file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Vale.X64.Memory.fsti
Vale.X64.Memory.vuint32
val vuint32 : Vale.Arch.HeapTypes_s.base_typ
let vuint32 = TUInt32
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 69, "start_col": 7, "start_line": 69 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Vale.Arch.HeapTypes_s.base_typ
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.TUInt32" ]
[]
false
false
false
true
false
let vuint32 =
TUInt32
false
Vale.X64.Memory.fsti
Vale.X64.Memory.scale2
val scale2 (index: int) : int
val scale2 (index: int) : int
let scale2 (index:int) : int = scale_by 2 index
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 42, "start_col": 7, "start_line": 42 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
index: Prims.int -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Vale.X64.Memory.scale_by" ]
[]
false
false
false
true
false
let scale2 (index: int) : int =
scale_by 2 index
false
Vale.X64.Memory.fsti
Vale.X64.Memory.buffer32
val buffer32 : Type0
let buffer32 = buffer vuint32
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 75, "start_col": 0, "start_line": 75 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer", "Vale.X64.Memory.vuint32" ]
[]
false
false
false
true
true
let buffer32 =
buffer vuint32
false
Vale.X64.Memory.fsti
Vale.X64.Memory.vuint64
val vuint64 : Vale.Arch.HeapTypes_s.base_typ
let vuint64 = TUInt64
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 70, "start_col": 7, "start_line": 70 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Vale.Arch.HeapTypes_s.base_typ
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
false
false
false
true
false
let vuint64 =
TUInt64
false
Vale.X64.Memory.fsti
Vale.X64.Memory.vuint128
val vuint128 : Vale.Arch.HeapTypes_s.base_typ
let vuint128 = TUInt128
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 71, "start_col": 7, "start_line": 71 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Vale.Arch.HeapTypes_s.base_typ
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.TUInt128" ]
[]
false
false
false
true
false
let vuint128 =
TUInt128
false
Vale.X64.Memory.fsti
Vale.X64.Memory.buffer8
val buffer8 : Type0
let buffer8 = buffer vuint8
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 73, "start_col": 0, "start_line": 73 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer", "Vale.X64.Memory.vuint8" ]
[]
false
false
false
true
true
let buffer8 =
buffer vuint8
false
Vale.X64.Memory.fsti
Vale.X64.Memory.buffer64
val buffer64 : Type0
let buffer64 = buffer vuint64
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 76, "start_col": 0, "start_line": 76 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer", "Vale.X64.Memory.vuint64" ]
[]
false
false
false
true
true
let buffer64 =
buffer vuint64
false
Vale.X64.Memory.fsti
Vale.X64.Memory.buffer16
val buffer16 : Type0
let buffer16 = buffer vuint16
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 74, "start_col": 0, "start_line": 74 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer", "Vale.X64.Memory.vuint16" ]
[]
false
false
false
true
true
let buffer16 =
buffer vuint16
false
Vale.X64.Memory.fsti
Vale.X64.Memory.valid_taint_buf64
val valid_taint_buf64 (b: buffer64) (h: vale_heap) (mt: memtaint) (tn: taint) : GTot prop0
val valid_taint_buf64 (b: buffer64) (h: vale_heap) (mt: memtaint) (tn: taint) : GTot prop0
let valid_taint_buf64 (b:buffer64) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 311, "start_col": 0, "start_line": 310 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32 let buffer64 = buffer vuint64 let buffer128 = buffer vuint128 val buffer_addr (#t:base_typ) (b:buffer t) (h:vale_heap) : GTot int unfold let locs_disjoint (ls:list loc) : prop0 = BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls) // equivalent to modifies; used to prove modifies clauses via modifies_goal_directed_trans val modifies_goal_directed (s:loc) (h1 h2:vale_heap) : GTot prop0 val lemma_modifies_goal_directed (s:loc) (h1 h2:vale_heap) : Lemma (modifies s h1 h2 == modifies_goal_directed s h1 h2) val buffer_length_buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : Lemma (requires True) (ensures (Seq.length (buffer_as_seq h b) == buffer_length b)) [SMTPat (Seq.length (buffer_as_seq h b))] val modifies_buffer_elim (#t1:base_typ) (b:buffer t1) (p:loc) (h h':vale_heap) : Lemma (requires loc_disjoint (loc_buffer b) p /\ buffer_readable h b /\ modifies p h h' ) (ensures buffer_readable h b /\ buffer_readable h' b /\ buffer_as_seq h b == buffer_as_seq h' b ) [SMTPatOr [ [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)]; [SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b)]; ]] val modifies_buffer_addr (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' ) (ensures buffer_addr b h == buffer_addr b h') [SMTPat (modifies p h h'); SMTPat (buffer_addr b h')] val modifies_buffer_readable (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' /\ buffer_readable h b ) (ensures buffer_readable h' b) [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)] val loc_disjoint_none_r (s:loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2:loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_includes_refl (s:loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3:loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2:loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s:loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) // for efficiency, no SMT pattern val loc_includes_union_l_buffer (#t:base_typ) (s1 s2:loc) (b:buffer t) : Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] val loc_includes_none (s:loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val modifies_refl (s:loc) (h:vale_heap) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_goal_directed_refl (s:loc) (h:vale_heap) : Lemma (modifies_goal_directed s h h) [SMTPat (modifies_goal_directed s h h)] val modifies_loc_includes (s1:loc) (h h':vale_heap) (s2:loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) // for efficiency, no SMT pattern val modifies_trans (s12:loc) (h1 h2:vale_heap) (s23:loc) (h3:vale_heap) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) // for efficiency, no SMT pattern // Prove (modifies s13 h1 h3). // To avoid unnecessary matches, don't introduce any other modifies terms. // Introduce modifies_goal_directed instead. val modifies_goal_directed_trans (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies s13 h1 h3)] val modifies_goal_directed_trans2 (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies_goal_directed s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies_goal_directed s13 h1 h3)] val buffer_read (#t:base_typ) (b:buffer t) (i:int) (h:vale_heap) : Ghost (base_typ_as_vale_type t) (requires True) (ensures (fun v -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> v == Seq.index (buffer_as_seq h b) i )) val buffer_write (#t:base_typ) (b:buffer t) (i:int) (v:base_typ_as_vale_type t) (h:vale_heap) : Ghost vale_heap (requires buffer_readable h b /\ buffer_writeable b) (ensures (fun h' -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> modifies (loc_buffer b) h h' /\ get_heaplet_id h' == get_heaplet_id h /\ buffer_readable h' b /\ buffer_as_seq h' b == Seq.upd (buffer_as_seq h b) i v )) val valid_mem64 (ptr:int) (h:vale_heap) : GTot bool // is there a 64-bit word at address ptr? val writeable_mem64 (ptr:int) (h:vale_heap) : GTot bool // can we write a 64-bit word at address ptr? val load_mem64 (ptr:int) (h:vale_heap) : GTot nat64 // the 64-bit word at ptr (if valid_mem64 holds) val store_mem64 (ptr:int) (v:nat64) (h:vale_heap) : GTot vale_heap val valid_mem128 (ptr:int) (h:vale_heap) : GTot bool val writeable_mem128 (ptr:int) (h:vale_heap) : GTot bool val load_mem128 (ptr:int) (h:vale_heap) : GTot quad32 val store_mem128 (ptr:int) (v:quad32) (h:vale_heap) : GTot vale_heap val lemma_valid_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem64 (buffer_addr b h + scale8 i) h ) val lemma_writeable_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem64 (buffer_addr b h + scale8 i) h ) val lemma_load_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem64 (buffer_addr b h + scale8 i) h == buffer_read b i h ) val lemma_store_mem64 (b:buffer64) (i:nat) (v:nat64) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem64 (buffer_addr b h + scale8 i) v h == buffer_write b i v h ) val lemma_valid_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem128 (buffer_addr b h + scale16 i) h ) val lemma_writeable_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem128 (buffer_addr b h + scale16 i) h ) val lemma_load_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem128 (buffer_addr b h + scale16 i) h == buffer_read b i h ) val lemma_store_mem128 (b:buffer128) (i:nat) (v:quad32) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem128 (buffer_addr b h + scale16 i) v h == buffer_write b i v h ) //Memtaint related functions type memtaint = memTaint_t
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.X64.Memory.buffer64 -> h: Vale.X64.Memory.vale_heap -> mt: Vale.X64.Memory.memtaint -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.X64.Memory.buffer64", "Vale.X64.Memory.vale_heap", "Vale.X64.Memory.memtaint", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Memory.valid_taint_buf", "Vale.X64.Memory.vuint64", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let valid_taint_buf64 (b: buffer64) (h: vale_heap) (mt: memtaint) (tn: taint) : GTot prop0 =
valid_taint_buf b h mt tn
false
Vale.X64.Memory.fsti
Vale.X64.Memory.locs_disjoint
val locs_disjoint (ls: list loc) : prop0
val locs_disjoint (ls: list loc) : prop0
let locs_disjoint (ls:list loc) : prop0 = BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls)
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 91, "end_line": 83, "start_col": 0, "start_line": 82 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32 let buffer64 = buffer vuint64 let buffer128 = buffer vuint128 val buffer_addr (#t:base_typ) (b:buffer t) (h:vale_heap) : GTot int
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ls: Prims.list Vale.X64.Memory.loc -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Vale.X64.Memory.loc", "FStar.BigOps.normal", "FStar.BigOps.pairwise_and'", "Prims.l_and", "Vale.X64.Memory.loc_disjoint", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let locs_disjoint (ls: list loc) : prop0 =
BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls)
false
Vale.X64.Memory.fsti
Vale.X64.Memory.buffer128
val buffer128 : Type0
let buffer128 = buffer vuint128
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 77, "start_col": 0, "start_line": 77 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer", "Vale.X64.Memory.vuint128" ]
[]
false
false
false
true
true
let buffer128 =
buffer vuint128
false
Vale.X64.Memory.fsti
Vale.X64.Memory.buffer_info_disjoint
val buffer_info_disjoint : bi1: Vale.Arch.HeapImpl.buffer_info -> bi2: Vale.Arch.HeapImpl.buffer_info -> Prims.logical
let buffer_info_disjoint (bi1 bi2:buffer_info) = bi1.bi_typ =!= bi2.bi_typ \/ bi1.bi_heaplet =!= bi2.bi_heaplet ==> loc_disjoint (loc_buffer bi1.bi_buffer) (loc_buffer bi2.bi_buffer)
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 374, "start_col": 0, "start_line": 372 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32 let buffer64 = buffer vuint64 let buffer128 = buffer vuint128 val buffer_addr (#t:base_typ) (b:buffer t) (h:vale_heap) : GTot int unfold let locs_disjoint (ls:list loc) : prop0 = BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls) // equivalent to modifies; used to prove modifies clauses via modifies_goal_directed_trans val modifies_goal_directed (s:loc) (h1 h2:vale_heap) : GTot prop0 val lemma_modifies_goal_directed (s:loc) (h1 h2:vale_heap) : Lemma (modifies s h1 h2 == modifies_goal_directed s h1 h2) val buffer_length_buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : Lemma (requires True) (ensures (Seq.length (buffer_as_seq h b) == buffer_length b)) [SMTPat (Seq.length (buffer_as_seq h b))] val modifies_buffer_elim (#t1:base_typ) (b:buffer t1) (p:loc) (h h':vale_heap) : Lemma (requires loc_disjoint (loc_buffer b) p /\ buffer_readable h b /\ modifies p h h' ) (ensures buffer_readable h b /\ buffer_readable h' b /\ buffer_as_seq h b == buffer_as_seq h' b ) [SMTPatOr [ [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)]; [SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b)]; ]] val modifies_buffer_addr (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' ) (ensures buffer_addr b h == buffer_addr b h') [SMTPat (modifies p h h'); SMTPat (buffer_addr b h')] val modifies_buffer_readable (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' /\ buffer_readable h b ) (ensures buffer_readable h' b) [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)] val loc_disjoint_none_r (s:loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2:loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_includes_refl (s:loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3:loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2:loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s:loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) // for efficiency, no SMT pattern val loc_includes_union_l_buffer (#t:base_typ) (s1 s2:loc) (b:buffer t) : Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] val loc_includes_none (s:loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val modifies_refl (s:loc) (h:vale_heap) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_goal_directed_refl (s:loc) (h:vale_heap) : Lemma (modifies_goal_directed s h h) [SMTPat (modifies_goal_directed s h h)] val modifies_loc_includes (s1:loc) (h h':vale_heap) (s2:loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) // for efficiency, no SMT pattern val modifies_trans (s12:loc) (h1 h2:vale_heap) (s23:loc) (h3:vale_heap) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) // for efficiency, no SMT pattern // Prove (modifies s13 h1 h3). // To avoid unnecessary matches, don't introduce any other modifies terms. // Introduce modifies_goal_directed instead. val modifies_goal_directed_trans (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies s13 h1 h3)] val modifies_goal_directed_trans2 (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies_goal_directed s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies_goal_directed s13 h1 h3)] val buffer_read (#t:base_typ) (b:buffer t) (i:int) (h:vale_heap) : Ghost (base_typ_as_vale_type t) (requires True) (ensures (fun v -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> v == Seq.index (buffer_as_seq h b) i )) val buffer_write (#t:base_typ) (b:buffer t) (i:int) (v:base_typ_as_vale_type t) (h:vale_heap) : Ghost vale_heap (requires buffer_readable h b /\ buffer_writeable b) (ensures (fun h' -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> modifies (loc_buffer b) h h' /\ get_heaplet_id h' == get_heaplet_id h /\ buffer_readable h' b /\ buffer_as_seq h' b == Seq.upd (buffer_as_seq h b) i v )) val valid_mem64 (ptr:int) (h:vale_heap) : GTot bool // is there a 64-bit word at address ptr? val writeable_mem64 (ptr:int) (h:vale_heap) : GTot bool // can we write a 64-bit word at address ptr? val load_mem64 (ptr:int) (h:vale_heap) : GTot nat64 // the 64-bit word at ptr (if valid_mem64 holds) val store_mem64 (ptr:int) (v:nat64) (h:vale_heap) : GTot vale_heap val valid_mem128 (ptr:int) (h:vale_heap) : GTot bool val writeable_mem128 (ptr:int) (h:vale_heap) : GTot bool val load_mem128 (ptr:int) (h:vale_heap) : GTot quad32 val store_mem128 (ptr:int) (v:quad32) (h:vale_heap) : GTot vale_heap val lemma_valid_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem64 (buffer_addr b h + scale8 i) h ) val lemma_writeable_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem64 (buffer_addr b h + scale8 i) h ) val lemma_load_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem64 (buffer_addr b h + scale8 i) h == buffer_read b i h ) val lemma_store_mem64 (b:buffer64) (i:nat) (v:nat64) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem64 (buffer_addr b h + scale8 i) v h == buffer_write b i v h ) val lemma_valid_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem128 (buffer_addr b h + scale16 i) h ) val lemma_writeable_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem128 (buffer_addr b h + scale16 i) h ) val lemma_load_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem128 (buffer_addr b h + scale16 i) h == buffer_read b i h ) val lemma_store_mem128 (b:buffer128) (i:nat) (v:quad32) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem128 (buffer_addr b h + scale16 i) v h == buffer_write b i v h ) //Memtaint related functions type memtaint = memTaint_t val valid_taint_buf (#t:base_typ) (b:buffer t) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 let valid_taint_buf64 (b:buffer64) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn let valid_taint_buf128 (b:buffer128) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn val lemma_valid_taint64 (b:buffer64) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf64 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale8 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 8 ==> Map.sel memTaint i' == t)) val lemma_valid_taint128 (b:buffer128) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf128 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale16 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 16 ==> Map.sel memTaint i' == t)) val same_memTaint64 (b:buffer64) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val same_memTaint128 (b:buffer128) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val modifies_valid_taint (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) (mt:memtaint) (tn:taint) : Lemma (requires modifies p h h') (ensures valid_taint_buf b h mt tn <==> valid_taint_buf b h' mt tn) [SMTPat (modifies p h h'); SMTPat (valid_taint_buf b h' mt tn)] val modifies_same_heaplet_id (l:loc) (h1 h2:vale_heap) : Lemma (requires modifies l h1 h2) (ensures get_heaplet_id h1 == get_heaplet_id h2) [SMTPat (modifies l h1 h2); SMTPat (get_heaplet_id h2)]
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bi1: Vale.Arch.HeapImpl.buffer_info -> bi2: Vale.Arch.HeapImpl.buffer_info -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapImpl.buffer_info", "Prims.l_imp", "Prims.l_or", "Prims.l_not", "Prims.eq2", "Vale.Arch.HeapTypes_s.base_typ", "Vale.Arch.HeapImpl.__proj__Mkbuffer_info__item__bi_typ", "Vale.Arch.HeapImpl.heaplet_id", "Vale.Arch.HeapImpl.__proj__Mkbuffer_info__item__bi_heaplet", "Vale.X64.Memory.loc_disjoint", "Vale.X64.Memory.loc_buffer", "Vale.Arch.HeapImpl.__proj__Mkbuffer_info__item__bi_buffer", "Prims.logical" ]
[]
false
false
false
true
true
let buffer_info_disjoint (bi1 bi2: buffer_info) =
bi1.bi_typ =!= bi2.bi_typ \/ bi1.bi_heaplet =!= bi2.bi_heaplet ==> loc_disjoint (loc_buffer bi1.bi_buffer) (loc_buffer bi2.bi_buffer)
false
Vale.X64.Memory.fsti
Vale.X64.Memory.valid_layout_buffer
val valid_layout_buffer : b: Vale.X64.Memory.buffer t -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> h: Vale.X64.Memory.vale_heap -> write: Prims.bool -> Prims.logical
let valid_layout_buffer (#t:base_typ) (b:buffer t) (layout:vale_heap_layout) (h:vale_heap) (write:bool) = valid_layout_buffer_id t b layout (get_heaplet_id h) false /\ valid_layout_buffer_id t b layout (get_heaplet_id h) write
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 395, "start_col": 0, "start_line": 393 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32 let buffer64 = buffer vuint64 let buffer128 = buffer vuint128 val buffer_addr (#t:base_typ) (b:buffer t) (h:vale_heap) : GTot int unfold let locs_disjoint (ls:list loc) : prop0 = BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls) // equivalent to modifies; used to prove modifies clauses via modifies_goal_directed_trans val modifies_goal_directed (s:loc) (h1 h2:vale_heap) : GTot prop0 val lemma_modifies_goal_directed (s:loc) (h1 h2:vale_heap) : Lemma (modifies s h1 h2 == modifies_goal_directed s h1 h2) val buffer_length_buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : Lemma (requires True) (ensures (Seq.length (buffer_as_seq h b) == buffer_length b)) [SMTPat (Seq.length (buffer_as_seq h b))] val modifies_buffer_elim (#t1:base_typ) (b:buffer t1) (p:loc) (h h':vale_heap) : Lemma (requires loc_disjoint (loc_buffer b) p /\ buffer_readable h b /\ modifies p h h' ) (ensures buffer_readable h b /\ buffer_readable h' b /\ buffer_as_seq h b == buffer_as_seq h' b ) [SMTPatOr [ [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)]; [SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b)]; ]] val modifies_buffer_addr (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' ) (ensures buffer_addr b h == buffer_addr b h') [SMTPat (modifies p h h'); SMTPat (buffer_addr b h')] val modifies_buffer_readable (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' /\ buffer_readable h b ) (ensures buffer_readable h' b) [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)] val loc_disjoint_none_r (s:loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2:loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_includes_refl (s:loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3:loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2:loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s:loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) // for efficiency, no SMT pattern val loc_includes_union_l_buffer (#t:base_typ) (s1 s2:loc) (b:buffer t) : Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] val loc_includes_none (s:loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val modifies_refl (s:loc) (h:vale_heap) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_goal_directed_refl (s:loc) (h:vale_heap) : Lemma (modifies_goal_directed s h h) [SMTPat (modifies_goal_directed s h h)] val modifies_loc_includes (s1:loc) (h h':vale_heap) (s2:loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) // for efficiency, no SMT pattern val modifies_trans (s12:loc) (h1 h2:vale_heap) (s23:loc) (h3:vale_heap) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) // for efficiency, no SMT pattern // Prove (modifies s13 h1 h3). // To avoid unnecessary matches, don't introduce any other modifies terms. // Introduce modifies_goal_directed instead. val modifies_goal_directed_trans (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies s13 h1 h3)] val modifies_goal_directed_trans2 (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies_goal_directed s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies_goal_directed s13 h1 h3)] val buffer_read (#t:base_typ) (b:buffer t) (i:int) (h:vale_heap) : Ghost (base_typ_as_vale_type t) (requires True) (ensures (fun v -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> v == Seq.index (buffer_as_seq h b) i )) val buffer_write (#t:base_typ) (b:buffer t) (i:int) (v:base_typ_as_vale_type t) (h:vale_heap) : Ghost vale_heap (requires buffer_readable h b /\ buffer_writeable b) (ensures (fun h' -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> modifies (loc_buffer b) h h' /\ get_heaplet_id h' == get_heaplet_id h /\ buffer_readable h' b /\ buffer_as_seq h' b == Seq.upd (buffer_as_seq h b) i v )) val valid_mem64 (ptr:int) (h:vale_heap) : GTot bool // is there a 64-bit word at address ptr? val writeable_mem64 (ptr:int) (h:vale_heap) : GTot bool // can we write a 64-bit word at address ptr? val load_mem64 (ptr:int) (h:vale_heap) : GTot nat64 // the 64-bit word at ptr (if valid_mem64 holds) val store_mem64 (ptr:int) (v:nat64) (h:vale_heap) : GTot vale_heap val valid_mem128 (ptr:int) (h:vale_heap) : GTot bool val writeable_mem128 (ptr:int) (h:vale_heap) : GTot bool val load_mem128 (ptr:int) (h:vale_heap) : GTot quad32 val store_mem128 (ptr:int) (v:quad32) (h:vale_heap) : GTot vale_heap val lemma_valid_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem64 (buffer_addr b h + scale8 i) h ) val lemma_writeable_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem64 (buffer_addr b h + scale8 i) h ) val lemma_load_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem64 (buffer_addr b h + scale8 i) h == buffer_read b i h ) val lemma_store_mem64 (b:buffer64) (i:nat) (v:nat64) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem64 (buffer_addr b h + scale8 i) v h == buffer_write b i v h ) val lemma_valid_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem128 (buffer_addr b h + scale16 i) h ) val lemma_writeable_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem128 (buffer_addr b h + scale16 i) h ) val lemma_load_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem128 (buffer_addr b h + scale16 i) h == buffer_read b i h ) val lemma_store_mem128 (b:buffer128) (i:nat) (v:quad32) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem128 (buffer_addr b h + scale16 i) v h == buffer_write b i v h ) //Memtaint related functions type memtaint = memTaint_t val valid_taint_buf (#t:base_typ) (b:buffer t) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 let valid_taint_buf64 (b:buffer64) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn let valid_taint_buf128 (b:buffer128) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn val lemma_valid_taint64 (b:buffer64) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf64 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale8 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 8 ==> Map.sel memTaint i' == t)) val lemma_valid_taint128 (b:buffer128) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf128 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale16 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 16 ==> Map.sel memTaint i' == t)) val same_memTaint64 (b:buffer64) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val same_memTaint128 (b:buffer128) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val modifies_valid_taint (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) (mt:memtaint) (tn:taint) : Lemma (requires modifies p h h') (ensures valid_taint_buf b h mt tn <==> valid_taint_buf b h' mt tn) [SMTPat (modifies p h h'); SMTPat (valid_taint_buf b h' mt tn)] val modifies_same_heaplet_id (l:loc) (h1 h2:vale_heap) : Lemma (requires modifies l h1 h2) (ensures get_heaplet_id h1 == get_heaplet_id h2) [SMTPat (modifies l h1 h2); SMTPat (get_heaplet_id h2)] // Buffers in different heaplets are disjoint let buffer_info_disjoint (bi1 bi2:buffer_info) = bi1.bi_typ =!= bi2.bi_typ \/ bi1.bi_heaplet =!= bi2.bi_heaplet ==> loc_disjoint (loc_buffer bi1.bi_buffer) (loc_buffer bi2.bi_buffer) // Requirements for enabling heaplets let init_heaplets_req (h:vale_heap) (bs:Seq.seq buffer_info) = (forall (i:nat).{:pattern (Seq.index bs i)} i < Seq.length bs ==> buffer_readable h (Seq.index bs i).bi_buffer) /\ (forall (i1 i2:nat).{:pattern (Seq.index bs i1); (Seq.index bs i2)} i1 < Seq.length bs /\ i2 < Seq.length bs ==> buffer_info_disjoint (Seq.index bs i1) (Seq.index bs i2)) // Location containing all mutable buffers let rec loc_mutable_buffers (buffers:list buffer_info) : GTot loc = match buffers with | [] -> loc_none | [{bi_mutable = Mutable; bi_buffer = b}] -> loc_buffer b | ({bi_mutable = Immutable})::t -> loc_mutable_buffers t | ({bi_mutable = Mutable; bi_buffer = b})::t -> loc_union (loc_buffer b) (loc_mutable_buffers t) // Buffer b belongs to heaplet h
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.X64.Memory.buffer t -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> h: Vale.X64.Memory.vale_heap -> write: Prims.bool -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.X64.Memory.buffer", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.X64.Memory.vale_heap", "Prims.bool", "Prims.l_and", "Vale.X64.Memory.valid_layout_buffer_id", "Vale.X64.Memory.get_heaplet_id", "Prims.logical" ]
[]
false
false
false
false
true
let valid_layout_buffer (#t: base_typ) (b: buffer t) (layout: vale_heap_layout) (h: vale_heap) (write: bool) =
valid_layout_buffer_id t b layout (get_heaplet_id h) false /\ valid_layout_buffer_id t b layout (get_heaplet_id h) write
false
Vale.X64.Memory.fsti
Vale.X64.Memory.valid_taint_buf128
val valid_taint_buf128 (b: buffer128) (h: vale_heap) (mt: memtaint) (tn: taint) : GTot prop0
val valid_taint_buf128 (b: buffer128) (h: vale_heap) (mt: memtaint) (tn: taint) : GTot prop0
let valid_taint_buf128 (b:buffer128) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 313, "start_col": 0, "start_line": 312 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32 let buffer64 = buffer vuint64 let buffer128 = buffer vuint128 val buffer_addr (#t:base_typ) (b:buffer t) (h:vale_heap) : GTot int unfold let locs_disjoint (ls:list loc) : prop0 = BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls) // equivalent to modifies; used to prove modifies clauses via modifies_goal_directed_trans val modifies_goal_directed (s:loc) (h1 h2:vale_heap) : GTot prop0 val lemma_modifies_goal_directed (s:loc) (h1 h2:vale_heap) : Lemma (modifies s h1 h2 == modifies_goal_directed s h1 h2) val buffer_length_buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : Lemma (requires True) (ensures (Seq.length (buffer_as_seq h b) == buffer_length b)) [SMTPat (Seq.length (buffer_as_seq h b))] val modifies_buffer_elim (#t1:base_typ) (b:buffer t1) (p:loc) (h h':vale_heap) : Lemma (requires loc_disjoint (loc_buffer b) p /\ buffer_readable h b /\ modifies p h h' ) (ensures buffer_readable h b /\ buffer_readable h' b /\ buffer_as_seq h b == buffer_as_seq h' b ) [SMTPatOr [ [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)]; [SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b)]; ]] val modifies_buffer_addr (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' ) (ensures buffer_addr b h == buffer_addr b h') [SMTPat (modifies p h h'); SMTPat (buffer_addr b h')] val modifies_buffer_readable (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' /\ buffer_readable h b ) (ensures buffer_readable h' b) [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)] val loc_disjoint_none_r (s:loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2:loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_includes_refl (s:loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3:loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2:loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s:loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) // for efficiency, no SMT pattern val loc_includes_union_l_buffer (#t:base_typ) (s1 s2:loc) (b:buffer t) : Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] val loc_includes_none (s:loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val modifies_refl (s:loc) (h:vale_heap) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_goal_directed_refl (s:loc) (h:vale_heap) : Lemma (modifies_goal_directed s h h) [SMTPat (modifies_goal_directed s h h)] val modifies_loc_includes (s1:loc) (h h':vale_heap) (s2:loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) // for efficiency, no SMT pattern val modifies_trans (s12:loc) (h1 h2:vale_heap) (s23:loc) (h3:vale_heap) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) // for efficiency, no SMT pattern // Prove (modifies s13 h1 h3). // To avoid unnecessary matches, don't introduce any other modifies terms. // Introduce modifies_goal_directed instead. val modifies_goal_directed_trans (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies s13 h1 h3)] val modifies_goal_directed_trans2 (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies_goal_directed s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies_goal_directed s13 h1 h3)] val buffer_read (#t:base_typ) (b:buffer t) (i:int) (h:vale_heap) : Ghost (base_typ_as_vale_type t) (requires True) (ensures (fun v -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> v == Seq.index (buffer_as_seq h b) i )) val buffer_write (#t:base_typ) (b:buffer t) (i:int) (v:base_typ_as_vale_type t) (h:vale_heap) : Ghost vale_heap (requires buffer_readable h b /\ buffer_writeable b) (ensures (fun h' -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> modifies (loc_buffer b) h h' /\ get_heaplet_id h' == get_heaplet_id h /\ buffer_readable h' b /\ buffer_as_seq h' b == Seq.upd (buffer_as_seq h b) i v )) val valid_mem64 (ptr:int) (h:vale_heap) : GTot bool // is there a 64-bit word at address ptr? val writeable_mem64 (ptr:int) (h:vale_heap) : GTot bool // can we write a 64-bit word at address ptr? val load_mem64 (ptr:int) (h:vale_heap) : GTot nat64 // the 64-bit word at ptr (if valid_mem64 holds) val store_mem64 (ptr:int) (v:nat64) (h:vale_heap) : GTot vale_heap val valid_mem128 (ptr:int) (h:vale_heap) : GTot bool val writeable_mem128 (ptr:int) (h:vale_heap) : GTot bool val load_mem128 (ptr:int) (h:vale_heap) : GTot quad32 val store_mem128 (ptr:int) (v:quad32) (h:vale_heap) : GTot vale_heap val lemma_valid_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem64 (buffer_addr b h + scale8 i) h ) val lemma_writeable_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem64 (buffer_addr b h + scale8 i) h ) val lemma_load_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem64 (buffer_addr b h + scale8 i) h == buffer_read b i h ) val lemma_store_mem64 (b:buffer64) (i:nat) (v:nat64) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem64 (buffer_addr b h + scale8 i) v h == buffer_write b i v h ) val lemma_valid_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem128 (buffer_addr b h + scale16 i) h ) val lemma_writeable_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem128 (buffer_addr b h + scale16 i) h ) val lemma_load_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem128 (buffer_addr b h + scale16 i) h == buffer_read b i h ) val lemma_store_mem128 (b:buffer128) (i:nat) (v:quad32) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem128 (buffer_addr b h + scale16 i) v h == buffer_write b i v h ) //Memtaint related functions type memtaint = memTaint_t val valid_taint_buf (#t:base_typ) (b:buffer t) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 let valid_taint_buf64 (b:buffer64) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 =
