 || r = rR14 || r = rR15 then false // All the other ones may be modified else true ) else ( // These registers are callee-saved on Linux if r = rRbx || r = rRbp || r = rR12 || r = rR13 || r = rR14 || r = rR15 then false // All the other ones may be modified else true )
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 666, "start_col": 0, "start_line": 654 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p [@__reduce__] let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p [@__reduce__] let rec as_lowstar_sig_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict [@__reduce__] private let rec as_lowstar_sig_t_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post_weak n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict (* These two functions are the ones that are available from outside the module. The arity_ok restriction ensures that all arguments are passed in registers for inline assembly *) [@__reduce__] let as_lowstar_sig_t_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= n}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel predict val wrap_weak (n:nat{n <= 20}) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:arity_ok n td) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t_weak n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict let register_of_arg_i (i:reg_nat (if IA.win then 4 else 6)) : MS.reg_64 = let open MS in if IA.win then match i with | 0 -> rRcx | 1 -> rRdx | 2 -> rR8 | 3 -> rR9 else match i with | 0 -> rRdi | 1 -> rRsi | 2 -> rRdx | 3 -> rRcx | 4 -> rR8 | 5 -> rR9 //A partial inverse of the above function [@__reduce__] let arg_of_register (r:MS.reg_64) : option (reg_nat (if IA.win then 4 else 6)) = let open MS in if IA.win then match r with | 2 -> Some 0 // rcx | 3 -> Some 1 // rdx | 8 -> Some 2 // r8 | 9 -> Some 3 // r9 | _ -> None else match r with | 5 -> Some 0 // rdi | 4 -> Some 1 // rsi | 3 -> Some 2 // rdx | 2 -> Some 3 // rcx | 8 -> Some 4 // r8 | 9 -> Some 5 // r9 | _ -> None let max_stdcall : nat = if IA.win then 4 else 6 let arity_ok_stdcall = arity_ok max_stdcall let arg_reg_stdcall : arg_reg_relation max_stdcall = Rel arg_of_register register_of_arg_i
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.X64.Machine_s.reg_64 -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_s.reg_64", "Vale.Interop.Assumptions.win", "Prims.op_BarBar", "Prims.op_Equality", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRsp", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR15", "Prims.bool" ]
[]
false
false
false
true
false
let regs_modified_stdcall: MS.reg_64 -> bool =
fun (r: MS.reg_64) -> let open MS in if IA.win then (if r = rRbx || r = rRbp || r = rRdi || r = rRsi || r = rRsp || r = rR12 || r = rR13 || r = rR14 || r = rR15 then false else true) else (if r = rRbx || r = rRbp || r = rR12 || r = rR13 || r = rR14 || r = rR15 then false else true)
false
Vale.Interop.X64.fsti
Vale.Interop.X64.as_lowstar_sig_t_weak'
val as_lowstar_sig_t_weak' : n: Prims.nat -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Prims.list Vale.Interop.Base.arg {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length dom <= 20} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> predict: Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel -> Type0
let rec as_lowstar_sig_t_weak' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:list arg{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post_weak n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x)
{ "file_name": "vale/specs/interop/Vale.Interop.X64.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 567, "start_col": 0, "start_line": 534 }
module Vale.Interop.X64 open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.Heap module B = LowStar.Buffer module BS = Vale.X64.Machine_Semantics_s module UV = LowStar.BufferView.Up module DV = LowStar.BufferView.Down module HS = FStar.HyperStack module MS = Vale.X64.Machine_s module IA = Vale.Interop.Assumptions module List = FStar.List.Tot //////////////////////////////////////////////////////////////////////////////// //The calling convention w.r.t the register mapping //////////////////////////////////////////////////////////////////////////////// let calling_conventions (s0 s1:BS.machine_state) (regs_modified: MS.reg_64 -> bool) (xmms_modified: MS.reg_xmm -> bool) = let s0 = s0 in let s1 = s1 in s1.BS.ms_ok /\ s0.BS.ms_regs MS.reg_Rsp == s1.BS.ms_regs MS.reg_Rsp /\ (forall (r:MS.reg). {:pattern (s0.BS.ms_regs r)} match r with | MS.Reg 0 r -> not (regs_modified r) ==> s0.BS.ms_regs (MS.Reg 0 r) == s1.BS.ms_regs (MS.Reg 0 r) | MS.Reg 1 r -> not (xmms_modified r) ==> s0.BS.ms_regs (MS.Reg 1 r) == s1.BS.ms_regs (MS.Reg 1 r) ) let reg_nat (n:nat) = i:nat{i < n} let arity_ok n 'a = l:list 'a { List.Tot.length l <= n } (* We limit the number of args we can pass through the interop wrappers to an arbitrary 20. This ensures first that the addr_map axiom is sound: Since the length of buffers is limited to 2^32, we can prove that addr_map is inhabited. for extra arguments + the extra slots needed. Note that this number can be increased if needed*) let arg_list = l:list arg{List.Tot.length l <= 20} let arg_list_sb = l:list arg{List.Tot.length l <= 21} unfold let injective f = forall x y.{:pattern f x; f y} f x == f y ==> x == y noeq type arg_reg_relation' (n:nat) = | Rel: of_reg:(MS.reg_64 -> option (reg_nat n)) -> of_arg:(reg_nat n -> MS.reg_64){ // This function should be injective injective of_arg /\ // rRsp is not a valid register to store paramters (forall (i:reg_nat n).{:pattern of_arg i} of_arg i <> MS.rRsp) /\ // of_reg should always return Some when the register corresponds to an of_arg (forall (i:reg_nat n).{:pattern of_arg i} Some? (of_reg (of_arg i)) /\ Some?.v (of_reg (of_arg i)) = i)} -> arg_reg_relation' n unfold let arg_reg_relation (n:nat) = (v:arg_reg_relation' n{ // of_reg is a partial inverse of of_arg forall (r:MS.reg_64).{:pattern v.of_reg r} Some? (v.of_reg r) ==> v.of_arg (Some?.v (v.of_reg r)) = r}) let registers = MS.reg_64 -> MS.nat64 let upd_reg (n:nat) (arg_reg:arg_reg_relation n) (regs:registers) (i:nat) (v:_) : registers = fun (r:MS.reg_64) -> match arg_reg.of_reg r with | Some j -> if i = j then v else regs r | _ -> regs r [@__reduce__] let arg_as_nat64 (a:arg) : GTot MS.nat64 = let (| tag, x |) = a in match tag with | TD_Base TUInt8 -> UInt8.v x | TD_Base TUInt16 -> UInt16.v x | TD_Base TUInt32 -> UInt32.v x | TD_Base TUInt64 -> UInt64.v x | TD_Buffer src _ _ -> let b:b8 = Buffer true (x <: B.buffer (base_typ_as_type src)) in global_addrs_map b | TD_ImmBuffer src _ _ -> global_addrs_map (imm_to_b8 src x) [@__reduce__] let update_regs (n:nat) (arg_reg:arg_reg_relation n) (x:arg) (i:reg_nat n) (regs:registers) : GTot registers = upd_reg n arg_reg regs i (arg_as_nat64 x) [@__reduce__] let rec register_of_args (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (n:nat) (args:arg_list{List.Tot.length args = n}) (regs:registers) : GTot (regs':registers{regs MS.rRsp == regs' MS.rRsp}) = match args with | [] -> regs | hd::tl -> if n > max_arity then // This arguments will be passed on the stack register_of_args max_arity arg_reg (n-1) tl regs else update_regs max_arity arg_reg hd (n - 1) (register_of_args max_arity arg_reg (n - 1) tl regs) // Pass extra arguments on the stack. The arity_ok condition on inline wrappers ensures that // this only happens for stdcalls [@__reduce__] let rec stack_of_args (max_arity:nat) (n:nat) (rsp:int) (args:arg_list{List.Tot.length args = n}) (st:Map.t int Vale.Def.Words_s.nat8) : GTot (Map.t int Vale.Def.Words_s.nat8) = match args with | [] -> st | hd::tl -> if n <= max_arity then st // We can pass the remaining args in registers else let ptr = ((n - max_arity) - 1) * 8 // Arguments on the stack are pushed from right to left + (if IA.win then 32 else 0) // The shadow space on Windows comes next + 8 // The return address is then pushed on the stack + rsp // And we then have all the extra slots required for the Vale procedure in let st1 = stack_of_args max_arity (n-1) rsp tl st in let v = arg_as_nat64 hd in // We will store the arg hd BS.update_heap64 ptr v st1 //////////////////////////////////////////////////////////////////////////////// let taint_map = b8 -> GTot taint let upd_taint_map_b8 (tm:taint_map) (x:b8) (tnt:taint) : taint_map = fun (y:b8) -> if StrongExcludedMiddle.strong_excluded_middle ((x <: b8) == y) then tnt else tm y [@__reduce__] let upd_taint_map_arg (a:arg) (tm:taint_map) : GTot taint_map = match a with | (| TD_Buffer _ _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (Buffer true x) tnt | (| TD_ImmBuffer src _ {taint=tnt}, x |) -> upd_taint_map_b8 tm (imm_to_b8 src x) tnt | (| TD_Base _, _ |) -> tm let init_taint : taint_map = fun r -> Public [@__reduce__] let mk_taint (args:arg_list_sb) (tm:taint_map) : GTot taint_map = List.fold_right_gtot args upd_taint_map_arg init_taint let taint_of_arg (a:arg) = let (| tag, x |) = a in match tag with | TD_ImmBuffer _ TUInt64 {taint=tnt} | TD_ImmBuffer _ TUInt128 {taint=tnt} | TD_Buffer _ TUInt64 {taint=tnt} | TD_Buffer _ TUInt128 {taint=tnt} -> Some tnt | _ -> None let taint_arg_b8 (a:arg{Some? (taint_of_arg a)}) : GTot b8 = let (| tag, x |) = a in match tag with | TD_Buffer src _ _ -> Buffer true (x <: B.buffer (base_typ_as_type src)) | TD_ImmBuffer src _ _ -> imm_to_b8 src x let rec taint_arg_args_b8_mem (args:arg_list) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> List.memP (taint_arg_b8 a) (args_b8 args)) = match args with | [] -> () | hd::tl -> taint_arg_args_b8_mem tl a let rec mk_taint_equiv (args:arg_list_sb{disjoint_or_eq args}) (a:arg) : Lemma (List.memP a args /\ Some? (taint_of_arg a) ==> Some?.v (taint_of_arg a) == (mk_taint args init_taint) (taint_arg_b8 a)) = match args with | [] -> () | hd::tl -> mk_taint_equiv tl a; let (| tag, x |) = hd in match tag with | TD_Base _ -> () | TD_Buffer _ _ _ | TD_ImmBuffer _ _ _ -> disjoint_or_eq_cons hd tl; BigOps.big_and'_forall (disjoint_or_eq_1 hd) tl //////////////////////////////////////////////////////////////////////////////// let state_builder_t (max_arity:nat) (args:arg_list) (codom:Type) = h0:HS.mem{mem_roots_p h0 args} -> GTot codom // Splitting the construction of the initial state into two functions // one that creates the initial trusted state (i.e., part of our TCB) // and another that just creates the vale state, a view upon the trusted one let create_initial_trusted_state (max_arity:nat) (arg_reg:arg_reg_relation max_arity) (args:arg_list) : state_builder_t max_arity args (BS.machine_state & interop_heap) = fun h0 -> let open MS in let regs_64 = register_of_args max_arity arg_reg (List.Tot.length args) args IA.init_regs in let xmms = IA.init_xmms in let flags = FunctionalExtensionality.on flag IA.init_flags in let init_rsp = regs_64 rRsp in let regs = FunctionalExtensionality.on_dom reg #t_reg (fun r -> match r with | Reg 0 r -> regs_64 r | Reg 1 r -> xmms r) in // Create an initial empty stack let stack = Map.const_on Set.empty 0 in // Spill additional arguments on the stack let stack = stack_of_args max_arity (List.Tot.length args) init_rsp args stack in let mem:interop_heap = mk_mem args h0 in let memTaint = create_memtaint mem (args_b8 args) (mk_taint args init_taint) in let (s0:BS.machine_state) = { BS.ms_ok = true; BS.ms_regs = regs; BS.ms_flags = flags; BS.ms_heap = heap_create_impl mem memTaint; BS.ms_stack = BS.Machine_stack init_rsp stack; BS.ms_stackTaint = Map.const Public; BS.ms_trace = []; } in (s0, mem) //////////////////////////////////////////////////////////////////////////////// let prediction_pre_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> prop let return_val_t (sn:BS.machine_state) = r:UInt64.t{UInt64.v r == BS.eval_reg_64 MS.rRax sn} let return_val (sn:BS.machine_state) : return_val_t sn = UInt64.uint_to_t (BS.eval_reg_64 MS.rRax sn) let prediction_post_rel_t (c:BS.code) (args:arg_list) = h0:mem_roots args -> s0:BS.machine_state -> (UInt64.t & nat & interop_heap) -> sn:BS.machine_state -> prop [@__reduce__] let prediction_pre (n:nat) (arg_reg:arg_reg_relation n) (c:BS.code) (args:arg_list) (pre_rel: prediction_pre_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) = pre_rel h0 /\ s0 == fst (create_initial_trusted_state n arg_reg args h0) [@__reduce__] let prediction_post (n:nat) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (post_rel: prediction_post_rel_t c args) (h0:mem_roots args) (s0:BS.machine_state) (rax_fuel_mem:(UInt64.t & nat & interop_heap)) = let (rax, fuel, final_mem) = rax_fuel_mem in Some? (BS.machine_eval_code c fuel s0) /\ ( let s1 = Some?.v (BS.machine_eval_code c fuel s0) in let h1 = hs_of_mem final_mem in FStar.HyperStack.ST.equal_domains h0 h1 /\ B.modifies (loc_modified_args args) h0 h1 /\ mem_roots_p h1 args /\ heap_create_machine (mk_mem args h1) == heap_get s1.BS.ms_heap /\ calling_conventions s0 s1 regs_modified xmms_modified /\ rax == return_val s1 /\ post_rel h0 s0 rax_fuel_mem s1 ) let prediction (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (pre_rel:prediction_pre_rel_t c args) (post_rel:prediction_post_rel_t c args) = h0:mem_roots args{pre_rel h0} -> s0:BS.machine_state -> Ghost (UInt64.t & nat & interop_heap) (requires prediction_pre n arg_reg c args pre_rel h0 s0) (ensures prediction_post n regs_modified xmms_modified c args post_rel h0 s0) noeq type as_lowstar_sig_ret = | As_lowstar_sig_ret : n:nat -> args:arg_list -> fuel:nat -> final_mem:interop_heap -> as_lowstar_sig_ret let als_ret = UInt64.t & Ghost.erased as_lowstar_sig_ret [@__reduce__] let as_lowstar_sig_post (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in h1 == hs_of_mem final_mem /\ prediction_pre n arg_reg c args pre_rel h0 s0 /\ (rax, fuel, final_mem) == predict h0 s0 /\ prediction_post n regs_modified xmms_modified c args post_rel h0 s0 (rax, fuel, final_mem) /\ FStar.HyperStack.ST.equal_domains h0 h1) [@__reduce__] let as_lowstar_sig_post_weak (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (args:arg_list) (h0:mem_roots args) (#pre_rel:_) (#post_rel: _) (predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel) (ret:als_ret) (h1:HS.mem) = (* write it this way to be reduction friendly *) let rax = fst ret in let ret = Ghost.reveal (snd ret) in args == As_lowstar_sig_ret?.args ret /\ n == As_lowstar_sig_ret?.n ret /\ (let fuel = As_lowstar_sig_ret?.fuel ret in let final_mem = As_lowstar_sig_ret?.final_mem ret in let s0 = fst (create_initial_trusted_state n arg_reg args h0) in (exists fuel final_mem s1. h1 == hs_of_mem final_mem /\ rax == return_val s1 /\ post_rel h0 s0 (return_val s1, fuel, final_mem) s1)) [@__reduce__] let as_lowstar_sig (c:BS.code) = n:nat -> arg_reg:arg_reg_relation n -> regs_modified:(MS.reg_64 -> bool) -> xmms_modified:(MS.reg_xmm -> bool) -> args:arg_list -> #pre_rel:_ -> #post_rel:_ -> predict:prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 predict ret h1) val wrap_variadic (c:BS.code) : as_lowstar_sig c [@__reduce__] let (++) (#t:td) (x:td_as_type t) (args:list arg) = (| t, x |) :: args [@__reduce__] let rec rel_gen_t (c:BS.code) (td:list td) (args:arg_list{List.length args + List.length td <= 20}) (f: arg_list -> Type) = match td with | [] -> f args | hd::tl -> x:td_as_type hd -> rel_gen_t c tl (x++args) f [@__reduce__] let elim_rel_gen_t_nil #c #args #f (x:rel_gen_t c [] args f) : f args = x [@__reduce__] let elim_rel_gen_t_cons #c hd tl #args #f (p:rel_gen_t c (hd::tl) args f) : (x:td_as_type hd -> rel_gen_t c tl (x++args) f) = p let rec prediction_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length dom + List.length args <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) = match dom with | [] -> prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel | hd::tl -> x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) [@__reduce__] let elim_predict_t_nil (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (#args:arg_list) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c [] args pre_rel post_rel) : prediction n arg_reg regs_modified xmms_modified c args pre_rel post_rel = p [@__reduce__] let elim_predict_t_cons (#n:nat) (#arg_reg:arg_reg_relation n) (#regs_modified:MS.reg_64 -> bool) (#xmms_modified:MS.reg_xmm -> bool) (#c:BS.code) (hd:td) (tl:list td) (#args:arg_list{List.length args + List.length tl <= 19}) (#pre_rel:_) (#post_rel:_) (p:prediction_t n arg_reg regs_modified xmms_modified c (hd::tl) args pre_rel post_rel) : x:td_as_type hd -> prediction_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) = p [@__reduce__] let rec as_lowstar_sig_t (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td) (args:arg_list{List.length args + List.length dom <= 20}) (pre_rel:rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel:rel_gen_t c dom args (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) = match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd::tl -> x:td_as_type hd -> as_lowstar_sig_t n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x) private val wrap' (n:nat) (arg_reg:arg_reg_relation n) (regs_modified:MS.reg_64 -> bool) (xmms_modified:MS.reg_xmm -> bool) (c:BS.code) (dom:list td{List.length dom <= 20}) (#pre_rel:rel_gen_t c dom [] (prediction_pre_rel_t c)) (#post_rel:rel_gen_t c dom [] (prediction_post_rel_t c)) (predict:prediction_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel) : as_lowstar_sig_t n arg_reg regs_modified xmms_modified c dom [] pre_rel post_rel predict [@__reduce__]
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.Interop.X64.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> arg_reg: Vale.Interop.X64.arg_reg_relation n -> regs_modified: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> xmms_modified: (_: Vale.X64.Machine_s.reg_xmm -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> dom: Prims.list Vale.Interop.Base.td -> args: Prims.list Vale.Interop.Base.arg {FStar.List.Tot.Base.length args + FStar.List.Tot.Base.length dom <= 20} -> pre_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_pre_rel_t c) -> post_rel: Vale.Interop.X64.rel_gen_t c dom args (Vale.Interop.X64.prediction_post_rel_t c) -> predict: Vale.Interop.X64.prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Interop.X64.arg_reg_relation", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Machine_Semantics_s.code", "Prims.list", "Vale.Interop.Base.td", "Vale.Interop.Base.arg", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.X64.rel_gen_t", "Vale.Interop.X64.prediction_pre_rel_t", "Vale.Interop.X64.prediction_post_rel_t", "Vale.Interop.X64.prediction_t", "Prims.unit", "Vale.Interop.X64.als_ret", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Vale.Interop.Base.mem_roots_p", "Vale.Interop.X64.elim_rel_gen_t_nil", "Vale.Interop.X64.as_lowstar_sig_post_weak", "Vale.Interop.X64.elim_predict_t_nil", "Vale.Interop.Base.td_as_type", "Vale.Interop.X64.as_lowstar_sig_t_weak'", "Vale.Interop.X64.op_Plus_Plus", "Vale.Interop.X64.elim_rel_gen_t_cons", "Vale.Interop.X64.elim_predict_t_cons" ]