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.X64.Memory.buffer128 -> h: Vale.X64.Memory.vale_heap -> mt: Vale.X64.Memory.memtaint -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Memory.vale_heap", "Vale.X64.Memory.memtaint", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Memory.valid_taint_buf", "Vale.X64.Memory.vuint128", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let valid_taint_buf128 (b: buffer128) (h: vale_heap) (mt: memtaint) (tn: taint) : GTot prop0 =
valid_taint_buf b h mt tn
false
Vale.X64.Memory.fsti
Vale.X64.Memory.buffer_info_has_id
val buffer_info_has_id : bs: FStar.Seq.Base.seq Vale.Arch.HeapImpl.buffer_info -> i: Prims.nat -> id: Vale.X64.Memory.heaplet_id -> Prims.logical
let buffer_info_has_id (bs:Seq.seq buffer_info) (i:nat) (id:heaplet_id) = i < Seq.length bs /\ (Seq.index bs i).bi_heaplet == id
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 410, "start_col": 0, "start_line": 409 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32 let buffer64 = buffer vuint64 let buffer128 = buffer vuint128 val buffer_addr (#t:base_typ) (b:buffer t) (h:vale_heap) : GTot int unfold let locs_disjoint (ls:list loc) : prop0 = BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls) // equivalent to modifies; used to prove modifies clauses via modifies_goal_directed_trans val modifies_goal_directed (s:loc) (h1 h2:vale_heap) : GTot prop0 val lemma_modifies_goal_directed (s:loc) (h1 h2:vale_heap) : Lemma (modifies s h1 h2 == modifies_goal_directed s h1 h2) val buffer_length_buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : Lemma (requires True) (ensures (Seq.length (buffer_as_seq h b) == buffer_length b)) [SMTPat (Seq.length (buffer_as_seq h b))] val modifies_buffer_elim (#t1:base_typ) (b:buffer t1) (p:loc) (h h':vale_heap) : Lemma (requires loc_disjoint (loc_buffer b) p /\ buffer_readable h b /\ modifies p h h' ) (ensures buffer_readable h b /\ buffer_readable h' b /\ buffer_as_seq h b == buffer_as_seq h' b ) [SMTPatOr [ [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)]; [SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b)]; ]] val modifies_buffer_addr (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' ) (ensures buffer_addr b h == buffer_addr b h') [SMTPat (modifies p h h'); SMTPat (buffer_addr b h')] val modifies_buffer_readable (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' /\ buffer_readable h b ) (ensures buffer_readable h' b) [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)] val loc_disjoint_none_r (s:loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2:loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_includes_refl (s:loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3:loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2:loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s:loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) // for efficiency, no SMT pattern val loc_includes_union_l_buffer (#t:base_typ) (s1 s2:loc) (b:buffer t) : Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] val loc_includes_none (s:loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val modifies_refl (s:loc) (h:vale_heap) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_goal_directed_refl (s:loc) (h:vale_heap) : Lemma (modifies_goal_directed s h h) [SMTPat (modifies_goal_directed s h h)] val modifies_loc_includes (s1:loc) (h h':vale_heap) (s2:loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) // for efficiency, no SMT pattern val modifies_trans (s12:loc) (h1 h2:vale_heap) (s23:loc) (h3:vale_heap) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) // for efficiency, no SMT pattern // Prove (modifies s13 h1 h3). // To avoid unnecessary matches, don't introduce any other modifies terms. // Introduce modifies_goal_directed instead. val modifies_goal_directed_trans (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies s13 h1 h3)] val modifies_goal_directed_trans2 (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies_goal_directed s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies_goal_directed s13 h1 h3)] val buffer_read (#t:base_typ) (b:buffer t) (i:int) (h:vale_heap) : Ghost (base_typ_as_vale_type t) (requires True) (ensures (fun v -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> v == Seq.index (buffer_as_seq h b) i )) val buffer_write (#t:base_typ) (b:buffer t) (i:int) (v:base_typ_as_vale_type t) (h:vale_heap) : Ghost vale_heap (requires buffer_readable h b /\ buffer_writeable b) (ensures (fun h' -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> modifies (loc_buffer b) h h' /\ get_heaplet_id h' == get_heaplet_id h /\ buffer_readable h' b /\ buffer_as_seq h' b == Seq.upd (buffer_as_seq h b) i v )) val valid_mem64 (ptr:int) (h:vale_heap) : GTot bool // is there a 64-bit word at address ptr? val writeable_mem64 (ptr:int) (h:vale_heap) : GTot bool // can we write a 64-bit word at address ptr? val load_mem64 (ptr:int) (h:vale_heap) : GTot nat64 // the 64-bit word at ptr (if valid_mem64 holds) val store_mem64 (ptr:int) (v:nat64) (h:vale_heap) : GTot vale_heap val valid_mem128 (ptr:int) (h:vale_heap) : GTot bool val writeable_mem128 (ptr:int) (h:vale_heap) : GTot bool val load_mem128 (ptr:int) (h:vale_heap) : GTot quad32 val store_mem128 (ptr:int) (v:quad32) (h:vale_heap) : GTot vale_heap val lemma_valid_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem64 (buffer_addr b h + scale8 i) h ) val lemma_writeable_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem64 (buffer_addr b h + scale8 i) h ) val lemma_load_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem64 (buffer_addr b h + scale8 i) h == buffer_read b i h ) val lemma_store_mem64 (b:buffer64) (i:nat) (v:nat64) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem64 (buffer_addr b h + scale8 i) v h == buffer_write b i v h ) val lemma_valid_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem128 (buffer_addr b h + scale16 i) h ) val lemma_writeable_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem128 (buffer_addr b h + scale16 i) h ) val lemma_load_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem128 (buffer_addr b h + scale16 i) h == buffer_read b i h ) val lemma_store_mem128 (b:buffer128) (i:nat) (v:quad32) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem128 (buffer_addr b h + scale16 i) v h == buffer_write b i v h ) //Memtaint related functions type memtaint = memTaint_t val valid_taint_buf (#t:base_typ) (b:buffer t) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 let valid_taint_buf64 (b:buffer64) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn let valid_taint_buf128 (b:buffer128) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn val lemma_valid_taint64 (b:buffer64) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf64 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale8 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 8 ==> Map.sel memTaint i' == t)) val lemma_valid_taint128 (b:buffer128) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf128 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale16 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 16 ==> Map.sel memTaint i' == t)) val same_memTaint64 (b:buffer64) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val same_memTaint128 (b:buffer128) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val modifies_valid_taint (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) (mt:memtaint) (tn:taint) : Lemma (requires modifies p h h') (ensures valid_taint_buf b h mt tn <==> valid_taint_buf b h' mt tn) [SMTPat (modifies p h h'); SMTPat (valid_taint_buf b h' mt tn)] val modifies_same_heaplet_id (l:loc) (h1 h2:vale_heap) : Lemma (requires modifies l h1 h2) (ensures get_heaplet_id h1 == get_heaplet_id h2) [SMTPat (modifies l h1 h2); SMTPat (get_heaplet_id h2)] // Buffers in different heaplets are disjoint let buffer_info_disjoint (bi1 bi2:buffer_info) = bi1.bi_typ =!= bi2.bi_typ \/ bi1.bi_heaplet =!= bi2.bi_heaplet ==> loc_disjoint (loc_buffer bi1.bi_buffer) (loc_buffer bi2.bi_buffer) // Requirements for enabling heaplets let init_heaplets_req (h:vale_heap) (bs:Seq.seq buffer_info) = (forall (i:nat).{:pattern (Seq.index bs i)} i < Seq.length bs ==> buffer_readable h (Seq.index bs i).bi_buffer) /\ (forall (i1 i2:nat).{:pattern (Seq.index bs i1); (Seq.index bs i2)} i1 < Seq.length bs /\ i2 < Seq.length bs ==> buffer_info_disjoint (Seq.index bs i1) (Seq.index bs i2)) // Location containing all mutable buffers let rec loc_mutable_buffers (buffers:list buffer_info) : GTot loc = match buffers with | [] -> loc_none | [{bi_mutable = Mutable; bi_buffer = b}] -> loc_buffer b | ({bi_mutable = Immutable})::t -> loc_mutable_buffers t | ({bi_mutable = Mutable; bi_buffer = b})::t -> loc_union (loc_buffer b) (loc_mutable_buffers t) // Buffer b belongs to heaplet h val valid_layout_buffer_id (t:base_typ) (b:buffer t) (layout:vale_heap_layout) (h_id:option heaplet_id) (write:bool) : prop0 let valid_layout_buffer (#t:base_typ) (b:buffer t) (layout:vale_heap_layout) (h:vale_heap) (write:bool) = valid_layout_buffer_id t b layout (get_heaplet_id h) false /\ valid_layout_buffer_id t b layout (get_heaplet_id h) write // Initial memory state val is_initial_heap (layout:vale_heap_layout) (h:vale_heap) : prop0 // Invariant that is always true in Vale procedures val mem_inv (h:vale_full_heap) : prop0 // Layout data val layout_heaplets_initialized (layout:vale_heap_layout_inner) : bool val layout_old_heap (layout:vale_heap_layout_inner) : vale_heap val layout_modifies_loc (layout:vale_heap_layout_inner) : loc val layout_buffers (layout:vale_heap_layout_inner) : Seq.seq buffer_info
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bs: FStar.Seq.Base.seq Vale.Arch.HeapImpl.buffer_info -> i: Prims.nat -> id: Vale.X64.Memory.heaplet_id -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Arch.HeapImpl.buffer_info", "Prims.nat", "Vale.X64.Memory.heaplet_id", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.eq2", "Vale.Arch.HeapImpl.heaplet_id", "Vale.Arch.HeapImpl.__proj__Mkbuffer_info__item__bi_heaplet", "FStar.Seq.Base.index", "Prims.logical" ]
[]
false
false
false
true
true
let buffer_info_has_id (bs: Seq.seq buffer_info) (i: nat) (id: heaplet_id) =
i < Seq.length bs /\ (Seq.index bs i).bi_heaplet == id
false
Hacl.Impl.Load56.fst
Hacl.Impl.Load56.lemma_load_32_bytes
val lemma_load_32_bytes (k: lbytes 32) (b0 b1 b2 b3 b4: uint64) : Lemma (requires v b0 == nat_from_bytes_le (Seq.slice k 0 7) /\ v b1 == nat_from_bytes_le (Seq.slice k 7 14) /\ v b2 == nat_from_bytes_le (Seq.slice k 14 21) /\ v b3 == nat_from_bytes_le (Seq.slice k 21 28) /\ v b4 == nat_from_bytes_le (Seq.slice k 28 32)) (ensures S56.as_nat5 (b0, b1, b2, b3, b4) == nat_from_bytes_le k)
val lemma_load_32_bytes (k: lbytes 32) (b0 b1 b2 b3 b4: uint64) : Lemma (requires v b0 == nat_from_bytes_le (Seq.slice k 0 7) /\ v b1 == nat_from_bytes_le (Seq.slice k 7 14) /\ v b2 == nat_from_bytes_le (Seq.slice k 14 21) /\ v b3 == nat_from_bytes_le (Seq.slice k 21 28) /\ v b4 == nat_from_bytes_le (Seq.slice k 28 32)) (ensures S56.as_nat5 (b0, b1, b2, b3, b4) == nat_from_bytes_le k)
let lemma_load_32_bytes (k:lbytes 32) (b0 b1 b2 b3 b4:uint64) : Lemma (requires v b0 == nat_from_bytes_le (Seq.slice k 0 7) /\ v b1 == nat_from_bytes_le (Seq.slice k 7 14) /\ v b2 == nat_from_bytes_le (Seq.slice k 14 21) /\ v b3 == nat_from_bytes_le (Seq.slice k 21 28) /\ v b4 == nat_from_bytes_le (Seq.slice k 28 32)) (ensures S56.as_nat5 (b0, b1, b2, b3, b4) == nat_from_bytes_le k) = lemma_nat_from_bytes_le_append (Seq.slice k 0 7) (Seq.slice k 7 14); lemma_nat_from_bytes_le_append (Seq.slice k 0 14) (Seq.slice k 14 21); lemma_nat_from_bytes_le_append (Seq.slice k 0 21) (Seq.slice k 21 28); lemma_nat_from_bytes_le_append (Seq.slice k 0 28) (Seq.slice k 28 32); assert (Seq.append (Seq.slice k 0 7) (Seq.slice k 7 14) `Seq.equal` Seq.slice k 0 14); assert (Seq.append (Seq.slice k 0 14) (Seq.slice k 14 21) `Seq.equal` Seq.slice k 0 21); assert (Seq.append (Seq.slice k 0 21) (Seq.slice k 21 28) `Seq.equal` Seq.slice k 0 28); assert (Seq.append (Seq.slice k 0 28) (Seq.slice k 28 32) `Seq.equal` k); assert_norm (pow2 56 == 0x100000000000000); assert_norm (pow2 112 == 0x10000000000000000000000000000); assert_norm (pow2 168 == 0x1000000000000000000000000000000000000000000); assert_norm (pow2 224 == 0x100000000000000000000000000000000000000000000000000000000)
{ "file_name": "code/ed25519/Hacl.Impl.Load56.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 87, "end_line": 212, "start_col": 0, "start_line": 192 }
module Hacl.Impl.Load56 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.ByteSequence open Lib.Buffer open Lib.ByteBuffer module F56 = Hacl.Impl.BignumQ.Mul module S56 = Hacl.Spec.BignumQ.Definitions #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract val hload56_le: b:lbuffer uint8 64ul -> off:size_t{v off <= 56} -> Stack uint64 (requires fun h -> live h b) (ensures fun h0 z h1 -> h0 == h1 /\ v z < 0x100000000000000 /\ v z == nat_from_bytes_le (Seq.slice (as_seq h0 b) (v off) (v off + 7)) ) let hload56_le b off = let h0 = ST.get() in let b8 = sub b off 8ul in let z = uint_from_bytes_le b8 in let z' = z &. u64 0xffffffffffffff in assert_norm (0xffffffffffffff == pow2 56 - 1); assert_norm (0x100000000000000 == pow2 56 ); calc (==) { v z' <: nat; (==) { } v (z &. u64 0xffffffffffffff); (==) { logand_spec z (u64 0xffffffffffffff) } v z `logand_v` 0xffffffffffffff; (==) { assert_norm(pow2 56 - 1 == 0xffffffffffffff); UInt.logand_mask (UInt.to_uint_t 64 (v z)) 56 } (v z % pow2 56); (==) { lemma_reveal_uint_to_bytes_le #U64 #SEC (as_seq h0 b8) } nat_from_bytes_le (as_seq h0 b8) % pow2 56; (==) { nat_from_intseq_le_slice_lemma (as_seq h0 b8) 7 } (nat_from_bytes_le (Seq.slice (as_seq h0 b8) 0 7) + pow2 (7 * 8) * nat_from_bytes_le (Seq.slice (as_seq h0 b8) 7 8)) % pow2 56; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (nat_from_bytes_le (Seq.slice (as_seq h0 b8) 0 7)) (pow2 (7 * 8) * nat_from_bytes_le (Seq.slice (as_seq h0 b8) 7 8)) (pow2 56); FStar.Math.Lemmas.swap_mul (pow2 (7 * 8)) (nat_from_bytes_le (Seq.slice (as_seq h0 b8) 7 8)); FStar.Math.Lemmas.cancel_mul_mod (nat_from_bytes_le (Seq.slice (as_seq h0 b8) 7 8)) (pow2 56) } nat_from_bytes_le (Seq.slice (as_seq h0 b8) 0 7) <: nat; }; assert (Seq.equal (Seq.slice (as_seq h0 b) (v off) (v off + 7)) (Seq.slice (as_seq h0 b8) 0 7)); z' let lemma_nat_from_bytes_le_append (k1 k2:bytes) : Lemma (requires Seq.length k1 + Seq.length k2 <= max_size_t) (ensures nat_from_bytes_le (Seq.append k1 k2) == nat_from_bytes_le k1 + pow2 (Seq.length k1 * 8) * nat_from_bytes_le k2) = let k = Seq.append k1 k2 in let n = Seq.length k1 + Seq.length k2 in nat_from_intseq_le_slice_lemma #U8 #SEC #n k (Seq.length k1); assert (k1 `Seq.equal` Seq.slice k 0 (Seq.length k1)); assert (k2 `Seq.equal` Seq.slice k (Seq.length k1) n) #push-options "--z3rlimit 100" let lemma_load_64_bytes (k:lbytes 64) (b0 b1 b2 b3 b4 b5 b6 b7 b8 b9:uint64) : Lemma (requires v b0 == nat_from_bytes_le (Seq.slice k 0 7) /\ v b1 == nat_from_bytes_le (Seq.slice k 7 14) /\ v b2 == nat_from_bytes_le (Seq.slice k 14 21) /\ v b3 == nat_from_bytes_le (Seq.slice k 21 28) /\ v b4 == nat_from_bytes_le (Seq.slice k 28 35) /\ v b5 == nat_from_bytes_le (Seq.slice k 35 42) /\ v b6 == nat_from_bytes_le (Seq.slice k 42 49) /\ v b7 == nat_from_bytes_le (Seq.slice k 49 56) /\ v b8 == nat_from_bytes_le (Seq.slice k 56 63) /\ v b9 == v (Seq.index k 63) ) (ensures S56.wide_as_nat5 (b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) == nat_from_bytes_le k) = lemma_nat_from_bytes_le_append (Seq.slice k 0 7) (Seq.slice k 7 14); lemma_nat_from_bytes_le_append (Seq.slice k 0 14) (Seq.slice k 14 21); lemma_nat_from_bytes_le_append (Seq.slice k 0 21) (Seq.slice k 21 28); lemma_nat_from_bytes_le_append (Seq.slice k 0 28) (Seq.slice k 28 35); lemma_nat_from_bytes_le_append (Seq.slice k 0 35) (Seq.slice k 35 42); lemma_nat_from_bytes_le_append (Seq.slice k 0 42) (Seq.slice k 42 49); lemma_nat_from_bytes_le_append (Seq.slice k 0 49) (Seq.slice k 49 56); lemma_nat_from_bytes_le_append (Seq.slice k 0 56) (Seq.slice k 56 63); lemma_nat_from_bytes_le_append (Seq.slice k 0 63) (Seq.create 1 (Seq.index k 63)); assert (Seq.append (Seq.slice k 0 7) (Seq.slice k 7 14) `Seq.equal` Seq.slice k 0 14); assert (Seq.append (Seq.slice k 0 14) (Seq.slice k 14 21) `Seq.equal` Seq.slice k 0 21); assert (Seq.append (Seq.slice k 0 21) (Seq.slice k 21 28) `Seq.equal` Seq.slice k 0 28); assert (Seq.append (Seq.slice k 0 28) (Seq.slice k 28 35) `Seq.equal` Seq.slice k 0 35); assert (Seq.append (Seq.slice k 0 35) (Seq.slice k 35 42) `Seq.equal` Seq.slice k 0 42); assert (Seq.append (Seq.slice k 0 42) (Seq.slice k 42 49) `Seq.equal` Seq.slice k 0 49); assert (Seq.append (Seq.slice k 0 49) (Seq.slice k 49 56) `Seq.equal` Seq.slice k 0 56); assert (Seq.append (Seq.slice k 0 56) (Seq.slice k 56 63) `Seq.equal` Seq.slice k 0 63); assert (Seq.append (Seq.slice k 0 63) (Seq.create 1 (Seq.index k 63)) `Seq.equal` k); nat_from_intseq_le_lemma0 (Seq.create 1 (Seq.index k 63)); assert_norm (pow2 56 == 0x100000000000000); assert_norm (pow2 112 == 0x10000000000000000000000000000); assert_norm (pow2 168 == 0x1000000000000000000000000000000000000000000); assert_norm (pow2 224 == 0x100000000000000000000000000000000000000000000000000000000); assert_norm (pow2 280 == 0x10000000000000000000000000000000000000000000000000000000000000000000000); assert_norm (pow2 336 == 0x1000000000000000000000000000000000000000000000000000000000000000000000000000000000000); assert_norm (pow2 392 == 0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000); assert_norm (pow2 448 == 0x10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000); assert_norm (pow2 504 == 0x1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000) #pop-options val load_64_bytes: out:lbuffer uint64 10ul -> b:lbuffer uint8 64ul -> Stack unit (requires fun h -> live h out /\ live h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F56.wide_as_nat h1 out == nat_from_bytes_le (as_seq h0 b) /\ F56.qelem_wide_fits h1 out (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) ) [@CInline] let load_64_bytes out b = let h0 = ST.get() in let b0 = hload56_le b 0ul in let b1 = hload56_le b 7ul in let b2 = hload56_le b 14ul in let b3 = hload56_le b 21ul in let b4 = hload56_le b 28ul in let b5 = hload56_le b 35ul in let b6 = hload56_le b 42ul in let b7 = hload56_le b 49ul in let b8 = hload56_le b 56ul in let b63 = b.(63ul) in let b9 = to_u64 b63 in lemma_load_64_bytes (as_seq h0 b) b0 b1 b2 b3 b4 b5 b6 b7 b8 b9; Hacl.Bignum25519.make_u64_10 out b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 inline_for_extraction noextract val hload56_le': b:lbuffer uint8 32ul -> off:size_t{v off <= 21} -> Stack uint64 (requires fun h -> live h b) (ensures fun h0 z h1 -> h0 == h1 /\ v z < 0x100000000000000 /\ v z == nat_from_bytes_le (Seq.slice (as_seq h0 b) (v off) (v off + 7)) ) let hload56_le' b off = let h0 = ST.get() in let b8 = sub b off 8ul in let z = uint_from_bytes_le b8 in let z' = z &. u64 0xffffffffffffff in assert_norm (0xffffffffffffff == pow2 56 - 1); assert_norm (0x100000000000000 == pow2 56 ); calc (==) { v z' <: nat; (==) { } v (z &. u64 0xffffffffffffff); (==) { logand_spec z (u64 0xffffffffffffff) } v z `logand_v` 0xffffffffffffff; (==) { assert_norm(pow2 56 - 1 == 0xffffffffffffff); UInt.logand_mask (UInt.to_uint_t 64 (v z)) 56 } (v z % pow2 56); (==) { lemma_reveal_uint_to_bytes_le #U64 #SEC (as_seq h0 b8) } nat_from_bytes_le (as_seq h0 b8) % pow2 56; (==) { nat_from_intseq_le_slice_lemma (as_seq h0 b8) 7 } (nat_from_bytes_le (Seq.slice (as_seq h0 b8) 0 7) + pow2 (7 * 8) * nat_from_bytes_le (Seq.slice (as_seq h0 b8) 7 8)) % pow2 56; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (nat_from_bytes_le (Seq.slice (as_seq h0 b8) 0 7)) (pow2 (7 * 8) * nat_from_bytes_le (Seq.slice (as_seq h0 b8) 7 8)) (pow2 56); FStar.Math.Lemmas.swap_mul (pow2 (7 * 8)) (nat_from_bytes_le (Seq.slice (as_seq h0 b8) 7 8)); FStar.Math.Lemmas.cancel_mul_mod (nat_from_bytes_le (Seq.slice (as_seq h0 b8) 7 8)) (pow2 56) } nat_from_bytes_le (Seq.slice (as_seq h0 b8) 0 7) <: nat; }; assert (Seq.equal (Seq.slice (as_seq h0 b) (v off) (v off + 7)) (Seq.slice (as_seq h0 b8) 0 7)); z'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Load56.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": "S56" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.ByteSequence.lbytes 32 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v b0 == Lib.ByteSequence.nat_from_bytes_le (FStar.Seq.Base.slice k 0 7) /\ Lib.IntTypes.v b1 == Lib.ByteSequence.nat_from_bytes_le (FStar.Seq.Base.slice k 7 14) /\ Lib.IntTypes.v b2 == Lib.ByteSequence.nat_from_bytes_le (FStar.Seq.Base.slice k 14 21) /\ Lib.IntTypes.v b3 == Lib.ByteSequence.nat_from_bytes_le (FStar.Seq.Base.slice k 21 28) /\ Lib.IntTypes.v b4 == Lib.ByteSequence.nat_from_bytes_le (FStar.Seq.Base.slice k 28 32)) (ensures Hacl.Spec.BignumQ.Definitions.as_nat5 (b0, b1, b2, b3, b4) == Lib.ByteSequence.nat_from_bytes_le k)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.ByteSequence.lbytes", "Lib.IntTypes.uint64", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.append", "FStar.Seq.Base.slice", "Hacl.Impl.Load56.lemma_nat_from_bytes_le_append", "Prims.l_and", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.U64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.Sequence.length", "Lib.IntTypes.v", "Lib.ByteSequence.nat_from_bytes_le", "Prims.squash", "Prims.nat", "Hacl.Spec.BignumQ.Definitions.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_load_32_bytes (k: lbytes 32) (b0 b1 b2 b3 b4: uint64) : Lemma (requires v b0 == nat_from_bytes_le (Seq.slice k 0 7) /\ v b1 == nat_from_bytes_le (Seq.slice k 7 14) /\ v b2 == nat_from_bytes_le (Seq.slice k 14 21) /\ v b3 == nat_from_bytes_le (Seq.slice k 21 28) /\ v b4 == nat_from_bytes_le (Seq.slice k 28 32)) (ensures S56.as_nat5 (b0, b1, b2, b3, b4) == nat_from_bytes_le k) =
lemma_nat_from_bytes_le_append (Seq.slice k 0 7) (Seq.slice k 7 14); lemma_nat_from_bytes_le_append (Seq.slice k 0 14) (Seq.slice k 14 21); lemma_nat_from_bytes_le_append (Seq.slice k 0 21) (Seq.slice k 21 28); lemma_nat_from_bytes_le_append (Seq.slice k 0 28) (Seq.slice k 28 32); assert ((Seq.append (Seq.slice k 0 7) (Seq.slice k 7 14)) `Seq.equal` (Seq.slice k 0 14)); assert ((Seq.append (Seq.slice k 0 14) (Seq.slice k 14 21)) `Seq.equal` (Seq.slice k 0 21)); assert ((Seq.append (Seq.slice k 0 21) (Seq.slice k 21 28)) `Seq.equal` (Seq.slice k 0 28)); assert ((Seq.append (Seq.slice k 0 28) (Seq.slice k 28 32)) `Seq.equal` k); assert_norm (pow2 56 == 0x100000000000000); assert_norm (pow2 112 == 0x10000000000000000000000000000); assert_norm (pow2 168 == 0x1000000000000000000000000000000000000000000); assert_norm (pow2 224 == 0x100000000000000000000000000000000000000000000000000000000)
false
Vale.X64.Memory.fsti
Vale.X64.Memory.base_typ_as_vale_type
val base_typ_as_vale_type (t: base_typ) : Tot eqtype
val base_typ_as_vale_type (t: base_typ) : Tot eqtype
let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 39, "start_col": 0, "start_line": 33 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Vale.Arch.HeapTypes_s.base_typ -> Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.X64.Memory.nat8", "Vale.X64.Memory.nat16", "Vale.X64.Memory.nat32", "Vale.X64.Memory.nat64", "Vale.X64.Memory.quad32", "Prims.eqtype" ]
[]
false
false
false
true
false
let base_typ_as_vale_type (t: base_typ) : Tot eqtype =
match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32
false
Pulse.Reflection.Util.fst
Pulse.Reflection.Util.mk_opaque_let
val mk_opaque_let (g: R.env) (nm: string) (tm: Ghost.erased R.term) (ty: R.typ{RT.typing g tm (T.E_Total, ty)}) : T.Tac (RT.sigelt_for g)
val mk_opaque_let (g: R.env) (nm: string) (tm: Ghost.erased R.term) (ty: R.typ{RT.typing g tm (T.E_Total, ty)}) : T.Tac (RT.sigelt_for g)
let mk_opaque_let (g:R.env) (nm:string) (tm:Ghost.erased R.term) (ty:R.typ{RT.typing g tm (T.E_Total, ty)}) : T.Tac (RT.sigelt_for g) = let fv = R.pack_fv (T.cur_module () @ [nm]) in let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) }) in let se = R.pack_sigelt (R.Sg_Let false [lb]) in let pf : RT.sigelt_typing g se = RT.ST_Let_Opaque g fv ty () in (true, se, None)
{ "file_name": "lib/steel/pulse/Pulse.Reflection.Util.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 739, "start_col": 0, "start_line": 732 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Reflection.Util module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RT = FStar.Reflection.Typing module RU = Pulse.RuntimeUtils open FStar.List.Tot let u_two = RT.