[ "recursion" ]
false
false
false
false
true
let rec as_lowstar_sig_t_weak' (n: nat) (arg_reg: arg_reg_relation n) (regs_modified: (MS.reg_64 -> bool)) (xmms_modified: (MS.reg_xmm -> bool)) (c: BS.code) (dom: list td) (args: list arg {List.length args + List.length dom <= 20}) (pre_rel: rel_gen_t c dom args (prediction_pre_rel_t c)) (post_rel: rel_gen_t c dom args (prediction_post_rel_t c)) (predict: prediction_t n arg_reg regs_modified xmms_modified c dom args pre_rel post_rel) =
match dom with | [] -> (unit -> FStar.HyperStack.ST.Stack als_ret (requires (fun h0 -> mem_roots_p h0 args /\ elim_rel_gen_t_nil pre_rel h0)) (ensures fun h0 ret h1 -> as_lowstar_sig_post_weak n arg_reg regs_modified xmms_modified c args h0 #pre_rel #post_rel (elim_predict_t_nil predict) ret h1)) | hd :: tl -> x: td_as_type hd -> as_lowstar_sig_t_weak' n arg_reg regs_modified xmms_modified c tl (x ++ args) (elim_rel_gen_t_cons hd tl pre_rel x) (elim_rel_gen_t_cons hd tl post_rel x) (elim_predict_t_cons hd tl predict x)
false
Hacl.Impl.MultiExponentiation.fst
Hacl.Impl.MultiExponentiation.lexp_four_fw_loop
val lexp_four_fw_loop: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len -> table_inv1:table_inv_t a_t len table_len -> table_inv2:table_inv_t a_t len table_len -> table_inv3:table_inv_t a_t len table_len -> table_inv4:table_inv_t a_t len table_len -> pow_a_to_small_b1:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> pow_a_to_small_b3:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv3 -> pow_a_to_small_b4:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv4 -> lexp_four_fw_loop_st a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4
val lexp_four_fw_loop: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len -> table_inv1:table_inv_t a_t len table_len -> table_inv2:table_inv_t a_t len table_len -> table_inv3:table_inv_t a_t len table_len -> table_inv4:table_inv_t a_t len table_len -> pow_a_to_small_b1:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> pow_a_to_small_b3:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv3 -> pow_a_to_small_b4:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv4 -> lexp_four_fw_loop_st a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4
let lexp_four_fw_loop #a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4 pow_a_to_small_b1 pow_a_to_small_b2 pow_a_to_small_b3 pow_a_to_small_b4 ctx a1 bLen bBits b1 a2 b2 a3 b3 a4 b4 table1 table2 table3 table4 acc = push_frame (); let tmp = create len (uint #a_t #SEC 0) in let h0 = ST.get () in [@ inline_let] let refl1 i : GTot k.to.a_spec = k.to.refl (as_seq h0 acc) in [@inline_let] let spec (h:mem) = S.exp_four_fw_f k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (k.to.refl (as_seq h0 a3)) (BD.bn_v h0 b3) (k.to.refl (as_seq h0 a4)) (BD.bn_v h0 b4) (v l) in [@inline_let] let inv h (i:nat{i <= v bBits / v l}) = modifies (loc acc |+| loc tmp) h0 h /\ k.to.linv (as_seq h acc) /\ k.to.refl (as_seq h acc) == Loops.repeati i (spec h0) (refl1 0) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2) /\ table_inv3 (as_seq h a3) (as_seq h table3) /\ table_inv4 (as_seq h a4) (as_seq h table4) in Loops.eq_repeati0 (v bBits / v l) (spec h0) (refl1 0); Lib.Loops.for 0ul (bBits /. l) inv (fun i -> Loops.unfold_repeati (v bBits / v l) (spec h0) (refl1 0) (v i); lexp_four_fw_f len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4 pow_a_to_small_b1 pow_a_to_small_b2 pow_a_to_small_b3 pow_a_to_small_b4 ctx a1 bLen bBits b1 a2 b2 a3 b3 a4 b4 table1 table2 table3 table4 i acc tmp ); pop_frame ()
{ "file_name": "code/bignum/Hacl.Impl.MultiExponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 629, "start_col": 0, "start_line": 594 }
module Hacl.Impl.MultiExponentiation open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module S = Lib.Exponentiation module BD = Hacl.Bignum.Definitions module PT = Hacl.Impl.PrecompTable friend Hacl.Impl.Exponentiation #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lexp_double_fw_f_st (a_t:inttype_a) (len:size_t{v len > 0}) (ctx_len:size_t) (k:concrete_ops a_t len ctx_len) (l:size_window_t a_t len) (table_len:table_len_t len) (table_inv1:table_inv_t a_t len table_len) (table_inv2:table_inv_t a_t len table_len) = ctx:lbuffer (uint_t a_t SEC) ctx_len -> a1:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b1:lbuffer (uint_t a_t SEC) bLen -> a2:lbuffer (uint_t a_t SEC) len -> b2:lbuffer (uint_t a_t SEC) bLen -> table1:clbuffer (uint_t a_t SEC) (table_len *! len) -> table2:clbuffer (uint_t a_t SEC) (table_len *! len) -> i:size_t{v i < v bBits / v l} -> acc:lbuffer (uint_t a_t SEC) len -> tmp:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a1 /\ live h b1 /\ live h a2 /\ live h b2 /\ live h acc /\ live h ctx /\ live h table1 /\ live h table2 /\ live h tmp /\ disjoint tmp a1 /\ disjoint tmp a2 /\ disjoint tmp b1 /\ disjoint tmp b2 /\ disjoint tmp acc /\ disjoint tmp ctx /\ disjoint tmp table1 /\ disjoint tmp table2 /\ eq_or_disjoint a1 a2 /\ disjoint a1 acc /\ disjoint a1 ctx /\ disjoint b1 acc /\ disjoint a2 acc /\ disjoint a2 ctx /\ disjoint b2 acc /\ disjoint acc ctx /\ disjoint acc table1 /\ disjoint acc table2 /\ BD.bn_v h b1 < pow2 (v bBits) /\ BD.bn_v h b2 < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a1) /\ k.to.linv (as_seq h a2) /\ k.to.linv (as_seq h acc) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2)) (ensures fun h0 _ h1 -> modifies (loc acc |+| loc tmp) h0 h1 /\ k.to.linv (as_seq h1 acc) /\ k.to.refl (as_seq h1 acc) == S.exp_double_fw_f #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (v l) (v i) (k.to.refl (as_seq h0 acc))) inline_for_extraction noextract val lexp_double_fw_f: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len -> table_inv1:table_inv_t a_t len table_len -> table_inv2:table_inv_t a_t len table_len -> pow_a_to_small_b1:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> lexp_double_fw_f_st a_t len ctx_len k l table_len table_inv1 table_inv2 let lexp_double_fw_f #a_t len ctx_len k l table_len table_inv1 table_inv2 pow_a_to_small_b1 pow_a_to_small_b2 ctx a1 bLen bBits b1 a2 b2 table1 table2 i acc tmp = lexp_fw_f len ctx_len k l table_len table_inv2 pow_a_to_small_b2 ctx a2 bLen bBits b2 table2 i acc tmp; lmul_acc_pow_a_bits_l len ctx_len k l table_len table_inv1 pow_a_to_small_b1 ctx a1 bLen bBits b1 table1 i acc tmp inline_for_extraction noextract let lexp_double_fw_acc0_st (a_t:inttype_a) (len:size_t{v len > 0}) (ctx_len:size_t) (k:concrete_ops a_t len ctx_len) (l:size_window_t a_t len) (table_len:table_len_t len) (table_inv1:table_inv_t a_t len table_len) (table_inv2:table_inv_t a_t len table_len) = ctx:lbuffer (uint_t a_t SEC) ctx_len -> a1:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{0 < v bBits /\ (v bBits - 1) / bits a_t < v bLen} -> b1:lbuffer (uint_t a_t SEC) bLen -> a2:lbuffer (uint_t a_t SEC) len -> b2:lbuffer (uint_t a_t SEC) bLen -> table1:clbuffer (uint_t a_t SEC) (table_len *! len) -> table2:clbuffer (uint_t a_t SEC) (table_len *! len) -> acc:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> v bBits % v l <> 0 /\ live h a1 /\ live h b1 /\ live h a2 /\ live h b2 /\ live h acc /\ live h ctx /\ live h table1 /\ live h table2 /\ eq_or_disjoint a1 a2 /\ disjoint a1 acc /\ disjoint a1 ctx /\ disjoint b1 acc /\ disjoint a2 acc /\ disjoint a2 ctx /\ disjoint b2 acc /\ disjoint acc ctx /\ disjoint acc table1 /\ disjoint acc table2 /\ BD.bn_v h b1 < pow2 (v bBits) /\ BD.bn_v h b2 < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a1) /\ k.to.linv (as_seq h a2) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ k.to.linv (as_seq h1 acc) /\ k.to.refl (as_seq h1 acc) == S.exp_double_fw_acc0 #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (v l)) inline_for_extraction noextract val lexp_double_fw_acc0: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len -> table_inv1:table_inv_t a_t len table_len -> table_inv2:table_inv_t a_t len table_len -> pow_a_to_small_b1:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> lexp_double_fw_acc0_st a_t len ctx_len k l table_len table_inv1 table_inv2 let lexp_double_fw_acc0 #a_t len ctx_len k l table_len table_inv1 table_inv2 pow_a_to_small_b1 pow_a_to_small_b2 ctx a1 bLen bBits b1 a2 b2 table1 table2 acc = push_frame (); let tmp = create len (uint #a_t #SEC 0) in lexp_fw_acc0 len ctx_len k l table_len table_inv1 pow_a_to_small_b1 ctx a1 bLen bBits b1 table1 acc; lexp_fw_acc0 len ctx_len k l table_len table_inv2 pow_a_to_small_b2 ctx a2 bLen bBits b2 table2 tmp; k.lmul ctx acc tmp acc; pop_frame () inline_for_extraction noextract let lexp_double_fw_loop_st (a_t:inttype_a) (len:size_t{v len > 0}) (ctx_len:size_t) (k:concrete_ops a_t len ctx_len) (l:size_window_t a_t len) (table_len:table_len_t len) (table_inv1:table_inv_t a_t len table_len) (table_inv2:table_inv_t a_t len table_len) = ctx:lbuffer (uint_t a_t SEC) ctx_len -> a1:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b1:lbuffer (uint_t a_t SEC) bLen -> a2:lbuffer (uint_t a_t SEC) len -> b2:lbuffer (uint_t a_t SEC) bLen -> table1:clbuffer (uint_t a_t SEC) (table_len *! len) -> table2:clbuffer (uint_t a_t SEC) (table_len *! len) -> acc:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a1 /\ live h b1 /\ live h a2 /\ live h b2 /\ live h acc /\ live h ctx /\ live h table1 /\ live h table2 /\ eq_or_disjoint a1 a2 /\ disjoint a1 acc /\ disjoint a1 ctx /\ disjoint b1 acc /\ disjoint a2 acc /\ disjoint a2 ctx /\ disjoint b2 acc /\ disjoint acc ctx /\ disjoint acc table1 /\ disjoint acc table2 /\ BD.bn_v h b1 < pow2 (v bBits) /\ BD.bn_v h b2 < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a1) /\ k.to.linv (as_seq h a2) /\ k.to.linv (as_seq h acc) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ k.to.linv (as_seq h1 acc) /\ k.to.refl (as_seq h1 acc) == Loops.repeati (v bBits / v l) (S.exp_double_fw_f k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (v l)) (k.to.refl (as_seq h0 acc))) inline_for_extraction noextract val lexp_double_fw_loop: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len -> table_inv1:table_inv_t a_t len table_len -> table_inv2:table_inv_t a_t len table_len -> pow_a_to_small_b1:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> lexp_double_fw_loop_st a_t len ctx_len k l table_len table_inv1 table_inv2 let lexp_double_fw_loop #a_t len ctx_len k l table_len table_inv1 table_inv2 pow_a_to_small_b1 pow_a_to_small_b2 ctx a1 bLen bBits b1 a2 b2 table1 table2 acc = push_frame (); let tmp = create len (uint #a_t #SEC 0) in let h0 = ST.get () in [@ inline_let] let refl1 i : GTot k.to.a_spec = k.to.refl (as_seq h0 acc) in [@inline_let] let spec (h:mem) = S.exp_double_fw_f k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (v l) in [@inline_let] let inv h (i:nat{i <= v bBits / v l}) = modifies (loc acc |+| loc tmp) h0 h /\ k.to.linv (as_seq h acc) /\ k.to.refl (as_seq h acc) == Loops.repeati i (spec h0) (refl1 0) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2) in Loops.eq_repeati0 (v bBits / v l) (spec h0) (refl1 0); Lib.Loops.for 0ul (bBits /. l) inv (fun i -> Loops.unfold_repeati (v bBits / v l) (spec h0) (refl1 0) (v i); lexp_double_fw_f len ctx_len k l table_len table_inv1 table_inv2 pow_a_to_small_b1 pow_a_to_small_b2 ctx a1 bLen bBits b1 a2 b2 table1 table2 i acc tmp ); pop_frame () let mk_lexp_double_fw_tables #a_t len ctx_len k l table_len table_inv1 table_inv2 pow_a_to_small_b1 pow_a_to_small_b2 ctx a1 bLen bBits b1 a2 b2 table1 table2 res = assert (v (bBits %. l) == v bBits % v l); if bBits %. l <> 0ul then lexp_double_fw_acc0 len ctx_len k l table_len table_inv1 table_inv2 pow_a_to_small_b1 pow_a_to_small_b2 ctx a1 bLen bBits b1 a2 b2 table1 table2 res else k.lone ctx res; lexp_double_fw_loop #a_t len ctx_len k l table_len table_inv1 table_inv2 pow_a_to_small_b1 pow_a_to_small_b2 ctx a1 bLen bBits b1 a2 b2 table1 table2 res //----------------------------------- inline_for_extraction noextract val lexp_double_fw_gen: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len{1 < v table_len /\ v table_len == pow2 (v l)} -> lprecomp_get:pow_a_to_small_b_st a_t len ctx_len k l table_len (table_inv_precomp len ctx_len k l table_len) -> lexp_double_fw_st a_t len ctx_len k l #push-options "--z3rlimit 150" let lexp_double_fw_gen #a_t len ctx_len k l table_len lprecomp_get ctx a1 bLen bBits b1 a2 b2 acc = push_frame (); lemma_pow2_is_divisible_by_2 (v l); let table1 = create (table_len *! len) (uint #a_t #SEC 0) in PT.lprecomp_table #a_t len ctx_len k ctx a1 table_len table1; let h0 = ST.get () in assert (table_inv_precomp len ctx_len k l table_len (as_seq h0 a1) (as_seq h0 table1)); let table2 = create (table_len *! len) (uint #a_t #SEC 0) in PT.lprecomp_table #a_t len ctx_len k ctx a2 table_len table2; let h1 = ST.get () in assert (table_inv_precomp len ctx_len k l table_len (as_seq h1 a1) (as_seq h1 table1)); assert (table_inv_precomp len ctx_len k l table_len (as_seq h1 a2) (as_seq h1 table2)); mk_lexp_double_fw_tables len ctx_len k l table_len (table_inv_precomp len ctx_len k l table_len) (table_inv_precomp len ctx_len k l table_len) lprecomp_get lprecomp_get ctx a1 bLen bBits b1 a2 b2 (to_const table1) (to_const table2) acc; pop_frame () #pop-options let lexp_double_fw_vartime #a_t len ctx_len k l ctx a1 bLen bBits b1 a2 b2 acc = [@inline_let] let table_len = 1ul <<. l in assert (v table_len == pow2 (v l)); Math.Lemmas.pow2_le_compat (v l) 1; assert (1 < v table_len /\ v table_len * v len <= max_size_t); lexp_double_fw_gen len ctx_len k l table_len (lprecomp_get_vartime len ctx_len k l table_len) ctx a1 bLen bBits b1 a2 b2 acc let lexp_double_fw_consttime #a_t len ctx_len k l ctx a1 bLen bBits b1 a2 b2 acc = [@inline_let] let table_len = 1ul <<. l in assert (v table_len == pow2 (v l)); Math.Lemmas.pow2_le_compat (v l) 1; assert (1 < v table_len /\ v table_len * v len <= max_size_t); lexp_double_fw_gen len ctx_len k l table_len (lprecomp_get_consttime len ctx_len k l table_len) ctx a1 bLen bBits b1 a2 b2 acc //-------------------------------------------------- inline_for_extraction noextract let lexp_four_fw_f_st (a_t:inttype_a) (len:size_t{v len > 0}) (ctx_len:size_t) (k:concrete_ops a_t len ctx_len) (l:size_window_t a_t len) (table_len:table_len_t len) (table_inv1:table_inv_t a_t len table_len) (table_inv2:table_inv_t a_t len table_len) (table_inv3:table_inv_t a_t len table_len) (table_inv4:table_inv_t a_t len table_len) = ctx:lbuffer (uint_t a_t SEC) ctx_len -> a1:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b1:lbuffer (uint_t a_t SEC) bLen -> a2:lbuffer (uint_t a_t SEC) len -> b2:lbuffer (uint_t a_t SEC) bLen -> a3:lbuffer (uint_t a_t SEC) len -> b3:lbuffer (uint_t a_t SEC) bLen -> a4:lbuffer (uint_t a_t SEC) len -> b4:lbuffer (uint_t a_t SEC) bLen -> table1:clbuffer (uint_t a_t SEC) (table_len *! len) -> table2:clbuffer (uint_t a_t SEC) (table_len *! len) -> table3:clbuffer (uint_t a_t SEC) (table_len *! len) -> table4:clbuffer (uint_t a_t SEC) (table_len *! len) -> i:size_t{v i < v bBits / v l} -> acc:lbuffer (uint_t a_t SEC) len -> tmp:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a1 /\ live h b1 /\ live h a2 /\ live h b2 /\ live h a3 /\ live h b3 /\ live h a4 /\ live h b4 /\ live h acc /\ live h ctx /\ live h table1 /\ live h table2 /\ live h table3 /\ live h table4 /\ live h tmp /\ disjoint tmp a1 /\ disjoint tmp a2 /\ disjoint tmp a3 /\ disjoint tmp a4 /\ disjoint tmp b1 /\ disjoint tmp b2 /\ disjoint tmp b3 /\ disjoint tmp b4 /\ disjoint tmp acc /\ disjoint tmp ctx /\ disjoint tmp table1 /\ disjoint tmp table2 /\ disjoint tmp table3 /\ disjoint tmp table4 /\ eq_or_disjoint a1 a2 /\ eq_or_disjoint a1 a3 /\ eq_or_disjoint a1 a4 /\ eq_or_disjoint a2 a3 /\ eq_or_disjoint a2 a4 /\ eq_or_disjoint a3 a4 /\ disjoint a1 acc /\ disjoint a1 ctx /\ disjoint a2 acc /\ disjoint a2 ctx /\ disjoint a3 acc /\ disjoint a3 ctx /\ disjoint a4 acc /\ disjoint a4 ctx /\ disjoint b1 acc /\ disjoint b2 acc /\ disjoint b3 acc /\ disjoint b4 acc /\ disjoint acc ctx /\ disjoint acc table1 /\ disjoint acc table2 /\ disjoint acc table3 /\ disjoint acc table4 /\ BD.bn_v h b1 < pow2 (v bBits) /\ BD.bn_v h b2 < pow2 (v bBits) /\ BD.bn_v h b3 < pow2 (v bBits) /\ BD.bn_v h b4 < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a1) /\ k.to.linv (as_seq h a2) /\ k.to.linv (as_seq h a3) /\ k.to.linv (as_seq h a4) /\ k.to.linv (as_seq h acc) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2) /\ table_inv3 (as_seq h a3) (as_seq h table3) /\ table_inv4 (as_seq h a4) (as_seq h table4)) (ensures fun h0 _ h1 -> modifies (loc acc |+| loc tmp) h0 h1 /\ k.to.linv (as_seq h1 acc) /\ k.to.refl (as_seq h1 acc) == S.exp_four_fw_f #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (k.to.refl (as_seq h0 a3)) (BD.bn_v h0 b3) (k.to.refl (as_seq h0 a4)) (BD.bn_v h0 b4) (v l) (v i) (k.to.refl (as_seq h0 acc))) inline_for_extraction noextract val lexp_four_fw_f: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len -> table_inv1:table_inv_t a_t len table_len -> table_inv2:table_inv_t a_t len table_len -> table_inv3:table_inv_t a_t len table_len -> table_inv4:table_inv_t a_t len table_len -> pow_a_to_small_b1:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> pow_a_to_small_b3:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv3 -> pow_a_to_small_b4:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv4 -> lexp_four_fw_f_st a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4 let lexp_four_fw_f #a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4 pow_a_to_small_b1 pow_a_to_small_b2 pow_a_to_small_b3 pow_a_to_small_b4 ctx a1 bLen bBits b1 a2 b2 a3 b3 a4 b4 table1 table2 table3 table4 i acc tmp = lexp_double_fw_f len ctx_len k l table_len table_inv3 table_inv4 pow_a_to_small_b3 pow_a_to_small_b4 ctx a3 bLen bBits b3 a4 b4 table3 table4 i acc tmp; lmul_acc_pow_a_bits_l len ctx_len k l table_len table_inv2 pow_a_to_small_b2 ctx a2 bLen bBits b2 table2 i acc tmp; lmul_acc_pow_a_bits_l len ctx_len k l table_len table_inv1 pow_a_to_small_b1 ctx a1 bLen bBits b1 table1 i acc tmp inline_for_extraction noextract let lexp_four_fw_acc0_st (a_t:inttype_a) (len:size_t{v len > 0}) (ctx_len:size_t) (k:concrete_ops a_t len ctx_len) (l:size_window_t a_t len) (table_len:table_len_t len) (table_inv1:table_inv_t a_t len table_len) (table_inv2:table_inv_t a_t len table_len) (table_inv3:table_inv_t a_t len table_len) (table_inv4:table_inv_t a_t len table_len) = ctx:lbuffer (uint_t a_t SEC) ctx_len -> a1:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{0 < v bBits /\ (v bBits - 1) / bits a_t < v bLen} -> b1:lbuffer (uint_t a_t SEC) bLen -> a2:lbuffer (uint_t a_t SEC) len -> b2:lbuffer (uint_t a_t SEC) bLen -> a3:lbuffer (uint_t a_t SEC) len -> b3:lbuffer (uint_t a_t SEC) bLen -> a4:lbuffer (uint_t a_t SEC) len -> b4:lbuffer (uint_t a_t SEC) bLen -> table1:clbuffer (uint_t a_t SEC) (table_len *! len) -> table2:clbuffer (uint_t a_t SEC) (table_len *! len) -> table3:clbuffer (uint_t a_t SEC) (table_len *! len) -> table4:clbuffer (uint_t a_t SEC) (table_len *! len) -> acc:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> v bBits % v l <> 0 /\ live h a1 /\ live h b1 /\ live h a2 /\ live h b2 /\ live h a3 /\ live h b3 /\ live h a4 /\ live h b4 /\ live h acc /\ live h ctx /\ live h table1 /\ live h table2 /\ live h table3 /\ live h table4 /\ eq_or_disjoint a1 a2 /\ eq_or_disjoint a1 a3 /\ eq_or_disjoint a1 a4 /\ eq_or_disjoint a2 a3 /\ eq_or_disjoint a2 a4 /\ eq_or_disjoint a3 a4 /\ disjoint a1 acc /\ disjoint a1 ctx /\ disjoint a2 acc /\ disjoint a2 ctx /\ disjoint a3 acc /\ disjoint a3 ctx /\ disjoint a4 acc /\ disjoint a4 ctx /\ disjoint b1 acc /\ disjoint b2 acc /\ disjoint b3 acc /\ disjoint b4 acc /\ disjoint acc ctx /\ disjoint acc table1 /\ disjoint acc table2 /\ disjoint acc table3 /\ disjoint acc table4 /\ BD.bn_v h b1 < pow2 (v bBits) /\ BD.bn_v h b2 < pow2 (v bBits) /\ BD.bn_v h b3 < pow2 (v bBits) /\ BD.bn_v h b4 < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a1) /\ k.to.linv (as_seq h a2) /\ k.to.linv (as_seq h a3) /\ k.to.linv (as_seq h a4) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2) /\ table_inv3 (as_seq h a3) (as_seq h table3) /\ table_inv4 (as_seq h a4) (as_seq h table4)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ k.to.linv (as_seq h1 acc) /\ k.to.refl (as_seq h1 acc) == S.exp_four_fw_acc0 #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (k.to.refl (as_seq h0 a3)) (BD.bn_v h0 b3) (k.to.refl (as_seq h0 a4)) (BD.bn_v h0 b4) (v l)) inline_for_extraction noextract val lexp_four_fw_acc0: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len -> table_inv1:table_inv_t a_t len table_len -> table_inv2:table_inv_t a_t len table_len -> table_inv3:table_inv_t a_t len table_len -> table_inv4:table_inv_t a_t len table_len -> pow_a_to_small_b1:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> pow_a_to_small_b3:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv3 -> pow_a_to_small_b4:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv4 -> lexp_four_fw_acc0_st a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4 let lexp_four_fw_acc0 #a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4 pow_a_to_small_b1 pow_a_to_small_b2 pow_a_to_small_b3 pow_a_to_small_b4 ctx a1 bLen bBits b1 a2 b2 a3 b3 a4 b4 table1 table2 table3 table4 acc = push_frame (); let tmp = create len (uint #a_t #SEC 0) in lexp_double_fw_acc0 len ctx_len k l table_len table_inv1 table_inv2 pow_a_to_small_b1 pow_a_to_small_b2 ctx a1 bLen bBits b1 a2 b2 table1 table2 acc; lexp_double_fw_acc0 len ctx_len k l table_len table_inv3 table_inv4 pow_a_to_small_b3 pow_a_to_small_b4 ctx a3 bLen bBits b3 a4 b4 table3 table4 tmp; k.lmul ctx acc tmp acc; pop_frame () inline_for_extraction noextract let lexp_four_fw_loop_st (a_t:inttype_a) (len:size_t{v len > 0}) (ctx_len:size_t) (k:concrete_ops a_t len ctx_len) (l:size_window_t a_t len) (table_len:table_len_t len) (table_inv1:table_inv_t a_t len table_len) (table_inv2:table_inv_t a_t len table_len) (table_inv3:table_inv_t a_t len table_len) (table_inv4:table_inv_t a_t len table_len) = ctx:lbuffer (uint_t a_t SEC) ctx_len -> a1:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b1:lbuffer (uint_t a_t SEC) bLen -> a2:lbuffer (uint_t a_t SEC) len -> b2:lbuffer (uint_t a_t SEC) bLen -> a3:lbuffer (uint_t a_t SEC) len -> b3:lbuffer (uint_t a_t SEC) bLen -> a4:lbuffer (uint_t a_t SEC) len -> b4:lbuffer (uint_t a_t SEC) bLen -> table1:clbuffer (uint_t a_t SEC) (table_len *! len) -> table2:clbuffer (uint_t a_t SEC) (table_len *! len) -> table3:clbuffer (uint_t a_t SEC) (table_len *! len) -> table4:clbuffer (uint_t a_t SEC) (table_len *! len) -> acc:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a1 /\ live h b1 /\ live h a2 /\ live h b2 /\ live h a3 /\ live h b3 /\ live h a4 /\ live h b4 /\ live h acc /\ live h ctx /\ live h table1 /\ live h table2 /\ live h table3 /\ live h table4 /\ eq_or_disjoint a1 a2 /\ eq_or_disjoint a1 a3 /\ eq_or_disjoint a1 a4 /\ eq_or_disjoint a2 a3 /\ eq_or_disjoint a2 a4 /\ eq_or_disjoint a3 a4 /\ disjoint a1 acc /\ disjoint a1 ctx /\ disjoint a2 acc /\ disjoint a2 ctx /\ disjoint a3 acc /\ disjoint a3 ctx /\ disjoint a4 acc /\ disjoint a4 ctx /\ disjoint b1 acc /\ disjoint b2 acc /\ disjoint b3 acc /\ disjoint b4 acc /\ disjoint acc ctx /\ disjoint acc table1 /\ disjoint acc table2 /\ disjoint acc table3 /\ disjoint acc table4 /\ BD.bn_v h b1 < pow2 (v bBits) /\ BD.bn_v h b2 < pow2 (v bBits) /\ BD.bn_v h b3 < pow2 (v bBits) /\ BD.bn_v h b4 < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a1) /\ k.to.linv (as_seq h a2) /\ k.to.linv (as_seq h a3) /\ k.to.linv (as_seq h a4) /\ k.to.linv (as_seq h acc) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2) /\ table_inv3 (as_seq h a3) (as_seq h table3) /\ table_inv4 (as_seq h a4) (as_seq h table4)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ k.to.linv (as_seq h1 acc) /\ k.to.refl (as_seq h1 acc) == Loops.repeati (v bBits / v l) (S.exp_four_fw_f k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (k.to.refl (as_seq h0 a3)) (BD.bn_v h0 b3) (k.to.refl (as_seq h0 a4)) (BD.bn_v h0 b4) (v l)) (k.to.refl (as_seq h0 acc))) inline_for_extraction noextract val lexp_four_fw_loop: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> l:size_window_t a_t len -> table_len:table_len_t len -> table_inv1:table_inv_t a_t len table_len -> table_inv2:table_inv_t a_t len table_len -> table_inv3:table_inv_t a_t len table_len -> table_inv4:table_inv_t a_t len table_len -> pow_a_to_small_b1:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> pow_a_to_small_b3:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv3 -> pow_a_to_small_b4:pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv4 -> lexp_four_fw_loop_st a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.PrecompTable.fsti.checked", "Hacl.Impl.Exponentiation.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.MultiExponentiation.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.PrecompTable", "short_module": "PT" }, { "abbrev": true, "full_module": "Hacl.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Exponentiation", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> ctx_len: Lib.IntTypes.size_t -> k: Hacl.Impl.Exponentiation.Definitions.concrete_ops a_t len ctx_len -> l: Hacl.Impl.Exponentiation.size_window_t a_t len -> table_len: Hacl.Impl.Exponentiation.table_len_t len -> table_inv1: Hacl.Impl.Exponentiation.table_inv_t a_t len table_len -> table_inv2: Hacl.Impl.Exponentiation.table_inv_t a_t len table_len -> table_inv3: Hacl.Impl.Exponentiation.table_inv_t a_t len table_len -> table_inv4: Hacl.Impl.Exponentiation.table_inv_t a_t len table_len -> pow_a_to_small_b1: Hacl.Impl.Exponentiation.pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv1 -> pow_a_to_small_b2: Hacl.Impl.Exponentiation.pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv2 -> pow_a_to_small_b3: Hacl.Impl.Exponentiation.pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv3 -> pow_a_to_small_b4: Hacl.Impl.Exponentiation.pow_a_to_small_b_st a_t len ctx_len k l table_len table_inv4 -> Hacl.Impl.MultiExponentiation.lexp_four_fw_loop_st a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Exponentiation.Definitions.inttype_a", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Exponentiation.Definitions.concrete_ops", "Hacl.Impl.Exponentiation.size_window_t", "Hacl.Impl.Exponentiation.table_len_t", "Hacl.Impl.Exponentiation.table_inv_t", "Hacl.Impl.Exponentiation.pow_a_to_small_b_st", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Prims.op_LessThan", "Prims.op_Division", "Prims.op_Subtraction", "Lib.IntTypes.bits", "Lib.Buffer.clbuffer", "Lib.IntTypes.op_Star_Bang", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Loops.for", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Slash_Dot", "Prims.l_and", "Prims.op_LessThanOrEqual", "Hacl.Impl.MultiExponentiation.lexp_four_fw_f", "Lib.LoopCombinators.unfold_repeati", "Hacl.Impl.Exponentiation.Definitions.__proj__Mkto_comm_monoid__item__a_spec", "FStar.Ghost.reveal", "Hacl.Impl.Exponentiation.Definitions.to_comm_monoid", "Hacl.Impl.Exponentiation.Definitions.__proj__Mkconcrete_ops__item__to", "Lib.LoopCombinators.eq_repeati0", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Prims.logical", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.Buffer.loc", "Lib.Buffer.MUT", "Hacl.Impl.Exponentiation.Definitions.__proj__Mkto_comm_monoid__item__linv", "Lib.Buffer.as_seq", "Prims.eq2", "Hacl.Impl.Exponentiation.Definitions.__proj__Mkto_comm_monoid__item__refl", "Lib.LoopCombinators.repeati", "Lib.Buffer.CONST", "Lib.Exponentiation.exp_four_fw_f", "Hacl.Impl.Exponentiation.Definitions.__proj__Mkto_comm_monoid__item__comm_monoid", "Hacl.Bignum.Definitions.bn_v", "Prims.int", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.Buffer.create", "Lib.IntTypes.uint", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let lexp_four_fw_loop #a_t len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4 pow_a_to_small_b1 pow_a_to_small_b2 pow_a_to_small_b3 pow_a_to_small_b4 ctx a1 bLen bBits b1 a2 b2 a3 b3 a4 b4 table1 table2 table3 table4 acc =
push_frame (); let tmp = create len (uint #a_t #SEC 0) in let h0 = ST.get () in [@@ inline_let ]let refl1 i : GTot k.to.a_spec = k.to.refl (as_seq h0 acc) in [@@ inline_let ]let spec (h: mem) = S.exp_four_fw_f k.to.comm_monoid (k.to.refl (as_seq h0 a1)) (v bBits) (BD.bn_v h0 b1) (k.to.refl (as_seq h0 a2)) (BD.bn_v h0 b2) (k.to.refl (as_seq h0 a3)) (BD.bn_v h0 b3) (k.to.refl (as_seq h0 a4)) (BD.bn_v h0 b4) (v l) in [@@ inline_let ]let inv h (i: nat{i <= v bBits / v l}) = modifies (loc acc |+| loc tmp) h0 h /\ k.to.linv (as_seq h acc) /\ k.to.refl (as_seq h acc) == Loops.repeati i (spec h0) (refl1 0) /\ table_inv1 (as_seq h a1) (as_seq h table1) /\ table_inv2 (as_seq h a2) (as_seq h table2) /\ table_inv3 (as_seq h a3) (as_seq h table3) /\ table_inv4 (as_seq h a4) (as_seq h table4) in Loops.eq_repeati0 (v bBits / v l) (spec h0) (refl1 0); Lib.Loops.for 0ul (bBits /. l) inv (fun i -> Loops.unfold_repeati (v bBits / v l) (spec h0) (refl1 0) (v i); lexp_four_fw_f len ctx_len k l table_len table_inv1 table_inv2 table_inv3 table_inv4 pow_a_to_small_b1 pow_a_to_small_b2 pow_a_to_small_b3 pow_a_to_small_b4 ctx a1 bLen bBits b1 a2 b2 a3 b3 a4 b4 table1 table2 table3 table4 i acc tmp); pop_frame ()
false
Intro.fst
Intro.max_list
val max_list (l1 l2: list int) : Tac (list int)
val max_list (l1 l2: list int) : Tac (list int)
let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 51, "start_col": 0, "start_line": 50 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list Prims.int -> l2: Prims.list Prims.int -> FStar.Tactics.Effect.Tac (Prims.list Prims.int)
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.list", "Prims.int", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "Prims.bool" ]
[]
false
true
false
false
false
let max_list (l1 l2: list int) : Tac (list int) =
if FStar.List.length l1 > FStar.List.length l2 then l1 else l2
false
Intro.fst
Intro.looping_tac
val looping_tac: Prims.unit -> Tac unit
val looping_tac: Prims.unit -> Tac unit
let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac ()
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 60, "start_col": 0, "start_line": 58 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "Intro.looping_tac" ]
[ "recursion" ]
false
true
false
false
false
let rec looping_tac () : Tac unit =
looping_tac ()
false
Intro.fst
Intro.blowup
val blowup: Prims.unit -> Tac unit
val blowup: Prims.unit -> Tac unit
let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> ()
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 232, "start_col": 0, "start_line": 228 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.iseq", "Prims.Cons", "Intro.blowup", "Prims.Nil", "FStar.Tactics.V2.Logic.split", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.implies_intro", "FStar.Reflection.V2.Formula.formula", "FStar.Tactics.V2.Logic.cur_formula" ]
[ "recursion" ]
false
true
false
false
false
let rec blowup () : Tac unit =
match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> ()
false
Intro.fst
Intro.int42
val int42:int
val int42:int
let int42 : int = _ by (exact (`42))
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 249, "start_col": 0, "start_line": 249 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let int42:int =
FStar.Tactics.Effect.synth_by_tactic (fun _ -> (exact (`42)))
false
Intro.fst
Intro.recursive_tac
val recursive_tac (n: nat) : Tac unit
val recursive_tac (n: nat) : Tac unit
let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1)
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 56, "start_col": 0, "start_line": 53 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.unit", "Prims.bool", "Intro.recursive_tac", "Prims.op_Subtraction" ]
[ "recursion" ]
false
true
false
false
false
let rec recursive_tac (n: nat) : Tac unit =
if n = 0 then () else recursive_tac (n - 1)
false
Intro.fst
Intro.suc
val suc : x: Prims.int -> Prims.int
let suc (x:int) = x + 1
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 260, "start_col": 0, "start_line": 260 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.int -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.op_Addition" ]
[]
false
false
false
true
false
let suc (x: int) =
x + 1
false
Intro.fst
Intro.triang_aux
val triang_aux (n: pos) : Lemma (n + ((n - 1) * n) / 2 == (n * (n + 1)) / 2)
val triang_aux (n: pos) : Lemma (n + ((n - 1) * n) / 2 == (n * (n + 1)) / 2)
let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; }
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 144, "start_col": 0, "start_line": 136 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.pos -> FStar.Pervasives.Lemma (ensures n + (n - 1) * n / 2 == n * (n + 1) / 2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_div_plus", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_right", "FStar.Math.Lemmas.swap_mul", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let triang_aux (n: pos) : Lemma (n + ((n - 1) * n) / 2 == (n * (n + 1)) / 2) =
calc ( == ) { n + ((n - 1) * n) / 2; ( == ) { FStar.Math.Lemmas.lemma_div_plus ((n - 1) * n) 2 n } ((n - 1) * n + n * 2) / 2; ( == ) { (FStar.Math.Lemmas.swap_mul n (n - 1); FStar.Math.Lemmas.distributivity_add_right n (n - 1) 2) } (n * (n + 1)) / 2; }
false
Intro.fst
Intro.triang
val triang (n: nat) : Tot nat
val triang (n: nat) : Tot nat
let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1)
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 133, "start_col": 0, "start_line": 132 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.op_Addition", "Intro.triang", "Prims.op_Subtraction" ]
[ "recursion" ]
false
false
false
true
false
let rec triang (n: nat) : Tot nat =
if n = 0 then 0 else n + triang (n - 1)
false
Intro.fst
Intro.constr
val constr (a b: prop) : Lemma (a ==> b ==> b /\ a)
val constr (a b: prop) : Lemma (a ==> b ==> b /\ a)
let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ())
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 115, "start_col": 0, "start_line": 108 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.prop -> b: Prims.prop -> FStar.Pervasives.Lemma (ensures a ==> b ==> b /\ a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.prop", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_imp", "Prims.l_and", "Prims.unit", "FStar.Tactics.V2.Derived.qed", "FStar.Tactics.V2.Logic.hyp", "FStar.Tactics.V2.SyntaxCoercions.binding_to_namedv", "FStar.Tactics.V2.Logic.split", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.implies_intro", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let constr (a b: prop) : Lemma (a ==> b ==> b /\ a) =
FStar.Tactics.Effect.assert_by_tactic (a ==> b ==> b /\ a) (fun _ -> (); (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()))
false
Intro.fst
Intro.test_good
val test_good (a: nat) : Lemma (triang a + triang a == a * (a + 1))
val test_good (a: nat) : Lemma (triang a + triang a == a * (a + 1))
let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); ()
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 4, "end_line": 179, "start_col": 0, "start_line": 174 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> FStar.Pervasives.Lemma (ensures Intro.triang a + Intro.triang a == a * (a + 1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.unit", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.op_Addition", "FStar.Tactics.V2.Derived.qed", "FStar.Tactics.V2.Derived.apply_lemma", "Intro.triang", "Prims.op_Division", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let test_good (a: nat) : Lemma (triang a + triang a == a * (a + 1)) =
FStar.Tactics.Effect.assert_by_tactic (triang a == (a * (a + 1) / 2)) (fun _ -> (); (apply_lemma (`gauss); qed ())); FStar.Tactics.Effect.assert_by_tactic ((a * (a + 1)) % 2 == 0) (fun _ -> (); (apply_lemma (`prod_even); qed ())); ()
false
Intro.fst
Intro.ten
val ten:int
val ten:int
let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0))
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 267, "start_col": 0, "start_line": 267 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[ "Intro.suc" ]
[]
false
false
false
true
false
let ten:int =
FStar.Tactics.Effect.synth_by_tactic (fun _ -> (repeatN 10 (fun () -> apply (`suc)); exact (`0)))
false
Intro.fst
Intro.gauss
val gauss (n: nat) : Lemma (triang n == (n * (n + 1)) / 2)
val gauss (n: nat) : Lemma (triang n == (n * (n + 1)) / 2)
let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n )
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 150, "start_col": 0, "start_line": 146 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> FStar.Pervasives.Lemma (ensures Intro.triang n == n * (n + 1) / 2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.op_disEquality", "Prims.int", "Intro.triang_aux", "Prims.unit", "Intro.gauss", "Prims.op_Subtraction", "Prims.bool", "Prims.l_True", "Prims.squash", "Prims.eq2", "Intro.triang", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec gauss (n: nat) : Lemma (triang n == (n * (n + 1)) / 2) =