(u_succ (u_succ u_zero)) let u_max_two u = (RT.u_max u_two u) let pulse_lib_core = ["Pulse"; "Lib"; "Core"] let mk_pulse_lib_core_lid s = pulse_lib_core@[s] let tun = R.pack_ln R.Tv_Unknown let unit_lid = R.unit_lid let bool_lid = R.bool_lid let int_lid = R.int_lid let erased_lid = ["FStar"; "Ghost"; "erased"] let hide_lid = ["FStar"; "Ghost"; "hide"] let reveal_lid = ["FStar"; "Ghost"; "reveal"] let vprop_lid = mk_pulse_lib_core_lid "vprop" let vprop_fv = R.pack_fv vprop_lid let vprop_tm = R.pack_ln (R.Tv_FVar vprop_fv) let unit_fv = R.pack_fv unit_lid let unit_tm = R.pack_ln (R.Tv_FVar unit_fv) let bool_fv = R.pack_fv bool_lid let bool_tm = R.pack_ln (R.Tv_FVar bool_fv) let nat_lid = ["Prims"; "nat"] let nat_fv = R.pack_fv nat_lid let nat_tm = R.pack_ln (R.Tv_FVar nat_fv) let szt_lid = ["FStar"; "SizeT"; "t"] let szt_fv = R.pack_fv szt_lid let szt_tm = R.pack_ln (R.Tv_FVar szt_fv) let szv_lid = ["FStar"; "SizeT"; "v"] let szv_fv = R.pack_fv szv_lid let szv_tm = R.pack_ln (R.Tv_FVar szv_fv) let seq_lid = ["FStar"; "Seq"; "Base"; "seq"] let seq_create_lid = ["FStar"; "Seq"; "Base"; "create"] let tot_lid = ["Prims"; "Tot"] (* The "plicities" *) let ex t : R.argv = (t, R.Q_Explicit) let im t : R.argv = (t, R.Q_Implicit) let tuple2_lid = ["FStar"; "Pervasives"; "Native"; "tuple2"] let fst_lid = ["FStar"; "Pervasives"; "Native"; "fst"] let snd_lid = ["FStar"; "Pervasives"; "Native"; "snd"] let mk_tuple2 (u1 u2:R.universe) (a1 a2:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv tuple2_lid) [u1; u2]) in let t = pack_ln (Tv_App t (a1, Q_Explicit)) in pack_ln (Tv_App t (a2, Q_Explicit)) let mk_fst (u1 u2:R.universe) (a1 a2 e:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv fst_lid) [u1; u2]) in let t = pack_ln (Tv_App t (a1, Q_Implicit)) in let t = pack_ln (Tv_App t (a2, Q_Implicit)) in pack_ln (Tv_App t (e, Q_Explicit)) let mk_snd (u1 u2:R.universe) (a1 a2 e:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv snd_lid) [u1; u2]) in let t = pack_ln (Tv_App t (a1, Q_Implicit)) in let t = pack_ln (Tv_App t (a2, Q_Implicit)) in pack_ln (Tv_App t (e, Q_Explicit)) let true_tm = R.pack_ln (R.Tv_Const (R.C_True)) let false_tm = R.pack_ln (R.Tv_Const (R.C_False)) let inv_lid = mk_pulse_lib_core_lid "inv" let emp_lid = mk_pulse_lib_core_lid "emp" let inames_lid = mk_pulse_lib_core_lid "inames" let star_lid = mk_pulse_lib_core_lid "op_Star_Star" let mk_star (l r:R.term) : R.term = let open R in let t = pack_ln (Tv_FVar (pack_fv star_lid)) in let t = pack_ln (Tv_App t (l, Q_Explicit)) in pack_ln (Tv_App t (r, Q_Explicit)) let pure_lid = mk_pulse_lib_core_lid "pure" let exists_lid = mk_pulse_lib_core_lid "op_exists_Star" let pulse_lib_forall = ["Pulse"; "Lib"; "Forall"] let mk_pulse_lib_forall_lid s = pulse_lib_forall@[s] let forall_lid = mk_pulse_lib_forall_lid "op_forall_Star" let args_of (tms:list R.term) = List.Tot.map (fun x -> x, R.Q_Explicit) tms let mk_pure (p:R.term) : R.term = let open R in let t = pack_ln (Tv_FVar (pack_fv pure_lid)) in pack_ln (Tv_App t (p, Q_Explicit)) let uzero = R.pack_universe (R.Uv_Zero) let pulse_lib_reference = ["Pulse"; "Lib"; "Reference"] let mk_pulse_lib_reference_lid s = pulse_lib_reference@[s] let mk_squash (u:R.universe) (ty:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv R.squash_qn) [u]) in pack_ln (Tv_App t (ty, Q_Explicit)) let mk_eq2 (u:R.universe) (ty e1 e2:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv R.eq2_qn) [u]) in let t = pack_ln (Tv_App t (ty, Q_Implicit)) in let t = pack_ln (Tv_App t (e1, Q_Explicit)) in pack_ln (Tv_App t (e2, Q_Explicit)) let stt_admit_lid = mk_pulse_lib_core_lid "stt_admit" let mk_stt_admit (u:R.universe) (t pre post:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv stt_admit_lid) [u]) in let t = pack_ln (Tv_App t (t, Q_Explicit)) in let t = pack_ln (Tv_App t (pre, Q_Explicit)) in pack_ln (Tv_App t (post, Q_Explicit)) let stt_atomic_admit_lid = mk_pulse_lib_core_lid "stt_atomic_admit" let mk_stt_atomic_admit (u:R.universe) (t pre post:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv stt_atomic_admit_lid) [u]) in let t = pack_ln (Tv_App t (t, Q_Explicit)) in let t = pack_ln (Tv_App t (pre, Q_Explicit)) in pack_ln (Tv_App t (post, Q_Explicit)) let stt_ghost_admit_lid = mk_pulse_lib_core_lid "stt_ghost_admit" let mk_stt_ghost_admit (u:R.universe) (t pre post:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv stt_ghost_admit_lid) [u]) in let t = pack_ln (Tv_App t (t, Q_Explicit)) in let t = pack_ln (Tv_App t (pre, Q_Explicit)) in pack_ln (Tv_App t (post, Q_Explicit)) let emp_inames_lid = mk_pulse_lib_core_lid "emp_inames" let all_inames_lid = mk_pulse_lib_core_lid "all_inames" let add_inv_lid = mk_pulse_lib_core_lid "add_inv" let remove_inv_lid = mk_pulse_lib_core_lid "remove_inv" let elim_pure_lid = mk_pulse_lib_core_lid "elim_pure" //the thunked, value-type counterpart of the effect STT let stt_lid = mk_pulse_lib_core_lid "stt" let stt_fv = R.pack_fv stt_lid let stt_tm = R.pack_ln (R.Tv_FVar stt_fv) let mk_stt_comp (u:R.universe) (res pre post:R.term) : Tot R.term = let t = R.pack_ln (R.Tv_UInst stt_fv [u]) in let t = R.pack_ln (R.Tv_App t (res, R.Q_Explicit)) in let t = R.pack_ln (R.Tv_App t (pre, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) let stt_atomic_lid = mk_pulse_lib_core_lid "stt_atomic" let stt_atomic_fv = R.pack_fv stt_atomic_lid let stt_atomic_tm = R.pack_ln (R.Tv_FVar stt_atomic_fv) let stt_unobservable_lid = mk_pulse_lib_core_lid "stt_unobservable" let stt_unobservable_fv = R.pack_fv stt_unobservable_lid let stt_unobservable_tm = R.pack_ln (R.Tv_FVar stt_unobservable_fv) let mk_stt_atomic_comp (obs:R.term) (u:R.universe) (a inames pre post:R.term) = let head = stt_atomic_fv in let t = R.pack_ln (R.Tv_UInst head [u]) in let t = R.pack_ln (R.Tv_App t (a, R.Q_Explicit)) in let t = R.pack_ln (R.Tv_App t (obs, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (inames, R.Q_Explicit)) in let t = R.pack_ln (R.Tv_App t (pre, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) let stt_ghost_lid = mk_pulse_lib_core_lid "stt_ghost" let stt_ghost_fv = R.pack_fv stt_ghost_lid let stt_ghost_tm = R.pack_ln (R.Tv_FVar stt_ghost_fv) let mk_stt_ghost_comp (u:R.universe) (a pre post:R.term) = let t = R.pack_ln (R.Tv_UInst stt_ghost_fv [u]) in let t = R.pack_ln (R.Tv_App t (a, R.Q_Explicit)) in let t = R.pack_ln (R.Tv_App t (pre, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) let mk_stt_ghost_comp_post_equiv (g:R.env) (u:R.universe) (a pre post1 post2:R.term) (posts_equiv:RT.equiv g post1 post2) : RT.equiv g (mk_stt_ghost_comp u a pre post1) (mk_stt_ghost_comp u a pre post2) = let open R in let open RT in let t = R.pack_ln (R.Tv_UInst stt_ghost_fv [u]) in let t = R.pack_ln (R.Tv_App t (a, R.Q_Explicit)) in let t = R.pack_ln (R.Tv_App t (pre, R.Q_Explicit)) in Rel_ctxt g post1 post2 (Ctxt_app_arg t Q_Explicit Ctxt_hole) posts_equiv let mk_total t = R.C_Total t let mk_ghost t = R.C_GTotal t let binder_of_t_q t q = RT.binder_of_t_q t q let binder_of_t_q_s (t:R.term) (q:R.aqualv) (s:RT.pp_name_t) = RT.mk_binder s t q let bound_var i : R.term = RT.bound_var i let mk_name i : R.term = R.pack_ln (R.Tv_Var (R.pack_namedv (RT.make_namedv i))) let arrow_dom = (R.term & R.aqualv) let mk_arrow (f:arrow_dom) (out:R.term) : R.term = let ty, q = f in R.pack_ln (R.Tv_Arrow (binder_of_t_q ty q) (R.pack_comp (mk_total out))) let mk_arrow_with_name (s:RT.pp_name_t) (f:arrow_dom) (out:R.term) : R.term = let ty, q = f in R.pack_ln (R.Tv_Arrow (binder_of_t_q_s ty q s) (R.pack_comp (mk_total out))) let mk_ghost_arrow_with_name (s:RT.pp_name_t) (f:arrow_dom) (out:R.term) : R.term = let ty, q = f in R.pack_ln (R.Tv_Arrow (binder_of_t_q_s ty q s) (R.pack_comp (mk_ghost out))) let mk_abs ty qual t : R.term = RT.mk_abs ty qual t let mk_abs_with_name s ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q_s ty qual s) t) let mk_abs_with_name_and_range s r ty qual t : R.term = let b = (binder_of_t_q_s ty qual s) in let b = RU.binder_set_range b r in R.pack_ln (R.Tv_Abs b t) let mk_erased (u:R.universe) (t:R.term) : R.term = let hd = R.pack_ln (R.Tv_UInst (R.pack_fv erased_lid) [u]) in R.pack_ln (R.Tv_App hd (t, R.Q_Explicit)) let mk_reveal (u:R.universe) (t:R.term) (e:R.term) : R.term = let hd = R.pack_ln (R.Tv_UInst (R.pack_fv reveal_lid) [u]) in let hd = R.pack_ln (R.Tv_App hd (t, R.Q_Implicit)) in R.pack_ln (R.Tv_App hd (e, R.Q_Explicit)) let elim_exists_lid = mk_pulse_lib_core_lid "elim_exists" let intro_exists_lid = mk_pulse_lib_core_lid "intro_exists" let intro_exists_erased_lid = mk_pulse_lib_core_lid "intro_exists_erased" let mk_exists (u:R.universe) (a p:R.term) = let t = R.pack_ln (R.Tv_UInst (R.pack_fv exists_lid) [u]) in let t = R.pack_ln (R.Tv_App t (a, R.Q_Implicit)) in R.pack_ln (R.Tv_App t (p, R.Q_Explicit)) let mk_forall (u:R.universe) (a p:R.term) = let t = R.pack_ln (R.Tv_UInst (R.pack_fv forall_lid) [u]) in let t = R.pack_ln (R.Tv_App t (a, R.Q_Implicit)) in R.pack_ln (R.Tv_App t (p, R.Q_Explicit)) let mk_elim_exists (u:R.universe) (a p:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv elim_exists_lid) [u]) in let t = R.pack_ln (R.Tv_App t (a, R.Q_Implicit)) in R.pack_ln (R.Tv_App t (p, R.Q_Explicit)) let mk_intro_exists (u:R.universe) (a p:R.term) (e:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv intro_exists_lid) [u]) in let t = R.pack_ln (R.Tv_App t (a, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (p, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (e, R.Q_Explicit)) let mk_intro_exists_erased (u:R.universe) (a p:R.term) (e:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv intro_exists_erased_lid) [u]) in let t = R.pack_ln (R.Tv_App t (a, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (p, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (e, R.Q_Explicit)) let while_lid = ["Pulse"; "Lib"; "WhileLoop"; "while_loop"] let mk_while (inv cond body:R.term) : R.term = let t = R.pack_ln (R.Tv_FVar (R.pack_fv while_lid)) in let t = R.pack_ln (R.Tv_App t (inv, R.Q_Explicit)) in let t = R.pack_ln (R.Tv_App t (cond, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (body, R.Q_Explicit)) let vprop_eq_tm t1 t2 = let open R in let u2 = pack_universe (Uv_Succ (pack_universe (Uv_Succ (pack_universe Uv_Zero)))) in let t = pack_ln (Tv_UInst (pack_fv eq2_qn) [u2]) in let t = pack_ln (Tv_App t (pack_ln (Tv_FVar (pack_fv vprop_lid)), Q_Implicit)) in let t = pack_ln (Tv_App t (t1, Q_Explicit)) in let t = pack_ln (Tv_App t (t2, Q_Explicit)) in t let emp_inames_tm : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv emp_inames_lid)) let all_inames_tm : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv all_inames_lid)) let add_inv_tm (p is i : R.term) : R.term = let h = R.pack_ln (R.Tv_FVar (R.pack_fv add_inv_lid)) in R.mk_app h [im p; ex is; ex i] let remove_inv_tm (p is i : R.term) : R.term = let h = R.pack_ln (R.Tv_FVar (R.pack_fv remove_inv_lid)) in R.mk_app h [im p; ex is; ex i] let non_informative_witness_lid = mk_pulse_lib_core_lid "non_informative_witness" let non_informative_witness_rt (u:R.universe) (a:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (pack_fv non_informative_witness_lid) [u]) in let t = pack_ln (Tv_App t (a, Q_Explicit)) in t let stt_vprop_equiv_fv = R.pack_fv (mk_pulse_lib_core_lid "vprop_equiv") let stt_vprop_equiv_tm = R.pack_ln (R.Tv_FVar stt_vprop_equiv_fv) let stt_vprop_equiv (t1 t2:R.term) = let open R in let t = pack_ln (Tv_App stt_vprop_equiv_tm (t1, Q_Explicit)) in pack_ln (Tv_App t (t2, Q_Explicit)) let return_stt_lid = mk_pulse_lib_core_lid "return_stt" let return_stt_noeq_lid = mk_pulse_lib_core_lid "return" let return_stt_atomic_lid = mk_pulse_lib_core_lid "return_stt_atomic" let return_stt_atomic_noeq_lid = mk_pulse_lib_core_lid "return_stt_atomic_noeq" let return_stt_ghost_lid = mk_pulse_lib_core_lid "return_stt_ghost" let return_stt_ghost_noeq_lid = mk_pulse_lib_core_lid "return_stt_ghost_noeq" let mk_stt_return (u:R.universe) (ty:R.term) (t:R.term) (post:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv return_stt_lid) [u]) in let t = R.pack_ln (R.Tv_App t (ty, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (t, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) let mk_stt_return_noeq (u:R.universe) (ty:R.term) (t:R.term) (post:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv return_stt_noeq_lid) [u]) in let t = R.pack_ln (R.Tv_App t (ty, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (t, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) let mk_stt_atomic_return (u:R.universe) (ty:R.term) (t:R.term) (post:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv return_stt_atomic_lid) [u]) in let t = R.pack_ln (R.Tv_App t (ty, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (t, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) let mk_stt_atomic_return_noeq (u:R.universe) (ty:R.term) (t:R.term) (post:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv return_stt_atomic_noeq_lid) [u]) in let t = R.pack_ln (R.Tv_App t (ty, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (t, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) let mk_stt_ghost_return (u:R.universe) (ty:R.term) (t:R.term) (post:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv return_stt_ghost_lid) [u]) in let t = R.pack_ln (R.Tv_App t (ty, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (t, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) let mk_stt_ghost_return_noeq (u:R.universe) (ty:R.term) (t:R.term) (post:R.term) : R.term = let t = R.pack_ln (R.Tv_UInst (R.pack_fv return_stt_ghost_noeq_lid) [u]) in let t = R.pack_ln (R.Tv_App t (ty, R.Q_Implicit)) in let t = R.pack_ln (R.Tv_App t (t, R.Q_Explicit)) in R.pack_ln (R.Tv_App t (post, R.Q_Explicit)) // Wrapper.lift_stt_atomic<u> #a #pre #post e let mk_lift_atomic_stt (u:R.universe) (a pre post e:R.term) = let open R in let lid = mk_pulse_lib_core_lid "lift_stt_atomic" in let t = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post, Q_Implicit)) in pack_ln (R.Tv_App t (e, Q_Explicit)) let mk_lift_ghost_neutral (u:R.universe) (a pre post e reveal_a:R.term) = let open R in let lid = mk_pulse_lib_core_lid "lift_ghost_neutral" in let t = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post, Q_Implicit)) in let t = pack_ln (R.Tv_App t (e, Q_Explicit)) in pack_ln (R.Tv_App t (reveal_a, Q_Explicit)) let mk_lift_neutral_ghost (u:R.universe) (a pre post e:R.term) = let open R in let lid = mk_pulse_lib_core_lid "lift_neutral_ghost" in let t = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post, Q_Implicit)) in let t = pack_ln (R.Tv_App t (e, Q_Explicit)) in t let mk_lift_observability (u:R.universe) (a o1 o2 opened pre post e : R.term) = let open R in let lid = mk_pulse_lib_core_lid "lift_observablility" in let t = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (o1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (o2, Q_Implicit)) in let t = pack_ln (R.Tv_App t (opened, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post, Q_Implicit)) in pack_ln (R.Tv_App t (e, Q_Explicit)) // Wrapper.bind_stt<u1, u2> #a #b #pre1 #post1 #post2 e1 e2 let mk_bind_stt (u1 u2:R.universe) (ty1 ty2:R.term) (pre1 post1: R.term) (post2: R.term) (t1 t2:R.term) : R.term = let bind_lid = mk_pulse_lib_core_lid "bind_stt" in let head = R.pack_ln (R.Tv_UInst (R.pack_fv bind_lid) [u1;u2]) in R.mk_app (R.mk_app (R.mk_app (R.mk_app (R.mk_app (R.mk_app (R.mk_app head [(ty1, R.Q_Implicit)]) [(ty2, R.Q_Implicit)]) [(pre1, R.Q_Implicit)]) [(post1, R.Q_Implicit)]) [(post2, R.Q_Implicit)]) [(t1, R.Q_Explicit)]) [(t2, R.Q_Explicit)] let mk_bind_ghost (u1 u2:R.universe) (a b pre1 post1 post2 e1 e2:R.term) = let open R in let bind_lid = mk_pulse_lib_core_lid "bind_ghost" in let t = R.pack_ln (R.Tv_UInst (R.pack_fv bind_lid) [u1;u2]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (b, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post2, Q_Implicit)) in let t = pack_ln (R.Tv_App t (e1, Q_Explicit)) in pack_ln (R.Tv_App t (e2, Q_Explicit)) let mk_bind_atomic (u1 u2:R.universe) (a b obs1 obs2 opens pre1 post1 post2 e1 e2:R.term) = let open R in let bind_lid = mk_pulse_lib_core_lid "bind_atomic" in let t = R.pack_ln (R.Tv_UInst (R.pack_fv bind_lid) [u1;u2]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (b, Q_Implicit)) in let t = pack_ln (R.Tv_App t (obs1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (obs2, Q_Implicit)) in let t = pack_ln (R.Tv_App t (opens, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post2, Q_Implicit)) in let t = pack_ln (R.Tv_App t (e1, Q_Explicit)) in pack_ln (R.Tv_App t (e2, Q_Explicit)) // Wrapper.frame_stt<u> #ty #pre #post frame t let mk_frame_stt (u:R.universe) (ty:R.term) (pre: R.term) (post: R.term) (frame: R.term) (t:R.term) : R.term = let frame_lid = mk_pulse_lib_core_lid "frame_stt" in let frame_fv = R.pack_fv frame_lid in let frame_univ_inst u = R.pack_ln (R.Tv_UInst (R.pack_fv frame_lid) [u]) in let head = frame_univ_inst u in R.mk_app (R.mk_app (R.mk_app (R.mk_app (R.mk_app head [(ty, R.Q_Implicit)]) [(pre, R.Q_Implicit)]) [(post, R.Q_Implicit)]) [(frame, R.Q_Explicit)]) [(t, R.Q_Explicit)] // Wrapper.frame_stt_atomic<u> #a #opened #pre #post frame e let mk_frame_stt_atomic (u:R.universe) (a opened pre post frame e:R.term) = let open R in let lid = mk_pulse_lib_core_lid "frame_atomic" in let t = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (opened, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post, Q_Implicit)) in let t = pack_ln (R.Tv_App t (frame, Q_Explicit)) in pack_ln (R.Tv_App t (e, Q_Explicit)) // Wrapper.frame_stt_ghost<u> #a #opened #pre #post frame e let mk_frame_stt_ghost (u:R.universe) (a pre post frame e:R.term) = let open R in let lid = mk_pulse_lib_core_lid "frame_ghost" in let t = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post, Q_Implicit)) in let t = pack_ln (R.Tv_App t (frame, Q_Explicit)) in pack_ln (R.Tv_App t (e, Q_Explicit)) // Wrapper.sub_stt<u> #ty #pre1 pre2 #post1 post2 () () e let mk_sub_stt (u:R.universe) (ty:R.term) (pre1 pre2: R.term) (post1 post2: R.term) (t:R.term) : R.term = let subsumption_lid = mk_pulse_lib_core_lid "sub_stt" in let subsumption_fv = R.pack_fv subsumption_lid in let subsumption_univ_inst u = R.pack_ln (R.Tv_UInst subsumption_fv [u]) in let head = subsumption_univ_inst u in R.mk_app (R.mk_app (R.mk_app (R.mk_app (R.mk_app (R.mk_app (R.mk_app (R.mk_app head [(ty, R.Q_Implicit)]) [(pre1, R.Q_Implicit)]) [(pre2, R.Q_Explicit)]) [(post1, R.Q_Implicit)]) [(post2, R.Q_Explicit)]) [(`(), R.Q_Explicit)]) [(`(), R.Q_Explicit)]) [(t, R.Q_Explicit)] // Wrapper.sub_stt_atomic<u> #a #opened #pre1 pre2 #post1 post2 () () e let mk_sub_stt_atomic (u:R.universe) (a opened pre1 pre2 post1 post2 e:R.term) = let open R in let lid = mk_pulse_lib_core_lid "sub_atomic" in let t = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (opened, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre2, Q_Explicit)) in let t = pack_ln (R.Tv_App t (post1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post2, Q_Explicit)) in let t = pack_ln (R.Tv_App t (`(), Q_Explicit)) in let t = pack_ln (R.Tv_App t (`(), Q_Explicit)) in pack_ln (R.Tv_App t (e, Q_Explicit)) let mk_sub_inv_atomic (u:R.universe) (a pre post opens1 opens2 e : R.term) : R.term = let open R in let lid = mk_pulse_lib_core_lid "sub_invs_atomic" in let head : R.term = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in R.mk_app head [(a, Q_Implicit); (opens1, Q_Implicit); (opens2, Q_Implicit); (pre, Q_Implicit); (post, Q_Implicit); (e, Q_Explicit)] // Wrapper.sub_stt_ghost<u> #a #opened #pre1 pre2 #post1 post2 () () e let mk_sub_stt_ghost (u:R.universe) (a pre1 pre2 post1 post2 e:R.term) = let open R in let lid = mk_pulse_lib_core_lid "sub_ghost" in let t = pack_ln (R.Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (R.Tv_App t (a, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (pre2, Q_Explicit)) in let t = pack_ln (R.Tv_App t (post1, Q_Implicit)) in let t = pack_ln (R.Tv_App t (post2, Q_Explicit)) in let t = pack_ln (R.Tv_App t (`(), Q_Explicit)) in let t = pack_ln (R.Tv_App t (`(), Q_Explicit)) in pack_ln (R.Tv_App t (e, Q_Explicit)) let mk_par (u:R.universe) (aL aR preL postL preR postR eL eR:R.term) = let open R in let lid = mk_pulse_lib_core_lid "par_stt" in let t = pack_ln (Tv_UInst (R.pack_fv lid) [u]) in let t = pack_ln (Tv_App t (aL, Q_Implicit)) in let t = pack_ln (Tv_App t (aR, Q_Implicit)) in let t = pack_ln (Tv_App t (preL, Q_Implicit)) in let t = pack_ln (Tv_App t (postL, Q_Implicit)) in let t = pack_ln (Tv_App t (preR, Q_Implicit)) in let t = pack_ln (Tv_App t (postR, Q_Implicit)) in let t = pack_ln (Tv_App t (eL, Q_Explicit)) in pack_ln (Tv_App t (eR, Q_Explicit)) let mk_rewrite (p q:R.term) = let open R in let t = pack_ln (Tv_FVar (pack_fv (mk_pulse_lib_core_lid "rewrite"))) in let t = pack_ln (Tv_App t (p, Q_Explicit)) in let t = pack_ln (Tv_App t (q, Q_Explicit)) in pack_ln (Tv_App t (`(), Q_Explicit)) let mk_withlocal (ret_u:R.universe) (a init pre ret_t post body:R.term) = let open R in let lid = mk_pulse_lib_reference_lid "with_local" in let t = pack_ln (Tv_UInst (R.pack_fv lid) [ret_u]) in let t = pack_ln (Tv_App t (a, Q_Implicit)) in let t = pack_ln (Tv_App t (init, Q_Explicit)) in let t = pack_ln (Tv_App t (pre, Q_Implicit)) in let t = pack_ln (Tv_App t (ret_t, Q_Implicit)) in let t = pack_ln (Tv_App t (post, Q_Implicit)) in pack_ln (Tv_App t (body, Q_Explicit)) ///// Utils to derive equiv for common constructs ///// let mk_star_equiv (g:R.env) (t1 t2 t3 t4:R.term) (eq1:RT.equiv g t1 t3) (eq2:RT.equiv g t2 t4) : RT.equiv g (mk_star t1 t2) (mk_star t3 t4) = admit () let mk_stt_comp_equiv (g:R.env) (u:R.universe) (res1 pre1 post1 res2 pre2 post2:R.term) (res_eq: RT.equiv g res1 res2) (pre_eq:RT.equiv g pre1 pre2) (post_eq:RT.equiv g post1 post2) : RT.equiv g (mk_stt_comp u res1 pre1 post1) (mk_stt_comp u res2 pre2 post2) = admit () let mk_stt_atomic_comp_equiv (g:R.env) obs (u:R.universe) (res inames pre1 post1 pre2 post2:R.term) (pre_eq:RT.equiv g pre1 pre2) (post_eq:RT.equiv g post1 post2) : RT.equiv g (mk_stt_atomic_comp obs u res inames pre1 post1) (mk_stt_atomic_comp obs u res inames pre2 post2) = admit () let mk_stt_ghost_comp_equiv (g:R.env) (u:R.universe) (res pre1 post1 pre2 post2:R.term) (pre_eq:RT.equiv g pre1 pre2) (post_eq:RT.equiv g post1 post2) : RT.equiv g (mk_stt_ghost_comp u res pre1 post1) (mk_stt_ghost_comp u res pre2 post2) = admit () let ref_lid = mk_pulse_lib_reference_lid "ref" let pts_to_lid = mk_pulse_lib_reference_lid "pts_to" let full_perm_lid = ["PulseCore"; "FractionalPermission"; "full_perm"] let mk_ref (a:R.term) : R.term = let open R in let t = pack_ln (Tv_FVar (pack_fv ref_lid)) in pack_ln (Tv_App t (a, Q_Explicit)) let mk_pts_to (a:R.term) (r:R.term) (perm:R.term) (v:R.term) : R.term = let open R in let t = pack_ln (Tv_FVar (pack_fv pts_to_lid)) in let t = pack_ln (Tv_App t (a, Q_Implicit)) in let t = pack_ln (Tv_App t (r, Q_Explicit)) in let t = pack_ln (Tv_App t (perm, Q_Implicit)) in pack_ln (Tv_App t (v, Q_Explicit)) let full_perm_tm : R.term = let open R in pack_ln (Tv_FVar (pack_fv full_perm_lid)) let pulse_lib_array_core = ["Pulse"; "Lib"; "Array"; "Core"] let mk_pulse_lib_array_core_lid s = pulse_lib_array_core @ [s] let array_lid = mk_pulse_lib_array_core_lid "array" let array_pts_to_lid = mk_pulse_lib_array_core_lid "pts_to" let array_length_lid = mk_pulse_lib_array_core_lid "length" let array_is_full_lid = mk_pulse_lib_array_core_lid "is_full_array" let mk_array (a:R.term) : R.term = let open R in let t = pack_ln (Tv_FVar (pack_fv array_lid)) in pack_ln (Tv_App t (a, Q_Explicit)) let mk_array_length (a:R.term) (arr:R.term) : R.term = let open R in let t = pack_ln (Tv_FVar (pack_fv array_length_lid)) in let t = pack_ln (Tv_App t (a, Q_Implicit)) in pack_ln (Tv_App t (arr, Q_Explicit)) let mk_array_pts_to (a:R.term) (arr:R.term) (perm:R.term) (v:R.term) : R.term = let open R in let t = pack_ln (Tv_FVar (pack_fv array_pts_to_lid)) in let t = pack_ln (Tv_App t (a, Q_Implicit)) in let t = pack_ln (Tv_App t (arr, Q_Explicit)) in let t = pack_ln (Tv_App t (perm, Q_Implicit)) in pack_ln (Tv_App t (v, Q_Explicit)) // let mk_array_is_full (a:R.term) (arr:R.term) : R.term = // let open R in // let t = pack_ln (Tv_FVar (pack_fv array_is_full_lid)) in // let t = pack_ln (Tv_App t (a, Q_Implicit)) in // pack_ln (Tv_App t (arr, Q_Explicit)) let mk_seq (u:R.universe) (a:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (R.pack_fv seq_lid) [u]) in pack_ln (Tv_App t (a, Q_Explicit)) let mk_seq_create (u:R.universe) (a:R.term) (len:R.term) (v:R.term) : R.term = let open R in let t = pack_ln (Tv_UInst (R.pack_fv seq_create_lid) [u]) in let t = pack_ln (Tv_App t (a, Q_Implicit)) in let t = pack_ln (Tv_App t (len, Q_Explicit)) in pack_ln (Tv_App t (v, Q_Explicit)) let mk_withlocalarray (ret_u:R.universe) (a init len pre ret_t post body:R.term) = let open R in let lid = mk_pulse_lib_array_core_lid "with_local" in let t = pack_ln (Tv_UInst (R.pack_fv lid) [ret_u]) in let t = pack_ln (Tv_App t (a, Q_Implicit)) in let t = pack_ln (Tv_App t (init, Q_Explicit)) in let t = pack_ln (Tv_App t (len, Q_Explicit)) in let t = pack_ln (Tv_App t (pre, Q_Implicit)) in let t = pack_ln (Tv_App t (ret_t, Q_Implicit)) in let t = pack_ln (Tv_App t (post, Q_Implicit)) in pack_ln (Tv_App t (body, Q_Explicit)) let mk_szv (n:R.term) = let open R in let t = pack_ln (Tv_FVar (pack_fv szv_lid)) in pack_ln (Tv_App t (n, Q_Explicit))
{ "checked_file": "/", "dependencies": [ "Pulse.RuntimeUtils.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Reflection.Util.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "Pulse.Reflection", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> nm: Prims.string -> tm: FStar.Ghost.erased FStar.Stubs.Reflection.Types.term -> ty: FStar.Stubs.Reflection.Types.typ { FStar.Reflection.Typing.typing g (FStar.Ghost.reveal tm) (FStar.Stubs.TypeChecker.Core.E_Total, ty) } -> FStar.Tactics.Effect.Tac (FStar.Reflection.Typing.sigelt_for g)
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Stubs.Reflection.Types.env", "Prims.string", "FStar.Ghost.erased", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.Types.typ", "FStar.Reflection.Typing.typing", "FStar.Ghost.reveal", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.TypeChecker.Core.E_Total", "FStar.Pervasives.Native.Mktuple3", "Prims.bool", "FStar.Stubs.Reflection.Types.sigelt", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.blob", "FStar.Pervasives.Native.None", "FStar.Reflection.Typing.sigelt_typing", "FStar.Reflection.Typing.ST_Let_Opaque", "FStar.Stubs.Reflection.V2.Builtins.pack_sigelt", "FStar.Stubs.Reflection.V2.Data.Sg_Let", "Prims.Cons", "FStar.Stubs.Reflection.Types.letbinding", "Prims.Nil", "FStar.Stubs.Reflection.V2.Builtins.pack_lb", "FStar.Stubs.Reflection.V2.Data.Mklb_view", "FStar.Stubs.Reflection.Types.univ_name", "FStar.Reflection.Typing.sigelt_for", "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.V2.Builtins.pack_fv", "FStar.Stubs.Reflection.Types.name", "FStar.List.Tot.Base.op_At", "Prims.list", "FStar.Tactics.V2.Derived.cur_module" ]
[]
false
true
false
false
false
let mk_opaque_let (g: R.env) (nm: string) (tm: Ghost.erased R.term) (ty: R.typ{RT.typing g tm (T.E_Total, ty)}) : T.Tac (RT.sigelt_for g) =
let fv = R.pack_fv (T.cur_module () @ [nm]) in let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) }) in let se = R.pack_sigelt (R.Sg_Let false [lb]) in let pf:RT.sigelt_typing g se = RT.ST_Let_Opaque g fv ty () in (true, se, None)
false
Vale.X64.Memory.fsti
Vale.X64.Memory.init_heaplets_req
val init_heaplets_req : h: Vale.X64.Memory.vale_heap -> bs: FStar.Seq.Base.seq Vale.Arch.HeapImpl.buffer_info -> Prims.logical
let init_heaplets_req (h:vale_heap) (bs:Seq.seq buffer_info) = (forall (i:nat).{:pattern (Seq.index bs i)} i < Seq.length bs ==> buffer_readable h (Seq.index bs i).bi_buffer) /\ (forall (i1 i2:nat).{:pattern (Seq.index bs i1); (Seq.index bs i2)} i1 < Seq.length bs /\ i2 < Seq.length bs ==> buffer_info_disjoint (Seq.index bs i1) (Seq.index bs i2))
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 106, "end_line": 381, "start_col": 0, "start_line": 377 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32 let buffer64 = buffer vuint64 let buffer128 = buffer vuint128 val buffer_addr (#t:base_typ) (b:buffer t) (h:vale_heap) : GTot int unfold let locs_disjoint (ls:list loc) : prop0 = BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls) // equivalent to modifies; used to prove modifies clauses via modifies_goal_directed_trans val modifies_goal_directed (s:loc) (h1 h2:vale_heap) : GTot prop0 val lemma_modifies_goal_directed (s:loc) (h1 h2:vale_heap) : Lemma (modifies s h1 h2 == modifies_goal_directed s h1 h2) val buffer_length_buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : Lemma (requires True) (ensures (Seq.length (buffer_as_seq h b) == buffer_length b)) [SMTPat (Seq.length (buffer_as_seq h b))] val modifies_buffer_elim (#t1:base_typ) (b:buffer t1) (p:loc) (h h':vale_heap) : Lemma (requires loc_disjoint (loc_buffer b) p /\ buffer_readable h b /\ modifies p h h' ) (ensures buffer_readable h b /\ buffer_readable h' b /\ buffer_as_seq h b == buffer_as_seq h' b ) [SMTPatOr [ [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)]; [SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b)]; ]] val modifies_buffer_addr (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' ) (ensures buffer_addr b h == buffer_addr b h') [SMTPat (modifies p h h'); SMTPat (buffer_addr b h')] val modifies_buffer_readable (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' /\ buffer_readable h b ) (ensures buffer_readable h' b) [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)] val loc_disjoint_none_r (s:loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2:loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_includes_refl (s:loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3:loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2:loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s:loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) // for efficiency, no SMT pattern val loc_includes_union_l_buffer (#t:base_typ) (s1 s2:loc) (b:buffer t) : Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] val loc_includes_none (s:loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val modifies_refl (s:loc) (h:vale_heap) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_goal_directed_refl (s:loc) (h:vale_heap) : Lemma (modifies_goal_directed s h h) [SMTPat (modifies_goal_directed s h h)] val modifies_loc_includes (s1:loc) (h h':vale_heap) (s2:loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) // for efficiency, no SMT pattern val modifies_trans (s12:loc) (h1 h2:vale_heap) (s23:loc) (h3:vale_heap) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) // for efficiency, no SMT pattern // Prove (modifies s13 h1 h3). // To avoid unnecessary matches, don't introduce any other modifies terms. // Introduce modifies_goal_directed instead. val modifies_goal_directed_trans (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies s13 h1 h3)] val modifies_goal_directed_trans2 (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies_goal_directed s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies_goal_directed s13 h1 h3)] val buffer_read (#t:base_typ) (b:buffer t) (i:int) (h:vale_heap) : Ghost (base_typ_as_vale_type t) (requires True) (ensures (fun v -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> v == Seq.index (buffer_as_seq h b) i )) val buffer_write (#t:base_typ) (b:buffer t) (i:int) (v:base_typ_as_vale_type t) (h:vale_heap) : Ghost vale_heap (requires buffer_readable h b /\ buffer_writeable b) (ensures (fun h' -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> modifies (loc_buffer b) h h' /\ get_heaplet_id h' == get_heaplet_id h /\ buffer_readable h' b /\ buffer_as_seq h' b == Seq.upd (buffer_as_seq h b) i v )) val valid_mem64 (ptr:int) (h:vale_heap) : GTot bool // is there a 64-bit word at address ptr? val writeable_mem64 (ptr:int) (h:vale_heap) : GTot bool // can we write a 64-bit word at address ptr? val load_mem64 (ptr:int) (h:vale_heap) : GTot nat64 // the 64-bit word at ptr (if valid_mem64 holds) val store_mem64 (ptr:int) (v:nat64) (h:vale_heap) : GTot vale_heap val valid_mem128 (ptr:int) (h:vale_heap) : GTot bool val writeable_mem128 (ptr:int) (h:vale_heap) : GTot bool val load_mem128 (ptr:int) (h:vale_heap) : GTot quad32 val store_mem128 (ptr:int) (v:quad32) (h:vale_heap) : GTot vale_heap val lemma_valid_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem64 (buffer_addr b h + scale8 i) h ) val lemma_writeable_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem64 (buffer_addr b h + scale8 i) h ) val lemma_load_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem64 (buffer_addr b h + scale8 i) h == buffer_read b i h ) val lemma_store_mem64 (b:buffer64) (i:nat) (v:nat64) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem64 (buffer_addr b h + scale8 i) v h == buffer_write b i v h ) val lemma_valid_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem128 (buffer_addr b h + scale16 i) h ) val lemma_writeable_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem128 (buffer_addr b h + scale16 i) h ) val lemma_load_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem128 (buffer_addr b h + scale16 i) h == buffer_read b i h ) val lemma_store_mem128 (b:buffer128) (i:nat) (v:quad32) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem128 (buffer_addr b h + scale16 i) v h == buffer_write b i v h ) //Memtaint related functions type memtaint = memTaint_t val valid_taint_buf (#t:base_typ) (b:buffer t) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 let valid_taint_buf64 (b:buffer64) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn let valid_taint_buf128 (b:buffer128) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn val lemma_valid_taint64 (b:buffer64) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf64 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale8 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 8 ==> Map.sel memTaint i' == t)) val lemma_valid_taint128 (b:buffer128) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf128 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale16 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 16 ==> Map.sel memTaint i' == t)) val same_memTaint64 (b:buffer64) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val same_memTaint128 (b:buffer128) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val modifies_valid_taint (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) (mt:memtaint) (tn:taint) : Lemma (requires modifies p h h') (ensures valid_taint_buf b h mt tn <==> valid_taint_buf b h' mt tn) [SMTPat (modifies p h h'); SMTPat (valid_taint_buf b h' mt tn)] val modifies_same_heaplet_id (l:loc) (h1 h2:vale_heap) : Lemma (requires modifies l h1 h2) (ensures get_heaplet_id h1 == get_heaplet_id h2) [SMTPat (modifies l h1 h2); SMTPat (get_heaplet_id h2)] // Buffers in different heaplets are disjoint let buffer_info_disjoint (bi1 bi2:buffer_info) = bi1.bi_typ =!= bi2.bi_typ \/ bi1.bi_heaplet =!= bi2.bi_heaplet ==> loc_disjoint (loc_buffer bi1.bi_buffer) (loc_buffer bi2.bi_buffer)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.X64.Memory.vale_heap -> bs: FStar.Seq.Base.seq Vale.Arch.HeapImpl.buffer_info -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.vale_heap", "FStar.Seq.Base.seq", "Vale.Arch.HeapImpl.buffer_info", "Prims.l_and", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.X64.Memory.buffer_readable", "Vale.Arch.HeapImpl.__proj__Mkbuffer_info__item__bi_typ", "FStar.Seq.Base.index", "Vale.Arch.HeapImpl.__proj__Mkbuffer_info__item__bi_buffer", "Vale.X64.Memory.buffer_info_disjoint", "Prims.logical" ]
[]
false
false
false
true
true
let init_heaplets_req (h: vale_heap) (bs: Seq.seq buffer_info) =
(forall (i: nat). {:pattern (Seq.index bs i)} i < Seq.length bs ==> buffer_readable h (Seq.index bs i).bi_buffer) /\ (forall (i1: nat) (i2: nat). {:pattern (Seq.index bs i1); (Seq.index bs i2)} i1 < Seq.length bs /\ i2 < Seq.length bs ==> buffer_info_disjoint (Seq.index bs i1) (Seq.index bs i2))