if n <> 0 then (gauss (n - 1); triang_aux n)
false
Intro.fst
Intro.big
val big:int
val big:int
let big : int = _ by (sums 4)
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 280, "start_col": 0, "start_line": 280 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.op_Addition" ]
[]
false
false
false
true
false
let big:int =
FStar.Tactics.Effect.synth_by_tactic (fun _ -> (sums 4))
false
Intro.fst
Intro.prod_even
val prod_even (n: int) : Lemma ((n * (n + 1)) % 2 == 0)
val prod_even (n: int) : Lemma ((n * (n + 1)) % 2 == 0)
let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 154, "start_col": 0, "start_line": 152 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.int -> FStar.Pervasives.Lemma (ensures n * (n + 1) % 2 == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims.op_Addition", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let prod_even (n: int) : Lemma ((n * (n + 1)) % 2 == 0) =
FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n + 1) 2
false
Intro.fst
Intro.add_2
val add_2 (a b: int) : Tot int
val add_2 (a b: int) : Tot int
let add_2 : a:int -> b:int -> Tot int = _ by (make_add ())
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 304, "start_col": 0, "start_line": 304 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.op_Addition" ]
[]
false
false
false
true
false
let add_2: a: int -> b: int -> Tot int =
FStar.Tactics.Effect.synth_by_tactic (fun _ -> (make_add ()))
false
Intro.fst
Intro.make_add
val make_add: Prims.unit -> Tac unit
val make_add: Prims.unit -> Tac unit
let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run []
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 302, "start_col": 0, "start_line": 291 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "Prims.Nil", "FStar.Tactics.NamedView.binding", "Prims.list", "FStar.Tactics.NamedView.binder", "FStar.Tactics.NamedView.comp", "Prims.Cons", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Stubs.Tactics.V2.Builtins.intro", "FStar.Tactics.NamedView.named_term_view", "FStar.Tactics.V2.Derived.exact", "FStar.Tactics.Util.iter", "FStar.Tactics.V2.SyntaxCoercions.binding_to_term", "FStar.Tactics.V2.Derived.apply", "FStar.Tactics.NamedView.inspect", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Stubs.Reflection.Types.typ" ]
[]
false
true
false
false
false
let make_add () : Tac unit =
let rec __run (bs: list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b :: bs) | _ -> iter (fun b -> apply (`( + )); exact (binding_to_term b)) bs; exact (`0) in __run []
false
Intro.fst
Intro.add_3
val add_3 (a b c: int) : Tot int
val add_3 (a b c: int) : Tot int
let add_3 : a:int -> b:int -> c:int -> Tot int = _ by (make_add ())
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 305, "start_col": 0, "start_line": 305 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> c: Prims.int -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.op_Addition" ]
[]
false
false
false
true
false
let add_3: a: int -> b: int -> c: int -> Tot int =
FStar.Tactics.Effect.synth_by_tactic (fun _ -> (make_add ()))
false
Intro.fst
Intro.test_blowup
val test_blowup : _: Prims.unit -> Prims.unit
let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state")
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 236, "start_col": 0, "start_line": 234 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_and", "Prims.l_True", "Prims.l_imp", "Prims.l_False", "FStar.Stubs.Tactics.V2.Builtins.dump", "Intro.blowup" ]
[]
false
false
false
true
false
let test_blowup () =
FStar.Tactics.Effect.assert_by_tactic (True /\ (False ==> (True /\ False))) (fun _ -> (); (blowup (); dump "Final state"))
false
Intro.fst
Intro.add_4
val add_4 (a b c d: int) : Tot int
val add_4 (a b c d: int) : Tot int
let add_4 : a:int -> b:int -> c:int -> d:int -> Tot int = _ by (make_add ())
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 306, "start_col": 0, "start_line": 306 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run [] let add_2 : a:int -> b:int -> Tot int = _ by (make_add ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> c: Prims.int -> d: Prims.int -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.op_Addition" ]
[]
false
false
false
true
false
let add_4: a: int -> b: int -> c: int -> d: int -> Tot int =
FStar.Tactics.Effect.synth_by_tactic (fun _ -> (make_add ()))
false
Intro.fst
Intro.repeatN
val repeatN (n: nat) (t: (unit -> Tac unit)) : Tac unit
val repeatN (n: nat) (t: (unit -> Tac unit)) : Tac unit
let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t)
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 265, "start_col": 0, "start_line": 262 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> t: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.nat", "Prims.unit", "Prims.op_Equality", "Prims.int", "Prims.bool", "Intro.repeatN", "Prims.op_Subtraction" ]
[ "recursion" ]
false
true
false
false
false
let rec repeatN (n: nat) (t: (unit -> Tac unit)) : Tac unit =
if n = 0 then () else (t (); repeatN (n - 1) t)
false
Intro.fst
Intro.diag
val diag (x: int) (#[exact (quote x)] y: int) : tuple2 int int
val diag (x: int) (#[exact (quote x)] y: int) : tuple2 int int
let diag (x : int) (#[exact (quote x)] y : int) : tuple2 int int = (x, y)
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 341, "start_col": 0, "start_line": 341 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run [] let add_2 : a:int -> b:int -> Tot int = _ by (make_add ()) let add_3 : a:int -> b:int -> c:int -> Tot int = _ by (make_add ()) let add_4 : a:int -> b:int -> c:int -> d:int -> Tot int = _ by (make_add ()) let _ = assert (add_2 3 4 == 7) let _ = assert (add_3 3 4 5 == 12) let _ = assert (add_4 3 4 5 6 == 18) (* Another usage of metaprogramming is resolving implicit arguments. Usually, in dependently typed languages, they are solved via unification, which works fine when there is a single correct solution implied by the well-typing of the term. *) let id (#a:Type) (x:a) = x let call_id () = id 5 #push-options "--print_implicits" (* Run C-c C-s C-p call_id here, the implicit argument was resolved to `int` since `5` has type `int`. *) #pop-options (* In other cases, there is perhaps no single correct solution via unification, but there might however be some strategy to solve them. Meta-F* provides a way to solve implicits via tactics, which allows programmers to write their own strategies. As a simple example, let's write a "diagonal" function whose second arguments is inferred to be the same as the first one, unless explicitly provided. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.int -> Prims.int * Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
true
false
let diag (x: int) (#[exact (quote x)] y: int) : tuple2 int int =
(x, y)
false
Intro.fst
Intro.call_id
val call_id : _: Prims.unit -> Prims.int
let call_id () = id 5
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 321, "start_col": 0, "start_line": 321 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run [] let add_2 : a:int -> b:int -> Tot int = _ by (make_add ()) let add_3 : a:int -> b:int -> c:int -> Tot int = _ by (make_add ()) let add_4 : a:int -> b:int -> c:int -> d:int -> Tot int = _ by (make_add ()) let _ = assert (add_2 3 4 == 7) let _ = assert (add_3 3 4 5 == 12) let _ = assert (add_4 3 4 5 6 == 18) (* Another usage of metaprogramming is resolving implicit arguments. Usually, in dependently typed languages, they are solved via unification, which works fine when there is a single correct solution implied by the well-typing of the term. *) let id (#a:Type) (x:a) = x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Intro.id", "Prims.int" ]
[]
false
false
false
true
false
let call_id () =
id 5
false
Intro.fst
Intro.id
val id : x: a -> a
let id (#a:Type) (x:a) = x
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 319, "start_col": 0, "start_line": 319 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run [] let add_2 : a:int -> b:int -> Tot int = _ by (make_add ()) let add_3 : a:int -> b:int -> c:int -> Tot int = _ by (make_add ()) let add_4 : a:int -> b:int -> c:int -> d:int -> Tot int = _ by (make_add ()) let _ = assert (add_2 3 4 == 7) let _ = assert (add_3 3 4 5 == 12) let _ = assert (add_4 3 4 5 6 == 18) (* Another usage of metaprogramming is resolving implicit arguments. Usually, in dependently typed languages, they are solved via unification, which works fine when there is a single correct solution implied by the well-typing of the term. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> a
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let id (#a: Type) (x: a) =
x
false
Intro.fst
Intro.add3
val add3 (#a: Type) {| _: add a |} (x y z: a) : a
val add3 (#a: Type) {| _: add a |} (x y z: a) : a
let add3 (#a:Type) {|add a|} (x y z : a) : a = sum x (sum y z)
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 363, "start_col": 0, "start_line": 363 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run [] let add_2 : a:int -> b:int -> Tot int = _ by (make_add ()) let add_3 : a:int -> b:int -> c:int -> Tot int = _ by (make_add ()) let add_4 : a:int -> b:int -> c:int -> d:int -> Tot int = _ by (make_add ()) let _ = assert (add_2 3 4 == 7) let _ = assert (add_3 3 4 5 == 12) let _ = assert (add_4 3 4 5 6 == 18) (* Another usage of metaprogramming is resolving implicit arguments. Usually, in dependently typed languages, they are solved via unification, which works fine when there is a single correct solution implied by the well-typing of the term. *) let id (#a:Type) (x:a) = x let call_id () = id 5 #push-options "--print_implicits" (* Run C-c C-s C-p call_id here, the implicit argument was resolved to `int` since `5` has type `int`. *) #pop-options (* In other cases, there is perhaps no single correct solution via unification, but there might however be some strategy to solve them. Meta-F* provides a way to solve implicits via tactics, which allows programmers to write their own strategies. As a simple example, let's write a "diagonal" function whose second arguments is inferred to be the same as the first one, unless explicitly provided. *) let diag (x : int) (#[exact (quote x)] y : int) : tuple2 int int = (x, y) (* When the implicit is not given, this is simply a pair of an element with itself. Note how in this case, there is no information that fully defines the implicit from the types, and any integer is a correct solution. *) let _ = assert (diag 5 == (5, 5)) (* But one can override it *) let _ = assert (diag 5 #23 == (5, 23)) (* As a more interesting example, this is exactly how typeclasses are implemented in F*. See the type of add3 below , it contains an implicit argument of type `add a`, which is to be resolved by the `tcresolve` tactic. *) open FStar.Tactics.Typeclasses class add 'a = { sum : 'a -> 'a -> 'a }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
{| _: Intro.add a |} -> x: a -> y: a -> z: a -> a
Prims.Tot
[ "total" ]
[]
[ "Intro.add", "Intro.sum" ]
[]
false
false
false
true
false
let add3 (#a: Type) {| _: add a |} (x y z: a) : a =
sum x (sum y z)
false
Intro.fst
Intro.add_int
[@@ FStar.Tactics.Typeclasses.tcinstance] val add_int:add int
[@@ FStar.Tactics.Typeclasses.tcinstance] val add_int:add int
instance add_int : add int = { sum = (+) }
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 367, "start_col": 0, "start_line": 367 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run [] let add_2 : a:int -> b:int -> Tot int = _ by (make_add ()) let add_3 : a:int -> b:int -> c:int -> Tot int = _ by (make_add ()) let add_4 : a:int -> b:int -> c:int -> d:int -> Tot int = _ by (make_add ()) let _ = assert (add_2 3 4 == 7) let _ = assert (add_3 3 4 5 == 12) let _ = assert (add_4 3 4 5 6 == 18) (* Another usage of metaprogramming is resolving implicit arguments. Usually, in dependently typed languages, they are solved via unification, which works fine when there is a single correct solution implied by the well-typing of the term. *) let id (#a:Type) (x:a) = x let call_id () = id 5 #push-options "--print_implicits" (* Run C-c C-s C-p call_id here, the implicit argument was resolved to `int` since `5` has type `int`. *) #pop-options (* In other cases, there is perhaps no single correct solution via unification, but there might however be some strategy to solve them. Meta-F* provides a way to solve implicits via tactics, which allows programmers to write their own strategies. As a simple example, let's write a "diagonal" function whose second arguments is inferred to be the same as the first one, unless explicitly provided. *) let diag (x : int) (#[exact (quote x)] y : int) : tuple2 int int = (x, y) (* When the implicit is not given, this is simply a pair of an element with itself. Note how in this case, there is no information that fully defines the implicit from the types, and any integer is a correct solution. *) let _ = assert (diag 5 == (5, 5)) (* But one can override it *) let _ = assert (diag 5 #23 == (5, 23)) (* As a more interesting example, this is exactly how typeclasses are implemented in F*. See the type of add3 below , it contains an implicit argument of type `add a`, which is to be resolved by the `tcresolve` tactic. *) open FStar.Tactics.Typeclasses class add 'a = { sum : 'a -> 'a -> 'a } (* {|add a|} is just sugar for `(#[tcresolve ()] _ : add a)` *) let add3 (#a:Type) {|add a|} (x y z : a) : a = sum x (sum y z) (* Instances are just values with a `tcinstance` attribute, which is
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Intro.add Prims.int
Prims.Tot
[ "total" ]
[]
[ "Intro.Mkadd", "Prims.int", "Prims.op_Addition" ]
[]
false
false
false
true
false
[@@ FStar.Tactics.Typeclasses.tcinstance] let add_int:add int =
{ sum = ( + ) }
false
Intro.fst
Intro.sums
val sums (n: nat) : Tac unit
val sums (n: nat) : Tac unit
let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 278, "start_col": 0, "start_line": 271 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Tactics.V2.Derived.exact", "Prims.unit", "Prims.bool", "Intro.sums", "Prims.op_Subtraction", "FStar.Tactics.V2.Derived.apply" ]
[ "recursion" ]
false
true
false
false
false
let rec sums (n: nat) : Tac unit =
if n = 0 then exact (`1) else (apply (`( + )); sums (n - 1); sums (n - 1))
false
Intro.fst
Intro.test_add
val test_add : Prims.unit
let test_add = assert (add3 1 2 3 == 6)
{ "file_name": "examples/tactics/eci19/Intro.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 376, "start_col": 0, "start_line": 376 }
module Intro (* This file is meant to skim through the features of Meta-F*, and not really to teach you how to use it. That's what the next files are for! *) (* We always need this module to use Meta-F* *) open FStar.Tactics.V2 (* Meta-F* has many purposes. It can be used to discharge proof obligations (replacing the SMT solver), to simply preprocess obligations (complementing the SMT solver), for metaprogramming (i.e. the automatic generation of terms/programs), solving implicit arguments (which can be seen as a variant of metaprogramming), and more. We (somewhat loosely) refer to the setting of using Meta-F* for proofs as "tactics", and to the generation of terms/programs as "metaprogramming". (For experts: If you are familiar with other dependent languages such as Coq/Agda/Lean, you might think these are the same thing. This is not exactly so in F*, read ahead for details!) At its core, Meta-F* is a language for describing correct (i.e. sound) proof state transformations. A proof state is a set of "goals" that need to be solved by providing a solution or proof for them. For instance, a goal can be to prove `forall x. x + 1 == 1 + x`, or to construct a term of type `int -> int -> Tot int`. The language allows to break down, tweak, and solve these goals incrementally, while ensuring that the solutions are correct (valid proofs / well-typed terms). Meta-F* is in fact a subset of F* itself, and not a separate language (as Coq and Ltac are). Making good use of F*'s effect system, Meta-F* is embedded via an effect, named `Tac`, which enjoys all good properties of F* effects (specifications by WPs, call-by-value, direct-style syntax, type checking/inference, etc). So, let us present the most simple metaprogram: *) let idtac () : Tac unit = () (* We can also make use of all existing code in the PURE and DIV effects, since they can be lifted into Tac. *) let max_list (l1 l2 : list int) : Tac (list int) = if FStar.List.length l1 > FStar.List.length l2 then l1 else l2 let rec recursive_tac (n:nat) : Tac unit = if n = 0 then () else recursive_tac (n - 1) let rec looping_tac () : Tac unit = // Metaprograms need not terminate! looping_tac () (* Of course, these programs are not so interesting as they do not have any effect on the (implicit) proof state that they will manipulate. Interesting metaprograms can (and must!) be built from *primitives* (found in FStar.Tactic.Builtins) which can inspect and transform the proof state. For instance, the `dump` primitive will, when run, output the proof state in a pretty-printed format to the user, along with a user-defined string. *) (* Exercise: try `C-c` `C-s` `C-d` and query the type of `dump` *) (* We can use `run_tactic` to test it. The `run_tactic` "hook" takes a term of type `unit -> Tac unit` and runs it on a trivial empty proof state. *) let _ = run_tactic (fun () -> dump "Hello world!") (* You should see a "Hello world!" in the *fstar: goals* buffer of Emacs. *) (* Exercise: Try writing and running a metaprogram that will call `dump` to count down from 10 to 0. The `string_of_int` function from `Prims` might be useful. You can navigate the dumps in the *fstar: goals* buffer with PgUp and PgDown. *) // let rec countdown (n:nat) : Tac unit = ??? // // let _ = run_tactic (fun () -> countdown 10) (* Now that we have seen some trivial metaprograms, we can start writing more interesting ones that actually manipulate the proof state. We will begin by writing some tactics, i.e. metaprograms for proving, and using them to solve assertions within code (as is common in F* ). For instance, let us prove the following tautology with an explicit proof: *) let constr (a b : prop) : Lemma (a ==> b ==> b /\ a) = assert (a ==> b ==> b /\ a) by (let ha = implies_intro () in let hb = implies_intro () in split (); hyp (binding_to_namedv hb); hyp (binding_to_namedv ha); qed ()) (* Exercise: inspect the intermediate proof states to understand the proof. *) (* In the previous example, our proof was completed internally. However, F* allows for a mixed style of proof where we can leverage the SMT solver and