false
Vale.X64.Memory.fsti
Vale.X64.Memory.loc_mutable_buffers
val loc_mutable_buffers (buffers: list buffer_info) : GTot loc
val loc_mutable_buffers (buffers: list buffer_info) : GTot loc
let rec loc_mutable_buffers (buffers:list buffer_info) : GTot loc = match buffers with | [] -> loc_none | [{bi_mutable = Mutable; bi_buffer = b}] -> loc_buffer b | ({bi_mutable = Immutable})::t -> loc_mutable_buffers t | ({bi_mutable = Mutable; bi_buffer = b})::t -> loc_union (loc_buffer b) (loc_mutable_buffers t)
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 98, "end_line": 389, "start_col": 0, "start_line": 384 }
module Vale.X64.Memory include Vale.Arch.HeapTypes_s open FStar.Mul open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Arch.HeapImpl module Map16 = Vale.Lib.Map16 unfold let vale_heap = vale_heap unfold let vale_full_heap = vale_full_heap unfold let heaplet_id = heaplet_id [@va_qattr] let get_vale_heap (vhi:vale_full_heap) : vale_heap = vhi.vf_heap [@va_qattr] let set_vale_heap (vfh:vale_full_heap) (vh:vale_heap) : vale_full_heap = {vfh with vf_heap = vh} let vale_full_heap_equal (h1 h2:vale_full_heap) = h1.vf_layout == h2.vf_layout /\ h1.vf_heap == h2.vf_heap /\ Map16.equal h1.vf_heaplets h2.vf_heaplets val get_heaplet_id (h:vale_heap) : option heaplet_id unfold let nat8 = Vale.Def.Words_s.nat8 unfold let nat16 = Vale.Def.Words_s.nat16 unfold let nat32 = Vale.Def.Words_s.nat32 unfold let nat64 = Vale.Def.Words_s.nat64 unfold let quad32 = Vale.Def.Types_s.quad32 let base_typ_as_vale_type (t:base_typ) : Tot eqtype = match t with | TUInt8 -> nat8 | TUInt16 -> nat16 | TUInt32 -> nat32 | TUInt64 -> nat64 | TUInt128 -> quad32 let scale_by (scale index:int) : int = scale * index unfold let scale2 (index:int) : int = scale_by 2 index unfold let scale4 (index:int) : int = scale_by 4 index unfold let scale8 (index:int) : int = scale_by 8 index unfold let scale16 (index:int) : int = scale_by 16 index unfold let buffer (t:base_typ) : Type0 = Vale.Arch.HeapImpl.buffer t val buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot (Seq.seq (base_typ_as_vale_type t)) val buffer_readable (#t:base_typ) (h:vale_heap) (b:buffer t) : GTot prop0 val buffer_writeable (#t:base_typ) (b:buffer t) : GTot prop0 val buffer_length (#t:base_typ) (b:buffer t) : GTot nat val loc : Type u#0 val loc_none : loc val loc_union (s1 s2:loc) : GTot loc val loc_buffer (#t:base_typ) (b:buffer t) : GTot loc val loc_disjoint (s1 s2:loc) : GTot prop0 val loc_includes (s1 s2:loc) : GTot prop0 val modifies (s:loc) (h1 h2:vale_heap) : GTot prop0 let valid_buffer_read (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = 0 <= i /\ i < buffer_length b /\ buffer_readable h b let valid_buffer_write (#t:base_typ) (h:vale_heap) (b:buffer t) (i:int) : prop0 = valid_buffer_read h b i /\ buffer_writeable b // Named abbreviations for Vale type system: unfold let vuint8 = TUInt8 unfold let vuint16 = TUInt16 unfold let vuint32 = TUInt32 unfold let vuint64 = TUInt64 unfold let vuint128 = TUInt128 let buffer8 = buffer vuint8 let buffer16 = buffer vuint16 let buffer32 = buffer vuint32 let buffer64 = buffer vuint64 let buffer128 = buffer vuint128 val buffer_addr (#t:base_typ) (b:buffer t) (h:vale_heap) : GTot int unfold let locs_disjoint (ls:list loc) : prop0 = BigOps.normal (BigOps.pairwise_and' (fun x y -> loc_disjoint x y /\ loc_disjoint y x) ls) // equivalent to modifies; used to prove modifies clauses via modifies_goal_directed_trans val modifies_goal_directed (s:loc) (h1 h2:vale_heap) : GTot prop0 val lemma_modifies_goal_directed (s:loc) (h1 h2:vale_heap) : Lemma (modifies s h1 h2 == modifies_goal_directed s h1 h2) val buffer_length_buffer_as_seq (#t:base_typ) (h:vale_heap) (b:buffer t) : Lemma (requires True) (ensures (Seq.length (buffer_as_seq h b) == buffer_length b)) [SMTPat (Seq.length (buffer_as_seq h b))] val modifies_buffer_elim (#t1:base_typ) (b:buffer t1) (p:loc) (h h':vale_heap) : Lemma (requires loc_disjoint (loc_buffer b) p /\ buffer_readable h b /\ modifies p h h' ) (ensures buffer_readable h b /\ buffer_readable h' b /\ buffer_as_seq h b == buffer_as_seq h' b ) [SMTPatOr [ [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)]; [SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b)]; ]] val modifies_buffer_addr (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' ) (ensures buffer_addr b h == buffer_addr b h') [SMTPat (modifies p h h'); SMTPat (buffer_addr b h')] val modifies_buffer_readable (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) : Lemma (requires modifies p h h' /\ buffer_readable h b ) (ensures buffer_readable h' b) [SMTPat (modifies p h h'); SMTPat (buffer_readable h' b)] val loc_disjoint_none_r (s:loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2:loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_includes_refl (s:loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3:loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2:loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s:loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) // for efficiency, no SMT pattern val loc_includes_union_l_buffer (#t:base_typ) (s1 s2:loc) (b:buffer t) : Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] val loc_includes_none (s:loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val modifies_refl (s:loc) (h:vale_heap) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_goal_directed_refl (s:loc) (h:vale_heap) : Lemma (modifies_goal_directed s h h) [SMTPat (modifies_goal_directed s h h)] val modifies_loc_includes (s1:loc) (h h':vale_heap) (s2:loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) // for efficiency, no SMT pattern val modifies_trans (s12:loc) (h1 h2:vale_heap) (s23:loc) (h3:vale_heap) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) // for efficiency, no SMT pattern // Prove (modifies s13 h1 h3). // To avoid unnecessary matches, don't introduce any other modifies terms. // Introduce modifies_goal_directed instead. val modifies_goal_directed_trans (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies s13 h1 h3)] val modifies_goal_directed_trans2 (s12:loc) (h1 h2:vale_heap) (s13:loc) (h3:vale_heap) : Lemma (requires modifies s12 h1 h2 /\ modifies_goal_directed s13 h2 h3 /\ loc_includes s13 s12 ) (ensures (modifies_goal_directed s13 h1 h3)) [SMTPat (modifies s12 h1 h2); SMTPat (modifies_goal_directed s13 h1 h3)] val buffer_read (#t:base_typ) (b:buffer t) (i:int) (h:vale_heap) : Ghost (base_typ_as_vale_type t) (requires True) (ensures (fun v -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> v == Seq.index (buffer_as_seq h b) i )) val buffer_write (#t:base_typ) (b:buffer t) (i:int) (v:base_typ_as_vale_type t) (h:vale_heap) : Ghost vale_heap (requires buffer_readable h b /\ buffer_writeable b) (ensures (fun h' -> 0 <= i /\ i < buffer_length b /\ buffer_readable h b ==> modifies (loc_buffer b) h h' /\ get_heaplet_id h' == get_heaplet_id h /\ buffer_readable h' b /\ buffer_as_seq h' b == Seq.upd (buffer_as_seq h b) i v )) val valid_mem64 (ptr:int) (h:vale_heap) : GTot bool // is there a 64-bit word at address ptr? val writeable_mem64 (ptr:int) (h:vale_heap) : GTot bool // can we write a 64-bit word at address ptr? val load_mem64 (ptr:int) (h:vale_heap) : GTot nat64 // the 64-bit word at ptr (if valid_mem64 holds) val store_mem64 (ptr:int) (v:nat64) (h:vale_heap) : GTot vale_heap val valid_mem128 (ptr:int) (h:vale_heap) : GTot bool val writeable_mem128 (ptr:int) (h:vale_heap) : GTot bool val load_mem128 (ptr:int) (h:vale_heap) : GTot quad32 val store_mem128 (ptr:int) (v:quad32) (h:vale_heap) : GTot vale_heap val lemma_valid_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem64 (buffer_addr b h + scale8 i) h ) val lemma_writeable_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem64 (buffer_addr b h + scale8 i) h ) val lemma_load_mem64 (b:buffer64) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem64 (buffer_addr b h + scale8 i) h == buffer_read b i h ) val lemma_store_mem64 (b:buffer64) (i:nat) (v:nat64) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem64 (buffer_addr b h + scale8 i) v h == buffer_write b i v h ) val lemma_valid_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures valid_mem128 (buffer_addr b h + scale16 i) h ) val lemma_writeable_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures writeable_mem128 (buffer_addr b h + scale16 i) h ) val lemma_load_mem128 (b:buffer128) (i:nat) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b ) (ensures load_mem128 (buffer_addr b h + scale16 i) h == buffer_read b i h ) val lemma_store_mem128 (b:buffer128) (i:nat) (v:quad32) (h:vale_heap) : Lemma (requires i < Seq.length (buffer_as_seq h b) /\ buffer_readable h b /\ buffer_writeable b ) (ensures store_mem128 (buffer_addr b h + scale16 i) v h == buffer_write b i v h ) //Memtaint related functions type memtaint = memTaint_t val valid_taint_buf (#t:base_typ) (b:buffer t) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 let valid_taint_buf64 (b:buffer64) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn let valid_taint_buf128 (b:buffer128) (h:vale_heap) (mt:memtaint) (tn:taint) : GTot prop0 = valid_taint_buf b h mt tn val lemma_valid_taint64 (b:buffer64) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf64 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale8 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 8 ==> Map.sel memTaint i' == t)) val lemma_valid_taint128 (b:buffer128) (memTaint:memtaint) (vale_heap:vale_heap) (i:nat{i < buffer_length b}) (t:taint) : Lemma (requires valid_taint_buf128 b vale_heap memTaint t /\ buffer_readable vale_heap b) (ensures ( let ptr = buffer_addr b vale_heap + scale16 i in forall i'.{:pattern Map.sel memTaint i'} i' >= ptr /\ i' < ptr + 16 ==> Map.sel memTaint i' == t)) val same_memTaint64 (b:buffer64) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val same_memTaint128 (b:buffer128) (mem0:vale_heap) (mem1:vale_heap) (memtaint0:memtaint) (memtaint1:memtaint) : Lemma (requires (modifies (loc_buffer b) mem0 mem1 /\ (forall p.{:pattern Map.sel memtaint0 p \/ Map.sel memtaint1 p} Map.sel memtaint0 p == Map.sel memtaint1 p))) (ensures memtaint0 == memtaint1) val modifies_valid_taint (#t:base_typ) (b:buffer t) (p:loc) (h h':vale_heap) (mt:memtaint) (tn:taint) : Lemma (requires modifies p h h') (ensures valid_taint_buf b h mt tn <==> valid_taint_buf b h' mt tn) [SMTPat (modifies p h h'); SMTPat (valid_taint_buf b h' mt tn)] val modifies_same_heaplet_id (l:loc) (h1 h2:vale_heap) : Lemma (requires modifies l h1 h2) (ensures get_heaplet_id h1 == get_heaplet_id h2) [SMTPat (modifies l h1 h2); SMTPat (get_heaplet_id h2)] // Buffers in different heaplets are disjoint let buffer_info_disjoint (bi1 bi2:buffer_info) = bi1.bi_typ =!= bi2.bi_typ \/ bi1.bi_heaplet =!= bi2.bi_heaplet ==> loc_disjoint (loc_buffer bi1.bi_buffer) (loc_buffer bi2.bi_buffer) // Requirements for enabling heaplets let init_heaplets_req (h:vale_heap) (bs:Seq.seq buffer_info) = (forall (i:nat).{:pattern (Seq.index bs i)} i < Seq.length bs ==> buffer_readable h (Seq.index bs i).bi_buffer) /\ (forall (i1 i2:nat).{:pattern (Seq.index bs i1); (Seq.index bs i2)} i1 < Seq.length bs /\ i2 < Seq.length bs ==> buffer_info_disjoint (Seq.index bs i1) (Seq.index bs i2))
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory.fsti" }
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Heap", "short_module": "H" }, { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "Vale.Interop", "short_module": "I" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
buffers: Prims.list Vale.Arch.HeapImpl.buffer_info -> Prims.GTot Vale.X64.Memory.loc
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.list", "Vale.Arch.HeapImpl.buffer_info", "Vale.X64.Memory.loc_none", "Vale.Arch.HeapTypes_s.base_typ", "Vale.Arch.HeapImpl.buffer", "Vale.Arch.HeapImpl.heaplet_id", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Memory.loc_buffer", "Vale.X64.Memory.loc_mutable_buffers", "Vale.X64.Memory.loc_union", "Vale.X64.Memory.loc" ]
[ "recursion" ]
false
false
false
false
false
let rec loc_mutable_buffers (buffers: list buffer_info) : GTot loc =
match buffers with | [] -> loc_none | [{ bi_mutable = Mutable ; bi_buffer = b }] -> loc_buffer b | { bi_mutable = Immutable } :: t -> loc_mutable_buffers t | { bi_mutable = Mutable ; bi_buffer = b } :: t -> loc_union (loc_buffer b) (loc_mutable_buffers t)
false
MerkleTree.Low.fst
MerkleTree.Low.hash_vv_insert_copy
val hash_vv_insert_copy: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> i:Ghost.erased index_t -> j:index_t{ Ghost.reveal i <= j && U32.v j < pow2 (32 - U32.v lv) - 1 && j < uint32_32_max} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> v:hash #hsz -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ Rgl?.r_inv (hreg hsz) h0 v /\ HH.disjoint (V.frameOf hs) (B.frameOf v) /\ mt_safe_elts #hsz h0 lv hs (Ghost.reveal i) j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) h0 h1 /\ RV.rv_inv h1 hs /\ Rgl?.r_inv (hreg hsz) h1 v /\ V.size_of (V.get h1 hs lv) == j + 1ul - offset_of (Ghost.reveal i) /\ V.size_of (V.get h1 hs lv) == V.size_of (V.get h0 hs lv) + 1ul /\ mt_safe_elts #hsz h1 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) /\ RV.rv_loc_elems h0 hs (lv + 1ul) (V.size_of hs) == RV.rv_loc_elems h1 hs (lv + 1ul) (V.size_of hs) /\ // correctness (mt_safe_elts_spec #hsz h0 lv hs (Ghost.reveal i) j; S.equal (RV.as_seq h1 hs) (MTH.hashess_insert (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq h0 hs) (Rgl?.r_repr (hreg hsz) h0 v))) /\ S.equal (S.index (RV.as_seq h1 hs) (U32.v lv)) (S.snoc (S.index (RV.as_seq h0 hs) (U32.v lv)) (Rgl?.r_repr (hreg hsz) h0 v))))
val hash_vv_insert_copy: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> i:Ghost.erased index_t -> j:index_t{ Ghost.reveal i <= j && U32.v j < pow2 (32 - U32.v lv) - 1 && j < uint32_32_max} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> v:hash #hsz -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ Rgl?.r_inv (hreg hsz) h0 v /\ HH.disjoint (V.frameOf hs) (B.frameOf v) /\ mt_safe_elts #hsz h0 lv hs (Ghost.reveal i) j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) h0 h1 /\ RV.rv_inv h1 hs /\ Rgl?.r_inv (hreg hsz) h1 v /\ V.size_of (V.get h1 hs lv) == j + 1ul - offset_of (Ghost.reveal i) /\ V.size_of (V.get h1 hs lv) == V.size_of (V.get h0 hs lv) + 1ul /\ mt_safe_elts #hsz h1 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) /\ RV.rv_loc_elems h0 hs (lv + 1ul) (V.size_of hs) == RV.rv_loc_elems h1 hs (lv + 1ul) (V.size_of hs) /\ // correctness (mt_safe_elts_spec #hsz h0 lv hs (Ghost.reveal i) j; S.equal (RV.as_seq h1 hs) (MTH.hashess_insert (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq h0 hs) (Rgl?.r_repr (hreg hsz) h0 v))) /\ S.equal (S.index (RV.as_seq h1 hs) (U32.v lv)) (S.snoc (S.index (RV.as_seq h0 hs) (U32.v lv)) (Rgl?.r_repr (hreg hsz) h0 v))))
let hash_vv_insert_copy #hsz lv i j hs v = let hh0 = HST.get () in mt_safe_elts_rec hh0 lv hs (Ghost.reveal i) j; /// 1) Insert an element at the level `lv`, where the new vector is not yet /// connected to `hs`. let ihv = RV.insert_copy (hcpy hsz) (V.index hs lv) v in let hh1 = HST.get () in // 1-0) Basic disjointness conditions V.forall2_forall_left hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall2_forall_right hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); // 1-1) For the `modifies` postcondition. assert (modifies (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) hh0 hh1); // 1-2) Preservation Rgl?.r_sep (hreg hsz) v (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // 1-3) For `mt_safe_elts` assert (V.size_of ihv == j + 1ul - offset_of (Ghost.reveal i)); // head updated mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // tail not yet // 1-4) For the `rv_inv` postcondition RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) 0 (U32.v lv) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v lv); RV.rv_elems_inv_preserved hs 0ul lv (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs 0ul lv); RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) (U32.v lv + 1) (U32.v (V.size_of hs)) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) (U32.v lv + 1) (U32.v (V.size_of hs)); RV.rv_elems_inv_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs (lv + 1ul) (V.size_of hs)); // assert (rv_itself_inv hh1 hs); // assert (elems_reg hh1 hs); // 1-5) Correctness assert (S.equal (RV.as_seq hh1 ihv) (S.snoc (RV.as_seq hh0 (V.get hh0 hs lv)) (Rgl?.r_repr (hreg hsz) hh0 v))); /// 2) Assign the updated vector to `hs` at the level `lv`. RV.assign hs lv ihv; let hh2 = HST.get () in // 2-1) For the `modifies` postcondition. assert (modifies (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh2); // 2-2) Preservation Rgl?.r_sep (hreg hsz) v (RV.loc_rvector hs) hh1 hh2; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-3) For `mt_safe_elts` assert (V.size_of (V.get hh2 hs lv) == j + 1ul - offset_of (Ghost.reveal i)); mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-4) Correctness RV.as_seq_sub_preserved hs 0ul lv (loc_rvector ihv) hh0 hh1; RV.as_seq_sub_preserved hs (lv + 1ul) merkle_tree_size_lg (loc_rvector ihv) hh0 hh1; assert (S.equal (RV.as_seq hh2 hs) (S.append (RV.as_seq_sub hh0 hs 0ul lv) (S.cons (RV.as_seq hh1 ihv) (RV.as_seq_sub hh0 hs (lv + 1ul) merkle_tree_size_lg)))); as_seq_sub_upd hh0 hs lv (RV.as_seq hh1 ihv)
{ "file_name": "src/MerkleTree.Low.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 46, "end_line": 563, "start_col": 0, "start_line": 466 }
module MerkleTree.Low open EverCrypt.Helpers open FStar.All open FStar.Integers open FStar.Mul open LowStar.Buffer open LowStar.BufferOps open LowStar.Vector open LowStar.Regional open LowStar.RVector open LowStar.Regional.Instances module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module MHS = FStar.Monotonic.HyperStack module HH = FStar.Monotonic.HyperHeap module B = LowStar.Buffer module CB = LowStar.ConstBuffer module V = LowStar.Vector module RV = LowStar.RVector module RVI = LowStar.Regional.Instances module S = FStar.Seq module U32 = FStar.UInt32 module U64 = FStar.UInt64 module MTH = MerkleTree.New.High module MTS = MerkleTree.Spec open Lib.IntTypes open MerkleTree.Low.Datastructures open MerkleTree.Low.Hashfunctions open MerkleTree.Low.VectorExtras #set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0" type const_pointer (a:Type0) = b:CB.const_buffer a{CB.length b == 1 /\ CB.qual_of b == CB.MUTABLE} /// Low-level Merkle tree data structure /// // NOTE: because of a lack of 64-bit LowStar.Buffer support, currently // we cannot change below to some other types. type index_t = uint32_t let uint32_32_max = 4294967295ul inline_for_extraction let uint32_max = 4294967295UL let uint64_max = 18446744073709551615UL let offset_range_limit = uint32_max type offset_t = uint64_t inline_for_extraction noextract unfold let u32_64 = Int.Cast.uint32_to_uint64 inline_for_extraction noextract unfold let u64_32 = Int.Cast.uint64_to_uint32 private inline_for_extraction let offsets_connect (x:offset_t) (y:offset_t): Tot bool = y >= x && (y - x) <= offset_range_limit private inline_for_extraction let split_offset (tree:offset_t) (index:offset_t{offsets_connect tree index}): Tot index_t = [@inline_let] let diff = U64.sub_mod index tree in assert (diff <= offset_range_limit); Int.Cast.uint64_to_uint32 diff private inline_for_extraction let add64_fits (x:offset_t) (i:index_t): Tot bool = uint64_max - x >= (u32_64 i) private inline_for_extraction let join_offset (tree:offset_t) (i:index_t{add64_fits tree i}): Tot (r:offset_t{offsets_connect tree r}) = U64.add tree (u32_64 i) inline_for_extraction val merkle_tree_size_lg: uint32_t let merkle_tree_size_lg = 32ul // A Merkle tree `MT i j hs rhs_ok rhs` stores all necessary hashes to generate // a Merkle path for each element from the index `i` to `j-1`. // - Parameters // `hs`: a 2-dim store for hashes, where `hs[0]` contains leaf hash values. // `rhs_ok`: to check the rightmost hashes are up-to-date // `rhs`: a store for "rightmost" hashes, manipulated only when required to // calculate some merkle paths that need the rightmost hashes // as a part of them. // `mroot`: during the construction of `rhs` we can also calculate the Merkle // root of the tree. If `rhs_ok` is true then it has the up-to-date // root value. noeq type merkle_tree = | MT: hash_size:hash_size_t -> offset:offset_t -> i:index_t -> j:index_t{i <= j /\ add64_fits offset j} -> hs:hash_vv hash_size {V.size_of hs = merkle_tree_size_lg} -> rhs_ok:bool -> rhs:hash_vec #hash_size {V.size_of rhs = merkle_tree_size_lg} -> mroot:hash #hash_size -> hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hash_size)) -> hash_fun:hash_fun_t #hash_size #hash_spec -> merkle_tree type mt_p = B.pointer merkle_tree type const_mt_p = const_pointer merkle_tree inline_for_extraction let merkle_tree_conditions (#hsz:Ghost.erased hash_size_t) (offset:uint64_t) (i j:uint32_t) (hs:hash_vv hsz) (rhs_ok:bool) (rhs:hash_vec #hsz) (mroot:hash #hsz): Tot bool = j >= i && add64_fits offset j && V.size_of hs = merkle_tree_size_lg && V.size_of rhs = merkle_tree_size_lg // The maximum number of currently held elements in the tree is (2^32 - 1). // cwinter: even when using 64-bit indices, we fail if the underlying 32-bit // vector is full; this can be fixed if necessary. private inline_for_extraction val mt_not_full_nst: mtv:merkle_tree -> Tot bool let mt_not_full_nst mtv = MT?.j mtv < uint32_32_max val mt_not_full: HS.mem -> mt_p -> GTot bool let mt_not_full h mt = mt_not_full_nst (B.get h mt 0) /// (Memory) Safety val offset_of: i:index_t -> Tot index_t let offset_of i = if i % 2ul = 0ul then i else i - 1ul // `mt_safe_elts` says that it is safe to access an element from `i` to `j - 1` // at level `lv` in the Merkle tree, i.e., hs[lv][k] (i <= k < j) is a valid // element. inline_for_extraction noextract val mt_safe_elts: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> GTot Type0 (decreases (32 - U32.v lv)) let rec mt_safe_elts #hsz h lv hs i j = if lv = merkle_tree_size_lg then true else (let ofs = offset_of i in V.size_of (V.get h hs lv) == j - ofs /\ mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul)) #push-options "--initial_fuel 1 --max_fuel 1" val mt_safe_elts_constr: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (V.size_of (V.get h hs lv) == j - offset_of i /\ mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul))) (ensures (mt_safe_elts #hsz h lv hs i j)) let mt_safe_elts_constr #_ h lv hs i j = () val mt_safe_elts_head: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (mt_safe_elts #hsz h lv hs i j)) (ensures (V.size_of (V.get h hs lv) == j - offset_of i)) let mt_safe_elts_head #_ h lv hs i j = () val mt_safe_elts_rec: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (mt_safe_elts #hsz h lv hs i j)) (ensures (mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul))) let mt_safe_elts_rec #_ h lv hs i j = () val mt_safe_elts_init: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> Lemma (requires (V.forall_ h hs lv (V.size_of hs) (fun hv -> V.size_of hv = 0ul))) (ensures (mt_safe_elts #hsz h lv hs 0ul 0ul)) (decreases (32 - U32.v lv)) let rec mt_safe_elts_init #hsz h lv hs = if lv = merkle_tree_size_lg then () else mt_safe_elts_init #hsz h (lv + 1ul) hs #pop-options val mt_safe_elts_preserved: #hsz:hash_size_t -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (V.live h0 hs /\ mt_safe_elts #hsz h0 lv hs i j /\ loc_disjoint p (V.loc_vector_within hs lv (V.size_of hs)) /\ modifies p h0 h1)) (ensures (mt_safe_elts #hsz h1 lv hs i j)) (decreases (32 - U32.v lv)) [SMTPat (V.live h0 hs); SMTPat (mt_safe_elts #hsz h0 lv hs i j); SMTPat (loc_disjoint p (RV.loc_rvector hs)); SMTPat (modifies p h0 h1)] #push-options "--z3rlimit 100 --initial_fuel 2 --max_fuel 2" let rec mt_safe_elts_preserved #hsz lv hs i j p h0 h1 = if lv = merkle_tree_size_lg then () else (V.get_preserved hs lv p h0 h1; mt_safe_elts_preserved #hsz (lv + 1ul) hs (i / 2ul) (j / 2ul) p h0 h1) #pop-options // `mt_safe` is the invariant of a Merkle tree through its lifetime. // It includes liveness, regionality, disjointness (to each data structure), // and valid element access (`mt_safe_elts`). inline_for_extraction noextract val mt_safe: HS.mem -> mt_p -> GTot Type0 let mt_safe h mt = B.live h mt /\ B.freeable mt /\ (let mtv = B.get h mt 0 in // Liveness & Accessibility RV.rv_inv h (MT?.hs mtv) /\ RV.rv_inv h (MT?.rhs mtv) /\ Rgl?.r_inv (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv) /\ mt_safe_elts h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv) /\ // Regionality HH.extends (V.frameOf (MT?.hs mtv)) (B.frameOf mt) /\ HH.extends (V.frameOf (MT?.rhs mtv)) (B.frameOf mt) /\ HH.extends (B.frameOf (MT?.mroot mtv)) (B.frameOf mt) /\ HH.disjoint (V.frameOf (MT?.hs mtv)) (V.frameOf (MT?.rhs mtv)) /\ HH.disjoint (V.frameOf (MT?.hs mtv)) (B.frameOf (MT?.mroot mtv)) /\ HH.disjoint (V.frameOf (MT?.rhs mtv)) (B.frameOf (MT?.mroot mtv))) // Since a Merkle tree satisfies regionality, it's ok to take all regions from // a tree pointer as a location of the tree. val mt_loc: mt_p -> GTot loc let mt_loc mt = B.loc_all_regions_from false (B.frameOf mt) val mt_safe_preserved: mt:mt_p -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (mt_safe h0 mt /\ loc_disjoint p (mt_loc mt) /\ modifies p h0 h1)) (ensures (B.get h0 mt 0 == B.get h1 mt 0 /\ mt_safe h1 mt)) let mt_safe_preserved mt p h0 h1 = assert (loc_includes (mt_loc mt) (B.loc_buffer mt)); let mtv = B.get h0 mt 0 in assert (loc_includes (mt_loc mt) (RV.loc_rvector (MT?.hs mtv))); assert (loc_includes (mt_loc mt) (RV.loc_rvector (MT?.rhs mtv))); assert (loc_includes (mt_loc mt) (V.loc_vector (MT?.hs mtv))); assert (loc_includes (mt_loc mt) (B.loc_all_regions_from false (B.frameOf (MT?.mroot mtv)))); RV.rv_inv_preserved (MT?.hs mtv) p h0 h1; RV.rv_inv_preserved (MT?.rhs mtv) p h0 h1; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) p h0 h1; V.loc_vector_within_included (MT?.hs mtv) 0ul (V.size_of (MT?.hs mtv)); mt_safe_elts_preserved 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv) p h0 h1 /// Lifting to a high-level Merkle tree structure val mt_safe_elts_spec: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (RV.rv_inv h hs /\ mt_safe_elts #hsz h lv hs i j)) (ensures (MTH.hs_wf_elts #(U32.v hsz) (U32.v lv) (RV.as_seq h hs) (U32.v i) (U32.v j))) (decreases (32 - U32.v lv)) #push-options "--z3rlimit 100 --initial_fuel 2 --max_fuel 2" let rec mt_safe_elts_spec #_ h lv hs i j = if lv = merkle_tree_size_lg then () else mt_safe_elts_spec h (lv + 1ul) hs (i / 2ul) (j / 2ul) #pop-options val merkle_tree_lift: h:HS.mem -> mtv:merkle_tree{ RV.rv_inv h (MT?.hs mtv) /\ RV.rv_inv h (MT?.rhs mtv) /\ Rgl?.r_inv (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv) /\ mt_safe_elts #(MT?.hash_size mtv) h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv)} -> GTot (r:MTH.merkle_tree #(U32.v (MT?.hash_size mtv)) {MTH.mt_wf_elts #_ r}) let merkle_tree_lift h mtv = mt_safe_elts_spec h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv); MTH.MT #(U32.v (MT?.hash_size mtv)) (U32.v (MT?.i mtv)) (U32.v (MT?.j mtv)) (RV.as_seq h (MT?.hs mtv)) (MT?.rhs_ok mtv) (RV.as_seq h (MT?.rhs mtv)) (Rgl?.r_repr (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv)) (Ghost.reveal (MT?.hash_spec mtv)) val mt_lift: h:HS.mem -> mt:mt_p{mt_safe h mt} -> GTot (r:MTH.merkle_tree #(U32.v (MT?.hash_size (B.get h mt 0))) {MTH.mt_wf_elts #_ r}) let mt_lift h mt = merkle_tree_lift h (B.get h mt 0) val mt_preserved: mt:mt_p -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (mt_safe h0 mt /\ loc_disjoint p (mt_loc mt) /\ modifies p h0 h1)) (ensures (mt_safe_preserved mt p h0 h1; mt_lift h0 mt == mt_lift h1 mt)) let mt_preserved mt p h0 h1 = assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (B.loc_buffer mt)); B.modifies_buffer_elim mt p h0 h1; assert (B.get h0 mt 0 == B.get h1 mt 0); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (RV.loc_rvector (MT?.hs (B.get h0 mt 0)))); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (RV.loc_rvector (MT?.rhs (B.get h0 mt 0)))); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (B.loc_buffer (MT?.mroot (B.get h0 mt 0)))); RV.as_seq_preserved (MT?.hs (B.get h0 mt 0)) p h0 h1; RV.as_seq_preserved (MT?.rhs (B.get h0 mt 0)) p h0 h1; B.modifies_buffer_elim (MT?.mroot (B.get h0 mt 0)) p h0 h1 /// Construction // Note that the public function for creation is `mt_create` defined below, // which builds a tree with an initial hash. #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" private val create_empty_mt: hash_size:hash_size_t -> hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hash_size)) -> hash_fun:hash_fun_t #hash_size #hash_spec -> r:HST.erid -> HST.ST mt_p (requires (fun _ -> true)) (ensures (fun h0 mt h1 -> let dmt = B.get h1 mt 0 in // memory safety B.frameOf mt = r /\ modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ mt_not_full h1 mt /\ // correctness MT?.hash_size dmt = hash_size /\ MT?.offset dmt = 0UL /\ merkle_tree_lift h1 dmt == MTH.create_empty_mt #_ #(Ghost.reveal hash_spec) ())) let create_empty_mt hsz hash_spec hash_fun r = [@inline_let] let hrg = hreg hsz in [@inline_let] let hvrg = hvreg hsz in [@inline_let] let hvvrg = hvvreg hsz in let hs_region = HST.new_region r in let hs = RV.alloc_rid hvrg merkle_tree_size_lg hs_region in let h0 = HST.get () in mt_safe_elts_init #hsz h0 0ul hs; let rhs_region = HST.new_region r in let rhs = RV.alloc_rid hrg merkle_tree_size_lg rhs_region in let h1 = HST.get () in assert (RV.as_seq h1 rhs == S.create 32 (MTH.hash_init #(U32.v hsz))); RV.rv_inv_preserved hs (V.loc_vector rhs) h0 h1; RV.as_seq_preserved hs (V.loc_vector rhs) h0 h1; V.loc_vector_within_included hs 0ul (V.size_of hs); mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul (V.loc_vector rhs) h0 h1; let mroot_region = HST.new_region r in let mroot = rg_alloc hrg mroot_region in let h2 = HST.get () in RV.as_seq_preserved hs loc_none h1 h2; RV.as_seq_preserved rhs loc_none h1 h2; mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul loc_none h1 h2; let mt = B.malloc r (MT hsz 0UL 0ul 0ul hs false rhs mroot hash_spec hash_fun) 1ul in let h3 = HST.get () in RV.as_seq_preserved hs loc_none h2 h3; RV.as_seq_preserved rhs loc_none h2 h3; Rgl?.r_sep hrg mroot loc_none h2 h3; mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul loc_none h2 h3; mt #pop-options /// Destruction (free) val mt_free: mt:mt_p -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt)) (ensures (fun h0 _ h1 -> modifies (mt_loc mt) h0 h1)) #push-options "--z3rlimit 100" let mt_free mt = let mtv = !*mt in RV.free (MT?.hs mtv); RV.free (MT?.rhs mtv); [@inline_let] let rg = hreg (MT?.hash_size mtv) in rg_free rg (MT?.mroot mtv); B.free mt #pop-options /// Insertion private val as_seq_sub_upd: #a:Type0 -> #rst:Type -> #rg:regional rst a -> h:HS.mem -> rv:rvector #a #rst rg -> i:uint32_t{i < V.size_of rv} -> v:Rgl?.repr rg -> Lemma (requires (RV.rv_inv h rv)) (ensures (S.equal (S.upd (RV.as_seq h rv) (U32.v i) v) (S.append (RV.as_seq_sub h rv 0ul i) (S.cons v (RV.as_seq_sub h rv (i + 1ul) (V.size_of rv)))))) #push-options "--z3rlimit 20" let as_seq_sub_upd #a #rst #rg h rv i v = Seq.Properties.slice_upd (RV.as_seq h rv) 0 (U32.v i) (U32.v i) v; Seq.Properties.slice_upd (RV.as_seq h rv) (U32.v i + 1) (U32.v (V.size_of rv)) (U32.v i) v; RV.as_seq_seq_slice rg h (V.as_seq h rv) 0 (U32.v (V.size_of rv)) 0 (U32.v i); assert (S.equal (S.slice (RV.as_seq h rv) 0 (U32.v i)) (RV.as_seq_sub h rv 0ul i)); RV.as_seq_seq_slice rg h (V.as_seq h rv) 0 (U32.v (V.size_of rv)) (U32.v i + 1) (U32.v (V.size_of rv)); assert (S.equal (S.slice (RV.as_seq h rv) (U32.v i + 1) (U32.v (V.size_of rv))) (RV.as_seq_sub h rv (i + 1ul) (V.size_of rv))); assert (S.index (S.upd (RV.as_seq h rv) (U32.v i) v) (U32.v i) == v) #pop-options // `hash_vv_insert_copy` inserts a hash element at a level `lv`, by copying // and pushing its content to `hs[lv]`. For detailed insertion procedure, see // `insert_` and `mt_insert`. #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1" private inline_for_extraction val hash_vv_insert_copy: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> i:Ghost.erased index_t -> j:index_t{ Ghost.reveal i <= j && U32.v j < pow2 (32 - U32.v lv) - 1 && j < uint32_32_max} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> v:hash #hsz -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ Rgl?.r_inv (hreg hsz) h0 v /\ HH.disjoint (V.frameOf hs) (B.frameOf v) /\ mt_safe_elts #hsz h0 lv hs (Ghost.reveal i) j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) h0 h1 /\ RV.rv_inv h1 hs /\ Rgl?.r_inv (hreg hsz) h1 v /\ V.size_of (V.get h1 hs lv) == j + 1ul - offset_of (Ghost.reveal i) /\ V.size_of (V.get h1 hs lv) == V.size_of (V.get h0 hs lv) + 1ul /\ mt_safe_elts #hsz h1 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) /\ RV.rv_loc_elems h0 hs (lv + 1ul) (V.size_of hs) == RV.rv_loc_elems h1 hs (lv + 1ul) (V.size_of hs) /\ // correctness (mt_safe_elts_spec #hsz h0 lv hs (Ghost.reveal i) j; S.equal (RV.as_seq h1 hs) (MTH.hashess_insert (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq h0 hs) (Rgl?.r_repr (hreg hsz) h0 v))) /\ S.equal (S.index (RV.as_seq h1 hs) (U32.v lv)) (S.snoc (S.index (RV.as_seq h0 hs) (U32.v lv))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "MerkleTree.Low.VectorExtras.fst.checked", "MerkleTree.Low.Hashfunctions.fst.checked", "MerkleTree.Low.Datastructures.fst.checked", "LowStar.Vector.fst.checked", "LowStar.RVector.fst.checked", "LowStar.Regional.Instances.fst.checked", "LowStar.Regional.fst.checked", "LowStar.ConstBuffer.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.HyperStack.fsti.checked", "FStar.Monotonic.HyperHeap.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.All.fst.checked", "EverCrypt.Helpers.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.Low.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.Low.VectorExtras", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.Low.Hashfunctions", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.Low.Datastructures", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "MerkleTree.New.High", "short_module": "MTH" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Regional.Instances", "short_module": "RVI" }, { "abbrev": true, "full_module": "LowStar.RVector", "short_module": "RV" }, { "abbrev": true, "full_module": "LowStar.Vector", "short_module": "V" }, { "abbrev": true, "full_module": "LowStar.ConstBuffer", "short_module": "CB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Monotonic.HyperHeap", "short_module": "HH" }, { "abbrev": true, "full_module": "FStar.Monotonic.HyperStack", "short_module": "MHS" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Regional.Instances", "short_module": null }, { "abbrev": false, "full_module": "LowStar.RVector", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Regional", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Vector", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lv: LowStar.Vector.uint32_t{lv < MerkleTree.Low.merkle_tree_size_lg} -> i: FStar.Ghost.erased MerkleTree.Low.index_t -> j: MerkleTree.Low.index_t { FStar.Ghost.reveal i <= j && FStar.UInt32.v j < Prims.pow2 (32 - FStar.UInt32.v lv) - 1 && j < MerkleTree.Low.uint32_32_max } -> hs: MerkleTree.Low.Datastructures.hash_vv hsz {LowStar.Vector.size_of hs = MerkleTree.Low.merkle_tree_size_lg} -> v: MerkleTree.Low.Datastructures.hash -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "MerkleTree.Low.Datastructures.hash_size_t", "LowStar.Vector.uint32_t", "Prims.b2t", "FStar.Integers.op_Less", "FStar.Integers.Unsigned", "FStar.Integers.W32", "MerkleTree.Low.merkle_tree_size_lg", "FStar.Ghost.erased", "MerkleTree.Low.index_t", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Ghost.reveal", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.UInt32.v", "FStar.Integers.op_Subtraction", "Prims.pow2", "MerkleTree.Low.uint32_32_max", "MerkleTree.Low.Datastructures.hash_vv", "Prims.op_Equality", "LowStar.Vector.size_of", "MerkleTree.Low.Datastructures.hash_vec", "MerkleTree.Low.Datastructures.hash", "MerkleTree.Low.as_seq_sub_upd", "MerkleTree.Low.Datastructures.hvreg", "LowStar.RVector.as_seq", "MerkleTree.Low.Datastructures.hreg", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "LowStar.Regional.__proj__Rgl__item__repr", "FStar.Seq.Base.append", "LowStar.RVector.as_seq_sub", "FStar.UInt32.__uint_to_t", "FStar.Seq.Base.cons", "FStar.Integers.op_Plus", "LowStar.RVector.as_seq_sub_preserved", "LowStar.RVector.loc_rvector", "MerkleTree.Low.mt_safe_elts_preserved", "FStar.Integers.op_Slash", "LowStar.Vector.loc_vector_within", "Prims.eq2", "FStar.UInt32.t", "LowStar.Vector.get", "MerkleTree.Low.offset_of", "LowStar.RVector.rv_loc_elems_preserved", "LowStar.Regional.__proj__Rgl__item__r_sep", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_union", "LowStar.RVector.rs_loc_elem", "LowStar.Vector.as_seq", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowStar.RVector.assign", "FStar.Seq.Properties.snoc", "LowStar.Regional.__proj__Rgl__item__r_repr", "LowStar.RVector.rv_elems_inv", "LowStar.RVector.rv_elems_inv_preserved", "LowStar.RVector.rs_loc_elems_parent_disj", "LowStar.Vector.frameOf", "LowStar.RVector.rs_loc_elems_elem_disj", "LowStar.Vector.loc_vector_within_disjoint", "LowStar.Vector.loc_vector_within_included", "LowStar.Vector.forall2_forall_right", "FStar.Monotonic.HyperHeap.disjoint", "LowStar.Regional.__proj__Rgl__item__region_of", "LowStar.Vector.forall2_forall_left", "LowStar.RVector.rvector", "LowStar.RVector.insert_copy", "MerkleTree.Low.Datastructures.hcpy", "Prims.op_Negation", "LowStar.Vector.is_full", "LowStar.Vector.index", "MerkleTree.Low.mt_safe_elts_rec" ]
[]
false
true
false
false
false
let hash_vv_insert_copy #hsz lv i j hs v =
let hh0 = HST.get () in mt_safe_elts_rec hh0 lv hs (Ghost.reveal i) j; let ihv = RV.insert_copy (hcpy hsz) (V.index hs lv) v in let hh1 = HST.get () in V.forall2_forall_left hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall2_forall_right hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); assert (modifies (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) hh0 hh1); Rgl?.r_sep (hreg hsz) v (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (V.size_of ihv == j + 1ul - offset_of (Ghost.reveal i)); mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) 0 (U32.v lv) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v lv); RV.rv_elems_inv_preserved hs 0ul lv (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs 0ul lv); RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) (U32.v lv + 1) (U32.v (V.size_of hs)) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) (U32.v lv + 1) (U32.v (V.size_of hs)); RV.rv_elems_inv_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs (lv + 1ul) (V.size_of hs)); assert (S.equal (RV.as_seq hh1 ihv) (S.snoc (RV.as_seq hh0 (V.get hh0 hs lv)) (Rgl?.r_repr (hreg hsz) hh0 v))); RV.assign hs lv ihv; let hh2 = HST.get () in assert (modifies (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh2); Rgl?.r_sep (hreg hsz) v (RV.loc_rvector hs) hh1 hh2; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; assert (V.size_of (V.get hh2 hs lv) == j + 1ul - offset_of (Ghost.reveal i)); mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; RV.as_seq_sub_preserved hs 0ul lv (loc_rvector ihv) hh0 hh1; RV.as_seq_sub_preserved hs (lv + 1ul) merkle_tree_size_lg (loc_rvector ihv) hh0 hh1; assert (S.equal (RV.as_seq hh2 hs) (S.append (RV.as_seq_sub hh0 hs 0ul lv) (S.cons (RV.as_seq hh1 ihv) (RV.as_seq_sub hh0 hs (lv + 1ul) merkle_tree_size_lg)))); as_seq_sub_upd hh0 hs lv (RV.as_seq hh1 ihv)
false
Pulse.Soundness.Comp.fst
Pulse.Soundness.Comp.stc_soundness
val stc_soundness (#g:stt_env) (#st:st_comp) (d_st:st_comp_typing g st) : GTot (RT.tot_typing ( elab_env g) (elab_term st.res) (RT.tm_type st.u) & RT.tot_typing (elab_env g) (elab_term st.pre) vprop_tm & RT.tot_typing (elab_env g) (mk_abs (elab_term st.res) R.Q_Explicit (elab_term st.post)) (post1_type_bind (elab_term st.res)))
val stc_soundness (#g:stt_env) (#st:st_comp) (d_st:st_comp_typing g st) : GTot (RT.tot_typing ( elab_env g) (elab_term st.res) (RT.tm_type st.u) & RT.tot_typing (elab_env g) (elab_term st.pre) vprop_tm & RT.tot_typing (elab_env g) (mk_abs (elab_term st.res) R.Q_Explicit (elab_term st.post)) (post1_type_bind (elab_term st.res)))
let stc_soundness (#g:stt_env) (#st:st_comp) (d_st:st_comp_typing g st) : GTot (RT.tot_typing (elab_env g) (elab_term st.res) (RT.tm_type st.u) & RT.tot_typing (elab_env g) (elab_term st.pre) vprop_tm & RT.tot_typing (elab_env g) (mk_abs (elab_term st.res) R.Q_Explicit (elab_term st.post)) (post1_type_bind (elab_term st.res))) = let STC _ st x dres dpre dpost = d_st in let res_typing = tot_typing_soundness dres in let pre_typing = tot_typing_soundness dpre in calc (==) { RT.close_term (elab_term (open_term st.post x)) x; (==) { elab_open_commute st.post x } RT.close_term (RT.open_term (elab_term st.post) x) x; (==) { elab_freevars st.post; RT.close_open_inverse (elab_term st.post) x } elab_term st.post; }; let post_typing = mk_t_abs_tot g ppname_default dres dpost in res_typing, pre_typing, post_typing
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Comp.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 37, "end_line": 58, "start_col": 0, "start_line": 28 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Soundness.Comp open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate.Core open Pulse.Elaborate open Pulse.Soundness.Common module STT = Pulse.Soundness.STT
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Soundness.STT.fsti.checked", "Pulse.Soundness.Common.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.Core.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Soundness.Comp.fst" }
[ { "abbrev": true, "full_module": "Pulse.Soundness.STT", "short_module": "STT" }, { "abbrev": false, "full_module": "Pulse.Soundness.Common", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "Pulse.Soundness.Common", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d_st: Pulse.Typing.st_comp_typing g st -> Prims.GTot ((FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g) (Pulse.Elaborate.Pure.elab_term (Mkst_comp?.res st)) (FStar.Reflection.Typing.tm_type (Mkst_comp?.u st)) * FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g) (Pulse.Elaborate.Pure.elab_term (Mkst_comp?.pre st)) Pulse.Reflection.Util.vprop_tm) * FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g) (Pulse.Reflection.Util.mk_abs (Pulse.Elaborate.Pure.elab_term (Mkst_comp?.res st)) FStar.Stubs.Reflection.V2.Data.Q_Explicit (Pulse.Elaborate.Pure.elab_term (Mkst_comp?.post st))) (Pulse.Soundness.Common.post1_type_bind (Pulse.Elaborate.Pure.elab_term (Mkst_comp?.res st)) ))
Prims.GTot
[ "sometrivial" ]
[]
[ "Pulse.Soundness.Common.stt_env", "Pulse.Syntax.Base.st_comp", "Pulse.Typing.st_comp_typing", "Pulse.Typing.Env.env", "Pulse.Syntax.Base.var", "Prims.l_and", "Prims.b2t", "FStar.Pervasives.Native.uu___is_None", "Pulse.Syntax.Base.typ", "Pulse.Typing.Env.lookup", "Prims.l_not", "FStar.Set.mem", "Pulse.Syntax.Naming.freevars", "Pulse.Syntax.Base.__proj__Mkst_comp__item__post", "Pulse.Typing.universe_of", "Pulse.Syntax.Base.__proj__Mkst_comp__item__res", "Pulse.Syntax.Base.__proj__Mkst_comp__item__u", "Pulse.Typing.tot_typing", "Pulse.Syntax.Base.__proj__Mkst_comp__item__pre", "Pulse.Syntax.Base.tm_vprop", "Pulse.Typing.Env.push_binding", "Pulse.Syntax.Base.ppname_default", "Pulse.Syntax.Naming.open_term", "FStar.Pervasives.Native.Mktuple3", "FStar.Reflection.Typing.tot_typing", "Pulse.Typing.elab_env", "Pulse.Elaborate.Pure.elab_term", "FStar.Reflection.Typing.tm_type", "Pulse.Reflection.Util.vprop_tm", "Pulse.Reflection.Util.mk_abs", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "Pulse.Soundness.Common.post1_type_bind", "Pulse.Reflection.Util.mk_abs_with_name", "Pulse.Syntax.Base.__proj__Mkppname__item__name", "Pulse.Elaborate.Pure.elab_qual", "FStar.Pervasives.Native.None", "Pulse.Syntax.Base.qualifier", "Pulse.Syntax.Pure.tm_arrow", "Pulse.Syntax.Base.mk_binder_ppname", "Pulse.Syntax.Naming.close_comp", "Pulse.Syntax.Base.C_Tot", "Pulse.Soundness.Common.mk_t_abs_tot", "Prims.unit", "FStar.Calc.calc_finish", "FStar.Stubs.Reflection.Types.term", "Prims.eq2", "FStar.Reflection.Typing.close_term", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Reflection.Typing.open_term", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Pulse.Elaborate.elab_open_commute", "Prims.squash", "FStar.Reflection.Typing.close_open_inverse", "Pulse.Elaborate.elab_freevars", "Pulse.Soundness.Common.tot_typing_soundness", "Pulse.Syntax.Pure.tm_type", "FStar.Pervasives.Native.tuple3" ]
[]
false
false
false
false
false
let stc_soundness (#g: stt_env) (#st: st_comp) (d_st: st_comp_typing g st) : GTot (RT.tot_typing (elab_env g) (elab_term st.res) (RT.tm_type st.u) & RT.tot_typing (elab_env g) (elab_term st.pre) vprop_tm & RT.tot_typing (elab_env g) (mk_abs (elab_term st.res) R.Q_Explicit (elab_term st.post)) (post1_type_bind (elab_term st.res))) =
let STC _ st x dres dpre dpost = d_st in let res_typing = tot_typing_soundness dres in let pre_typing = tot_typing_soundness dpre in calc ( == ) { RT.close_term (elab_term (open_term st.post x)) x; ( == ) { elab_open_commute st.post x } RT.close_term (RT.open_term (elab_term st.post) x) x; ( == ) { (elab_freevars st.post; RT.close_open_inverse (elab_term st.post) x) } elab_term st.post; }; let post_typing = mk_t_abs_tot g ppname_default dres dpost in res_typing, pre_typing, post_typing
false
MerkleTree.Low.fst
MerkleTree.Low.mt_verify_
val mt_verify_: #hsz:hash_size_t -> #hash_spec:MTS.hash_fun_t #(U32.v hsz) -> k:index_t -> j:index_t{k <= j} -> mtr:HH.rid -> p:const_path_p -> ppos:uint32_t -> acc:hash #hsz -> actd:bool -> hash_fun:hash_fun_t #hsz #hash_spec -> HST.ST unit (requires (fun h0 -> let p = CB.cast p in path_safe h0 mtr p /\ Rgl?.r_inv (hreg hsz) h0 acc /\ Path?.hash_size (B.get h0 p 0) = hsz /\ HH.disjoint (B.frameOf p) (B.frameOf acc) /\ HH.disjoint mtr (B.frameOf acc) /\ // Below is a very relaxed condition, // but sufficient to ensure (+) for uint32_t is sound. ppos <= 64ul - mt_path_length 0ul k j actd /\ ppos + mt_path_length 0ul k j actd <= V.size_of (phashes h0 p))) (ensures (fun h0 _ h1 -> let p = CB.cast p in // memory safety modifies (B.loc_all_regions_from false (B.frameOf acc)) h0 h1 /\ Rgl?.r_inv (hreg hsz) h1 acc /\ // correctness Rgl?.r_repr (hreg hsz) h1 acc == MTH.mt_verify_ #(U32.v hsz) #hash_spec (U32.v k) (U32.v j) (lift_path h0 mtr p) (U32.v ppos) (Rgl?.r_repr (hreg hsz) h0 acc) actd))
val mt_verify_: #hsz:hash_size_t -> #hash_spec:MTS.hash_fun_t #(U32.v hsz) -> k:index_t -> j:index_t{k <= j} -> mtr:HH.rid -> p:const_path_p -> ppos:uint32_t -> acc:hash #hsz -> actd:bool -> hash_fun:hash_fun_t #hsz #hash_spec -> HST.ST unit (requires (fun h0 -> let p = CB.cast p in path_safe h0 mtr p /\ Rgl?.r_inv (hreg hsz) h0 acc /\ Path?.hash_size (B.get h0 p 0) = hsz /\ HH.disjoint (B.frameOf p) (B.frameOf acc) /\ HH.disjoint mtr (B.frameOf acc) /\ // Below is a very relaxed condition, // but sufficient to ensure (+) for uint32_t is sound. ppos <= 64ul - mt_path_length 0ul k j actd /\ ppos + mt_path_length 0ul k j actd <= V.size_of (phashes h0 p))) (ensures (fun h0 _ h1 -> let p = CB.cast p in // memory safety modifies (B.loc_all_regions_from false (B.frameOf acc)) h0 h1 /\ Rgl?.r_inv (hreg hsz) h1 acc /\ // correctness Rgl?.r_repr (hreg hsz) h1 acc == MTH.mt_verify_ #(U32.v hsz) #hash_spec (U32.v k) (U32.v j) (lift_path h0 mtr p) (U32.v ppos) (Rgl?.r_repr (hreg hsz) h0 acc) actd))
let rec mt_verify_ #hsz #hash_spec k j mtr p ppos acc actd hash_fun = let ncp:path_p = CB.cast p in let hh0 = HST.get () in if j = 0ul then () else (let nactd = actd || (j % 2ul = 1ul) in if k % 2ul = 0ul then begin if j = k || (j = k + 1ul && not actd) then mt_verify_ (k / 2ul) (j / 2ul) mtr p ppos acc nactd hash_fun else begin let ncpd = !*ncp in let phash = V.index (Path?.hashes ncpd) ppos in hash_fun acc phash acc; let hh1 = HST.get () in path_preserved mtr ncp (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; lift_path_index hh0 mtr ncp ppos; assert (Rgl?.r_repr (hreg hsz) hh1 acc == hash_spec (Rgl?.r_repr (hreg hsz) hh0 acc) (S.index (lift_path #hsz hh0 mtr ncp) (U32.v ppos))); mt_verify_ (k / 2ul) (j / 2ul) mtr p (ppos + 1ul) acc nactd hash_fun end end else begin let ncpd = !*ncp in let phash = V.index (Path?.hashes ncpd) ppos in hash_fun phash acc acc; let hh1 = HST.get () in path_preserved mtr ncp (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; lift_path_index hh0 mtr ncp ppos; assert (Rgl?.r_repr (hreg hsz) hh1 acc == hash_spec (S.index (lift_path #hsz hh0 mtr ncp) (U32.v ppos)) (Rgl?.r_repr (hreg hsz) hh0 acc)); mt_verify_ (k / 2ul) (j / 2ul) mtr p (ppos + 1ul) acc nactd hash_fun end)
{ "file_name": "src/MerkleTree.Low.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 11, "end_line": 2883, "start_col": 0, "start_line": 2849 }
module MerkleTree.Low open EverCrypt.Helpers open FStar.All open FStar.Integers open FStar.Mul open LowStar.Buffer open LowStar.BufferOps open LowStar.Vector open LowStar.Regional open LowStar.RVector open LowStar.Regional.Instances module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module MHS = FStar.Monotonic.HyperStack module HH = FStar.Monotonic.HyperHeap module B = LowStar.Buffer module CB = LowStar.ConstBuffer module V = LowStar.Vector module RV = LowStar.RVector module RVI = LowStar.Regional.Instances module S = FStar.Seq module U32 = FStar.UInt32 module U64 = FStar.UInt64 module MTH = MerkleTree.New.High module MTS = MerkleTree.Spec open Lib.IntTypes open MerkleTree.Low.Datastructures open MerkleTree.Low.Hashfunctions open MerkleTree.Low.VectorExtras #set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0" type const_pointer (a:Type0) = b:CB.const_buffer a{CB.length b == 1 /\ CB.qual_of b == CB.MUTABLE} /// Low-level Merkle tree data structure /// // NOTE: because of a lack of 64-bit LowStar.Buffer support, currently // we cannot change below to some other types. type index_t = uint32_t let uint32_32_max = 4294967295ul inline_for_extraction let uint32_max = 4294967295UL let uint64_max = 18446744073709551615UL let offset_range_limit = uint32_max type offset_t = uint64_t inline_for_extraction noextract unfold let u32_64 = Int.Cast.uint32_to_uint64 inline_for_extraction noextract unfold let u64_32 = Int.Cast.uint64_to_uint32 private inline_for_extraction let offsets_connect (x:offset_t) (y:offset_t): Tot bool = y >= x && (y - x) <= offset_range_limit private inline_for_extraction let split_offset (tree:offset_t) (index:offset_t{offsets_connect tree index}): Tot index_t = [@inline_let] let diff = U64.sub_mod index tree in assert (diff <= offset_range_limit); Int.Cast.uint64_to_uint32 diff private inline_for_extraction let add64_fits (x:offset_t) (i:index_t): Tot bool = uint64_max - x >= (u32_64 i) private inline_for_extraction let join_offset (tree:offset_t) (i:index_t{add64_fits tree i}): Tot (r:offset_t{offsets_connect tree r}) = U64.add tree (u32_64 i) inline_for_extraction val merkle_tree_size_lg: uint32_t let merkle_tree_size_lg = 32ul // A Merkle tree `MT i j hs rhs_ok rhs` stores all necessary hashes to generate // a Merkle path for each element from the index `i` to `j-1`. // - Parameters // `hs`: a 2-dim store for hashes, where `hs[0]` contains leaf hash values. // `rhs_ok`: to check the rightmost hashes are up-to-date // `rhs`: a store for "rightmost" hashes, manipulated only when required to // calculate some merkle paths that need the rightmost hashes // as a part of them. // `mroot`: during the construction of `rhs` we can also calculate the Merkle // root of the tree. If `rhs_ok` is true then it has the up-to-date // root value. noeq type merkle_tree = | MT: hash_size:hash_size_t -> offset:offset_t -> i:index_t -> j:index_t{i <= j /\ add64_fits offset j} -> hs:hash_vv hash_size {V.size_of hs = merkle_tree_size_lg} -> rhs_ok:bool -> rhs:hash_vec #hash_size {V.size_of rhs = merkle_tree_size_lg} -> mroot:hash #hash_size -> hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hash_size)) -> hash_fun:hash_fun_t #hash_size #hash_spec -> merkle_tree type mt_p = B.pointer merkle_tree type const_mt_p = const_pointer merkle_tree inline_for_extraction let merkle_tree_conditions (#hsz:Ghost.erased hash_size_t) (offset:uint64_t) (i j:uint32_t) (hs:hash_vv hsz) (rhs_ok:bool) (rhs:hash_vec #hsz) (mroot:hash #hsz): Tot bool = j >= i && add64_fits offset j && V.size_of hs = merkle_tree_size_lg && V.size_of rhs = merkle_tree_size_lg // The maximum number of currently held elements in the tree is (2^32 - 1). // cwinter: even when using 64-bit indices, we fail if the underlying 32-bit // vector is full; this can be fixed if necessary. private inline_for_extraction val mt_not_full_nst: mtv:merkle_tree -> Tot bool let mt_not_full_nst mtv = MT?.j mtv < uint32_32_max val mt_not_full: HS.mem -> mt_p -> GTot bool let mt_not_full h mt = mt_not_full_nst (B.get h mt 0) /// (Memory) Safety val offset_of: i:index_t -> Tot index_t let offset_of i = if i % 2ul = 0ul then i else i - 1ul // `mt_safe_elts` says that it is safe to access an element from `i` to `j - 1` // at level `lv` in the Merkle tree, i.e., hs[lv][k] (i <= k < j) is a valid // element. inline_for_extraction noextract val mt_safe_elts: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> GTot Type0 (decreases (32 - U32.v lv)) let rec mt_safe_elts #hsz h lv hs i j = if lv = merkle_tree_size_lg then true else (let ofs = offset_of i in V.size_of (V.get h hs lv) == j - ofs /\ mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul)) #push-options "--initial_fuel 1 --max_fuel 1" val mt_safe_elts_constr: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (V.size_of (V.get h hs lv) == j - offset_of i /\ mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul))) (ensures (mt_safe_elts #hsz h lv hs i j)) let mt_safe_elts_constr #_ h lv hs i j = () val mt_safe_elts_head: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (mt_safe_elts #hsz h lv hs i j)) (ensures (V.size_of (V.get h hs lv) == j - offset_of i)) let mt_safe_elts_head #_ h lv hs i j = () val mt_safe_elts_rec: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (mt_safe_elts #hsz h lv hs i j)) (ensures (mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul))) let mt_safe_elts_rec #_ h lv hs i j = () val mt_safe_elts_init: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> Lemma (requires (V.forall_ h hs lv (V.size_of hs) (fun hv -> V.size_of hv = 0ul))) (ensures (mt_safe_elts #hsz h lv hs 0ul 0ul)) (decreases (32 - U32.v lv)) let rec mt_safe_elts_init #hsz h lv hs = if lv = merkle_tree_size_lg then () else mt_safe_elts_init #hsz h (lv + 1ul) hs #pop-options val mt_safe_elts_preserved: #hsz:hash_size_t -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (V.live h0 hs /\ mt_safe_elts #hsz h0 lv hs i j /\ loc_disjoint p (V.loc_vector_within hs lv (V.size_of hs)) /\ modifies p h0 h1)) (ensures (mt_safe_elts #hsz h1 lv hs i j)) (decreases (32 - U32.v lv)) [SMTPat (V.live h0 hs); SMTPat (mt_safe_elts #hsz h0 lv hs i j); SMTPat (loc_disjoint p (RV.loc_rvector hs)); SMTPat (modifies p h0 h1)] #push-options "--z3rlimit 100 --initial_fuel 2 --max_fuel 2" let rec mt_safe_elts_preserved #hsz lv hs i j p h0 h1 = if lv = merkle_tree_size_lg then () else (V.get_preserved hs lv p h0 h1; mt_safe_elts_preserved #hsz (lv + 1ul) hs (i / 2ul) (j / 2ul) p h0 h1) #pop-options // `mt_safe` is the invariant of a Merkle tree through its lifetime. // It includes liveness, regionality, disjointness (to each data structure), // and valid element access (`mt_safe_elts`). inline_for_extraction noextract val mt_safe: HS.mem -> mt_p -> GTot Type0 let mt_safe h mt = B.live h mt /\ B.freeable mt /\ (let mtv = B.get h mt 0 in // Liveness & Accessibility RV.rv_inv h (MT?.hs mtv) /\ RV.rv_inv h (MT?.rhs mtv) /\ Rgl?.r_inv (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv) /\ mt_safe_elts h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv) /\ // Regionality HH.extends (V.frameOf (MT?.hs mtv)) (B.frameOf mt) /\ HH.extends (V.frameOf (MT?.rhs mtv)) (B.frameOf mt) /\ HH.extends (B.frameOf (MT?.mroot mtv)) (B.frameOf mt) /\ HH.disjoint (V.frameOf (MT?.hs mtv)) (V.frameOf (MT?.rhs mtv)) /\ HH.disjoint (V.frameOf (MT?.hs mtv)) (B.frameOf (MT?.mroot mtv)) /\ HH.disjoint (V.frameOf (MT?.rhs mtv)) (B.frameOf (MT?.mroot mtv))) // Since a Merkle tree satisfies regionality, it's ok to take all regions from // a tree pointer as a location of the tree. val mt_loc: mt_p -> GTot loc let mt_loc mt = B.loc_all_regions_from false (B.frameOf mt) val mt_safe_preserved: mt:mt_p -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (mt_safe h0 mt /\ loc_disjoint p (mt_loc mt) /\ modifies p h0 h1)) (ensures (B.get h0 mt 0 == B.get h1 mt 0 /\ mt_safe h1 mt)) let mt_safe_preserved mt p h0 h1 = assert (loc_includes (mt_loc mt) (B.loc_buffer mt)); let mtv = B.get h0 mt 0 in assert (loc_includes (mt_loc mt) (RV.loc_rvector (MT?.hs mtv))); assert (loc_includes (mt_loc mt) (RV.loc_rvector (MT?.rhs mtv))); assert (loc_includes (mt_loc mt) (V.loc_vector (MT?.hs mtv))); assert (loc_includes (mt_loc mt) (B.loc_all_regions_from false (B.frameOf (MT?.mroot mtv)))); RV.rv_inv_preserved (MT?.hs mtv) p h0 h1; RV.rv_inv_preserved (MT?.rhs mtv) p h0 h1; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) p h0 h1; V.loc_vector_within_included (MT?.hs mtv) 0ul (V.size_of (MT?.hs mtv)); mt_safe_elts_preserved 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv) p h0 h1 /// Lifting to a high-level Merkle tree structure val mt_safe_elts_spec: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (RV.rv_inv h hs /\ mt_safe_elts #hsz h lv hs i j)) (ensures (MTH.hs_wf_elts #(U32.v hsz) (U32.v lv) (RV.as_seq h hs) (U32.v i) (U32.v j))) (decreases (32 - U32.v lv)) #push-options "--z3rlimit 100 --initial_fuel 2 --max_fuel 2" let rec mt_safe_elts_spec #_ h lv hs i j = if lv = merkle_tree_size_lg then () else mt_safe_elts_spec h (lv + 1ul) hs (i / 2ul) (j / 2ul) #pop-options val merkle_tree_lift: h:HS.mem -> mtv:merkle_tree{ RV.rv_inv h (MT?.hs mtv) /\ RV.rv_inv h (MT?.rhs mtv) /\ Rgl?.r_inv (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv) /\ mt_safe_elts #(MT?.hash_size mtv) h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv)} -> GTot (r:MTH.merkle_tree #(U32.v (MT?.hash_size mtv)) {MTH.mt_wf_elts #_ r}) let merkle_tree_lift h mtv = mt_safe_elts_spec h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv); MTH.MT #(U32.v (MT?.hash_size mtv)) (U32.v (MT?.i mtv)) (U32.v (MT?.j mtv)) (RV.as_seq h (MT?.hs mtv)) (MT?.rhs_ok mtv) (RV.as_seq h (MT?.rhs mtv)) (Rgl?.r_repr (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv)) (Ghost.reveal (MT?.hash_spec mtv)) val mt_lift: h:HS.mem -> mt:mt_p{mt_safe h mt} -> GTot (r:MTH.merkle_tree #(U32.v (MT?.hash_size (B.get h mt 0))) {MTH.mt_wf_elts #_ r}) let mt_lift h mt = merkle_tree_lift h (B.get h mt 0) val mt_preserved: mt:mt_p -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (mt_safe h0 mt /\ loc_disjoint p (mt_loc mt) /\ modifies p h0 h1)) (ensures (mt_safe_preserved mt p h0 h1; mt_lift h0 mt == mt_lift h1 mt)) let mt_preserved mt p h0 h1 = assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (B.loc_buffer mt)); B.modifies_buffer_elim mt p h0 h1; assert (B.get h0 mt 0 == B.get h1 mt 0); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (RV.loc_rvector (MT?.hs (B.get h0 mt 0)))); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (RV.loc_rvector (MT?.rhs (B.get h0 mt 0)))); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (B.loc_buffer (MT?.mroot (B.get h0 mt 0)))); RV.as_seq_preserved (MT?.hs (B.get h0 mt 0)) p h0 h1; RV.as_seq_preserved (MT?.rhs (B.get h0 mt 0)) p h0 h1; B.modifies_buffer_elim (MT?.mroot (B.get h0 mt 0)) p h0 h1 /// Construction // Note that the public function for creation is `mt_create` defined below, // which builds a tree with an initial hash. #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" private val create_empty_mt: hash_size:hash_size_t -> hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hash_size)) -> hash_fun:hash_fun_t #hash_size #hash_spec -> r:HST.erid -> HST.ST mt_p (requires (fun _ -> true)) (ensures (fun h0 mt h1 -> let dmt = B.get h1 mt 0 in // memory safety B.frameOf mt = r /\ modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ mt_not_full h1 mt /\ // correctness MT?.hash_size dmt = hash_size /\ MT?.offset dmt = 0UL /\ merkle_tree_lift h1 dmt == MTH.create_empty_mt #_ #(Ghost.reveal hash_spec) ())) let create_empty_mt hsz hash_spec hash_fun r = [@inline_let] let hrg = hreg hsz in [@inline_let] let hvrg = hvreg hsz in [@inline_let] let hvvrg = hvvreg hsz in let hs_region = HST.new_region r in let hs = RV.alloc_rid hvrg merkle_tree_size_lg hs_region in let h0 = HST.get () in mt_safe_elts_init #hsz h0 0ul hs; let rhs_region = HST.new_region r in let rhs = RV.alloc_rid hrg merkle_tree_size_lg rhs_region in let h1 = HST.get () in assert (RV.as_seq h1 rhs == S.create 32 (MTH.hash_init #(U32.v hsz))); RV.rv_inv_preserved hs (V.loc_vector rhs) h0 h1; RV.as_seq_preserved hs (V.loc_vector rhs) h0 h1; V.loc_vector_within_included hs 0ul (V.size_of hs); mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul (V.loc_vector rhs) h0 h1; let mroot_region = HST.new_region r in let mroot = rg_alloc hrg mroot_region in let h2 = HST.get () in RV.as_seq_preserved hs loc_none h1 h2; RV.as_seq_preserved rhs loc_none h1 h2; mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul loc_none h1 h2; let mt = B.malloc r (MT hsz 0UL 0ul 0ul hs false rhs mroot hash_spec hash_fun) 1ul in let h3 = HST.get () in RV.as_seq_preserved hs loc_none h2 h3; RV.as_seq_preserved rhs loc_none h2 h3; Rgl?.r_sep hrg mroot loc_none h2 h3; mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul loc_none h2 h3; mt #pop-options /// Destruction (free) val mt_free: mt:mt_p -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt)) (ensures (fun h0 _ h1 -> modifies (mt_loc mt) h0 h1)) #push-options "--z3rlimit 100" let mt_free mt = let mtv = !