use it when it works well, without having to fully spell out proofs or write complex tactics. For instance, consider the following fragment: *) open FStar.Mul // computes 1 + 2 + .. + n let rec triang (n : nat) : Tot nat = if n = 0 then 0 else n + triang (n - 1) (* Z3 needs a bit of help to prove this reliably... *) let triang_aux (n : pos) : Lemma (n + ((n-1) * n) / 2 == (n*(n+1)) / 2) = calc (==) { n + ((n-1) * n) / 2; == { FStar.Math.Lemmas.lemma_div_plus ((n-1)*n) 2 n } ((n-1) * n + n * 2) / 2; == { FStar.Math.Lemmas.swap_mul n (n-1); FStar.Math.Lemmas.distributivity_add_right n (n-1) 2 } (n * (n+1)) / 2; } let rec gauss (n : nat) : Lemma (triang n == (n * (n + 1)) / 2) = if n <> 0 then ( gauss (n-1); triang_aux n ) let prod_even (n : int) : Lemma ((n * (n + 1)) % 2 == 0) = (* z3 needs some help *) FStar.Math.Lemmas.lemma_mod_mul_distr_l n (n+1) 2 [@expect_failure] // this means the next definition is checked to *fail*! let test (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = //assert (triang a == (a * (a + 1) / 2)); //assert ((a * (a + 1)) % 2 == 0); () (* The test above fails since the SMT cannot find a proof for the . assertions We did not call the lemmas, and there are no patterns either. Exercise: check that both assertions indeed fail by changing them to `assume`s one at a time. Also make the proof work by using explicit lemma calls. Instead of doing either of those things, we can use tactics to guide the proof in a more local fashion, using each lemma where needed. *) let test_good (a : nat) : Lemma (triang a + triang a == a * (a + 1)) = assert (triang a == (a * (a + 1) / 2)) by (apply_lemma (`gauss); qed ()); assert ((a * (a + 1)) % 2 == 0) by (apply_lemma (`prod_even); qed ()); () (* In this case, the postcondition is being proved by the SMT solver, while each assertion is completely proven by the tactics. A couple of things are going here. When using the `assert..by` syntax, the assertion is turned into a proof state with a single goal, and the associated tactic is run over it. The backtick marks a "static quotation"; which we won't explain just yet. Exercise: print and inspect the proof state before and after applying the lemmas on each assertion. These proof states single out the chosen assertion from the full VC of the term, so one can write tactics for specific subobligations instead of dealing with an (usually unpleasant) VC. In this case, we use the `apply_lemma` primitive to solve each one. *) (* Metaprograms can also inspect the goals they are invoked on, which allows a single metaprogram to be useful in many different scenarios. We call this ability "reflection", and it is mostly provided by the FStar.Reflection module and the `inspect` tactic primitive. The FStar.Reflection.Formula library provides a convenient way to use it for the case of logical formulae. *) let _ = assert (True /\ True) by (let f = cur_formula () in match f with | And _ _ -> dump "It's a conjunction!" | _ -> fail "Uh-oh!") let _ = assert (False ==> True) by (let f = cur_formula () in match f with | Implies _ _ -> dump "It's an implication!" | _ -> fail "Uh-oh!") (* By using these inspection capabilities, we can construct more automated tactics. For instance, the following one that will split all conjunctions and introduce all implications: *) let rec blowup () : Tac unit = match cur_formula () with | And _ _ -> split (); iseq [blowup; blowup] | Implies _ _ -> let _ = implies_intro () in blowup () | _ -> () let test_blowup () = assert (True /\ (False ==> (True /\ False))) by (blowup (); dump "Final state") (* Note how the final state has 3 separate goals *) (* Besides using Meta-F* for proving, we can use it do metaprogramming. Using Meta-F* to construct terms follows the same principles as for proving: there is a set of goals that need to be solved, and primitives can be used to do so. The most simple way to solve a goal is to provide a term via `exact`. The way to invoke Meta-F* for term generation is `_ by` syntax shown below: *) let int42 : int = _ by (exact (`42)) (* Exercise: print the definition of `int42` *) (* Besides providing exact solutions, terms can be built algorithmically by calling the primitives. For instance, the `apply` primitive takes a term `f` and solves the current goal with an application of `f` to as many arguments as needed. *) let suc (x:int) = x + 1 let rec repeatN (n:nat) (t : unit -> Tac unit) : Tac unit = if n = 0 then () else (t (); repeatN (n-1) t) let ten : int = _ by (repeatN 10 (fun () -> apply (`suc)); exact (`0)) (* Exercise: print the definition of `ten` (it's not 10!) *) let rec sums (n:nat) : Tac unit = if n = 0 then exact (`1) else begin apply (`(+)); sums (n-1); sums (n-1) end let big : int = _ by (sums 4) (* Exercise: print the definition of `big` *) (* We can also use the reflection capabilities of F* to inspect the goals we need to solve and act accordingly. For instance, here is a metaprogram that constructs an addition function for any amount of arguments. *) let make_add () : Tac unit = let rec __run (bs:list binding) : Tac unit = match inspect (cur_goal ()) with | Tv_Arrow _ _ -> let b = intro () in __run (b::bs) | _ -> iter (fun b -> apply (`(+)); exact (binding_to_term b)) bs; exact (`0) in __run [] let add_2 : a:int -> b:int -> Tot int = _ by (make_add ()) let add_3 : a:int -> b:int -> c:int -> Tot int = _ by (make_add ()) let add_4 : a:int -> b:int -> c:int -> d:int -> Tot int = _ by (make_add ()) let _ = assert (add_2 3 4 == 7) let _ = assert (add_3 3 4 5 == 12) let _ = assert (add_4 3 4 5 6 == 18) (* Another usage of metaprogramming is resolving implicit arguments. Usually, in dependently typed languages, they are solved via unification, which works fine when there is a single correct solution implied by the well-typing of the term. *) let id (#a:Type) (x:a) = x let call_id () = id 5 #push-options "--print_implicits" (* Run C-c C-s C-p call_id here, the implicit argument was resolved to `int` since `5` has type `int`. *) #pop-options (* In other cases, there is perhaps no single correct solution via unification, but there might however be some strategy to solve them. Meta-F* provides a way to solve implicits via tactics, which allows programmers to write their own strategies. As a simple example, let's write a "diagonal" function whose second arguments is inferred to be the same as the first one, unless explicitly provided. *) let diag (x : int) (#[exact (quote x)] y : int) : tuple2 int int = (x, y) (* When the implicit is not given, this is simply a pair of an element with itself. Note how in this case, there is no information that fully defines the implicit from the types, and any integer is a correct solution. *) let _ = assert (diag 5 == (5, 5)) (* But one can override it *) let _ = assert (diag 5 #23 == (5, 23)) (* As a more interesting example, this is exactly how typeclasses are implemented in F*. See the type of add3 below , it contains an implicit argument of type `add a`, which is to be resolved by the `tcresolve` tactic. *) open FStar.Tactics.Typeclasses class add 'a = { sum : 'a -> 'a -> 'a } (* {|add a|} is just sugar for `(#[tcresolve ()] _ : add a)` *) let add3 (#a:Type) {|add a|} (x y z : a) : a = sum x (sum y z) (* Instances are just values with a `tcinstance` attribute, which is what `tcresolve` looks for. *) instance add_int : add int = { sum = (+) } (* Same as [@tcinstance] let add_int : add int = ... *) (* When called over a concrete type with an instance, such as `int`, the `tcresolve` tactic solves the implicit to the instance. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Intro.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims._assert", "Prims.eq2", "Prims.int", "Intro.add3", "Intro.add_int" ]
[]
false
false
false
true
false
let test_add =
assert (add3 1 2 3 == 6)
false
Pulse.Lib.Fixpoints.fst
Pulse.Lib.Fixpoints.fix_stt_ghost_1
val fix_stt_ghost_1 (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (ff : (x:a -> (y:a{y << x} -> stt_ghost (b y) (pre y) (post y)) -> stt_ghost (b x) (pre x) (post x))) : x:a -> stt_ghost (b x) (pre x) (post x)
val fix_stt_ghost_1 (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (ff : (x:a -> (y:a{y << x} -> stt_ghost (b y) (pre y) (post y)) -> stt_ghost (b x) (pre x) (post x))) : x:a -> stt_ghost (b x) (pre x) (post x)
let fix_stt_ghost_1 (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (ff : (x:a -> (y:a{y << x} -> stt_ghost (b y) (pre y) (post y)) -> stt_ghost (b x) (pre x) (post x))) : x:a -> stt_ghost (b x) (pre x) (post x) = fix_1 #a #(fun x -> stt_ghost (b x) (pre x) (post x)) ff
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.Fixpoints.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 60, "end_line": 34, "start_col": 0, "start_line": 31 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Lib.Fixpoints open Pulse.Lib.Core let rec fix_1 (#a : Type) (#b : a -> Type) (ff : (x:a -> (y:a{y << x} -> Tot (b y)) -> Tot (b x))) : x:a -> Tot (b x) = fun x -> ff x (fix_1 ff) let rec fix_ghost_1 (#a : Type0) (#b : a -> Type0) (ff : (x:a -> (y:a{y << x} -> GTot (b y)) -> GTot (b x))) : x:a -> GTot (b x) = fun x -> ff x (fix_ghost_1 ff)
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Core.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Lib.Fixpoints.fst" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ff: (x: a -> _: (y: a{y << x} -> Pulse.Lib.Core.stt_ghost (b y) (pre y) (post y)) -> Pulse.Lib.Core.stt_ghost (b x) (pre x) (post x)) -> x: a -> Pulse.Lib.Core.stt_ghost (b x) (pre x) (post x)
Prims.Tot
[ "total" ]
[]
[ "Pulse.Lib.Core.vprop", "Prims.precedes", "Pulse.Lib.Core.stt_ghost", "Pulse.Lib.Fixpoints.fix_1" ]
[]
false
false
false
false
false
let fix_stt_ghost_1 (#a: Type) (#b: (a -> Type)) (#pre: (a -> vprop)) (#post: (x: a -> b x -> vprop)) (ff: (x: a -> (y: a{y << x} -> stt_ghost (b y) (pre y) (post y)) -> stt_ghost (b x) (pre x) (post x))) (x: a) : stt_ghost (b x) (pre x) (post x) =
fix_1 #a #(fun x -> stt_ghost (b x) (pre x) (post x)) ff
false
Pulse.Lib.Fixpoints.fst
Pulse.Lib.Fixpoints.fix_1
val fix_1 (#a : Type) (#b : a -> Type) (ff : (x:a -> (y:a{y << x} -> Tot (b y)) -> Tot (b x))) : x:a -> Tot (b x)
val fix_1 (#a : Type) (#b : a -> Type) (ff : (x:a -> (y:a{y << x} -> Tot (b y)) -> Tot (b x))) : x:a -> Tot (b x)
let rec fix_1 (#a : Type) (#b : a -> Type) (ff : (x:a -> (y:a{y << x} -> Tot (b y)) -> Tot (b x))) : x:a -> Tot (b x) = fun x -> ff x (fix_1 ff)
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.Fixpoints.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 28, "end_line": 24, "start_col": 0, "start_line": 21 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Lib.Fixpoints open Pulse.Lib.Core
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Core.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Lib.Fixpoints.fst" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ff: (x: a -> _: (y: a{y << x} -> b y) -> b x) -> x: a -> b x
Prims.Tot
[ "total" ]
[]
[ "Prims.precedes", "Pulse.Lib.Fixpoints.fix_1" ]
[ "recursion" ]
false
false
false
false
false
let rec fix_1 (#a: Type) (#b: (a -> Type)) (ff: (x: a -> (y: a{y << x} -> Tot (b y)) -> Tot (b x))) (x: a) : Tot (b x) =
fun x -> ff x (fix_1 ff)
false
Pulse.Lib.Fixpoints.fst
Pulse.Lib.Fixpoints.fix_ghost_1
val fix_ghost_1 (#a : Type0) (#b : a -> Type0) (ff : (x:a -> (y:a{y << x} -> GTot (b y)) -> GTot (b x))) : x:a -> GTot (b x)
val fix_ghost_1 (#a : Type0) (#b : a -> Type0) (ff : (x:a -> (y:a{y << x} -> GTot (b y)) -> GTot (b x))) : x:a -> GTot (b x)
let rec fix_ghost_1 (#a : Type0) (#b : a -> Type0) (ff : (x:a -> (y:a{y << x} -> GTot (b y)) -> GTot (b x))) : x:a -> GTot (b x) = fun x -> ff x (fix_ghost_1 ff)
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.Fixpoints.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 34, "end_line": 29, "start_col": 0, "start_line": 26 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Lib.Fixpoints open Pulse.Lib.Core let rec fix_1 (#a : Type) (#b : a -> Type) (ff : (x:a -> (y:a{y << x} -> Tot (b y)) -> Tot (b x))) : x:a -> Tot (b x) = fun x -> ff x (fix_1 ff)
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Core.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Lib.Fixpoints.fst" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ff: (x: a -> _: (y: a{y << x} -> Prims.GTot (b y)) -> Prims.GTot (b x)) -> x: a -> Prims.GTot (b x)
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.precedes", "Pulse.Lib.Fixpoints.fix_ghost_1" ]
[ "recursion" ]
false
false
false
false
false
let rec fix_ghost_1 (#a: Type0) (#b: (a -> Type0)) (ff: (x: a -> (y: a{y << x} -> GTot (b y)) -> GTot (b x))) (x: a) : GTot (b x) =
fun x -> ff x (fix_ghost_1 ff)
false
Pulse.Lib.Fixpoints.fst
Pulse.Lib.Fixpoints.fix_stt_1_div
val fix_stt_1_div: #a: Type -> #b: (a -> Type) -> #pre: (a -> vprop) -> #post: (x: a -> b x -> vprop) -> kk: ((y: a -> unit -> Dv (stt (b y) (pre y) (post y))) -> x: a -> unit -> Dv (stt (b x) (pre x) (post x))) -> x: a -> unit -> Dv (stt (b x) (pre x) (post x))
val fix_stt_1_div: #a: Type -> #b: (a -> Type) -> #pre: (a -> vprop) -> #post: (x: a -> b x -> vprop) -> kk: ((y: a -> unit -> Dv (stt (b y) (pre y) (post y))) -> x: a -> unit -> Dv (stt (b x) (pre x) (post x))) -> x: a -> unit -> Dv (stt (b x) (pre x) (post x))
let fix_stt_1_div (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (kk : ((y:a -> unit -> Dv (stt (b y) (pre y) (post y))) -> x:a -> unit -> Dv (stt (b x) (pre x) (post x)))) : x:a -> unit -> Dv (stt (b x) (pre x) (post x)) = let rec f (x:a) (_:unit) : Dv (stt (b x) (pre x) (post x)) = kk (fun y () -> f y ()) x () in f
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.Fixpoints.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 4, "end_line": 49, "start_col": 0, "start_line": 38 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Lib.Fixpoints open Pulse.Lib.Core let rec fix_1 (#a : Type) (#b : a -> Type) (ff : (x:a -> (y:a{y << x} -> Tot (b y)) -> Tot (b x))) : x:a -> Tot (b x) = fun x -> ff x (fix_1 ff) let rec fix_ghost_1 (#a : Type0) (#b : a -> Type0) (ff : (x:a -> (y:a{y << x} -> GTot (b y)) -> GTot (b x))) : x:a -> GTot (b x) = fun x -> ff x (fix_ghost_1 ff) let fix_stt_ghost_1 (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (ff : (x:a -> (y:a{y << x} -> stt_ghost (b y) (pre y) (post y)) -> stt_ghost (b x) (pre x) (post x))) : x:a -> stt_ghost (b x) (pre x) (post x) = fix_1 #a #(fun x -> stt_ghost (b x) (pre x) (post x)) ff (* No termination check needed by dropping into STT *)
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Core.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Lib.Fixpoints.fst" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
kk: ( _: (y: a -> _: Prims.unit -> FStar.Pervasives.Dv (Pulse.Lib.Core.stt (b y) (pre y) (post y))) -> x: a -> _: Prims.unit -> FStar.Pervasives.Dv (Pulse.Lib.Core.stt (b x) (pre x) (post x))) -> x: a -> _: Prims.unit -> FStar.Pervasives.Dv (Pulse.Lib.Core.stt (b x) (pre x) (post x))
FStar.Pervasives.Dv
[]
[]
[ "Pulse.Lib.Core.vprop", "Prims.unit", "Pulse.Lib.Core.stt" ]
[]
false
true
false
false
false
let fix_stt_1_div (#a: Type) (#b: (a -> Type)) (#pre: (a -> vprop)) (#post: (x: a -> b x -> vprop)) (kk: ((y: a -> unit -> Dv (stt (b y) (pre y) (post y))) -> x: a -> unit -> Dv (stt (b x) (pre x) (post x)))) : x: a -> unit -> Dv (stt (b x) (pre x) (post x)) =
let rec f (x: a) (_: unit) : Dv (stt (b x) (pre x) (post x)) = kk (fun y () -> f y ()) x () in f
false
Pulse.Lib.Fixpoints.fst
Pulse.Lib.Fixpoints.fix_stt_1
val fix_stt_1 (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (ff : (y:a -> stt (b y) (pre y) (post y)) -> (x:a -> stt (b x) (pre x) (post x))) : x:a -> stt (b x) (pre x) (post x)
val fix_stt_1 (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (ff : (y:a -> stt (b y) (pre y) (post y)) -> (x:a -> stt (b x) (pre x) (post x))) : x:a -> stt (b x) (pre x) (post x)
let fix_stt_1 (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (kk : ((y:a -> stt (b y) (pre y) (post y)) -> x:a -> stt (b x) (pre x) (post x))) : x:a -> stt (b x) (pre x) (post x) = fun x -> hide_div (fix_stt_1_div #a #b #pre #post (fun f x () -> kk (fun y -> hide_div (f y)) x) x)
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.Fixpoints.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 94, "end_line": 59, "start_col": 0, "start_line": 51 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Lib.Fixpoints open Pulse.Lib.Core let rec fix_1 (#a : Type) (#b : a -> Type) (ff : (x:a -> (y:a{y << x} -> Tot (b y)) -> Tot (b x))) : x:a -> Tot (b x) = fun x -> ff x (fix_1 ff) let rec fix_ghost_1 (#a : Type0) (#b : a -> Type0) (ff : (x:a -> (y:a{y << x} -> GTot (b y)) -> GTot (b x))) : x:a -> GTot (b x) = fun x -> ff x (fix_ghost_1 ff) let fix_stt_ghost_1 (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (ff : (x:a -> (y:a{y << x} -> stt_ghost (b y) (pre y) (post y)) -> stt_ghost (b x) (pre x) (post x))) : x:a -> stt_ghost (b x) (pre x) (post x) = fix_1 #a #(fun x -> stt_ghost (b x) (pre x) (post x)) ff (* No termination check needed by dropping into STT *) let fix_stt_1_div (#a : Type) (#b : a -> Type) (#pre : a -> vprop) (#post : (x:a -> b x -> vprop)) (kk : ((y:a -> unit -> Dv (stt (b y) (pre y) (post y))) -> x:a -> unit -> Dv (stt (b x) (pre x) (post x)))) : x:a -> unit -> Dv (stt (b x) (pre x) (post x)) = let rec f (x:a) (_:unit) : Dv (stt (b x) (pre x) (post x)) = kk (fun y () -> f y ()) x () in f
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Core.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Lib.Fixpoints.fst" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ff: (_: (y: a -> Pulse.Lib.Core.stt (b y) (pre y) (post y)) -> x: a -> Pulse.Lib.Core.stt (b x) (pre x) (post x)) -> x: a -> Pulse.Lib.Core.stt (b x) (pre x) (post x)
Prims.Tot
[ "total" ]
[]
[ "Pulse.Lib.Core.vprop", "Pulse.Lib.Core.stt", "Pulse.Lib.Core.hide_div", "Pulse.Lib.Fixpoints.fix_stt_1_div", "Prims.unit" ]
[]
false
false
false
false
false
let fix_stt_1 (#a: Type) (#b: (a -> Type)) (#pre: (a -> vprop)) (#post: (x: a -> b x -> vprop)) (kk: ((y: a -> stt (b y) (pre y) (post y)) -> x: a -> stt (b x) (pre x) (post x))) (x: a) : stt (b x) (pre x) (post x) =
fun x -> hide_div (fix_stt_1_div #a #b #pre #post (fun f x () -> kk (fun y -> hide_div (f y)) x) x)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.g_is_null
val g_is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot bool
val g_is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot bool
let g_is_null #_ #_ #_ b = Null? b
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 94, "start_col": 0, "start_line": 94 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> Prims.GTot Prims.bool