*mt in RV.free (MT?.hs mtv); RV.free (MT?.rhs mtv); [@inline_let] let rg = hreg (MT?.hash_size mtv) in rg_free rg (MT?.mroot mtv); B.free mt #pop-options /// Insertion private val as_seq_sub_upd: #a:Type0 -> #rst:Type -> #rg:regional rst a -> h:HS.mem -> rv:rvector #a #rst rg -> i:uint32_t{i < V.size_of rv} -> v:Rgl?.repr rg -> Lemma (requires (RV.rv_inv h rv)) (ensures (S.equal (S.upd (RV.as_seq h rv) (U32.v i) v) (S.append (RV.as_seq_sub h rv 0ul i) (S.cons v (RV.as_seq_sub h rv (i + 1ul) (V.size_of rv)))))) #push-options "--z3rlimit 20" let as_seq_sub_upd #a #rst #rg h rv i v = Seq.Properties.slice_upd (RV.as_seq h rv) 0 (U32.v i) (U32.v i) v; Seq.Properties.slice_upd (RV.as_seq h rv) (U32.v i + 1) (U32.v (V.size_of rv)) (U32.v i) v; RV.as_seq_seq_slice rg h (V.as_seq h rv) 0 (U32.v (V.size_of rv)) 0 (U32.v i); assert (S.equal (S.slice (RV.as_seq h rv) 0 (U32.v i)) (RV.as_seq_sub h rv 0ul i)); RV.as_seq_seq_slice rg h (V.as_seq h rv) 0 (U32.v (V.size_of rv)) (U32.v i + 1) (U32.v (V.size_of rv)); assert (S.equal (S.slice (RV.as_seq h rv) (U32.v i + 1) (U32.v (V.size_of rv))) (RV.as_seq_sub h rv (i + 1ul) (V.size_of rv))); assert (S.index (S.upd (RV.as_seq h rv) (U32.v i) v) (U32.v i) == v) #pop-options // `hash_vv_insert_copy` inserts a hash element at a level `lv`, by copying // and pushing its content to `hs[lv]`. For detailed insertion procedure, see // `insert_` and `mt_insert`. #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1" private inline_for_extraction val hash_vv_insert_copy: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> i:Ghost.erased index_t -> j:index_t{ Ghost.reveal i <= j && U32.v j < pow2 (32 - U32.v lv) - 1 && j < uint32_32_max} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> v:hash #hsz -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ Rgl?.r_inv (hreg hsz) h0 v /\ HH.disjoint (V.frameOf hs) (B.frameOf v) /\ mt_safe_elts #hsz h0 lv hs (Ghost.reveal i) j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) h0 h1 /\ RV.rv_inv h1 hs /\ Rgl?.r_inv (hreg hsz) h1 v /\ V.size_of (V.get h1 hs lv) == j + 1ul - offset_of (Ghost.reveal i) /\ V.size_of (V.get h1 hs lv) == V.size_of (V.get h0 hs lv) + 1ul /\ mt_safe_elts #hsz h1 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) /\ RV.rv_loc_elems h0 hs (lv + 1ul) (V.size_of hs) == RV.rv_loc_elems h1 hs (lv + 1ul) (V.size_of hs) /\ // correctness (mt_safe_elts_spec #hsz h0 lv hs (Ghost.reveal i) j; S.equal (RV.as_seq h1 hs) (MTH.hashess_insert (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq h0 hs) (Rgl?.r_repr (hreg hsz) h0 v))) /\ S.equal (S.index (RV.as_seq h1 hs) (U32.v lv)) (S.snoc (S.index (RV.as_seq h0 hs) (U32.v lv)) (Rgl?.r_repr (hreg hsz) h0 v)))) let hash_vv_insert_copy #hsz lv i j hs v = let hh0 = HST.get () in mt_safe_elts_rec hh0 lv hs (Ghost.reveal i) j; /// 1) Insert an element at the level `lv`, where the new vector is not yet /// connected to `hs`. let ihv = RV.insert_copy (hcpy hsz) (V.index hs lv) v in let hh1 = HST.get () in // 1-0) Basic disjointness conditions V.forall2_forall_left hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall2_forall_right hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); // 1-1) For the `modifies` postcondition. assert (modifies (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) hh0 hh1); // 1-2) Preservation Rgl?.r_sep (hreg hsz) v (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // 1-3) For `mt_safe_elts` assert (V.size_of ihv == j + 1ul - offset_of (Ghost.reveal i)); // head updated mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // tail not yet // 1-4) For the `rv_inv` postcondition RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) 0 (U32.v lv) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v lv); RV.rv_elems_inv_preserved hs 0ul lv (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs 0ul lv); RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) (U32.v lv + 1) (U32.v (V.size_of hs)) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) (U32.v lv + 1) (U32.v (V.size_of hs)); RV.rv_elems_inv_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs (lv + 1ul) (V.size_of hs)); // assert (rv_itself_inv hh1 hs); // assert (elems_reg hh1 hs); // 1-5) Correctness assert (S.equal (RV.as_seq hh1 ihv) (S.snoc (RV.as_seq hh0 (V.get hh0 hs lv)) (Rgl?.r_repr (hreg hsz) hh0 v))); /// 2) Assign the updated vector to `hs` at the level `lv`. RV.assign hs lv ihv; let hh2 = HST.get () in // 2-1) For the `modifies` postcondition. assert (modifies (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh2); // 2-2) Preservation Rgl?.r_sep (hreg hsz) v (RV.loc_rvector hs) hh1 hh2; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-3) For `mt_safe_elts` assert (V.size_of (V.get hh2 hs lv) == j + 1ul - offset_of (Ghost.reveal i)); mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-4) Correctness RV.as_seq_sub_preserved hs 0ul lv (loc_rvector ihv) hh0 hh1; RV.as_seq_sub_preserved hs (lv + 1ul) merkle_tree_size_lg (loc_rvector ihv) hh0 hh1; assert (S.equal (RV.as_seq hh2 hs) (S.append (RV.as_seq_sub hh0 hs 0ul lv) (S.cons (RV.as_seq hh1 ihv) (RV.as_seq_sub hh0 hs (lv + 1ul) merkle_tree_size_lg)))); as_seq_sub_upd hh0 hs lv (RV.as_seq hh1 ihv) #pop-options private val insert_index_helper_even: lv:uint32_t{lv < merkle_tree_size_lg} -> j:index_t{U32.v j < pow2 (32 - U32.v lv) - 1} -> Lemma (requires (j % 2ul <> 1ul)) (ensures (U32.v j % 2 <> 1 /\ j / 2ul == (j + 1ul) / 2ul)) let insert_index_helper_even lv j = () #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" private val insert_index_helper_odd: lv:uint32_t{lv < merkle_tree_size_lg} -> i:index_t -> j:index_t{i <= j && U32.v j < pow2 (32 - U32.v lv) - 1} -> Lemma (requires (j % 2ul = 1ul /\ j < uint32_32_max)) (ensures (U32.v j % 2 = 1 /\ U32.v (j / 2ul) < pow2 (32 - U32.v (lv + 1ul)) - 1 /\ (j + 1ul) / 2ul == j / 2ul + 1ul /\ j - offset_of i > 0ul)) let insert_index_helper_odd lv i j = () #pop-options private val loc_union_assoc_4: a:loc -> b:loc -> c:loc -> d:loc -> Lemma (loc_union (loc_union a b) (loc_union c d) == loc_union (loc_union a c) (loc_union b d)) let loc_union_assoc_4 a b c d = loc_union_assoc (loc_union a b) c d; loc_union_assoc a b c; loc_union_assoc a c b; loc_union_assoc (loc_union a c) b d private val insert_modifies_rec_helper: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> aloc:loc -> h:HS.mem -> Lemma (loc_union (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) aloc) (loc_union (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) aloc) == loc_union (loc_union (RV.rv_loc_elems h hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) aloc) #push-options "--z3rlimit 100 --initial_fuel 2 --max_fuel 2" let insert_modifies_rec_helper #hsz lv hs aloc h = assert (V.loc_vector_within hs lv (V.size_of hs) == loc_union (V.loc_vector_within hs lv (lv + 1ul)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))); RV.rs_loc_elems_rec_inverse (hvreg hsz) (V.as_seq h hs) (U32.v lv) (U32.v (V.size_of hs)); assert (RV.rv_loc_elems h hs lv (V.size_of hs) == loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs))); // Applying some association rules... loc_union_assoc (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) aloc (loc_union (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) aloc); loc_union_assoc (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) aloc aloc; loc_union_assoc (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) aloc; loc_union_assoc_4 (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)) #pop-options private val insert_modifies_union_loc_weakening: l1:loc -> l2:loc -> l3:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (modifies l1 h0 h1)) (ensures (modifies (loc_union (loc_union l1 l2) l3) h0 h1)) let insert_modifies_union_loc_weakening l1 l2 l3 h0 h1 = B.loc_includes_union_l l1 l2 l1; B.loc_includes_union_l (loc_union l1 l2) l3 (loc_union l1 l2) private val insert_snoc_last_helper: #a:Type -> s:S.seq a{S.length s > 0} -> v:a -> Lemma (S.index (S.snoc s v) (S.length s - 1) == S.last s) let insert_snoc_last_helper #a s v = () private val rv_inv_rv_elems_reg: #a:Type0 -> #rst:Type -> #rg:regional rst a -> h:HS.mem -> rv:rvector rg -> i:uint32_t -> j:uint32_t{i <= j && j <= V.size_of rv} -> Lemma (requires (RV.rv_inv h rv)) (ensures (RV.rv_elems_reg h rv i j)) let rv_inv_rv_elems_reg #a #rst #rg h rv i j = () // `insert_` recursively inserts proper hashes to each level `lv` by // accumulating a compressed hash. For example, if there are three leaf elements // in the tree, `insert_` will change `hs` as follow: // (`hij` is a compressed hash from `hi` to `hj`) // // BEFORE INSERTION AFTER INSERTION // lv // 0 h0 h1 h2 ====> h0 h1 h2 h3 // 1 h01 h01 h23 // 2 h03 // private val insert_: #hsz:hash_size_t -> #hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hsz)) -> lv:uint32_t{lv < merkle_tree_size_lg} -> i:Ghost.erased index_t -> j:index_t{ Ghost.reveal i <= j && U32.v j < pow2 (32 - U32.v lv) - 1 && j < uint32_32_max} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> acc:hash #hsz -> hash_fun:hash_fun_t #hsz #hash_spec -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ Rgl?.r_inv (hreg hsz) h0 acc /\ HH.disjoint (V.frameOf hs) (B.frameOf acc) /\ mt_safe_elts h0 lv hs (Ghost.reveal i) j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (loc_union (RV.rv_loc_elems h0 hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc))) h0 h1 /\ RV.rv_inv h1 hs /\ Rgl?.r_inv (hreg hsz) h1 acc /\ mt_safe_elts h1 lv hs (Ghost.reveal i) (j + 1ul) /\ // correctness (mt_safe_elts_spec h0 lv hs (Ghost.reveal i) j; S.equal (RV.as_seq h1 hs) (MTH.insert_ #(U32.v hsz) #hash_spec (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq h0 hs) (Rgl?.r_repr (hreg hsz) h0 acc))))) (decreases (U32.v j)) #push-options "--z3rlimit 800 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec insert_ #hsz #hash_spec lv i j hs acc hash_fun = let hh0 = HST.get () in hash_vv_insert_copy lv i j hs acc; let hh1 = HST.get () in // Base conditions V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); assert (V.size_of (V.get hh1 hs lv) == j + 1ul - offset_of (Ghost.reveal i)); assert (mt_safe_elts hh1 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul)); if j % 2ul = 1ul then (insert_index_helper_odd lv (Ghost.reveal i) j; assert (S.length (S.index (RV.as_seq hh0 hs) (U32.v lv)) > 0); let lvhs = V.index hs lv in assert (U32.v (V.size_of lvhs) == S.length (S.index (RV.as_seq hh0 hs) (U32.v lv)) + 1); assert (V.size_of lvhs > 1ul); /// 3) Update the accumulator `acc`. hash_vec_rv_inv_r_inv hh1 (V.get hh1 hs lv) (V.size_of (V.get hh1 hs lv) - 2ul); assert (Rgl?.r_inv (hreg hsz) hh1 acc); hash_fun (V.index lvhs (V.size_of lvhs - 2ul)) acc acc; let hh2 = HST.get () in // 3-1) For the `modifies` postcondition assert (modifies (B.loc_all_regions_from false (B.frameOf acc)) hh1 hh2); assert (modifies (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (B.loc_all_regions_from false (B.frameOf acc))) hh0 hh2); // 3-2) Preservation RV.rv_inv_preserved hs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.as_seq_preserved hs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (B.loc_region_only false (B.frameOf acc)) hh1 hh2; assert (RV.rv_inv hh2 hs); assert (Rgl?.r_inv (hreg hsz) hh2 acc); // 3-3) For `mt_safe_elts` V.get_preserved hs lv (B.loc_region_only false (B.frameOf acc)) hh1 hh2; // head preserved mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (B.loc_region_only false (B.frameOf acc)) hh1 hh2; // tail preserved // 3-4) Correctness insert_snoc_last_helper (RV.as_seq hh0 (V.get hh0 hs lv)) (Rgl?.r_repr (hreg hsz) hh0 acc); assert (S.equal (Rgl?.r_repr (hreg hsz) hh2 acc) // `nacc` in `MTH.insert_` ((Ghost.reveal hash_spec) (S.last (S.index (RV.as_seq hh0 hs) (U32.v lv))) (Rgl?.r_repr (hreg hsz) hh0 acc))); /// 4) Recursion insert_ (lv + 1ul) (Ghost.hide (Ghost.reveal i / 2ul)) (j / 2ul) hs acc hash_fun; let hh3 = HST.get () in // 4-0) Memory safety brought from the postcondition of the recursion assert (RV.rv_inv hh3 hs); assert (Rgl?.r_inv (hreg hsz) hh3 acc); assert (modifies (loc_union (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc))) hh2 hh3); assert (modifies (loc_union (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (B.loc_all_regions_from false (B.frameOf acc))) (loc_union (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc)))) hh0 hh3); // 4-1) For `mt_safe_elts` rv_inv_rv_elems_reg hh2 hs (lv + 1ul) (V.size_of hs); RV.rv_loc_elems_included hh2 hs (lv + 1ul) (V.size_of hs); assert (loc_disjoint (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs))); assert (loc_disjoint (V.loc_vector_within hs lv (lv + 1ul)) (B.loc_all_regions_from false (B.frameOf acc))); V.get_preserved hs lv (loc_union (loc_union (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)) (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc))) hh2 hh3; assert (V.size_of (V.get hh3 hs lv) == j + 1ul - offset_of (Ghost.reveal i)); // head preserved assert (mt_safe_elts hh3 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul + 1ul)); // tail by recursion mt_safe_elts_constr hh3 lv hs (Ghost.reveal i) (j + 1ul); assert (mt_safe_elts hh3 lv hs (Ghost.reveal i) (j + 1ul)); // 4-2) Correctness mt_safe_elts_spec hh2 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul); assert (S.equal (RV.as_seq hh3 hs) (MTH.insert_ #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv + 1) (U32.v (Ghost.reveal i) / 2) (U32.v j / 2) (RV.as_seq hh2 hs) (Rgl?.r_repr (hreg hsz) hh2 acc))); mt_safe_elts_spec hh0 lv hs (Ghost.reveal i) j; MTH.insert_rec #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc); assert (S.equal (RV.as_seq hh3 hs) (MTH.insert_ #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc)))) else (insert_index_helper_even lv j; // memory safety assert (mt_safe_elts hh1 (lv + 1ul) hs (Ghost.reveal i / 2ul) ((j + 1ul) / 2ul)); mt_safe_elts_constr hh1 lv hs (Ghost.reveal i) (j + 1ul); assert (mt_safe_elts hh1 lv hs (Ghost.reveal i) (j + 1ul)); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh1); insert_modifies_union_loc_weakening (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (B.loc_all_regions_from false (B.frameOf acc)) (loc_union (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc))) hh0 hh1; // correctness mt_safe_elts_spec hh0 lv hs (Ghost.reveal i) j; MTH.insert_base #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc); assert (S.equal (RV.as_seq hh1 hs) (MTH.insert_ #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc)))); /// 5) Proving the postcondition after recursion let hh4 = HST.get () in // 5-1) For the `modifies` postcondition. assert (modifies (loc_union (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (B.loc_all_regions_from false (B.frameOf acc))) (loc_union (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc)))) hh0 hh4); insert_modifies_rec_helper lv hs (B.loc_all_regions_from false (B.frameOf acc)) hh0; // 5-2) For `mt_safe_elts` assert (mt_safe_elts hh4 lv hs (Ghost.reveal i) (j + 1ul)); // 5-3) Preservation assert (RV.rv_inv hh4 hs); assert (Rgl?.r_inv (hreg hsz) hh4 acc); // 5-4) Correctness mt_safe_elts_spec hh0 lv hs (Ghost.reveal i) j; assert (S.equal (RV.as_seq hh4 hs) (MTH.insert_ #(U32.v hsz) #hash_spec (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc))) // QED #pop-options private inline_for_extraction val mt_insert_pre_nst: mtv:merkle_tree -> v:hash #(MT?.hash_size mtv) -> Tot bool let mt_insert_pre_nst mtv v = mt_not_full_nst mtv && add64_fits (MT?.offset mtv) ((MT?.j mtv) + 1ul) val mt_insert_pre: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> v:hash #hsz -> HST.ST bool (requires (fun h0 -> mt_safe h0 (CB.cast mt) /\ (MT?.hash_size (B.get h0 (CB.cast mt) 0)) = Ghost.reveal hsz)) (ensures (fun _ _ _ -> True)) let mt_insert_pre #hsz mt v = let mt = !*(CB.cast mt) in assert (MT?.hash_size mt == (MT?.hash_size mt)); mt_insert_pre_nst mt v // `mt_insert` inserts a hash to a Merkle tree. Note that this operation // manipulates the content in `v`, since it uses `v` as an accumulator during // insertion. #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" val mt_insert: hsz:Ghost.erased hash_size_t -> mt:mt_p -> v:hash #hsz -> HST.ST unit (requires (fun h0 -> let dmt = B.get h0 mt 0 in mt_safe h0 mt /\ Rgl?.r_inv (hreg hsz) h0 v /\ HH.disjoint (B.frameOf mt) (B.frameOf v) /\ MT?.hash_size dmt = Ghost.reveal hsz /\ mt_insert_pre_nst dmt v)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (mt_loc mt) (B.loc_all_regions_from false (B.frameOf v))) h0 h1 /\ mt_safe h1 mt /\ // correctness MT?.hash_size (B.get h1 mt 0) = Ghost.reveal hsz /\ mt_lift h1 mt == MTH.mt_insert (mt_lift h0 mt) (Rgl?.r_repr (hreg hsz) h0 v))) #pop-options #push-options "--z3rlimit 40" let mt_insert hsz mt v = let hh0 = HST.get () in let mtv = !*mt in let hs = MT?.hs mtv in let hsz = MT?.hash_size mtv in insert_ #hsz #(Ghost.reveal (MT?.hash_spec mtv)) 0ul (Ghost.hide (MT?.i mtv)) (MT?.j mtv) hs v (MT?.hash_fun mtv); let hh1 = HST.get () in RV.rv_loc_elems_included hh0 (MT?.hs mtv) 0ul (V.size_of hs); V.loc_vector_within_included hs 0ul (V.size_of hs); RV.rv_inv_preserved (MT?.rhs mtv) (loc_union (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf v))) hh0 hh1; RV.as_seq_preserved (MT?.rhs mtv) (loc_union (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf v))) hh0 hh1; Rgl?.r_sep (hreg hsz) (MT?.mroot mtv) (loc_union (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf v))) hh0 hh1; mt *= MT (MT?.hash_size mtv) (MT?.offset mtv) (MT?.i mtv) (MT?.j mtv + 1ul) (MT?.hs mtv) false // `rhs` is always deprecated right after an insertion. (MT?.rhs mtv) (MT?.mroot mtv) (MT?.hash_spec mtv) (MT?.hash_fun mtv); let hh2 = HST.get () in RV.rv_inv_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.rv_inv_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; Rgl?.r_sep (hreg hsz) (MT?.mroot mtv) (B.loc_buffer mt) hh1 hh2; mt_safe_elts_preserved 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv + 1ul) (B.loc_buffer mt) hh1 hh2 #pop-options // `mt_create` initiates a Merkle tree with a given initial hash `init`. // A valid Merkle tree should contain at least one element. val mt_create_custom: hsz:hash_size_t -> hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hsz)) -> r:HST.erid -> init:hash #hsz -> hash_fun:hash_fun_t #hsz #hash_spec -> HST.ST mt_p (requires (fun h0 -> Rgl?.r_inv (hreg hsz) h0 init /\ HH.disjoint r (B.frameOf init))) (ensures (fun h0 mt h1 -> // memory safety modifies (loc_union (mt_loc mt) (B.loc_all_regions_from false (B.frameOf init))) h0 h1 /\ mt_safe h1 mt /\ // correctness MT?.hash_size (B.get h1 mt 0) = hsz /\ mt_lift h1 mt == MTH.mt_create (U32.v hsz) (Ghost.reveal hash_spec) (Rgl?.r_repr (hreg hsz) h0 init))) #push-options "--z3rlimit 40" let mt_create_custom hsz hash_spec r init hash_fun = let hh0 = HST.get () in let mt = create_empty_mt hsz hash_spec hash_fun r in mt_insert hsz mt init; let hh2 = HST.get () in mt #pop-options /// Construction and Destruction of paths // Since each element pointer in `path` is from the target Merkle tree and // each element has different location in `MT?.hs` (thus different region id), // we cannot use the regionality property for `path`s. Hence here we manually // define invariants and representation. noeq type path = | Path: hash_size:hash_size_t -> hashes:V.vector (hash #hash_size) -> path type path_p = B.pointer path type const_path_p = const_pointer path private let phashes (h:HS.mem) (p:path_p) : GTot (V.vector (hash #(Path?.hash_size (B.get h p 0)))) = Path?.hashes (B.get h p 0) // Memory safety of a path as an invariant inline_for_extraction noextract val path_safe: h:HS.mem -> mtr:HH.rid -> p:path_p -> GTot Type0 let path_safe h mtr p = B.live h p /\ B.freeable p /\ V.live h (phashes h p) /\ V.freeable (phashes h p) /\ HST.is_eternal_region (V.frameOf (phashes h p)) /\ (let hsz = Path?.hash_size (B.get h p 0) in V.forall_all h (phashes h p) (fun hp -> Rgl?.r_inv (hreg hsz) h hp /\ HH.includes mtr (Rgl?.region_of (hreg hsz) hp)) /\ HH.extends (V.frameOf (phashes h p)) (B.frameOf p) /\ HH.disjoint mtr (B.frameOf p)) val path_loc: path_p -> GTot loc let path_loc p = B.loc_all_regions_from false (B.frameOf p) val lift_path_: #hsz:hash_size_t -> h:HS.mem -> hs:S.seq (hash #hsz) -> i:nat -> j:nat{ i <= j /\ j <= S.length hs /\ V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h hp)} -> GTot (hp:MTH.path #(U32.v hsz) {S.length hp = j - i}) (decreases j) let rec lift_path_ #hsz h hs i j = if i = j then S.empty else (S.snoc (lift_path_ h hs i (j - 1)) (Rgl?.r_repr (hreg hsz) h (S.index hs (j - 1)))) // Representation of a path val lift_path: #hsz:hash_size_t -> h:HS.mem -> mtr:HH.rid -> p:path_p {path_safe h mtr p /\ (Path?.hash_size (B.get h p 0)) = hsz} -> GTot (hp:MTH.path #(U32.v hsz) {S.length hp = U32.v (V.size_of (phashes h p))}) let lift_path #hsz h mtr p = lift_path_ h (V.as_seq h (phashes h p)) 0 (S.length (V.as_seq h (phashes h p))) val lift_path_index_: #hsz:hash_size_t -> h:HS.mem -> hs:S.seq (hash #hsz) -> i:nat -> j:nat{i <= j && j <= S.length hs} -> k:nat{i <= k && k < j} -> Lemma (requires (V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h hp))) (ensures (Rgl?.r_repr (hreg hsz) h (S.index hs k) == S.index (lift_path_ h hs i j) (k - i))) (decreases j) [SMTPat (S.index (lift_path_ h hs i j) (k - i))] #push-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec lift_path_index_ #hsz h hs i j k = if i = j then () else if k = j - 1 then () else lift_path_index_ #hsz h hs i (j - 1) k #pop-options val lift_path_index: h:HS.mem -> mtr:HH.rid -> p:path_p -> i:uint32_t -> Lemma (requires (path_safe h mtr p /\ i < V.size_of (phashes h p))) (ensures (let hsz = Path?.hash_size (B.get h p 0) in Rgl?.r_repr (hreg hsz) h (V.get h (phashes h p) i) == S.index (lift_path #(hsz) h mtr p) (U32.v i))) let lift_path_index h mtr p i = lift_path_index_ h (V.as_seq h (phashes h p)) 0 (S.length (V.as_seq h (phashes h p))) (U32.v i) val lift_path_eq: #hsz:hash_size_t -> h:HS.mem -> hs1:S.seq (hash #hsz) -> hs2:S.seq (hash #hsz) -> i:nat -> j:nat -> Lemma (requires (i <= j /\ j <= S.length hs1 /\ j <= S.length hs2 /\ S.equal (S.slice hs1 i j) (S.slice hs2 i j) /\ V.forall_seq hs1 i j (fun hp -> Rgl?.r_inv (hreg hsz) h hp) /\ V.forall_seq hs2 i j (fun hp -> Rgl?.r_inv (hreg hsz) h hp))) (ensures (S.equal (lift_path_ h hs1 i j) (lift_path_ h hs2 i j))) let lift_path_eq #hsz h hs1 hs2 i j = assert (forall (k:nat{i <= k && k < j}). S.index (lift_path_ h hs1 i j) (k - i) == Rgl?.r_repr (hreg hsz) h (S.index hs1 k)); assert (forall (k:nat{i <= k && k < j}). S.index (lift_path_ h hs2 i j) (k - i) == Rgl?.r_repr (hreg hsz) h (S.index hs2 k)); assert (forall (k:nat{k < j - i}). S.index (lift_path_ h hs1 i j) k == Rgl?.r_repr (hreg hsz) h (S.index hs1 (k + i))); assert (forall (k:nat{k < j - i}). S.index (lift_path_ h hs2 i j) k == Rgl?.r_repr (hreg hsz) h (S.index hs2 (k + i))); assert (forall (k:nat{k < j - i}). S.index (S.slice hs1 i j) k == S.index (S.slice hs2 i j) k); assert (forall (k:nat{i <= k && k < j}). S.index (S.slice hs1 i j) (k - i) == S.index (S.slice hs2 i j) (k - i)) private val path_safe_preserved_: #hsz:hash_size_t -> mtr:HH.rid -> hs:S.seq (hash #hsz) -> i:nat -> j:nat{i <= j && j <= S.length hs} -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h0 hp /\ HH.includes mtr (Rgl?.region_of (hreg hsz) hp)) /\ loc_disjoint dl (B.loc_all_regions_from false mtr) /\ modifies dl h0 h1)) (ensures (V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h1 hp /\ HH.includes mtr (Rgl?.region_of (hreg hsz) hp)))) (decreases j) let rec path_safe_preserved_ #hsz mtr hs i j dl h0 h1 = if i = j then () else (assert (loc_includes (B.loc_all_regions_from false mtr) (B.loc_all_regions_from false (Rgl?.region_of (hreg hsz) (S.index hs (j - 1))))); Rgl?.r_sep (hreg hsz) (S.index hs (j - 1)) dl h0 h1; path_safe_preserved_ mtr hs i (j - 1) dl h0 h1) val path_safe_preserved: mtr:HH.rid -> p:path_p -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (path_safe h0 mtr p /\ loc_disjoint dl (path_loc p) /\ loc_disjoint dl (B.loc_all_regions_from false mtr) /\ modifies dl h0 h1)) (ensures (path_safe h1 mtr p)) let path_safe_preserved mtr p dl h0 h1 = assert (loc_includes (path_loc p) (B.loc_buffer p)); assert (loc_includes (path_loc p) (V.loc_vector (phashes h0 p))); path_safe_preserved_ mtr (V.as_seq h0 (phashes h0 p)) 0 (S.length (V.as_seq h0 (phashes h0 p))) dl h0 h1 val path_safe_init_preserved: mtr:HH.rid -> p:path_p -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (path_safe h0 mtr p /\ V.size_of (phashes h0 p) = 0ul /\ B.loc_disjoint dl (path_loc p) /\ modifies dl h0 h1)) (ensures (path_safe h1 mtr p /\ V.size_of (phashes h1 p) = 0ul)) let path_safe_init_preserved mtr p dl h0 h1 = assert (loc_includes (path_loc p) (B.loc_buffer p)); assert (loc_includes (path_loc p) (V.loc_vector (phashes h0 p))) val path_preserved_: #hsz:hash_size_t -> mtr:HH.rid -> hs:S.seq (hash #hsz) -> i:nat -> j:nat{i <= j && j <= S.length hs} -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h0 hp /\ HH.includes mtr (Rgl?.region_of (hreg hsz) hp)) /\ loc_disjoint dl (B.loc_all_regions_from false mtr) /\ modifies dl h0 h1)) (ensures (path_safe_preserved_ mtr hs i j dl h0 h1; S.equal (lift_path_ h0 hs i j) (lift_path_ h1 hs i j))) (decreases j) #push-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec path_preserved_ #hsz mtr hs i j dl h0 h1 = if i = j then () else (path_safe_preserved_ mtr hs i (j - 1) dl h0 h1; path_preserved_ mtr hs i (j - 1) dl h0 h1; assert (loc_includes (B.loc_all_regions_from false mtr) (B.loc_all_regions_from false (Rgl?.region_of (hreg hsz) (S.index hs (j - 1))))); Rgl?.r_sep (hreg hsz) (S.index hs (j - 1)) dl h0 h1) #pop-options val path_preserved: mtr:HH.rid -> p:path_p -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (path_safe h0 mtr p /\ loc_disjoint dl (path_loc p) /\ loc_disjoint dl (B.loc_all_regions_from false mtr) /\ modifies dl h0 h1)) (ensures (path_safe_preserved mtr p dl h0 h1; let hsz0 = (Path?.hash_size (B.get h0 p 0)) in let hsz1 = (Path?.hash_size (B.get h1 p 0)) in let b:MTH.path = lift_path #hsz0 h0 mtr p in let a:MTH.path = lift_path #hsz1 h1 mtr p in hsz0 = hsz1 /\ S.equal b a)) let path_preserved mtr p dl h0 h1 = assert (loc_includes (path_loc p) (B.loc_buffer p)); assert (loc_includes (path_loc p) (V.loc_vector (phashes h0 p))); path_preserved_ mtr (V.as_seq h0 (phashes h0 p)) 0 (S.length (V.as_seq h0 (phashes h0 p))) dl h0 h1 val init_path: hsz:hash_size_t -> mtr:HH.rid -> r:HST.erid -> HST.ST path_p (requires (fun h0 -> HH.disjoint mtr r)) (ensures (fun h0 p h1 -> // memory safety path_safe h1 mtr p /\ // correctness Path?.hash_size (B.get h1 p 0) = hsz /\ S.equal (lift_path #hsz h1 mtr p) S.empty)) let init_path hsz mtr r = let nrid = HST.new_region r in (B.malloc r (Path hsz (rg_alloc (hvreg hsz) nrid)) 1ul) val clear_path: mtr:HH.rid -> p:path_p -> HST.ST unit (requires (fun h0 -> path_safe h0 mtr p)) (ensures (fun h0 _ h1 -> // memory safety path_safe h1 mtr p /\ // correctness V.size_of (phashes h1 p) = 0ul /\ S.equal (lift_path #(Path?.hash_size (B.get h1 p 0)) h1 mtr p) S.empty)) let clear_path mtr p = let pv = !*p in p *= Path (Path?.hash_size pv) (V.clear (Path?.hashes pv)) val free_path: p:path_p -> HST.ST unit (requires (fun h0 -> B.live h0 p /\ B.freeable p /\ V.live h0 (phashes h0 p) /\ V.freeable (phashes h0 p) /\ HH.extends (V.frameOf (phashes h0 p)) (B.frameOf p))) (ensures (fun h0 _ h1 -> modifies (path_loc p) h0 h1)) let free_path p = let pv = !*p in V.free (Path?.hashes pv); B.free p /// Getting the Merkle root and path // Construct "rightmost hashes" for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. private val construct_rhs: #hsz:hash_size_t -> #hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hsz)) -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> rhs:hash_vec #hsz {V.size_of rhs = merkle_tree_size_lg} -> i:index_t -> j:index_t{i <= j && (U32.v j) < pow2 (32 - U32.v lv)} -> acc:hash #hsz -> actd:bool -> hash_fun:hash_fun_t #hsz #(Ghost.reveal hash_spec) -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ RV.rv_inv h0 rhs /\ HH.disjoint (V.frameOf hs) (V.frameOf rhs) /\ Rgl?.r_inv (hreg hsz) h0 acc /\ HH.disjoint (B.frameOf acc) (V.frameOf hs) /\ HH.disjoint (B.frameOf acc) (V.frameOf rhs) /\ mt_safe_elts #hsz h0 lv hs i j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.loc_rvector rhs) (B.loc_all_regions_from false (B.frameOf acc))) h0 h1 /\ RV.rv_inv h1 rhs /\ Rgl?.r_inv (hreg hsz) h1 acc /\ // correctness (mt_safe_elts_spec #hsz h0 lv hs i j; MTH.construct_rhs #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (Rgl?.r_repr (hvvreg hsz) h0 hs) (Rgl?.r_repr (hvreg hsz) h0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) h0 acc) actd == (Rgl?.r_repr (hvreg hsz) h1 rhs, Rgl?.r_repr (hreg hsz) h1 acc) ))) (decreases (U32.v j)) #push-options "--z3rlimit 250 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec construct_rhs #hsz #hash_spec lv hs rhs i j acc actd hash_fun = let hh0 = HST.get () in if j = 0ul then begin assert (RV.rv_inv hh0 hs); assert (mt_safe_elts #hsz hh0 lv hs i j); mt_safe_elts_spec #hsz hh0 lv hs 0ul 0ul; assert (MTH.hs_wf_elts #(U32.v hsz) (U32.v lv) (RV.as_seq hh0 hs) (U32.v i) (U32.v j)); let hh1 = HST.get() in assert (MTH.construct_rhs #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd == (Rgl?.r_repr (hvreg hsz) hh1 rhs, Rgl?.r_repr (hreg hsz) hh1 acc)) end else let ofs = offset_of i in begin (if j % 2ul = 0ul then begin Math.Lemmas.pow2_double_mult (32 - U32.v lv - 1); mt_safe_elts_rec #hsz hh0 lv hs i j; construct_rhs #hsz #hash_spec (lv + 1ul) hs rhs (i / 2ul) (j / 2ul) acc actd hash_fun; let hh1 = HST.get () in // correctness mt_safe_elts_spec #hsz hh0 lv hs i j; MTH.construct_rhs_even #(U32.v hsz) #hash_spec (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd; assert (MTH.construct_rhs #(U32.v hsz) #hash_spec (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd == (Rgl?.r_repr (hvreg hsz) hh1 rhs, Rgl?.r_repr (hreg hsz) hh1 acc)) end else begin if actd then begin RV.assign_copy (hcpy hsz) rhs lv acc; let hh1 = HST.get () in // memory safety Rgl?.r_sep (hreg hsz) acc (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; RV.rv_inv_preserved hs (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; RV.as_seq_preserved hs (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; RV.rv_inv_preserved (V.get hh0 hs lv) (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; V.loc_vector_within_included hs lv (V.size_of hs); mt_safe_elts_preserved lv hs i j (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; mt_safe_elts_head hh1 lv hs i j; hash_vv_rv_inv_r_inv hh1 hs lv (j - 1ul - ofs); // correctness assert (S.equal (RV.as_seq hh1 rhs) (S.upd (RV.as_seq hh0 rhs) (U32.v lv) (Rgl?.r_repr (hreg hsz) hh0 acc))); hash_fun (V.index (V.index hs lv) (j - 1ul - ofs)) acc acc; let hh2 = HST.get () in // memory safety mt_safe_elts_preserved lv hs i j (B.loc_all_regions_from false (B.frameOf acc)) hh1 hh2; RV.rv_inv_preserved hs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.rv_inv_preserved rhs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.as_seq_preserved hs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.as_seq_preserved rhs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; // correctness hash_vv_as_seq_get_index hh0 hs lv (j - 1ul - ofs); assert (Rgl?.r_repr (hreg hsz) hh2 acc == (Ghost.reveal hash_spec) (S.index (S.index (RV.as_seq hh0 hs) (U32.v lv)) (U32.v j - 1 - U32.v ofs)) (Rgl?.r_repr (hreg hsz) hh0 acc)) end else begin mt_safe_elts_head hh0 lv hs i j; hash_vv_rv_inv_r_inv hh0 hs lv (j - 1ul - ofs); hash_vv_rv_inv_disjoint hh0 hs lv (j - 1ul - ofs) (B.frameOf acc); Cpy?.copy (hcpy hsz) hsz (V.index (V.index hs lv) (j - 1ul - ofs)) acc; let hh1 = HST.get () in // memory safety V.loc_vector_within_included hs lv (V.size_of hs); mt_safe_elts_preserved lv hs i j (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; RV.rv_inv_preserved hs (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; RV.rv_inv_preserved rhs (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; RV.as_seq_preserved hs (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; RV.as_seq_preserved rhs (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; // correctness hash_vv_as_seq_get_index hh0 hs lv (j - 1ul - ofs); assert (Rgl?.r_repr (hreg hsz) hh1 acc == S.index (S.index (RV.as_seq hh0 hs) (U32.v lv)) (U32.v j - 1 - U32.v ofs)) end; let hh3 = HST.get () in assert (S.equal (RV.as_seq hh3 hs) (RV.as_seq hh0 hs)); assert (S.equal (RV.as_seq hh3 rhs) (if actd then S.upd (RV.as_seq hh0 rhs) (U32.v lv) (Rgl?.r_repr (hreg hsz) hh0 acc) else RV.as_seq hh0 rhs)); assert (Rgl?.r_repr (hreg hsz) hh3 acc == (if actd then (Ghost.reveal hash_spec) (S.index (S.index (RV.as_seq hh0 hs) (U32.v lv)) (U32.v j - 1 - U32.v ofs)) (Rgl?.r_repr (hreg hsz) hh0 acc) else S.index (S.index (RV.as_seq hh0 hs) (U32.v lv)) (U32.v j - 1 - U32.v ofs))); mt_safe_elts_rec hh3 lv hs i j; construct_rhs #hsz #hash_spec (lv + 1ul) hs rhs (i / 2ul) (j / 2ul) acc true hash_fun; let hh4 = HST.get () in mt_safe_elts_spec hh3 (lv + 1ul) hs (i / 2ul) (j / 2ul); assert (MTH.construct_rhs #(U32.v hsz) #hash_spec (U32.v lv + 1) (Rgl?.r_repr (hvvreg hsz) hh3 hs) (Rgl?.r_repr (hvreg hsz) hh3 rhs) (U32.v i / 2) (U32.v j / 2) (Rgl?.r_repr (hreg hsz) hh3 acc) true == (Rgl?.r_repr (hvreg hsz) hh4 rhs, Rgl?.r_repr (hreg hsz) hh4 acc)); mt_safe_elts_spec hh0 lv hs i j; MTH.construct_rhs_odd #(U32.v hsz) #hash_spec (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd; assert (MTH.construct_rhs #(U32.v hsz) #hash_spec (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd == (Rgl?.r_repr (hvreg hsz) hh4 rhs, Rgl?.r_repr (hreg hsz) hh4 acc)) end) end #pop-options private inline_for_extraction val mt_get_root_pre_nst: mtv:merkle_tree -> rt:hash #(MT?.hash_size mtv) -> Tot bool let mt_get_root_pre_nst mtv rt = true val mt_get_root_pre: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> rt:hash #hsz -> HST.ST bool (requires (fun h0 -> let mt = CB.cast mt in MT?.hash_size (B.get h0 mt 0) = Ghost.reveal hsz /\ mt_safe h0 mt /\ Rgl?.r_inv (hreg hsz) h0 rt /\ HH.disjoint (B.frameOf mt) (B.frameOf rt))) (ensures (fun _ _ _ -> True)) let mt_get_root_pre #hsz mt rt = let mt = CB.cast mt in let mt = !*mt in let hsz = MT?.hash_size mt in assert (MT?.hash_size mt = hsz); mt_get_root_pre_nst mt rt // `mt_get_root` returns the Merkle root. If it's already calculated with // up-to-date hashes, the root is returned immediately. Otherwise it calls // `construct_rhs` to build rightmost hashes and to calculate the Merkle root // as well. val mt_get_root: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> rt:hash #hsz -> HST.ST unit (requires (fun h0 -> let mt = CB.cast mt in let dmt = B.get h0 mt 0 in MT?.hash_size dmt = (Ghost.reveal hsz) /\ mt_get_root_pre_nst dmt rt /\ mt_safe h0 mt /\ Rgl?.r_inv (hreg hsz) h0 rt /\ HH.disjoint (B.frameOf mt) (B.frameOf rt))) (ensures (fun h0 _ h1 -> let mt = CB.cast mt in // memory safety modifies (loc_union (mt_loc mt) (B.loc_all_regions_from false (B.frameOf rt))) h0 h1 /\ mt_safe h1 mt /\ (let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in MT?.hash_size mtv0 = (Ghost.reveal hsz) /\ MT?.hash_size mtv1 = (Ghost.reveal hsz) /\ MT?.i mtv1 = MT?.i mtv0 /\ MT?.j mtv1 = MT?.j mtv0 /\ MT?.hs mtv1 == MT?.hs mtv0 /\ MT?.rhs mtv1 == MT?.rhs mtv0 /\ MT?.offset mtv1 == MT?.offset mtv0 /\ MT?.rhs_ok mtv1 = true /\ Rgl?.r_inv (hreg hsz) h1 rt /\ // correctness MTH.mt_get_root (mt_lift h0 mt) (Rgl?.r_repr (hreg hsz) h0 rt) == (mt_lift h1 mt, Rgl?.r_repr (hreg hsz) h1 rt)))) #push-options "--z3rlimit 150 --initial_fuel 1 --max_fuel 1" let mt_get_root #hsz mt rt = let mt = CB.cast mt in let hh0 = HST.get () in let mtv = !*mt in let prefix = MT?.offset mtv in let i = MT?.i mtv in let j = MT?.j mtv in let hs = MT?.hs mtv in let rhs = MT?.rhs mtv in let mroot = MT?.mroot mtv in let hash_size = MT?.hash_size mtv in let hash_spec = MT?.hash_spec mtv in let hash_fun = MT?.hash_fun mtv in if MT?.rhs_ok mtv then begin Cpy?.copy (hcpy hash_size) hash_size mroot rt; let hh1 = HST.get () in mt_safe_preserved mt (B.loc_all_regions_from false (Rgl?.region_of (hreg hsz) rt)) hh0 hh1; mt_preserved mt (B.loc_all_regions_from false (Rgl?.region_of (hreg hsz) rt)) hh0 hh1; MTH.mt_get_root_rhs_ok_true (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt); assert (MTH.mt_get_root (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt) == (mt_lift hh1 mt, Rgl?.r_repr (hreg hsz) hh1 rt)) end else begin construct_rhs #hash_size #hash_spec 0ul hs rhs i j rt false hash_fun; let hh1 = HST.get () in // memory safety assert (RV.rv_inv hh1 rhs); assert (Rgl?.r_inv (hreg hsz) hh1 rt); assert (B.live hh1 mt); RV.rv_inv_preserved hs (loc_union (RV.loc_rvector rhs) (B.loc_all_regions_from false (B.frameOf rt))) hh0 hh1; RV.as_seq_preserved hs (loc_union (RV.loc_rvector rhs) (B.loc_all_regions_from false (B.frameOf rt))) hh0 hh1; V.loc_vector_within_included hs 0ul (V.size_of hs); mt_safe_elts_preserved 0ul hs i j (loc_union (RV.loc_rvector rhs) (B.loc_all_regions_from false (B.frameOf rt))) hh0 hh1; // correctness mt_safe_elts_spec hh0 0ul hs i j; assert (MTH.construct_rhs #(U32.v hash_size) #hash_spec 0 (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 rt) false == (Rgl?.r_repr (hvreg hsz) hh1 rhs, Rgl?.r_repr (hreg hsz) hh1 rt)); Cpy?.copy (hcpy hash_size) hash_size rt mroot; let hh2 = HST.get () in // memory safety RV.rv_inv_preserved hs (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; RV.rv_inv_preserved rhs (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; RV.as_seq_preserved hs (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; RV.as_seq_preserved rhs (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; B.modifies_buffer_elim rt (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; mt_safe_elts_preserved 0ul hs i j (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; // correctness assert (Rgl?.r_repr (hreg hsz) hh2 mroot == Rgl?.r_repr (hreg hsz) hh1 rt); mt *= MT hash_size prefix i j hs true rhs mroot hash_spec hash_fun; let hh3 = HST.get () in // memory safety Rgl?.r_sep (hreg hsz) rt (B.loc_buffer mt) hh2 hh3; RV.rv_inv_preserved hs (B.loc_buffer mt) hh2 hh3; RV.rv_inv_preserved rhs (B.loc_buffer mt) hh2 hh3; RV.as_seq_preserved hs (B.loc_buffer mt) hh2 hh3; RV.as_seq_preserved rhs (B.loc_buffer mt) hh2 hh3; Rgl?.r_sep (hreg hsz) mroot (B.loc_buffer mt) hh2 hh3; mt_safe_elts_preserved 0ul hs i j (B.loc_buffer mt) hh2 hh3; assert (mt_safe hh3 mt); // correctness MTH.mt_get_root_rhs_ok_false (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt); assert (MTH.mt_get_root (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt) == (MTH.MT #(U32.v hash_size) (U32.v i) (U32.v j) (RV.as_seq hh0 hs) true (RV.as_seq hh1 rhs) (Rgl?.r_repr (hreg hsz) hh1 rt) hash_spec, Rgl?.r_repr (hreg hsz) hh1 rt)); assert (MTH.mt_get_root (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt) == (mt_lift hh3 mt, Rgl?.r_repr (hreg hsz) hh3 rt)) end #pop-options inline_for_extraction val mt_path_insert: #hsz:hash_size_t -> mtr:HH.rid -> p:path_p -> hp:hash #hsz -> HST.ST unit (requires (fun h0 -> path_safe h0 mtr p /\ not (V.is_full (phashes h0 p)) /\ Rgl?.r_inv (hreg hsz) h0 hp /\ HH.disjoint mtr (B.frameOf p) /\ HH.includes mtr (B.frameOf hp) /\ Path?.hash_size (B.get h0 p 0) = hsz)) (ensures (fun h0 _ h1 -> // memory safety modifies (path_loc p) h0 h1 /\ path_safe h1 mtr p /\ // correctness (let hsz0 = Path?.hash_size (B.get h0 p 0) in let hsz1 = Path?.hash_size (B.get h1 p 0) in (let before:(S.seq (MTH.hash #(U32.v hsz0))) = lift_path h0 mtr p in let after:(S.seq (MTH.hash #(U32.v hsz1))) = lift_path h1 mtr p in V.size_of (phashes h1 p) = V.size_of (phashes h0 p) + 1ul /\ hsz = hsz0 /\ hsz = hsz1 /\ (let hspec:(S.seq (MTH.hash #(U32.v hsz))) = (MTH.path_insert #(U32.v hsz) before (Rgl?.r_repr (hreg hsz) h0 hp)) in S.equal hspec after))))) #push-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1" let mt_path_insert #hsz mtr p hp = let pth = !*p in let pv = Path?.hashes pth in let hh0 = HST.get () in let ipv = V.insert pv hp in let hh1 = HST.get () in path_safe_preserved_ mtr (V.as_seq hh0 pv) 0 (S.length (V.as_seq hh0 pv)) (B.loc_all_regions_from false (V.frameOf ipv)) hh0 hh1; path_preserved_ mtr (V.as_seq hh0 pv) 0 (S.length (V.as_seq hh0 pv)) (B.loc_all_regions_from false (V.frameOf ipv)) hh0 hh1; Rgl?.r_sep (hreg hsz) hp (B.loc_all_regions_from false (V.frameOf ipv)) hh0 hh1; p *= Path hsz ipv; let hh2 = HST.get () in path_safe_preserved_ mtr (V.as_seq hh1 ipv) 0 (S.length (V.as_seq hh1 ipv)) (B.loc_region_only false (B.frameOf p)) hh1 hh2; path_preserved_ mtr (V.as_seq hh1 ipv) 0 (S.length (V.as_seq hh1 ipv)) (B.loc_region_only false (B.frameOf p)) hh1 hh2; Rgl?.r_sep (hreg hsz) hp (B.loc_region_only false (B.frameOf p)) hh1 hh2; assert (S.equal (lift_path hh2 mtr p) (lift_path_ hh1 (S.snoc (V.as_seq hh0 pv) hp) 0 (S.length (V.as_seq hh1 ipv)))); lift_path_eq hh1 (S.snoc (V.as_seq hh0 pv) hp) (V.as_seq hh0 pv) 0 (S.length (V.as_seq hh0 pv)) #pop-options // For given a target index `k`, the number of elements (in the tree) `j`, // and a boolean flag (to check the existence of rightmost hashes), we can // calculate a required Merkle path length. // // `mt_path_length` is a postcondition of `mt_get_path`, and a precondition // of `mt_verify`. For detailed description, see `mt_get_path` and `mt_verify`. private val mt_path_length_step: k:index_t -> j:index_t{k <= j} -> actd:bool -> Tot (sl:uint32_t{U32.v sl = MTH.mt_path_length_step (U32.v k) (U32.v j) actd}) let mt_path_length_step k j actd = if j = 0ul then 0ul else (if k % 2ul = 0ul then (if j = k || (j = k + 1ul && not actd) then 0ul else 1ul) else 1ul) private inline_for_extraction val mt_path_length: lv:uint32_t{lv <= merkle_tree_size_lg} -> k:index_t -> j:index_t{k <= j && U32.v j < pow2 (32 - U32.v lv)} -> actd:bool -> Tot (l:uint32_t{ U32.v l = MTH.mt_path_length (U32.v k) (U32.v j) actd && l <= 32ul - lv}) (decreases (U32.v j)) #push-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1" let rec mt_path_length lv k j actd = if j = 0ul then 0ul else (let nactd = actd || (j % 2ul = 1ul) in mt_path_length_step k j actd + mt_path_length (lv + 1ul) (k / 2ul) (j / 2ul) nactd) #pop-options val mt_get_path_length: mtr:HH.rid -> p:const_path_p -> HST.ST uint32_t (requires (fun h0 -> path_safe h0 mtr (CB.cast p))) (ensures (fun h0 _ h1 -> True)) let mt_get_path_length mtr p = let pd = !*(CB.cast p) in V.size_of (Path?.hashes pd) private inline_for_extraction val mt_make_path_step: #hsz:hash_size_t -> lv:uint32_t{lv <= merkle_tree_size_lg} -> mtr:HH.rid -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> rhs:hash_vec #hsz {V.size_of rhs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j <> 0ul /\ i <= j /\ U32.v j < pow2 (32 - U32.v lv)} -> k:index_t{i <= k && k <= j} -> p:path_p -> actd:bool -> HST.ST unit (requires (fun h0 -> HH.includes mtr (V.frameOf hs) /\ HH.includes mtr (V.frameOf rhs) /\ RV.rv_inv h0 hs /\ RV.rv_inv h0 rhs /\ mt_safe_elts h0 lv hs i j /\ path_safe h0 mtr p /\ Path?.hash_size (B.get h0 p 0) = hsz /\ V.size_of (phashes h0 p) <= lv + 1ul)) (ensures (fun h0 _ h1 -> // memory safety modifies (path_loc p) h0 h1 /\ path_safe h1 mtr p /\ V.size_of (phashes h1 p) == V.size_of (phashes h0 p) + mt_path_length_step k j actd /\ V.size_of (phashes h1 p) <= lv + 2ul /\ // correctness (mt_safe_elts_spec h0 lv hs i j; (let hsz0 = Path?.hash_size (B.get h0 p 0) in let hsz1 = Path?.hash_size (B.get h1 p 0) in let before:(S.seq (MTH.hash #(U32.v hsz0))) = lift_path h0 mtr p in let after:(S.seq (MTH.hash #(U32.v hsz1))) = lift_path h1 mtr p in hsz = hsz0 /\ hsz = hsz1 /\ S.equal after (MTH.mt_make_path_step (U32.v lv) (RV.as_seq h0 hs) (RV.as_seq h0 rhs) (U32.v i) (U32.v j) (U32.v k) before actd))))) #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 2 --max_ifuel 2" let mt_make_path_step #hsz lv mtr hs rhs i j k p actd = let pth = !*p in let hh0 = HST.get () in let ofs = offset_of i in if k % 2ul = 1ul then begin hash_vv_rv_inv_includes hh0 hs lv (k - 1ul - ofs); assert (HH.includes mtr (B.frameOf (V.get hh0 (V.get hh0 hs lv) (k - 1ul - ofs)))); assert(Path?.hash_size pth = hsz); mt_path_insert #hsz mtr p (V.index (V.index hs lv) (k - 1ul - ofs)) end else begin if k = j then () else if k + 1ul = j then (if actd then (assert (HH.includes mtr (B.frameOf (V.get hh0 rhs lv))); mt_path_insert mtr p (V.index rhs lv))) else (hash_vv_rv_inv_includes hh0 hs lv (k + 1ul - ofs); assert (HH.includes mtr (B.frameOf (V.get hh0 (V.get hh0 hs lv) (k + 1ul - ofs)))); mt_path_insert mtr p (V.index (V.index hs lv) (k + 1ul - ofs))) end #pop-options private inline_for_extraction val mt_get_path_step_pre_nst: #hsz:Ghost.erased hash_size_t -> mtr:HH.rid -> p:path -> i:uint32_t -> Tot bool let mt_get_path_step_pre_nst #hsz mtr p i = i < V.size_of (Path?.hashes p) val mt_get_path_step_pre: #hsz:Ghost.erased hash_size_t -> mtr:HH.rid -> p:const_path_p -> i:uint32_t -> HST.ST bool (requires (fun h0 -> path_safe h0 mtr (CB.cast p) /\ (let pv = B.get h0 (CB.cast p) 0 in Path?.hash_size pv = Ghost.reveal hsz /\ live h0 (Path?.hashes pv) /\ mt_get_path_step_pre_nst #hsz mtr pv i))) (ensures (fun _ _ _ -> True)) let mt_get_path_step_pre #hsz mtr p i = let p = CB.cast p in mt_get_path_step_pre_nst #hsz mtr !*p i val mt_get_path_step: #hsz:Ghost.erased hash_size_t -> mtr:HH.rid -> p:const_path_p -> i:uint32_t -> HST.ST (hash #hsz) (requires (fun h0 -> path_safe h0 mtr (CB.cast p) /\ (let pv = B.get h0 (CB.cast p) 0 in Path?.hash_size pv = Ghost.reveal hsz /\ live h0 (Path?.hashes pv) /\ i < V.size_of (Path?.hashes pv)))) (ensures (fun h0 r h1 -> True )) let mt_get_path_step #hsz mtr p i = let pd = !*(CB.cast p) in V.index #(hash #(Path?.hash_size pd)) (Path?.hashes pd) i private val mt_get_path_: #hsz:hash_size_t -> lv:uint32_t{lv <= merkle_tree_size_lg} -> mtr:HH.rid -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> rhs:hash_vec #hsz {V.size_of rhs = merkle_tree_size_lg} -> i:index_t -> j:index_t{i <= j /\ U32.v j < pow2 (32 - U32.v lv)} -> k:index_t{i <= k && k <= j} -> p:path_p -> actd:bool -> HST.ST unit (requires (fun h0 -> HH.includes mtr (V.frameOf hs) /\ HH.includes mtr (V.frameOf rhs) /\ RV.rv_inv h0 hs /\ RV.rv_inv h0 rhs /\ mt_safe_elts h0 lv hs i j /\ path_safe h0 mtr p /\ Path?.hash_size (B.get h0 p 0) = hsz /\ V.size_of (phashes h0 p) <= lv + 1ul)) (ensures (fun h0 _ h1 -> // memory safety modifies (path_loc p) h0 h1 /\ path_safe h1 mtr p /\ V.size_of (phashes h1 p) == V.size_of (phashes h0 p) + mt_path_length lv k j actd /\ // correctness (mt_safe_elts_spec h0 lv hs i j; (let hsz0 = Path?.hash_size (B.get h0 p 0) in let hsz1 = Path?.hash_size (B.get h1 p 0) in let before:(S.seq (MTH.hash #(U32.v hsz0))) = lift_path h0 mtr p in let after:(S.seq (MTH.hash #(U32.v hsz1))) = lift_path h1 mtr p in hsz = hsz0 /\ hsz = hsz1 /\ S.equal after (MTH.mt_get_path_ (U32.v lv) (RV.as_seq h0 hs) (RV.as_seq h0 rhs) (U32.v i) (U32.v j) (U32.v k) before actd))))) (decreases (32 - U32.v lv)) #push-options "--z3rlimit 300 --initial_fuel 1 --max_fuel 1 --max_ifuel 2 --initial_ifuel 2" let rec mt_get_path_ #hsz lv mtr hs rhs i j k p actd = let hh0 = HST.get () in mt_safe_elts_spec hh0 lv hs i j; let ofs = offset_of i in if j = 0ul then () else (mt_make_path_step lv mtr hs rhs i j k p actd; let hh1 = HST.get () in mt_safe_elts_spec hh0 lv hs i j; assert (S.equal (lift_path hh1 mtr p) (MTH.mt_make_path_step (U32.v lv) (RV.as_seq hh0 hs) (RV.as_seq hh0 rhs) (U32.v i) (U32.v j) (U32.v k) (lift_path hh0 mtr p) actd)); RV.rv_inv_preserved hs (path_loc p) hh0 hh1; RV.rv_inv_preserved rhs (path_loc p) hh0 hh1; RV.as_seq_preserved hs (path_loc p) hh0 hh1; RV.as_seq_preserved rhs (path_loc p) hh0 hh1; V.loc_vector_within_included hs lv (V.size_of hs); mt_safe_elts_preserved lv hs i j (path_loc p) hh0 hh1; assert (mt_safe_elts hh1 lv hs i j); mt_safe_elts_rec hh1 lv hs i j; mt_safe_elts_spec hh1 (lv + 1ul) hs (i / 2ul) (j / 2ul); mt_get_path_ (lv + 1ul) mtr hs rhs (i / 2ul) (j / 2ul) (k / 2ul) p (if j % 2ul = 0ul then actd else true); let hh2 = HST.get () in assert (S.equal (lift_path hh2 mtr p) (MTH.mt_get_path_ (U32.v lv + 1) (RV.as_seq hh1 hs) (RV.as_seq hh1 rhs) (U32.v i / 2) (U32.v j / 2) (U32.v k / 2) (lift_path hh1 mtr p) (if U32.v j % 2 = 0 then actd else true))); assert (S.equal (lift_path hh2 mtr p) (MTH.mt_get_path_ (U32.v lv) (RV.as_seq hh0 hs) (RV.as_seq hh0 rhs) (U32.v i) (U32.v j) (U32.v k) (lift_path hh0 mtr p) actd))) #pop-options private inline_for_extraction val mt_get_path_pre_nst: mtv:merkle_tree -> idx:offset_t -> p:path -> root:(hash #(MT?.hash_size mtv)) -> Tot bool let mt_get_path_pre_nst mtv idx p root = offsets_connect (MT?.offset mtv) idx && Path?.hash_size p = MT?.hash_size mtv && ([@inline_let] let idx = split_offset (MT?.offset mtv) idx in MT?.i mtv <= idx && idx < MT?.j mtv && V.size_of (Path?.hashes p) = 0ul) val mt_get_path_pre: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> idx:offset_t -> p:const_path_p -> root:hash #hsz -> HST.ST bool (requires (fun h0 -> let mt = CB.cast mt in let p = CB.cast p in let dmt = B.get h0 mt 0 in let dp = B.get h0 p 0 in MT?.hash_size dmt = (Ghost.reveal hsz) /\ Path?.hash_size dp = (Ghost.reveal hsz) /\ mt_safe h0 mt /\ path_safe h0 (B.frameOf mt) p /\ Rgl?.r_inv (hreg hsz) h0 root /\ HH.disjoint (B.frameOf root) (B.frameOf mt) /\ HH.disjoint (B.frameOf root) (B.frameOf p))) (ensures (fun _ _ _ -> True)) let mt_get_path_pre #_ mt idx p root = let mt = CB.cast mt in let p = CB.cast p in let mtv = !*mt in mt_get_path_pre_nst mtv idx !*p root val mt_get_path_loc_union_helper: l1:loc -> l2:loc -> Lemma (loc_union (loc_union l1 l2) l2 == loc_union l1 l2) let mt_get_path_loc_union_helper l1 l2 = () // Construct a Merkle path for a given index `idx`, hashes `mt.hs`, and rightmost // hashes `mt.rhs`. Note that this operation copies "pointers" into the Merkle tree // to the output path. #push-options "--z3rlimit 60" val mt_get_path: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> idx:offset_t -> p:path_p -> root:hash #hsz -> HST.ST index_t (requires (fun h0 -> let mt = CB.cast mt in let dmt = B.get h0 mt 0 in MT?.hash_size dmt = Ghost.reveal hsz /\ Path?.hash_size (B.get h0 p 0) = Ghost.reveal hsz /\ mt_get_path_pre_nst (B.get h0 mt 0) idx (B.get h0 p 0) root /\ mt_safe h0 mt /\ path_safe h0 (B.frameOf mt) p /\ Rgl?.r_inv (hreg hsz) h0 root /\ HH.disjoint (B.frameOf root) (B.frameOf mt) /\ HH.disjoint (B.frameOf root) (B.frameOf p))) (ensures (fun h0 _ h1 -> let mt = CB.cast mt in let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in let idx = split_offset (MT?.offset mtv0) idx in MT?.hash_size mtv0 = Ghost.reveal hsz /\ MT?.hash_size mtv1 = Ghost.reveal hsz /\ Path?.hash_size (B.get h0 p 0) = Ghost.reveal hsz /\ Path?.hash_size (B.get h1 p 0) = Ghost.reveal hsz /\ // memory safety modifies (loc_union (loc_union (mt_loc mt) (B.loc_all_regions_from false (B.frameOf root))) (path_loc p)) h0 h1 /\ mt_safe h1 mt /\ path_safe h1 (B.frameOf mt) p /\ Rgl?.r_inv (hreg hsz) h1 root /\ V.size_of (phashes h1 p) == 1ul + mt_path_length 0ul idx (MT?.j mtv0) false /\ // correctness (let sj, sp, srt = MTH.mt_get_path (mt_lift h0 mt) (U32.v idx) (Rgl?.r_repr (hreg hsz) h0 root) in sj == U32.v (MT?.j mtv1) /\ S.equal sp (lift_path #hsz h1 (B.frameOf mt) p) /\ srt == Rgl?.r_repr (hreg hsz) h1 root))) #pop-options #push-options "--z3rlimit 300 --initial_fuel 1 --max_fuel 1" let mt_get_path #hsz mt idx p root = let ncmt = CB.cast mt in let mtframe = B.frameOf ncmt in let hh0 = HST.get () in mt_get_root mt root; let mtv = !*ncmt in let hsz = MT?.hash_size mtv in let hh1 = HST.get () in path_safe_init_preserved mtframe p (B.loc_union (mt_loc ncmt) (B.loc_all_regions_from false (B.frameOf root))) hh0 hh1; assert (MTH.mt_get_root (mt_lift hh0 ncmt) (Rgl?.r_repr (hreg hsz) hh0 root) == (mt_lift hh1 ncmt, Rgl?.r_repr (hreg hsz) hh1 root)); assert (S.equal (lift_path #hsz hh1 mtframe p) S.empty); let idx = split_offset (MT?.offset mtv) idx in let i = MT?.i mtv in let ofs = offset_of (MT?.i mtv) in let j = MT?.j mtv in let hs = MT?.hs mtv in let rhs = MT?.rhs mtv in assert (mt_safe_elts hh1 0ul hs i j); assert (V.size_of (V.get hh1 hs 0ul) == j - ofs); assert (idx < j); hash_vv_rv_inv_includes hh1 hs 0ul (idx - ofs); hash_vv_rv_inv_r_inv hh1 hs 0ul (idx - ofs); hash_vv_as_seq_get_index hh1 hs 0ul (idx - ofs); let ih = V.index (V.index hs 0ul) (idx - ofs) in mt_path_insert #hsz mtframe p ih; let hh2 = HST.get () in assert (S.equal (lift_path hh2 mtframe p) (MTH.path_insert (lift_path hh1 mtframe p) (S.index (S.index (RV.as_seq hh1 hs) 0) (U32.v idx - U32.v ofs)))); Rgl?.r_sep (hreg hsz) root (path_loc p) hh1 hh2; mt_safe_preserved ncmt (path_loc p) hh1 hh2; mt_preserved ncmt (path_loc p) hh1 hh2; assert (V.size_of (phashes hh2 p) == 1ul); mt_get_path_ 0ul mtframe hs rhs i j idx p false; let hh3 = HST.get () in // memory safety mt_get_path_loc_union_helper (loc_union (mt_loc ncmt) (B.loc_all_regions_from false (B.frameOf root))) (path_loc p); Rgl?.r_sep (hreg hsz) root (path_loc p) hh2 hh3; mt_safe_preserved ncmt (path_loc p) hh2 hh3; mt_preserved ncmt (path_loc p) hh2 hh3; assert (V.size_of (phashes hh3 p) == 1ul + mt_path_length 0ul idx (MT?.j (B.get hh0 ncmt 0)) false); assert (S.length (lift_path #hsz hh3 mtframe p) == S.length (lift_path #hsz hh2 mtframe p) + MTH.mt_path_length (U32.v idx) (U32.v (MT?.j (B.get hh0 ncmt 0))) false); assert (modifies (loc_union (loc_union (mt_loc ncmt) (B.loc_all_regions_from false (B.frameOf root))) (path_loc p)) hh0 hh3); assert (mt_safe hh3 ncmt); assert (path_safe hh3 mtframe p); assert (Rgl?.r_inv (hreg hsz) hh3 root); assert (V.size_of (phashes hh3 p) == 1ul + mt_path_length 0ul idx (MT?.j (B.get hh0 ncmt 0)) false); // correctness mt_safe_elts_spec hh2 0ul hs i j; assert (S.equal (lift_path hh3 mtframe p) (MTH.mt_get_path_ 0 (RV.as_seq hh2 hs) (RV.as_seq hh2 rhs) (U32.v i) (U32.v j) (U32.v idx) (lift_path hh2 mtframe p) false)); assert (MTH.mt_get_path (mt_lift hh0 ncmt) (U32.v idx) (Rgl?.r_repr (hreg hsz) hh0 root) == (U32.v (MT?.j (B.get hh3 ncmt 0)), lift_path hh3 mtframe p, Rgl?.r_repr (hreg hsz) hh3 root)); j #pop-options /// Flushing private val mt_flush_to_modifies_rec_helper: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> h:HS.mem -> Lemma (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) == loc_union (RV.rv_loc_elems h hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) #push-options "--initial_fuel 2 --max_fuel 2" let mt_flush_to_modifies_rec_helper #hsz lv hs h = assert (V.loc_vector_within hs lv (V.size_of hs) == loc_union (V.loc_vector_within hs lv (lv + 1ul)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))); RV.rs_loc_elems_rec_inverse (hvreg hsz) (V.as_seq h hs) (U32.v lv) (U32.v (V.size_of hs)); assert (RV.rv_loc_elems h hs lv (V.size_of hs) == loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs))); loc_union_assoc_4 (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)) #pop-options private val mt_flush_to_: hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> pi:index_t -> i:index_t{i >= pi} -> j:Ghost.erased index_t{ Ghost.reveal j >= i && U32.v (Ghost.reveal j) < pow2 (32 - U32.v lv)} -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ mt_safe_elts h0 lv hs pi (Ghost.reveal j))) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.rv_loc_elems h0 hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) h0 h1 /\ RV.rv_inv h1 hs /\ mt_safe_elts h1 lv hs i (Ghost.reveal j) /\ // correctness (mt_safe_elts_spec h0 lv hs pi (Ghost.reveal j); S.equal (RV.as_seq h1 hs) (MTH.mt_flush_to_ (U32.v lv) (RV.as_seq h0 hs) (U32.v pi) (U32.v i) (U32.v (Ghost.reveal j)))))) (decreases (U32.v i)) #restart-solver #push-options "--z3rlimit 1500 --fuel 1 --ifuel 0" let rec mt_flush_to_ hsz lv hs pi i j = let hh0 = HST.get () in // Base conditions mt_safe_elts_rec hh0 lv hs pi (Ghost.reveal j); V.loc_vector_within_included hs 0ul lv; V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); let oi = offset_of i in let opi = offset_of pi in if oi = opi then mt_safe_elts_spec hh0 lv hs pi (Ghost.reveal j) else begin /// 1) Flush hashes at the level `lv`, where the new vector is /// not yet connected to `hs`. let ofs = oi - opi in let hvec = V.index hs lv in let flushed:(rvector (hreg hsz)) = rv_flush_inplace hvec ofs in let hh1 = HST.get () in // 1-0) Basic disjointness conditions for `RV.assign` V.forall2_forall_left hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall2_forall_right hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall_preserved hs 0ul lv (fun b -> HH.disjoint (Rgl?.region_of (hvreg hsz) hvec) (Rgl?.region_of (hvreg hsz) b)) (RV.loc_rvector hvec) hh0 hh1; V.forall_preserved hs (lv + 1ul) (V.size_of hs) (fun b -> HH.disjoint (Rgl?.region_of (hvreg hsz) hvec) (Rgl?.region_of (hvreg hsz) b)) (RV.loc_rvector hvec) hh0 hh1; assert (Rgl?.region_of (hvreg hsz) hvec == Rgl?.region_of (hvreg hsz) flushed); // 1-1) For the `modifies` postcondition. assert (modifies (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) hh0 hh1); // 1-2) Preservation RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // 1-3) For `mt_safe_elts` assert (V.size_of flushed == Ghost.reveal j - offset_of i); // head updated mt_safe_elts_preserved (lv + 1ul) hs (pi / 2ul) (Ghost.reveal j / 2ul) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // tail not yet // 1-4) For the `rv_inv` postcondition RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) 0 (U32.v lv) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v lv); RV.rv_elems_inv_preserved hs 0ul lv (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs 0ul lv); RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) (U32.v lv + 1) (U32.v (V.size_of hs)) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) (U32.v lv + 1) (U32.v (V.size_of hs)); RV.rv_elems_inv_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs (lv + 1ul) (V.size_of hs)); assert (rv_itself_inv hh1 hs); assert (elems_reg hh1 hs); // 1-5) Correctness assert (S.equal (RV.as_seq hh1 flushed) (S.slice (RV.as_seq hh0 (V.get hh0 hs lv)) (U32.v ofs) (S.length (RV.as_seq hh0 (V.get hh0 hs lv))))); /// 2) Assign the flushed vector to `hs` at the level `lv`. RV.assign hs lv flushed; let hh2 = HST.get () in // 2-1) For the `modifies` postcondition. assert (modifies (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh2); // 2-2) Preservation V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-3) For `mt_safe_elts` assert (V.size_of (V.get hh2 hs lv) == Ghost.reveal j - offset_of i); mt_safe_elts_preserved (lv + 1ul) hs (pi / 2ul) (Ghost.reveal j / 2ul) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-4) Correctness RV.as_seq_sub_preserved hs 0ul lv (loc_rvector flushed) hh0 hh1; RV.as_seq_sub_preserved hs (lv + 1ul) merkle_tree_size_lg (loc_rvector flushed) hh0 hh1; assert (S.equal (RV.as_seq hh2 hs) (S.append (RV.as_seq_sub hh0 hs 0ul lv) (S.cons (RV.as_seq hh1 flushed) (RV.as_seq_sub hh0 hs (lv + 1ul) merkle_tree_size_lg)))); as_seq_sub_upd hh0 hs lv (RV.as_seq hh1 flushed); // if `lv = 31` then `pi <= i <= j < 2` thus `oi = opi`, // contradicting the branch. assert (lv + 1ul < merkle_tree_size_lg); assert (U32.v (Ghost.reveal j / 2ul) < pow2 (32 - U32.v (lv + 1ul))); assert (RV.rv_inv hh2 hs); assert (mt_safe_elts hh2 (lv + 1ul) hs (pi / 2ul) (Ghost.reveal j / 2ul)); /// 3) Recursion mt_flush_to_ hsz (lv + 1ul) hs (pi / 2ul) (i / 2ul) (Ghost.hide (Ghost.reveal j / 2ul)); let hh3 = HST.get () in // 3-0) Memory safety brought from the postcondition of the recursion assert (modifies (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)))) hh0 hh3); mt_flush_to_modifies_rec_helper lv hs hh0; V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); V.loc_vector_within_included hs lv (lv + 1ul); RV.rv_loc_elems_included hh2 hs (lv + 1ul) (V.size_of hs); assert (loc_disjoint (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs))); V.get_preserved hs lv (loc_union (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) hh2 hh3; assert (V.size_of (V.get hh3 hs lv) == Ghost.reveal j - offset_of i); assert (RV.rv_inv hh3 hs); mt_safe_elts_constr hh3 lv hs i (Ghost.reveal j); assert (mt_safe_elts hh3 lv hs i (Ghost.reveal j)); // 3-1) Correctness mt_safe_elts_spec hh2 (lv + 1ul) hs (pi / 2ul) (Ghost.reveal j / 2ul); assert (S.equal (RV.as_seq hh3 hs) (MTH.mt_flush_to_ (U32.v lv + 1) (RV.as_seq hh2 hs) (U32.v pi / 2) (U32.v i / 2) (U32.v (Ghost.reveal j) / 2))); mt_safe_elts_spec hh0 lv hs pi (Ghost.reveal j); MTH.mt_flush_to_rec (U32.v lv) (RV.as_seq hh0 hs) (U32.v pi) (U32.v i) (U32.v (Ghost.reveal j)); assert (S.equal (RV.as_seq hh3 hs) (MTH.mt_flush_to_ (U32.v lv) (RV.as_seq hh0 hs) (U32.v pi) (U32.v i) (U32.v (Ghost.reveal j)))) end #pop-options // `mt_flush_to` flushes old hashes in the Merkle tree. It removes hash elements // from `MT?.i` to **`offset_of (idx - 1)`**, but maintains the tree structure, // i.e., the tree still holds some old internal hashes (compressed from old // hashes) which are required to generate Merkle paths for remaining hashes. // // Note that `mt_flush_to` (and `mt_flush`) always remain at least one base hash // elements. If there are `MT?.j` number of elements in the tree, because of the // precondition `MT?.i <= idx < MT?.j` we still have `idx`-th element after // flushing. private inline_for_extraction val mt_flush_to_pre_nst: mtv:merkle_tree -> idx:offset_t -> Tot bool let mt_flush_to_pre_nst mtv idx = offsets_connect (MT?.offset mtv) idx && ([@inline_let] let idx = split_offset (MT?.offset mtv) idx in idx >= MT?.i mtv && idx < MT?.j mtv) val mt_flush_to_pre: mt:const_mt_p -> idx:offset_t -> HST.ST bool (requires (fun h0 -> mt_safe h0 (CB.cast mt))) (ensures (fun _ _ _ -> True)) let mt_flush_to_pre mt idx = let mt = CB.cast mt in let h0 = HST.get() in let mtv = !*mt in mt_flush_to_pre_nst mtv idx #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1" val mt_flush_to: mt:mt_p -> idx:offset_t -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt /\ mt_flush_to_pre_nst (B.get h0 mt 0) idx)) (ensures (fun h0 _ h1 -> // memory safety modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ // correctness (let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in let off = MT?.offset mtv0 in let idx = split_offset off idx in MT?.hash_size mtv0 = MT?.hash_size mtv1 /\ MTH.mt_flush_to (mt_lift h0 mt) (U32.v idx) == mt_lift h1 mt))) let mt_flush_to mt idx = let hh0 = HST.get () in let mtv = !*mt in let offset = MT?.offset mtv in let j = MT?.j mtv in let hsz = MT?.hash_size mtv in let idx = split_offset offset idx in let hs = MT?.hs mtv in mt_flush_to_ hsz 0ul hs (MT?.i mtv) idx (Ghost.hide (MT?.j mtv)); let hh1 = HST.get () in RV.rv_loc_elems_included hh0 hs 0ul (V.size_of hs); V.loc_vector_within_included hs 0ul (V.size_of hs); RV.rv_inv_preserved (MT?.rhs mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; RV.as_seq_preserved (MT?.rhs mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; mt *= MT (MT?.hash_size mtv) (MT?.offset mtv) idx (MT?.j mtv) hs (MT?.rhs_ok mtv) (MT?.rhs mtv) (MT?.mroot mtv) (MT?.hash_spec mtv) (MT?.hash_fun mtv); let hh2 = HST.get () in RV.rv_inv_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.rv_inv_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) (B.loc_buffer mt) hh1 hh2; mt_safe_elts_preserved 0ul hs idx (MT?.j mtv) (B.loc_buffer mt) hh1 hh2 #pop-options private inline_for_extraction val mt_flush_pre_nst: mt:merkle_tree -> Tot bool let mt_flush_pre_nst mt = MT?.j mt > MT?.i mt val mt_flush_pre: mt:const_mt_p -> HST.ST bool (requires (fun h0 -> mt_safe h0 (CB.cast mt))) (ensures (fun _ _ _ -> True)) let mt_flush_pre mt = mt_flush_pre_nst !*(CB.cast mt) val mt_flush: mt:mt_p -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt /\ mt_flush_pre_nst (B.get h0 mt 0))) (ensures (fun h0 _ h1 -> let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in // memory safety modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ // correctness MT?.hash_size mtv0 = MT?.hash_size mtv1 /\ MTH.mt_flush (mt_lift h0 mt) == mt_lift h1 mt)) #push-options "--z3rlimit 200 --initial_fuel 1 --max_fuel 1" let mt_flush mt = let mtv = !