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.uu___is_Null", "Prims.bool" ]
[]
false
false
false
false
false
let g_is_null #_ #_ #_ b =
Null? b
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.compatible_sub_preorder
val compatible_sub_preorder : len: Prims.nat -> rel: LowStar.Monotonic.Buffer.srel a -> i: Prims.nat -> j: Prims.nat{i <= j /\ j <= len} -> sub_rel: LowStar.Monotonic.Buffer.srel a -> Prims.logical
let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 36, "start_col": 0, "start_line": 34 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> rel: LowStar.Monotonic.Buffer.srel a -> i: Prims.nat -> j: Prims.nat{i <= j /\ j <= len} -> sub_rel: LowStar.Monotonic.Buffer.srel a -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "LowStar.Monotonic.Buffer.srel", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowStar.Monotonic.Buffer.compatible_subseq_preorder", "Prims.logical" ]
[]
false
false
false
false
true
let compatible_sub_preorder (#a: Type0) (len: nat) (rel: srel a) (i: nat) (j: nat{i <= j /\ j <= len}) (sub_rel: srel a) =
compatible_subseq_preorder len rel i j sub_rel
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.mnull
val mnull (#a:Type0) (#rrel #rel:srel a) :Tot (b:mbuffer a rrel rel {g_is_null b})
val mnull (#a:Type0) (#rrel #rel:srel a) :Tot (b:mbuffer a rrel rel {g_is_null b})
let mnull #_ #_ #_ = Null
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 96, "start_col": 0, "start_line": 96 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel {LowStar.Monotonic.Buffer.g_is_null b}
Prims.Tot
[ "total" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.Null", "LowStar.Monotonic.Buffer.mbuffer", "Prims.b2t", "LowStar.Monotonic.Buffer.g_is_null" ]
[]
false
false
false
false
false
let mnull #_ #_ #_ =
Null
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.lemma_seq_sub_compatilibity_is_reflexive
val lemma_seq_sub_compatilibity_is_reflexive (#a: Type0) (len: nat) (rel: srel a) : Lemma (compatible_sub_preorder len rel 0 len rel)
val lemma_seq_sub_compatilibity_is_reflexive (#a: Type0) (len: nat) (rel: srel a) : Lemma (compatible_sub_preorder len rel 0 len rel)
let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 91, "end_line": 44, "start_col": 0, "start_line": 41 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> rel: LowStar.Monotonic.Buffer.srel a -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.compatible_sub_preorder len rel 0 len rel)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "LowStar.Monotonic.Buffer.srel", "Prims._assert", "Prims.l_Forall", "FStar.Seq.Base.seq", "Prims.l_imp", "Prims.eq2", "FStar.Seq.Base.length", "FStar.Seq.Base.equal", "FStar.Seq.Properties.replace_subseq", "Prims.unit", "Prims.l_True", "Prims.squash", "LowStar.Monotonic.Buffer.compatible_sub_preorder", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_seq_sub_compatilibity_is_reflexive (#a: Type0) (len: nat) (rel: srel a) : Lemma (compatible_sub_preorder len rel 0 len rel) =
assert (forall (s1: Seq.seq a) (s2: Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.srel_to_lsrel
val srel_to_lsrel (#a: Type0) (len: nat) (pre: srel a) : P.preorder (Seq.lseq a len)
val srel_to_lsrel (#a: Type0) (len: nat) (pre: srel a) : P.preorder (Seq.lseq a len)
let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 94, "end_line": 26, "start_col": 8, "start_line": 26 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> pre: LowStar.Monotonic.Buffer.srel a -> FStar.Preorder.preorder (FStar.Seq.Properties.lseq a len)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "LowStar.Monotonic.Buffer.srel", "FStar.Preorder.preorder", "FStar.Seq.Properties.lseq" ]
[]
false
false
false
false
false
let srel_to_lsrel (#a: Type0) (len: nat) (pre: srel a) : P.preorder (Seq.lseq a len) =
pre
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.frameOf
val frameOf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Tot HS.rid
val frameOf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Tot HS.rid
let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 84, "end_line": 125, "start_col": 0, "start_line": 125 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.Monotonic.HyperHeap.rid
Prims.Tot
[ "total" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.uu___is_Null", "FStar.Monotonic.HyperHeap.root", "Prims.bool", "FStar.Monotonic.HyperStack.frameOf", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "FStar.Monotonic.HyperHeap.rid" ]
[]
false
false
false
false
false
let frameOf #_ #_ #_ b =
if Null? b then HS.root else HS.frameOf (Buffer?.content b)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.unused_in
val unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :GTot Type0
val unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :GTot Type0
let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 103, "start_col": 0, "start_line": 100 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_False", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.Monotonic.HyperStack.unused_in" ]
[]
false
false
false
false
true
let unused_in #_ #_ #_ b h =
match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.live
val live (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :GTot Type0
val live (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :GTot Type0
let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 117, "start_col": 0, "start_line": 112 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_True", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "Prims.l_and", "FStar.Monotonic.HyperStack.contains", "LowStar.Monotonic.Buffer.buffer_compatible" ]
[]
false
false
false
false
true
let live #_ #rrel #rel h b =
match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.buffer_compatible
val buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0
val buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0
let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 110, "start_col": 0, "start_line": 105 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer t rrel rel -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_True", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "LowStar.Monotonic.Buffer.compatible_sub_preorder" ]
[]
false
false
false
false
true
let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 =
match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.unused_in_equiv
val unused_in_equiv (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (unused_in b h <==> (HS.live_region h (frameOf b) ==> as_addr b `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (frameOf b))))
val unused_in_equiv (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (unused_in b h <==> (HS.live_region h (frameOf b) ==> as_addr b `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (frameOf b))))
let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else ()
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 95, "end_line": 130, "start_col": 0, "start_line": 129 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.unused_in b h <==> FStar.Monotonic.HyperStack.live_region h (LowStar.Monotonic.Buffer.frameOf b) ==> FStar.Monotonic.Heap.addr_unused_in (LowStar.Monotonic.Buffer.as_addr b) (FStar.Map.sel (FStar.Monotonic.HyperStack.get_hmap h) (LowStar.Monotonic.Buffer.frameOf b)) )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.g_is_null", "FStar.Monotonic.Heap.not_addr_unused_in_nullptr", "FStar.Map.sel", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap", "FStar.Monotonic.HyperHeap.root", "Prims.bool", "Prims.unit" ]
[]
false
false
true
false
false
let unused_in_equiv #_ #_ #_ b h =
if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.as_seq
val as_seq (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :GTot (Seq.seq a)
val as_seq (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :GTot (Seq.seq a)
let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 68, "end_line": 145, "start_col": 0, "start_line": 141 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> Prims.GTot (FStar.Seq.Base.seq a)
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Seq.Base.empty", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.Seq.Base.slice", "FStar.Monotonic.HyperStack.sel", "FStar.Seq.Base.seq" ]
[]
false
false
false
false
false
let as_seq #_ #_ #_ h b =
match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.len
val len (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot U32.t
val len (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot U32.t
let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 137, "start_col": 0, "start_line": 134 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> Prims.GTot FStar.UInt32.t
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.__uint_to_t", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal" ]
[]
false
false
false
false
false
let len #_ #_ #_ b =
match b with | Null -> 0ul | Buffer _ _ _ len -> len
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.as_addr
val as_addr (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot nat
val as_addr (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot nat
let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 83, "end_line": 127, "start_col": 0, "start_line": 127 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> Prims.GTot Prims.nat
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.g_is_null", "Prims.bool", "FStar.Monotonic.HyperStack.as_addr", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "Prims.nat" ]
[]
false
false
false
false
false
let as_addr #_ #_ #_ b =
if g_is_null b then 0 else HS.as_addr (Buffer?.content b)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.mgsub
val mgsub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) :Ghost (mbuffer a rrel sub_rel) (requires (U32.v i + U32.v len <= length b)) (ensures (fun _ -> True))
val mgsub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) :Ghost (mbuffer a rrel sub_rel) (requires (U32.v i + U32.v len <= length b)) (ensures (fun _ -> True))
let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 155, "start_col": 0, "start_line": 151 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sub_rel: LowStar.Monotonic.Buffer.srel a -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> Prims.Ghost (LowStar.Monotonic.Buffer.mbuffer a rrel sub_rel)
Prims.Ghost
[]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.Null", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "LowStar.Monotonic.Buffer.Buffer", "FStar.UInt32.add", "FStar.Ghost.hide" ]
[]
false
false
false
false
false
let mgsub #a #rrel #rel sub_rel b i len =
match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.s_lemma_equal_instances_implies_equal_types
val s_lemma_equal_instances_implies_equal_types: unit -> Lemma (forall (a: Type) (b: Type) (s1: Seq.seq a) (s2: Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b))} s1 === s2 ==> a == b)
val s_lemma_equal_instances_implies_equal_types: unit -> Lemma (forall (a: Type) (b: Type) (s1: Seq.seq a) (s2: Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b))} s1 === s2 ==> a == b)
let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types()
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 214, "start_col": 0, "start_line": 209 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (a: Type) (b: Type) (s1: FStar.Seq.Base.seq a) (s2: FStar.Seq.Base.seq b). {:pattern Prims.has_type s1 (FStar.Seq.Base.seq a); Prims.has_type s2 (FStar.Seq.Base.seq b)} s1 === s2 ==> a == b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Seq.Base.lemma_equal_instances_implies_equal_types", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "FStar.Seq.Base.seq", "Prims.l_imp", "Prims.op_Equals_Equals_Equals", "Prims.eq2", "Prims.has_type", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let s_lemma_equal_instances_implies_equal_types (_: unit) : Lemma (forall (a: Type) (b: Type) (s1: Seq.seq a) (s2: Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b))} s1 === s2 ==> a == b) =
Seq.lemma_equal_instances_implies_equal_types ()
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.lemma_seq_sub_compatibility_is_transitive
val lemma_seq_sub_compatibility_is_transitive (#a: Type0) (len: nat) (rel: srel a) (i1 j1: nat) (rel1: srel a) (i2 j2: nat) (rel2: srel a) : Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2))
val lemma_seq_sub_compatibility_is_transitive (#a: Type0) (len: nat) (rel: srel a) (i1 j1: nat) (rel1: srel a) (i2 j2: nat) (rel2: srel a) : Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2))
let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 83, "start_col": 0, "start_line": 51 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> rel: LowStar.Monotonic.Buffer.srel a -> i1: Prims.nat -> j1: Prims.nat -> rel1: LowStar.Monotonic.Buffer.srel a -> i2: Prims.nat -> j2: Prims.nat -> rel2: LowStar.Monotonic.Buffer.srel a -> FStar.Pervasives.Lemma (requires i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ LowStar.Monotonic.Buffer.compatible_sub_preorder len rel i1 j1 rel1 /\ LowStar.Monotonic.Buffer.compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2) (ensures LowStar.Monotonic.Buffer.compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "LowStar.Monotonic.Buffer.srel", "FStar.Classical.forall_intro_2", "FStar.Seq.Base.seq", "Prims.l_imp", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Classical.arrow_to_impl", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Properties.replace_subseq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.logical", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.length", "Prims.int", "Prims.op_Subtraction", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowStar.Monotonic.Buffer.compatible_sub_preorder" ]
[]
false
false
true
false
false
let lemma_seq_sub_compatibility_is_transitive (#a: Type0) (len: nat) (rel: srel a) (i1 j1: nat) (rel1: srel a) (i2 j2: nat) (rel2: srel a) : Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) =
let t1 (s1 s2: Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2: Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2: Seq.seq a) : Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2))) ) in let t1 (s s2: Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2: Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2: Seq.seq a) : Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) ); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.gsub_zero_length
val gsub_zero_length (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (compatible_sub b 0ul (len b) rel /\ b == mgsub rel b 0ul (len b))
val gsub_zero_length (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (compatible_sub b 0ul (len b) rel /\ b == mgsub rel b 0ul (len b))
let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 91, "end_line": 196, "start_col": 0, "start_line": 196 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.compatible_sub b 0ul (LowStar.Monotonic.Buffer.len b) rel /\ b == LowStar.Monotonic.Buffer.mgsub rel b 0ul (LowStar.Monotonic.Buffer.len b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.lemma_seq_sub_compatilibity_is_reflexive", "LowStar.Monotonic.Buffer.length", "Prims.unit" ]
[]
true
false
true
false
false
let gsub_zero_length #_ #_ #rel b =
lemma_seq_sub_compatilibity_is_reflexive (length b) rel
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.live_gsub
val live_gsub (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b /\ compatible_sub b i len sub_rel)) (ensures (live h b <==> (live h (mgsub sub_rel b i len) /\ (exists h0 . {:pattern (live h0 b)} live h0 b)))) [SMTPatOr [ [SMTPat (live h (mgsub sub_rel b i len))]; [SMTPat (live h b); SMTPat (mgsub sub_rel b i len);] ]]
val live_gsub (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b /\ compatible_sub b i len sub_rel)) (ensures (live h b <==> (live h (mgsub sub_rel b i len) /\ (exists h0 . {:pattern (live h0 b)} live h0 b)))) [SMTPatOr [ [SMTPat (live h (mgsub sub_rel b i len))]; [SMTPat (live h b); SMTPat (mgsub sub_rel b i len);] ]]
let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf ()
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 169, "start_col": 0, "start_line": 157 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> sub_rel: LowStar.Monotonic.Buffer.srel a -> FStar.Pervasives.Lemma (requires FStar.UInt32.v i + FStar.UInt32.v len <= LowStar.Monotonic.Buffer.length b /\ LowStar.Monotonic.Buffer.compatible_sub b i len sub_rel) (ensures LowStar.Monotonic.Buffer.live h b <==> LowStar.Monotonic.Buffer.live h (LowStar.Monotonic.Buffer.mgsub sub_rel b i len) /\ (exists (h0: FStar.Monotonic.HyperStack.mem). {:pattern LowStar.Monotonic.Buffer.live h0 b} LowStar.Monotonic.Buffer.live h0 b)) [ SMTPatOr [ [ SMTPat (LowStar.Monotonic.Buffer.live h (LowStar.Monotonic.Buffer.mgsub sub_rel b i len)) ]; [ SMTPat (LowStar.Monotonic.Buffer.live h b); SMTPat (LowStar.Monotonic.Buffer.mgsub sub_rel b i len) ] ] ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.Classical.move_requires", "Prims.unit", "LowStar.Monotonic.Buffer.buffer_compatible", "LowStar.Monotonic.Buffer.mgsub", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "LowStar.Monotonic.Buffer.lemma_seq_sub_compatibility_is_transitive" ]
[]
false
false
true
false
false
let live_gsub #_ #rrel #rel _ b i len sub_rel =
match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf ()
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer'
val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0
val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0
let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } )
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 259, "start_col": 0, "start_line": 259 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
region: FStar.Monotonic.HyperHeap.rid -> addr: Prims.nat -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "LowStar.Monotonic.Buffer.ubuffer_", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_offset", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_length", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_max_length" ]
[]
false
false
false
true
true
let ubuffer' region addr =
(x: ubuffer_{x.b_offset + x.b_length <= x.b_max_length})
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer
val ubuffer (region: HS.rid) (addr: nat) : Tot Type0
val ubuffer (region: HS.rid) (addr: nat) : Tot Type0
let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 86, "end_line": 261, "start_col": 0, "start_line": 261 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
region: FStar.Monotonic.HyperHeap.rid -> addr: Prims.nat -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "FStar.Ghost.erased", "LowStar.Monotonic.Buffer.ubuffer'" ]
[]
false
false
false
true
true
let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 =
G.erased (ubuffer' region addr)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_preserved
val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0
val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0
let ubuffer_preserved = ubuffer_preserved'
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 302, "start_col": 0, "start_line": 302 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.ubuffer r a -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.ubuffer_preserved'" ]
[]
false
false
false
false
true
let ubuffer_preserved =
ubuffer_preserved'
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.as_seq_gsub
val as_seq_gsub (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (as_seq h (mgsub sub_rel b i len) == Seq.slice (as_seq h b) (U32.v i) (U32.v i + U32.v len))) [SMTPat (as_seq h (mgsub sub_rel b i len))]
val as_seq_gsub (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (as_seq h (mgsub sub_rel b i len) == Seq.slice (as_seq h b) (U32.v i) (U32.v i + U32.v len))) [SMTPat (as_seq h (mgsub sub_rel b i len))]
let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 107, "end_line": 202, "start_col": 0, "start_line": 198 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> sub_rel: LowStar.Monotonic.Buffer.srel a -> FStar.Pervasives.Lemma (requires FStar.UInt32.v i + FStar.UInt32.v len <= LowStar.Monotonic.Buffer.length b) (ensures LowStar.Monotonic.Buffer.as_seq h (LowStar.Monotonic.Buffer.mgsub sub_rel b i len) == FStar.Seq.Base.slice (LowStar.Monotonic.Buffer.as_seq h b) (FStar.UInt32.v i) (FStar.UInt32.v i + FStar.UInt32.v len)) [SMTPat (LowStar.Monotonic.Buffer.as_seq h (LowStar.Monotonic.Buffer.mgsub sub_rel b i len))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.Seq.Properties.slice_slice", "FStar.Monotonic.HyperStack.sel", "Prims.unit" ]
[]
false
false
true
false
false
let as_seq_gsub #_ #_ #_ h b i len _ =
match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_includes0
val ubuffer_includes0 : larger: LowStar.Monotonic.Buffer.ubuffer r1 a1 -> smaller: LowStar.Monotonic.Buffer.ubuffer r2 a2 -> Prims.logical
let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 80, "end_line": 472, "start_col": 0, "start_line": 471 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
larger: LowStar.Monotonic.Buffer.ubuffer r1 a1 -> smaller: LowStar.Monotonic.Buffer.ubuffer r2 a2 -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "LowStar.Monotonic.Buffer.ubuffer", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.ubuffer_includes'", "FStar.Ghost.reveal", "LowStar.Monotonic.Buffer.ubuffer'", "Prims.logical" ]
[]
false
false
false
false
true
let ubuffer_includes0 (#r1 #r2: HS.rid) (#a1 #a2: nat) (larger: ubuffer r1 a1) (smaller: ubuffer r2 a2) =
r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_of_buffer
val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b))
val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b))
let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 419, "start_col": 0, "start_line": 419 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> LowStar.Monotonic.Buffer.ubuffer (LowStar.Monotonic.Buffer.frameOf b) (LowStar.Monotonic.Buffer.as_addr b)
Prims.Tot
[ "total" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.ubuffer_of_buffer'", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr" ]
[]
false
false
false
false
false
let ubuffer_of_buffer #_ #_ #_ b =
ubuffer_of_buffer' b
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_includes'
val ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0
val ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0
let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 468, "start_col": 0, "start_line": 464 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
larger: LowStar.Monotonic.Buffer.ubuffer_ -> smaller: LowStar.Monotonic.Buffer.ubuffer_ -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.ubuffer_", "Prims.l_and", "Prims.eq2", "Prims.bool", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_is_mm", "Prims.nat", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_max_length", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_offset", "Prims.op_Addition", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_length" ]
[]
false
false
false
false
true
let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 =
larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_disjoint0
val ubuffer_disjoint0 : b1: LowStar.Monotonic.Buffer.ubuffer r1 a1 -> b2: LowStar.Monotonic.Buffer.ubuffer r2 a2 -> Prims.logical
let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 522, "start_col": 0, "start_line": 520 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: LowStar.Monotonic.Buffer.ubuffer r1 a1 -> b2: LowStar.Monotonic.Buffer.ubuffer r2 a2 -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "LowStar.Monotonic.Buffer.ubuffer", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.ubuffer_disjoint'", "FStar.Ghost.reveal", "LowStar.Monotonic.Buffer.ubuffer'", "Prims.logical" ]
[]
false
false
false
false
true
let ubuffer_disjoint0 (#r1 #r2: HS.rid) (#a1 #a2: nat) (b1: ubuffer r1 a1) (b2: ubuffer r2 a2) =
r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.lemma_equal_instances_implies_equal_types
val lemma_equal_instances_implies_equal_types (a b: Type) (s1: Seq.seq a) (s2: Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b)
val lemma_equal_instances_implies_equal_types (a b: Type) (s1: Seq.seq a) (s2: Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b)
let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types ()
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 207, "start_col": 0, "start_line": 204 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq b -> FStar.Pervasives.Lemma (requires s1 === s2) (ensures a == b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Base.lemma_equal_instances_implies_equal_types", "Prims.unit", "Prims.op_Equals_Equals_Equals", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_equal_instances_implies_equal_types (a b: Type) (s1: Seq.seq a) (s2: Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) =
Seq.lemma_equal_instances_implies_equal_types ()
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.live_same_addresses_equal_types_and_preorders
val live_same_addresses_equal_types_and_preorders (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) ==> (a1 == a2 /\ rrel1 == rrel2))
val live_same_addresses_equal_types_and_preorders (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) ==> (a1 == a2 /\ rrel1 == rrel2))
let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 82, "end_line": 243, "start_col": 0, "start_line": 241 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: LowStar.Monotonic.Buffer.mbuffer a1 rrel1 rel1 -> b2: LowStar.Monotonic.Buffer.mbuffer a2 rrel2 rel2 -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.frameOf b1 == LowStar.Monotonic.Buffer.frameOf b2 /\ LowStar.Monotonic.Buffer.as_addr b1 == LowStar.Monotonic.Buffer.as_addr b2 /\ LowStar.Monotonic.Buffer.live h b1 /\ LowStar.Monotonic.Buffer.live h b2 /\ ~(LowStar.Monotonic.Buffer.g_is_null b1 /\ LowStar.Monotonic.Buffer.g_is_null b2) ==> a1 == a2 /\ rrel1 == rrel2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "FStar.Classical.move_requires", "Prims.l_and", "Prims.eq2", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "Prims.nat", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.live", "Prims.l_not", "Prims.b2t", "LowStar.Monotonic.Buffer.g_is_null", "FStar.Preorder.relation", "FStar.Seq.Base.seq", "Prims.l_or", "FStar.Preorder.preorder_rel", "LowStar.Monotonic.Buffer.live_same_addresses_equal_types_and_preorders'", "Prims.unit" ]
[]
false
false
true
false
false
let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h =
Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_includes
val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0
val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0
let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 476, "start_col": 0, "start_line": 476 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
larger: LowStar.Monotonic.Buffer.ubuffer r a -> smaller: LowStar.Monotonic.Buffer.ubuffer r a -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.ubuffer_includes0" ]
[]
false
false
false
false
true
let ubuffer_includes #r #a larger smaller =
ubuffer_includes0 larger smaller
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_disjoint'
val ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0
val ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0
let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset))
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 517, "start_col": 0, "start_line": 511 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x1: LowStar.Monotonic.Buffer.ubuffer_ -> x2: LowStar.Monotonic.Buffer.ubuffer_ -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.ubuffer_", "Prims.op_BarBar", "Prims.op_Equality", "Prims.int", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_length", "Prims.l_True", "Prims.bool", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_max_length", "Prims.l_or", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_offset" ]
[]
false
false
false
false
true
let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 =
if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset))
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_disjoint
val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0
val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0
let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 525, "start_col": 0, "start_line": 525 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: LowStar.Monotonic.Buffer.ubuffer r a -> b2: LowStar.Monotonic.Buffer.ubuffer r a -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.ubuffer_disjoint0" ]
[]
false
false
false
false
true
let ubuffer_disjoint #r #a b1 b2 =
ubuffer_disjoint0 b1 b2
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_0_preserves_mreferences
val modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0
val modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0
let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r)
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 75, "end_line": 558, "start_col": 0, "start_line": 556 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Prims.l_Forall", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "Prims.l_imp", "FStar.Monotonic.HyperStack.contains", "Prims.l_and", "Prims.eq2", "FStar.Monotonic.HyperStack.sel" ]
[]
false
false
false
false
true
let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 =
forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre). h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r)
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.live_same_addresses_equal_types_and_preorders'
val live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~(g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2)
val live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~(g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2)
let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1'
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 239, "start_col": 0, "start_line": 216 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: LowStar.Monotonic.Buffer.mbuffer a1 rrel1 rel1 -> b2: LowStar.Monotonic.Buffer.mbuffer a2 rrel2 rel2 -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.frameOf b1 == LowStar.Monotonic.Buffer.frameOf b2 /\ LowStar.Monotonic.Buffer.as_addr b1 == LowStar.Monotonic.Buffer.as_addr b2 /\ LowStar.Monotonic.Buffer.live h b1 /\ LowStar.Monotonic.Buffer.live h b2 /\ ~(LowStar.Monotonic.Buffer.g_is_null b1 /\ LowStar.Monotonic.Buffer.g_is_null b2)) (ensures a1 == a2 /\ rrel1 == rrel2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.lemma_equal_instances_implies_equal_types", "Prims.unit", "Prims._assert", "Prims.op_Equals_Equals_Equals", "FStar.Seq.Base.seq", "FStar.Pervasives.coerce_eq", "Prims.eq2", "LowStar.Monotonic.Buffer.as_seq", "FStar.Monotonic.Heap.lemma_distinct_addrs_distinct_mm", "FStar.Monotonic.Heap.lemma_distinct_addrs_distinct_preorders", "Prims.l_and", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "Prims.nat", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.live", "Prims.l_not", "Prims.b2t", "LowStar.Monotonic.Buffer.g_is_null", "Prims.squash", "FStar.Preorder.relation", "Prims.l_or", "FStar.Preorder.preorder_rel", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~(g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) =
Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1:Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1':Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1'
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_of_buffer'
val ubuffer_of_buffer' (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) : Tot (ubuffer (frameOf b) (as_addr b))
val ubuffer_of_buffer' (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) : Tot (ubuffer (frameOf b) (as_addr b))
let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); })
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 6, "end_line": 279, "start_col": 0, "start_line": 263 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> LowStar.Monotonic.Buffer.ubuffer (LowStar.Monotonic.Buffer.frameOf b) (LowStar.Monotonic.Buffer.as_addr b)
Prims.Tot
[ "total" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.uu___is_Null", "FStar.Ghost.hide", "LowStar.Monotonic.Buffer.ubuffer'", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.Mkubuffer_", "Prims.bool", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.__proj__Buffer__item__idx", "FStar.Ghost.reveal", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.__proj__Buffer__item__length", "FStar.Monotonic.HyperStack.is_mm", "FStar.Seq.Properties.lseq", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "LowStar.Monotonic.Buffer.ubuffer" ]
[]
false
false
false
false
false
let ubuffer_of_buffer' (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) : Tot (ubuffer (frameOf b) (as_addr b)) =
if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b) })
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_0_preserves_not_unused_in
val modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0
val modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0
let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) )
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 569, "start_col": 0, "start_line": 563 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Prims.l_Forall", "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "FStar.Monotonic.HyperStack.live_region", "FStar.Monotonic.Heap.addr_unused_in", "FStar.Map.sel", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap" ]
[]
false
false
false
false
true
let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 =
forall (r: HS.rid) (n: nat). (HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` ((HS.get_hmap h2) `Map.sel` r)) ==> (n `Heap.addr_unused_in` ((HS.get_hmap h1) `Map.sel` r))
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_0_preserves_regions
val modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0
val modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0
let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 561, "start_col": 0, "start_line": 560 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Prims.l_Forall", "FStar.Monotonic.HyperHeap.rid", "Prims.l_imp", "Prims.b2t", "FStar.Monotonic.HyperStack.live_region" ]
[]
false
false
false
false
true
let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 =
forall (r: HS.rid). HS.live_region h1 r ==> HS.live_region h2 r
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_0'
val modifies_0' (h1 h2: HS.mem) : GTot Type0
val modifies_0' (h1 h2: HS.mem) : GTot Type0
let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 574, "start_col": 0, "start_line": 571 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies_0_preserves_mreferences", "LowStar.Monotonic.Buffer.modifies_0_preserves_regions", "LowStar.Monotonic.Buffer.modifies_0_preserves_not_unused_in" ]
[]
false
false
false
false
true
let modifies_0' (h1 h2: HS.mem) : GTot Type0 =
modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.ubuffer_preserved'
val ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h': HS.mem) : GTot Type0
val ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h': HS.mem) : GTot Type0
let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) )))))
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 298, "start_col": 0, "start_line": 281 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); })
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.ubuffer r a -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "LowStar.Monotonic.Buffer.ubuffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_Forall", "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_imp", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.live", "Prims.b2t", "LowStar.Monotonic.Buffer.uu___is_Buffer", "Prims.bool", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "LowStar.Monotonic.Buffer.as_seq", "Prims.op_Subtraction", "Prims.logical", "LowStar.Monotonic.Buffer.ubuffer'" ]
[]
false
false
false
false
true
let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h': HS.mem) : GTot Type0 =
forall (t': Type0) (rrel: srel t') (rel: srel t') (b': mbuffer t' rrel rel). ((frameOf b' == r /\ as_addr b' == a) ==> ((live h b' ==> live h' b') /\ (((live h b' /\ live h' b' /\ Buffer? b') ==> (let { b_max_length = bmax ; b_offset = boff ; b_length = blen } = Ghost.reveal b in let Buffer max _ idx len = b' in (U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)))))))
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.gsub_gsub
val gsub_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:U32.t) (len1:U32.t) (sub_rel1:srel a) (i2: U32.t) (len2: U32.t) (sub_rel2:srel a) :Lemma (requires (U32.v i1 + U32.v len1 <= length b /\ U32.v i2 + U32.v len2 <= U32.v len1)) (ensures (((compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2) ==> compatible_sub b (U32.add i1 i2) len2 sub_rel2) /\ mgsub sub_rel2 (mgsub sub_rel1 b i1 len1) i2 len2 == mgsub sub_rel2 b (U32.add i1 i2) len2)) [SMTPat (mgsub sub_rel2 (mgsub sub_rel1 b i1 len1) i2 len2)]
val gsub_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:U32.t) (len1:U32.t) (sub_rel1:srel a) (i2: U32.t) (len2: U32.t) (sub_rel2:srel a) :Lemma (requires (U32.v i1 + U32.v len1 <= length b /\ U32.v i2 + U32.v len2 <= U32.v len1)) (ensures (((compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2) ==> compatible_sub b (U32.add i1 i2) len2 sub_rel2) /\ mgsub sub_rel2 (mgsub sub_rel1 b i1 len1) i2 len2 == mgsub sub_rel2 b (U32.add i1 i2) len2)) [SMTPat (mgsub sub_rel2 (mgsub sub_rel1 b i1 len1) i2 len2)]
let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf ()
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 190, "start_col": 0, "start_line": 182 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i1: FStar.UInt32.t -> len1: FStar.UInt32.t -> sub_rel1: LowStar.Monotonic.Buffer.srel a -> i2: FStar.UInt32.t -> len2: FStar.UInt32.t -> sub_rel2: LowStar.Monotonic.Buffer.srel a -> FStar.Pervasives.Lemma (requires FStar.UInt32.v i1 + FStar.UInt32.v len1 <= LowStar.Monotonic.Buffer.length b /\ FStar.UInt32.v i2 + FStar.UInt32.v len2 <= FStar.UInt32.v len1) (ensures (LowStar.Monotonic.Buffer.compatible_sub b i1 len1 sub_rel1 /\ LowStar.Monotonic.Buffer.compatible_sub (LowStar.Monotonic.Buffer.mgsub sub_rel1 b i1 len1 ) i2 len2 sub_rel2 ==> LowStar.Monotonic.Buffer.compatible_sub b (FStar.UInt32.add i1 i2) len2 sub_rel2) /\ LowStar.Monotonic.Buffer.mgsub sub_rel2 (LowStar.Monotonic.Buffer.mgsub sub_rel1 b i1 len1) i2 len2 == LowStar.Monotonic.Buffer.mgsub sub_rel2 b (FStar.UInt32.add i1 i2) len2) [ SMTPat (LowStar.Monotonic.Buffer.mgsub sub_rel2 (LowStar.Monotonic.Buffer.mgsub sub_rel1 b i1 len1) i2 len2) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_and", "LowStar.Monotonic.Buffer.compatible_sub", "LowStar.Monotonic.Buffer.mgsub", "FStar.UInt32.add", "Prims.l_Forall", "FStar.Seq.Base.seq", "Prims.l_imp", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "LowStar.Monotonic.Buffer.length", "FStar.Seq.Base.slice", "FStar.UInt32.v", "Prims.op_Addition", "Prims.int", "Prims.op_Subtraction", "FStar.Seq.Properties.replace_subseq", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "LowStar.Monotonic.Buffer.lemma_seq_sub_compatibility_is_transitive" ]
[]
false
false
true
false
false
let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 =
let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf ()
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.unused_in_ubuffer_preserved
val unused_in_ubuffer_preserved (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h h': HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h'))
val unused_in_ubuffer_preserved (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h h': HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h'))
let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h'
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 89, "end_line": 462, "start_col": 0, "start_line": 454 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.unused_in b h) (ensures LowStar.Monotonic.Buffer.ubuffer_preserved (LowStar.Monotonic.Buffer.ubuffer_of_buffer b) h h')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.addr_unused_in_ubuffer_preserved", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit", "LowStar.Monotonic.Buffer.unused_in_equiv", "LowStar.Monotonic.Buffer.null_unique", "LowStar.Monotonic.Buffer.live_null", "FStar.Classical.move_requires", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.unused_in", "Prims.l_False", "LowStar.Monotonic.Buffer.live_not_unused_in", "Prims.squash", "LowStar.Monotonic.Buffer.ubuffer_preserved", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let unused_in_ubuffer_preserved (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h h': HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) =
Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h'
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.same_mreference_ubuffer_preserved
val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2)
val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2)
let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') )
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 404, "start_col": 0, "start_line": 391 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.ubuffer r a -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> f: ( a': Type0 -> pre: FStar.Preorder.preorder a' -> r': FStar.Monotonic.HyperStack.mreference a' pre -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.contains h1 r' /\ r == FStar.Monotonic.HyperStack.frameOf r' /\ a == FStar.Monotonic.HyperStack.as_addr r') (ensures FStar.Monotonic.HyperStack.contains h2 r' /\ FStar.Monotonic.HyperStack.sel h1 r' == FStar.Monotonic.HyperStack.sel h2 r')) -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.ubuffer_preserved b h1 h2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "LowStar.Monotonic.Buffer.ubuffer", "FStar.Monotonic.HyperStack.mem", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "Prims.unit", "Prims.l_and", "FStar.Monotonic.HyperStack.contains", "Prims.eq2", "FStar.Monotonic.HyperStack.frameOf", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_GreaterThanOrEqual", "FStar.Monotonic.HyperStack.as_addr", "Prims.squash", "FStar.Monotonic.HyperStack.sel", "Prims.Nil", "FStar.Pervasives.pattern", "LowStar.Monotonic.Buffer.ubuffer_preserved_intro", "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.uu___is_Null", "Prims.bool", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content" ]
[]
false
false
true
false
false
let same_mreference_ubuffer_preserved #r #a b h1 h2 f =
ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b')) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b'))
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_0
val modifies_0 (h1 h2: HS.mem) : GTot Type0
val modifies_0 (h1 h2: HS.mem) : GTot Type0
let modifies_0 = modifies_0'
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 578, "start_col": 0, "start_line": 578 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.modifies_0'" ]
[]
false
false
false
false
true
let modifies_0 =
modifies_0'
false
Hacl.K256.PrecompTable.fst
Hacl.K256.PrecompTable.precomp_g_pow2_192_table_lemma_w4
val precomp_g_pow2_192_table_lemma_w4: unit -> Lemma (forall (i:nat{i < 16}). precomp_table_acc_inv g_pow2_192 16 precomp_g_pow2_192_table_lseq_w4 i)
val precomp_g_pow2_192_table_lemma_w4: unit -> Lemma (forall (i:nat{i < 16}). precomp_table_acc_inv g_pow2_192 16 precomp_g_pow2_192_table_lseq_w4 i)
let precomp_g_pow2_192_table_lemma_w4 () = normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_192 15); SPT.precomp_base_table_lemma mk_k256_precomp_base_table proj_g_pow2_192 16 precomp_g_pow2_64_table_lseq_w4; proj_g_pow2_192_lemma ()
{ "file_name": "code/k256/Hacl.K256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 272, "start_col": 0, "start_line": 268 }
module Hacl.K256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.K256.PrecompTable module S = Spec.K256 module SL = Spec.K256.Lemmas open Hacl.Impl.K256.Point include Hacl.Impl.K256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x46ec0aa60b0b98c37b29371784676ad967b7beb1a941ddb6fbbff95b44cb788b in [@inline_let] let rY : S.felem = 0x6b946755bbc6b677576579c990a1ccf14a710545251a1428fabbf02f40268e63 in [@inline_let] let rZ : S.felem = 0x3c114b2ac17c199ec9eba9f7cc64dc459ca2e53f5bbead2b4e618b318ffcc00e in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_k256_concrete_ops S.g 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops S.g 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64); let rX : S.felem = 0x46ec0aa60b0b98c37b29371784676ad967b7beb1a941ddb6fbbff95b44cb788b in let rY : S.felem = 0x6b946755bbc6b677576579c990a1ccf14a710545251a1428fabbf02f40268e63 in let rZ : S.felem = 0x3c114b2ac17c199ec9eba9f7cc64dc459ca2e53f5bbead2b4e618b318ffcc00e in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x98299efbc8e459915404ae015b48cac3b929e0158665f3c7fa5489fbd25c4297 in [@inline_let] let rY : S.felem = 0xf1e5cbc9579e7d11a31681e947c2959ae0298a006d1c06ab1ad93d6716ea50cc in [@inline_let] let rZ : S.felem = 0x5c53ffe15001674a2eacb60c9327a8b0ddbd93a0fa6d90309de6cc124133938b in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x98299efbc8e459915404ae015b48cac3b929e0158665f3c7fa5489fbd25c4297 in let rY : S.felem = 0xf1e5cbc9579e7d11a31681e947c2959ae0298a006d1c06ab1ad93d6716ea50cc in let rZ : S.felem = 0x5c53ffe15001674a2eacb60c9327a8b0ddbd93a0fa6d90309de6cc124133938b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xbd382b67d20492b1480ca58a6d7d617ba413a9bc7c2f1cff51301ef960fb245c in [@inline_let] let rY : S.felem = 0x0b232afcf692673aa714357c524c07867a64ea3b9dfab53f0e74622159e86b0d in [@inline_let] let rZ : S.felem = 0x028a1380449aede5df8219420b458d464a6a4773ac91e8305237878cef1cffa6 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xbd382b67d20492b1480ca58a6d7d617ba413a9bc7c2f1cff51301ef960fb245c in let rY : S.felem = 0x0b232afcf692673aa714357c524c07867a64ea3b9dfab53f0e74622159e86b0d in let rZ : S.felem = 0x028a1380449aede5df8219420b458d464a6a4773ac91e8305237878cef1cffa6 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 15 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list let proj_g_pow2_128_lseq : LSeq.lseq uint64 15 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list let proj_g_pow2_192_lseq : LSeq.lseq uint64 15 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); Seq.seq_of_list proj_g_pow2_192_list val proj_g_pow2_64_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff) let proj_g_pow2_64_lemma () = lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_64_lemma S.mk_k256_concrete_ops S.g val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff) let proj_g_pow2_128_lemma () = lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_k256_concrete_ops S.g val proj_g_pow2_192_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff) let proj_g_pow2_192_lemma () = lemma_proj_g_pow2_192_eval (); lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_192_lemma S.mk_k256_concrete_ops S.g let proj_g_pow2_64_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); proj_g_pow2_64_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_64 let proj_g_pow2_128_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); proj_g_pow2_128_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_128 let proj_g_pow2_192_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); proj_g_pow2_192_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_192 let mk_proj_g_pow2_64 () = createL proj_g_pow2_64_list let mk_proj_g_pow2_128 () = createL proj_g_pow2_128_list let mk_proj_g_pow2_192 () = createL proj_g_pow2_192_list //---------------- /// window size = 4; precomputed table = [[0]G, [1]G, ..., [15]G] inline_for_extraction noextract let precomp_basepoint_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} = normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15) let precomp_basepoint_table_lseq_w4 : LSeq.lseq uint64 240 = normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15); Seq.seq_of_list precomp_basepoint_table_list_w4 let precomp_basepoint_table_lemma_w4 () = normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15); SPT.precomp_base_table_lemma mk_k256_precomp_base_table S.g 16 precomp_basepoint_table_lseq_w4 let precomp_basepoint_table_w4: x:glbuffer uint64 240ul{witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} = createL_global precomp_basepoint_table_list_w4 /// window size = 4; precomputed table = [[0]([pow2 64]G), [1]([pow2 64]G), ..., [15]([pow2 64]G)] inline_for_extraction noextract let precomp_g_pow2_64_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} = normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15) let precomp_g_pow2_64_table_lseq_w4 : LSeq.lseq uint64 240 = normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15); Seq.seq_of_list precomp_g_pow2_64_table_list_w4 let precomp_g_pow2_64_table_lemma_w4 () = normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15); SPT.precomp_base_table_lemma mk_k256_precomp_base_table proj_g_pow2_64 16 precomp_g_pow2_64_table_lseq_w4; proj_g_pow2_64_lemma () let precomp_g_pow2_64_table_w4: x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_64_table_lseq_w4 /\ recallable x} = createL_global precomp_g_pow2_64_table_list_w4 /// window size = 4; precomputed table = [[0]([pow2 128]G), [1]([pow2 128]G),...,[15]([pow2 128]G)] inline_for_extraction noextract let precomp_g_pow2_128_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} = normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15) let precomp_g_pow2_128_table_lseq_w4 : LSeq.lseq uint64 240 = normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15); Seq.seq_of_list precomp_g_pow2_128_table_list_w4 let precomp_g_pow2_128_table_lemma_w4 () = normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15); SPT.precomp_base_table_lemma mk_k256_precomp_base_table proj_g_pow2_128 16 precomp_g_pow2_64_table_lseq_w4; proj_g_pow2_128_lemma () let precomp_g_pow2_128_table_w4: x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_128_table_lseq_w4 /\ recallable x} = createL_global precomp_g_pow2_128_table_list_w4 /// window size = 4; precomputed table = [[0]([pow2 192]G), [1]([pow2 192]G),...,[15]([pow2 192]G)] inline_for_extraction noextract let precomp_g_pow2_192_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} = normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_192 15) let precomp_g_pow2_192_table_lseq_w4 : LSeq.lseq uint64 240 = normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_192 15); Seq.seq_of_list precomp_g_pow2_192_table_list_w4
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.K256.PrecompTable.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.K256.PrecompTable.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat{i < 16}). Hacl.K256.PrecompTable.precomp_table_acc_inv Hacl.K256.PrecompTable.g_pow2_192 16 Hacl.K256.PrecompTable.precomp_g_pow2_192_table_lseq_w4 i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "Hacl.K256.PrecompTable.proj_g_pow2_192_lemma", "Hacl.Spec.PrecompBaseTable.precomp_base_table_lemma", "Spec.K256.PointOps.proj_point", "Lib.IntTypes.U64", "FStar.UInt32.uint_to_t", "Hacl.K256.PrecompTable.mk_k256_precomp_base_table", "Hacl.K256.PrecompTable.proj_g_pow2_192", "Hacl.K256.PrecompTable.precomp_g_pow2_64_table_lseq_w4", "FStar.Pervasives.normalize_term_spec", "Prims.list", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "FStar.Mul.op_Star", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.PrecompBaseTable.precomp_base_table_list" ]
[]
true
false
true
false
false
let precomp_g_pow2_192_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_192 15); SPT.precomp_base_table_lemma mk_k256_precomp_base_table proj_g_pow2_192 16 precomp_g_pow2_64_table_lseq_w4; proj_g_pow2_192_lemma ()
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_1
val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0
val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0
let modifies_1 = modifies_1'
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 646, "start_col": 0, "start_line": 646 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.modifies_1'" ]
[]
false
false
false
false
true
let modifies_1 =
modifies_1'
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_1_preserves_ubuffers
val modifies_1_preserves_ubuffers (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0
val modifies_1_preserves_ubuffers (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0
let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 132, "end_line": 625, "start_col": 0, "start_line": 622 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r')
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_Forall", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "Prims.l_imp", "LowStar.Monotonic.Buffer.ubuffer_disjoint", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "LowStar.Monotonic.Buffer.ubuffer_preserved" ]
[]
false
false
false
false
true
let modifies_1_preserves_ubuffers (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0 =
forall (b': ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_1_preserves_livenesses
val modifies_1_preserves_livenesses (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0
val modifies_1_preserves_livenesses (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0
let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r'
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 119, "end_line": 634, "start_col": 0, "start_line": 632 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_Forall", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "Prims.l_imp", "FStar.Monotonic.HyperStack.contains" ]
[]
false
false
false
false
true
let modifies_1_preserves_livenesses (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0 =
forall (a': Type) (pre: Preorder.preorder a') (r': HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r'
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_1'
val modifies_1' (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0
val modifies_1' (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0
let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 642, "start_col": 0, "start_line": 636 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies_0_preserves_regions", "LowStar.Monotonic.Buffer.modifies_1_preserves_mreferences", "LowStar.Monotonic.Buffer.modifies_1_preserves_livenesses", "LowStar.Monotonic.Buffer.modifies_0_preserves_not_unused_in", "LowStar.Monotonic.Buffer.modifies_1_preserves_ubuffers" ]
[]
false
false
false
false
true
let modifies_1' (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (h1 h2: HS.mem) : GTot Type0 =
modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2
false
LowStar.Monotonic.Buffer.fst
LowStar.Monotonic.Buffer.modifies_1_from_to_preserves_ubuffers
val modifies_1_from_to_preserves_ubuffers (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (from to: U32.t) (h1 h2: HS.mem) : GTot Type0
val modifies_1_from_to_preserves_ubuffers (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (from to: U32.t) (h1 h2: HS.mem) : GTot Type0
let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 148, "end_line": 630, "start_col": 0, "start_line": 627 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> from: FStar.UInt32.t -> to: FStar.UInt32.t -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Prims.l_Forall", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "Prims.l_imp", "LowStar.Monotonic.Buffer.ubuffer_disjoint", "LowStar.Monotonic.Buffer.ubuffer_of_buffer_from_to", "LowStar.Monotonic.Buffer.ubuffer_preserved" ]
[]
false
false
false
false
true
let modifies_1_from_to_preserves_ubuffers (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (from to: U32.t) (h1 h2: HS.mem) : GTot Type0 =
forall (b': ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2
false