*mt in let off = MT?.offset mtv in let j = MT?.j mtv in let j1 = j - 1ul in assert (j1 < uint32_32_max); assert (off < uint64_max); assert (UInt.fits (U64.v off + U32.v j1) 64); let jo = join_offset off j1 in mt_flush_to mt jo #pop-options /// Retraction private val mt_retract_to_: #hsz:hash_size_t -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> lv:uint32_t{lv < V.size_of hs} -> i:index_t -> s:index_t -> j:index_t{i <= s && s <= j && v j < pow2 (U32.v (V.size_of hs) - v lv)} -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ mt_safe_elts h0 lv hs i j)) (ensures (fun h0 _ h1 -> // memory safety (modifies (loc_union (RV.rv_loc_elems h0 hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) h0 h1) /\ RV.rv_inv h1 hs /\ mt_safe_elts h1 lv hs i s /\ // correctness (mt_safe_elts_spec h0 lv hs i j; S.equal (RV.as_seq h1 hs) (MTH.mt_retract_to_ (RV.as_seq h0 hs) (U32.v lv) (U32.v i) (U32.v s) (U32.v j))) )) (decreases (U32.v merkle_tree_size_lg - U32.v lv)) #push-options "--z3rlimit 300 --initial_fuel 1 --max_fuel 1" private let rec mt_retract_to_ #hsz hs lv i s j = let hh0 = HST.get () in // Base conditions mt_safe_elts_rec hh0 lv hs i j; V.loc_vector_within_included hs 0ul lv; V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); if lv >= V.size_of hs then () else begin // 1) Retract hashes at level `lv`. let hvec = V.index hs lv in let old_len = j - offset_of i in let new_len = s - offset_of i in let retracted = RV.shrink hvec new_len in let hh1 = HST.get () in // 1-0) Basic disjointness conditions for `RV.assign` V.forall2_forall_left hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall2_forall_right hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall_preserved hs 0ul lv (fun b -> HH.disjoint (Rgl?.region_of (hvreg hsz) hvec) (Rgl?.region_of (hvreg hsz) b)) (RV.loc_rvector hvec) hh0 hh1; V.forall_preserved hs (lv + 1ul) (V.size_of hs) (fun b -> HH.disjoint (Rgl?.region_of (hvreg hsz) hvec) (Rgl?.region_of (hvreg hsz) b)) (RV.loc_rvector hvec) hh0 hh1; assert (Rgl?.region_of (hvreg hsz) hvec == Rgl?.region_of (hvreg hsz) retracted); // 1-1) For the `modifies` postcondition. assert (modifies (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) hh0 hh1); // 1-2) Preservation RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // 1-3) For `mt_safe_elts` assert (V.size_of retracted == new_len); mt_safe_elts_preserved (lv + 1ul) hs (i / 2ul) (j / 2ul) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // 1-4) For the `rv_inv` postcondition RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) 0 (U32.v lv) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v lv); RV.rv_elems_inv_preserved hs 0ul lv (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs 0ul lv); RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) (U32.v lv + 1) (U32.v (V.size_of hs)) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) (U32.v lv + 1) (U32.v (V.size_of hs)); RV.rv_elems_inv_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs (lv + 1ul) (V.size_of hs)); assert (rv_itself_inv hh1 hs); assert (elems_reg hh1 hs); // 1-5) Correctness assert (S.equal (RV.as_seq hh1 retracted) (S.slice (RV.as_seq hh0 (V.get hh0 hs lv)) 0 (U32.v new_len))); RV.assign hs lv retracted; let hh2 = HST.get() in // 2-1) For the `modifies` postcondition. assert (modifies (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh2); // 2-2) Preservation V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-3) For `mt_safe_elts` assert (V.size_of (V.get hh2 hs lv) == s - offset_of i); mt_safe_elts_preserved (lv + 1ul) hs (i / 2ul) (j / 2ul) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-4) Correctness RV.as_seq_sub_preserved hs 0ul lv (loc_rvector retracted) hh0 hh1; RV.as_seq_sub_preserved hs (lv + 1ul) merkle_tree_size_lg (loc_rvector retracted) hh0 hh1; assert (S.equal (RV.as_seq hh2 hs) (S.append (RV.as_seq_sub hh0 hs 0ul lv) (S.cons (RV.as_seq hh1 retracted) (RV.as_seq_sub hh0 hs (lv + 1ul) merkle_tree_size_lg)))); as_seq_sub_upd hh0 hs lv (RV.as_seq hh1 retracted); if lv + 1ul < V.size_of hs then begin assert (mt_safe_elts hh2 (lv + 1ul) hs (i / 2ul) (j / 2ul)); mt_safe_elts_spec hh2 (lv + 1ul) hs (i / 2ul) (j / 2ul); mt_retract_to_ hs (lv + 1ul) (i / 2ul) (s / 2ul) (j / 2ul); // 3-0) Memory safety brought from the postcondition of the recursion let hh3 = HST.get () in assert (modifies (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)))) hh0 hh3); mt_flush_to_modifies_rec_helper lv hs hh0; V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); V.loc_vector_within_included hs lv (lv + 1ul); RV.rv_loc_elems_included hh2 hs (lv + 1ul) (V.size_of hs); assert (loc_disjoint (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs))); V.get_preserved hs lv (loc_union (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) hh2 hh3; assert (V.size_of (V.get hh3 hs lv) == s - offset_of i); assert (RV.rv_inv hh3 hs); mt_safe_elts_constr hh3 lv hs i s; assert (mt_safe_elts hh3 lv hs i s); // 3-1) Correctness mt_safe_elts_spec hh2 (lv + 1ul) hs (i / 2ul) (j / 2ul); assert (U32.v lv + 1 < S.length (RV.as_seq hh3 hs) ==> S.equal (RV.as_seq hh3 hs) (MTH.mt_retract_to_ (RV.as_seq hh2 hs) (U32.v lv + 1) (U32.v i / 2) (U32.v s / 2) (U32.v j / 2))); assert (RV.rv_inv hh0 hs); assert (mt_safe_elts hh0 lv hs i j); mt_safe_elts_spec hh0 lv hs i j; assert (S.equal (RV.as_seq hh3 hs) (MTH.mt_retract_to_ (RV.as_seq hh0 hs) (U32.v lv) (U32.v i) (U32.v s) (U32.v j))) end else begin let hh3 = HST.get() in assert ((modifies (loc_union (RV.rv_loc_elems hh0 hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) hh0 hh3)); assert (RV.rv_inv hh3 hs /\ mt_safe_elts hh3 lv hs i s); mt_safe_elts_spec hh0 lv hs i j; assert (S.equal (RV.as_seq hh3 hs) (MTH.mt_retract_to_ (RV.as_seq hh0 hs) (U32.v lv) (U32.v i) (U32.v s) (U32.v j))) end end #pop-options private inline_for_extraction val mt_retract_to_pre_nst: mtv:merkle_tree -> r:offset_t -> Tot bool let mt_retract_to_pre_nst mtv r = offsets_connect (MT?.offset mtv) r && ([@inline_let] let r = split_offset (MT?.offset mtv) r in MT?.i mtv <= r && r < MT?.j mtv) val mt_retract_to_pre: mt:const_mt_p -> r:offset_t -> HST.ST bool (requires (fun h0 -> mt_safe h0 (CB.cast mt))) (ensures (fun _ _ _ -> True)) let mt_retract_to_pre mt r = let mt = CB.cast mt in let h0 = HST.get() in let mtv = !*mt in mt_retract_to_pre_nst mtv r #push-options "--z3rlimit 100" val mt_retract_to: mt:mt_p -> r:offset_t -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt /\ mt_retract_to_pre_nst (B.get h0 mt 0) r)) (ensures (fun h0 _ h1 -> // memory safety modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ // correctness (let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in let off = MT?.offset mtv0 in let r = split_offset off r in MT?.hash_size mtv0 = MT?.hash_size mtv1 /\ MTH.mt_retract_to (mt_lift h0 mt) (U32.v r) == mt_lift h1 mt))) let mt_retract_to mt r = let hh0 = HST.get () in let mtv = !*mt in let offset = MT?.offset mtv in let r = split_offset offset r in let hs = MT?.hs mtv in mt_retract_to_ hs 0ul (MT?.i mtv) (r + 1ul) (MT?.j mtv); let hh1 = HST.get () in RV.rv_loc_elems_included hh0 hs 0ul (V.size_of hs); V.loc_vector_within_included hs 0ul (V.size_of hs); RV.rv_inv_preserved (MT?.rhs mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; RV.as_seq_preserved (MT?.rhs mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; mt *= MT (MT?.hash_size mtv) (MT?.offset mtv) (MT?.i mtv) (r+1ul) hs false (MT?.rhs mtv) (MT?.mroot mtv) (MT?.hash_spec mtv) (MT?.hash_fun mtv); let hh2 = HST.get () in RV.rv_inv_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.rv_inv_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) (B.loc_buffer mt) hh1 hh2; mt_safe_elts_preserved 0ul hs (MT?.i mtv) (r+1ul) (B.loc_buffer mt) hh1 hh2 #pop-options /// Client-side verification private val mt_verify_: #hsz:hash_size_t -> #hash_spec:MTS.hash_fun_t #(U32.v hsz) -> k:index_t -> j:index_t{k <= j} -> mtr:HH.rid -> p:const_path_p -> ppos:uint32_t -> acc:hash #hsz -> actd:bool -> hash_fun:hash_fun_t #hsz #hash_spec -> HST.ST unit (requires (fun h0 -> let p = CB.cast p in path_safe h0 mtr p /\ Rgl?.r_inv (hreg hsz) h0 acc /\ Path?.hash_size (B.get h0 p 0) = hsz /\ HH.disjoint (B.frameOf p) (B.frameOf acc) /\ HH.disjoint mtr (B.frameOf acc) /\ // Below is a very relaxed condition, // but sufficient to ensure (+) for uint32_t is sound. ppos <= 64ul - mt_path_length 0ul k j actd /\ ppos + mt_path_length 0ul k j actd <= V.size_of (phashes h0 p))) (ensures (fun h0 _ h1 -> let p = CB.cast p in // memory safety modifies (B.loc_all_regions_from false (B.frameOf acc)) h0 h1 /\ Rgl?.r_inv (hreg hsz) h1 acc /\ // correctness Rgl?.r_repr (hreg hsz) h1 acc == MTH.mt_verify_ #(U32.v hsz) #hash_spec (U32.v k) (U32.v j) (lift_path h0 mtr p) (U32.v ppos) (Rgl?.r_repr (hreg hsz) h0 acc) actd))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "MerkleTree.Low.VectorExtras.fst.checked", "MerkleTree.Low.Hashfunctions.fst.checked", "MerkleTree.Low.Datastructures.fst.checked", "LowStar.Vector.fst.checked", "LowStar.RVector.fst.checked", "LowStar.Regional.Instances.fst.checked", "LowStar.Regional.fst.checked", "LowStar.ConstBuffer.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.HyperStack.fsti.checked", "FStar.Monotonic.HyperHeap.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.All.fst.checked", "EverCrypt.Helpers.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.Low.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.Low.VectorExtras", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.Low.Hashfunctions", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.Low.Datastructures", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "MerkleTree.New.High", "short_module": "MTH" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Regional.Instances", "short_module": "RVI" }, { "abbrev": true, "full_module": "LowStar.RVector", "short_module": "RV" }, { "abbrev": true, "full_module": "LowStar.Vector", "short_module": "V" }, { "abbrev": true, "full_module": "LowStar.ConstBuffer", "short_module": "CB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Monotonic.HyperHeap", "short_module": "HH" }, { "abbrev": true, "full_module": "FStar.Monotonic.HyperStack", "short_module": "MHS" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Regional.Instances", "short_module": null }, { "abbrev": false, "full_module": "LowStar.RVector", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Regional", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Vector", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: MerkleTree.Low.index_t -> j: MerkleTree.Low.index_t{k <= j} -> mtr: FStar.Monotonic.HyperHeap.rid -> p: MerkleTree.Low.const_path_p -> ppos: LowStar.Vector.uint32_t -> acc: MerkleTree.Low.Datastructures.hash -> actd: Prims.bool -> hash_fun: MerkleTree.Low.Hashfunctions.hash_fun_t -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "MerkleTree.Low.Datastructures.hash_size_t", "MerkleTree.Spec.hash_fun_t", "FStar.UInt32.v", "MerkleTree.Low.index_t", "Prims.b2t", "FStar.Integers.op_Less_Equals", "FStar.Integers.Unsigned", "FStar.Integers.W32", "FStar.Monotonic.HyperHeap.rid", "MerkleTree.Low.const_path_p", "LowStar.Vector.uint32_t", "MerkleTree.Low.Datastructures.hash", "Prims.bool", "MerkleTree.Low.Hashfunctions.hash_fun_t", "FStar.Ghost.hide", "Prims.op_Equality", "FStar.UInt32.t", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.Integers.op_Percent", "Prims.op_BarBar", "Prims.op_AmpAmp", "FStar.Integers.op_Plus", "Prims.op_Negation", "MerkleTree.Low.mt_verify_", "FStar.Integers.op_Slash", "Prims._assert", "Prims.eq2", "Spec.Hash.Definitions.bytes", "Prims.l_or", "Prims.int", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "Lib.IntTypes.uint8", "LowStar.Regional.__proj__Rgl__item__r_repr", "MerkleTree.Low.Datastructures.hreg", "FStar.Seq.Base.index", "MerkleTree.New.High.hash", "MerkleTree.Low.lift_path", "MerkleTree.Low.lift_path_index", "MerkleTree.Low.path_preserved", "LowStar.Monotonic.Buffer.loc_all_regions_from", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Buffer.trivial_preorder", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "MerkleTree.Low.__proj__Path__item__hash_size", "LowStar.Vector.index", "MerkleTree.Low.__proj__Path__item__hashes", "MerkleTree.Low.path", "LowStar.BufferOps.op_Bang_Star", "MerkleTree.Low.path_p", "LowStar.ConstBuffer.cast" ]
[ "recursion" ]
false
true
false
false
false
let rec mt_verify_ #hsz #hash_spec k j mtr p ppos acc actd hash_fun =
let ncp:path_p = CB.cast p in let hh0 = HST.get () in if j = 0ul then () else (let nactd = actd || (j % 2ul = 1ul) in if k % 2ul = 0ul then if j = k || (j = k + 1ul && not actd) then mt_verify_ (k / 2ul) (j / 2ul) mtr p ppos acc nactd hash_fun else let ncpd = !*ncp in let phash = V.index (Path?.hashes ncpd) ppos in hash_fun acc phash acc; let hh1 = HST.get () in path_preserved mtr ncp (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; lift_path_index hh0 mtr ncp ppos; assert (Rgl?.r_repr (hreg hsz) hh1 acc == hash_spec (Rgl?.r_repr (hreg hsz) hh0 acc) (S.index (lift_path #hsz hh0 mtr ncp) (U32.v ppos))); mt_verify_ (k / 2ul) (j / 2ul) mtr p (ppos + 1ul) acc nactd hash_fun else let ncpd = !*ncp in let phash = V.index (Path?.hashes ncpd) ppos in hash_fun phash acc acc; let hh1 = HST.get () in path_preserved mtr ncp (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; lift_path_index hh0 mtr ncp ppos; assert (Rgl?.r_repr (hreg hsz) hh1 acc == hash_spec (S.index (lift_path #hsz hh0 mtr ncp) (U32.v ppos)) (Rgl?.r_repr (hreg hsz) hh0 acc)); mt_verify_ (k / 2ul) (j / 2ul) mtr p (ppos + 1ul) acc nactd hash_fun)
false
Pulse.Soundness.Comp.fst
Pulse.Soundness.Comp.comp_typing_soundness
val comp_typing_soundness (g:stt_env) (c:comp) (uc:universe) (d:comp_typing g c uc) : GTot (RT.tot_typing (elab_env g) (elab_comp c) (RT.tm_type uc))
val comp_typing_soundness (g:stt_env) (c:comp) (uc:universe) (d:comp_typing g c uc) : GTot (RT.tot_typing (elab_env g) (elab_comp c) (RT.tm_type uc))
let comp_typing_soundness (g:stt_env) (c:comp) (uc:universe) (d:comp_typing g c uc) : GTot (RT.tot_typing (elab_env g) (elab_comp c) (RT.tm_type uc)) (decreases d) = match d with | CT_Tot _ t _ dt -> tot_typing_soundness dt | CT_ST _ st d_st -> let res_typing, pre_typing, post_typing = stc_soundness d_st in STT.stt_typing res_typing pre_typing post_typing | CT_STAtomic _ i obs st d_i d_st -> let i_typing = tot_typing_soundness d_i in let res_typing, pre_typing, post_typing = stc_soundness d_st in STT.stt_atomic_typing #(elab_observability obs) res_typing i_typing pre_typing post_typing | CT_STGhost _ st d_st -> let res_typing, pre_typing, post_typing = stc_soundness d_st in STT.stt_ghost_typing res_typing pre_typing post_typing
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Comp.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 60, "end_line": 84, "start_col": 0, "start_line": 61 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Soundness.Comp open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate.Core open Pulse.Elaborate open Pulse.Soundness.Common module STT = Pulse.Soundness.STT let stc_soundness (#g:stt_env) (#st:st_comp) (d_st:st_comp_typing g st) : GTot (RT.tot_typing (elab_env g) (elab_term st.res) (RT.tm_type st.u) & RT.tot_typing (elab_env g) (elab_term st.pre) vprop_tm & RT.tot_typing (elab_env g) (mk_abs (elab_term st.res) R.Q_Explicit (elab_term st.post)) (post1_type_bind (elab_term st.res))) = let STC _ st x dres dpre dpost = d_st in let res_typing = tot_typing_soundness dres in let pre_typing = tot_typing_soundness dpre in calc (==) { RT.close_term (elab_term (open_term st.post x)) x; (==) { elab_open_commute st.post x } RT.close_term (RT.open_term (elab_term st.post) x) x; (==) { elab_freevars st.post; RT.close_open_inverse (elab_term st.post) x } elab_term st.post; }; let post_typing = mk_t_abs_tot g ppname_default dres dpost in res_typing, pre_typing, post_typing
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Soundness.STT.fsti.checked", "Pulse.Soundness.Common.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.Core.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Soundness.Comp.fst" }
[ { "abbrev": true, "full_module": "Pulse.Soundness.STT", "short_module": "STT" }, { "abbrev": false, "full_module": "Pulse.Soundness.Common", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "Pulse.Soundness.Common", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Core", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 2, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Soundness.Common.stt_env -> c: Pulse.Syntax.Base.comp -> uc: Pulse.Syntax.Base.universe -> d: Pulse.Typing.comp_typing g c uc -> Prims.GTot (FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g) (Pulse.Elaborate.Pure.elab_comp c) (FStar.Reflection.Typing.tm_type uc))
Prims.GTot
[ "sometrivial" ]
[]
[ "Pulse.Soundness.Common.stt_env", "Pulse.Syntax.Base.comp", "Pulse.Syntax.Base.universe", "Pulse.Typing.comp_typing", "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Pulse.Typing.universe_of", "Pulse.Soundness.Common.tot_typing_soundness", "Pulse.Syntax.Pure.tm_type", "Pulse.Syntax.Base.st_comp", "Pulse.Typing.st_comp_typing", "FStar.Reflection.Typing.tot_typing", "Pulse.Typing.elab_env", "Pulse.Elaborate.Pure.elab_term", "Pulse.Syntax.Base.__proj__Mkst_comp__item__res", "FStar.Reflection.Typing.tm_type", "Pulse.Syntax.Base.__proj__Mkst_comp__item__u", "Pulse.Syntax.Base.__proj__Mkst_comp__item__pre", "Pulse.Reflection.Util.vprop_tm", "Pulse.Reflection.Util.mk_abs", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "Pulse.Syntax.Base.__proj__Mkst_comp__item__post", "Pulse.Soundness.Common.post1_type_bind", "Pulse.Soundness.STT.stt_typing", "Pulse.Elaborate.Pure.elab_comp", "FStar.Pervasives.Native.tuple3", "Pulse.Soundness.Comp.stc_soundness", "Pulse.Syntax.Base.observability", "Pulse.Typing.tot_typing", "Pulse.Syntax.Base.tm_inames", "Pulse.Soundness.STT.stt_atomic_typing", "Pulse.Elaborate.Pure.elab_observability", "Pulse.Soundness.STT.stt_ghost_typing" ]
[]
false
false
false
false
false
let comp_typing_soundness (g: stt_env) (c: comp) (uc: universe) (d: comp_typing g c uc) : GTot (RT.tot_typing (elab_env g) (elab_comp c) (RT.tm_type uc)) (decreases d) =
match d with | CT_Tot _ t _ dt -> tot_typing_soundness dt | CT_ST _ st d_st -> let res_typing, pre_typing, post_typing = stc_soundness d_st in STT.stt_typing res_typing pre_typing post_typing | CT_STAtomic _ i obs st d_i d_st -> let i_typing = tot_typing_soundness d_i in let res_typing, pre_typing, post_typing = stc_soundness d_st in STT.stt_atomic_typing #(elab_observability obs) res_typing i_typing pre_typing post_typing | CT_STGhost _ st d_st -> let res_typing, pre_typing, post_typing = stc_soundness d_st in STT.stt_ghost_typing res_typing pre_typing post_typing
false
MerkleTree.Low.fst
MerkleTree.Low.mt_flush_to
val mt_flush_to: mt:mt_p -> idx:offset_t -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt /\ mt_flush_to_pre_nst (B.get h0 mt 0) idx)) (ensures (fun h0 _ h1 -> // memory safety modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ // correctness (let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in let off = MT?.offset mtv0 in let idx = split_offset off idx in MT?.hash_size mtv0 = MT?.hash_size mtv1 /\ MTH.mt_flush_to (mt_lift h0 mt) (U32.v idx) == mt_lift h1 mt)))
val mt_flush_to: mt:mt_p -> idx:offset_t -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt /\ mt_flush_to_pre_nst (B.get h0 mt 0) idx)) (ensures (fun h0 _ h1 -> // memory safety modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ // correctness (let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in let off = MT?.offset mtv0 in let idx = split_offset off idx in MT?.hash_size mtv0 = MT?.hash_size mtv1 /\ MTH.mt_flush_to (mt_lift h0 mt) (U32.v idx) == mt_lift h1 mt)))
let mt_flush_to mt idx = let hh0 = HST.get () in let mtv = !*mt in let offset = MT?.offset mtv in let j = MT?.j mtv in let hsz = MT?.hash_size mtv in let idx = split_offset offset idx in let hs = MT?.hs mtv in mt_flush_to_ hsz 0ul hs (MT?.i mtv) idx (Ghost.hide (MT?.j mtv)); let hh1 = HST.get () in RV.rv_loc_elems_included hh0 hs 0ul (V.size_of hs); V.loc_vector_within_included hs 0ul (V.size_of hs); RV.rv_inv_preserved (MT?.rhs mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; RV.as_seq_preserved (MT?.rhs mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) hh0 hh1; mt *= MT (MT?.hash_size mtv) (MT?.offset mtv) idx (MT?.j mtv) hs (MT?.rhs_ok mtv) (MT?.rhs mtv) (MT?.mroot mtv) (MT?.hash_spec mtv) (MT?.hash_fun mtv); let hh2 = HST.get () in RV.rv_inv_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.rv_inv_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) (B.loc_buffer mt) hh1 hh2; mt_safe_elts_preserved 0ul hs idx (MT?.j mtv) (B.loc_buffer mt) hh1 hh2
{ "file_name": "src/MerkleTree.Low.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 73, "end_line": 2492, "start_col": 0, "start_line": 2451 }
module MerkleTree.Low open EverCrypt.Helpers open FStar.All open FStar.Integers open FStar.Mul open LowStar.Buffer open LowStar.BufferOps open LowStar.Vector open LowStar.Regional open LowStar.RVector open LowStar.Regional.Instances module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module MHS = FStar.Monotonic.HyperStack module HH = FStar.Monotonic.HyperHeap module B = LowStar.Buffer module CB = LowStar.ConstBuffer module V = LowStar.Vector module RV = LowStar.RVector module RVI = LowStar.Regional.Instances module S = FStar.Seq module U32 = FStar.UInt32 module U64 = FStar.UInt64 module MTH = MerkleTree.New.High module MTS = MerkleTree.Spec open Lib.IntTypes open MerkleTree.Low.Datastructures open MerkleTree.Low.Hashfunctions open MerkleTree.Low.VectorExtras #set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0" type const_pointer (a:Type0) = b:CB.const_buffer a{CB.length b == 1 /\ CB.qual_of b == CB.MUTABLE} /// Low-level Merkle tree data structure /// // NOTE: because of a lack of 64-bit LowStar.Buffer support, currently // we cannot change below to some other types. type index_t = uint32_t let uint32_32_max = 4294967295ul inline_for_extraction let uint32_max = 4294967295UL let uint64_max = 18446744073709551615UL let offset_range_limit = uint32_max type offset_t = uint64_t inline_for_extraction noextract unfold let u32_64 = Int.Cast.uint32_to_uint64 inline_for_extraction noextract unfold let u64_32 = Int.Cast.uint64_to_uint32 private inline_for_extraction let offsets_connect (x:offset_t) (y:offset_t): Tot bool = y >= x && (y - x) <= offset_range_limit private inline_for_extraction let split_offset (tree:offset_t) (index:offset_t{offsets_connect tree index}): Tot index_t = [@inline_let] let diff = U64.sub_mod index tree in assert (diff <= offset_range_limit); Int.Cast.uint64_to_uint32 diff private inline_for_extraction let add64_fits (x:offset_t) (i:index_t): Tot bool = uint64_max - x >= (u32_64 i) private inline_for_extraction let join_offset (tree:offset_t) (i:index_t{add64_fits tree i}): Tot (r:offset_t{offsets_connect tree r}) = U64.add tree (u32_64 i) inline_for_extraction val merkle_tree_size_lg: uint32_t let merkle_tree_size_lg = 32ul // A Merkle tree `MT i j hs rhs_ok rhs` stores all necessary hashes to generate // a Merkle path for each element from the index `i` to `j-1`. // - Parameters // `hs`: a 2-dim store for hashes, where `hs[0]` contains leaf hash values. // `rhs_ok`: to check the rightmost hashes are up-to-date // `rhs`: a store for "rightmost" hashes, manipulated only when required to // calculate some merkle paths that need the rightmost hashes // as a part of them. // `mroot`: during the construction of `rhs` we can also calculate the Merkle // root of the tree. If `rhs_ok` is true then it has the up-to-date // root value. noeq type merkle_tree = | MT: hash_size:hash_size_t -> offset:offset_t -> i:index_t -> j:index_t{i <= j /\ add64_fits offset j} -> hs:hash_vv hash_size {V.size_of hs = merkle_tree_size_lg} -> rhs_ok:bool -> rhs:hash_vec #hash_size {V.size_of rhs = merkle_tree_size_lg} -> mroot:hash #hash_size -> hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hash_size)) -> hash_fun:hash_fun_t #hash_size #hash_spec -> merkle_tree type mt_p = B.pointer merkle_tree type const_mt_p = const_pointer merkle_tree inline_for_extraction let merkle_tree_conditions (#hsz:Ghost.erased hash_size_t) (offset:uint64_t) (i j:uint32_t) (hs:hash_vv hsz) (rhs_ok:bool) (rhs:hash_vec #hsz) (mroot:hash #hsz): Tot bool = j >= i && add64_fits offset j && V.size_of hs = merkle_tree_size_lg && V.size_of rhs = merkle_tree_size_lg // The maximum number of currently held elements in the tree is (2^32 - 1). // cwinter: even when using 64-bit indices, we fail if the underlying 32-bit // vector is full; this can be fixed if necessary. private inline_for_extraction val mt_not_full_nst: mtv:merkle_tree -> Tot bool let mt_not_full_nst mtv = MT?.j mtv < uint32_32_max val mt_not_full: HS.mem -> mt_p -> GTot bool let mt_not_full h mt = mt_not_full_nst (B.get h mt 0) /// (Memory) Safety val offset_of: i:index_t -> Tot index_t let offset_of i = if i % 2ul = 0ul then i else i - 1ul // `mt_safe_elts` says that it is safe to access an element from `i` to `j - 1` // at level `lv` in the Merkle tree, i.e., hs[lv][k] (i <= k < j) is a valid // element. inline_for_extraction noextract val mt_safe_elts: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> GTot Type0 (decreases (32 - U32.v lv)) let rec mt_safe_elts #hsz h lv hs i j = if lv = merkle_tree_size_lg then true else (let ofs = offset_of i in V.size_of (V.get h hs lv) == j - ofs /\ mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul)) #push-options "--initial_fuel 1 --max_fuel 1" val mt_safe_elts_constr: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (V.size_of (V.get h hs lv) == j - offset_of i /\ mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul))) (ensures (mt_safe_elts #hsz h lv hs i j)) let mt_safe_elts_constr #_ h lv hs i j = () val mt_safe_elts_head: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (mt_safe_elts #hsz h lv hs i j)) (ensures (V.size_of (V.get h hs lv) == j - offset_of i)) let mt_safe_elts_head #_ h lv hs i j = () val mt_safe_elts_rec: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (mt_safe_elts #hsz h lv hs i j)) (ensures (mt_safe_elts #hsz h (lv + 1ul) hs (i / 2ul) (j / 2ul))) let mt_safe_elts_rec #_ h lv hs i j = () val mt_safe_elts_init: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> Lemma (requires (V.forall_ h hs lv (V.size_of hs) (fun hv -> V.size_of hv = 0ul))) (ensures (mt_safe_elts #hsz h lv hs 0ul 0ul)) (decreases (32 - U32.v lv)) let rec mt_safe_elts_init #hsz h lv hs = if lv = merkle_tree_size_lg then () else mt_safe_elts_init #hsz h (lv + 1ul) hs #pop-options val mt_safe_elts_preserved: #hsz:hash_size_t -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (V.live h0 hs /\ mt_safe_elts #hsz h0 lv hs i j /\ loc_disjoint p (V.loc_vector_within hs lv (V.size_of hs)) /\ modifies p h0 h1)) (ensures (mt_safe_elts #hsz h1 lv hs i j)) (decreases (32 - U32.v lv)) [SMTPat (V.live h0 hs); SMTPat (mt_safe_elts #hsz h0 lv hs i j); SMTPat (loc_disjoint p (RV.loc_rvector hs)); SMTPat (modifies p h0 h1)] #push-options "--z3rlimit 100 --initial_fuel 2 --max_fuel 2" let rec mt_safe_elts_preserved #hsz lv hs i j p h0 h1 = if lv = merkle_tree_size_lg then () else (V.get_preserved hs lv p h0 h1; mt_safe_elts_preserved #hsz (lv + 1ul) hs (i / 2ul) (j / 2ul) p h0 h1) #pop-options // `mt_safe` is the invariant of a Merkle tree through its lifetime. // It includes liveness, regionality, disjointness (to each data structure), // and valid element access (`mt_safe_elts`). inline_for_extraction noextract val mt_safe: HS.mem -> mt_p -> GTot Type0 let mt_safe h mt = B.live h mt /\ B.freeable mt /\ (let mtv = B.get h mt 0 in // Liveness & Accessibility RV.rv_inv h (MT?.hs mtv) /\ RV.rv_inv h (MT?.rhs mtv) /\ Rgl?.r_inv (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv) /\ mt_safe_elts h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv) /\ // Regionality HH.extends (V.frameOf (MT?.hs mtv)) (B.frameOf mt) /\ HH.extends (V.frameOf (MT?.rhs mtv)) (B.frameOf mt) /\ HH.extends (B.frameOf (MT?.mroot mtv)) (B.frameOf mt) /\ HH.disjoint (V.frameOf (MT?.hs mtv)) (V.frameOf (MT?.rhs mtv)) /\ HH.disjoint (V.frameOf (MT?.hs mtv)) (B.frameOf (MT?.mroot mtv)) /\ HH.disjoint (V.frameOf (MT?.rhs mtv)) (B.frameOf (MT?.mroot mtv))) // Since a Merkle tree satisfies regionality, it's ok to take all regions from // a tree pointer as a location of the tree. val mt_loc: mt_p -> GTot loc let mt_loc mt = B.loc_all_regions_from false (B.frameOf mt) val mt_safe_preserved: mt:mt_p -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (mt_safe h0 mt /\ loc_disjoint p (mt_loc mt) /\ modifies p h0 h1)) (ensures (B.get h0 mt 0 == B.get h1 mt 0 /\ mt_safe h1 mt)) let mt_safe_preserved mt p h0 h1 = assert (loc_includes (mt_loc mt) (B.loc_buffer mt)); let mtv = B.get h0 mt 0 in assert (loc_includes (mt_loc mt) (RV.loc_rvector (MT?.hs mtv))); assert (loc_includes (mt_loc mt) (RV.loc_rvector (MT?.rhs mtv))); assert (loc_includes (mt_loc mt) (V.loc_vector (MT?.hs mtv))); assert (loc_includes (mt_loc mt) (B.loc_all_regions_from false (B.frameOf (MT?.mroot mtv)))); RV.rv_inv_preserved (MT?.hs mtv) p h0 h1; RV.rv_inv_preserved (MT?.rhs mtv) p h0 h1; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) p h0 h1; V.loc_vector_within_included (MT?.hs mtv) 0ul (V.size_of (MT?.hs mtv)); mt_safe_elts_preserved 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv) p h0 h1 /// Lifting to a high-level Merkle tree structure val mt_safe_elts_spec: #hsz:hash_size_t -> h:HS.mem -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j >= i} -> Lemma (requires (RV.rv_inv h hs /\ mt_safe_elts #hsz h lv hs i j)) (ensures (MTH.hs_wf_elts #(U32.v hsz) (U32.v lv) (RV.as_seq h hs) (U32.v i) (U32.v j))) (decreases (32 - U32.v lv)) #push-options "--z3rlimit 100 --initial_fuel 2 --max_fuel 2" let rec mt_safe_elts_spec #_ h lv hs i j = if lv = merkle_tree_size_lg then () else mt_safe_elts_spec h (lv + 1ul) hs (i / 2ul) (j / 2ul) #pop-options val merkle_tree_lift: h:HS.mem -> mtv:merkle_tree{ RV.rv_inv h (MT?.hs mtv) /\ RV.rv_inv h (MT?.rhs mtv) /\ Rgl?.r_inv (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv) /\ mt_safe_elts #(MT?.hash_size mtv) h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv)} -> GTot (r:MTH.merkle_tree #(U32.v (MT?.hash_size mtv)) {MTH.mt_wf_elts #_ r}) let merkle_tree_lift h mtv = mt_safe_elts_spec h 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv); MTH.MT #(U32.v (MT?.hash_size mtv)) (U32.v (MT?.i mtv)) (U32.v (MT?.j mtv)) (RV.as_seq h (MT?.hs mtv)) (MT?.rhs_ok mtv) (RV.as_seq h (MT?.rhs mtv)) (Rgl?.r_repr (hreg (MT?.hash_size mtv)) h (MT?.mroot mtv)) (Ghost.reveal (MT?.hash_spec mtv)) val mt_lift: h:HS.mem -> mt:mt_p{mt_safe h mt} -> GTot (r:MTH.merkle_tree #(U32.v (MT?.hash_size (B.get h mt 0))) {MTH.mt_wf_elts #_ r}) let mt_lift h mt = merkle_tree_lift h (B.get h mt 0) val mt_preserved: mt:mt_p -> p:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (mt_safe h0 mt /\ loc_disjoint p (mt_loc mt) /\ modifies p h0 h1)) (ensures (mt_safe_preserved mt p h0 h1; mt_lift h0 mt == mt_lift h1 mt)) let mt_preserved mt p h0 h1 = assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (B.loc_buffer mt)); B.modifies_buffer_elim mt p h0 h1; assert (B.get h0 mt 0 == B.get h1 mt 0); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (RV.loc_rvector (MT?.hs (B.get h0 mt 0)))); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (RV.loc_rvector (MT?.rhs (B.get h0 mt 0)))); assert (loc_includes (B.loc_all_regions_from false (B.frameOf mt)) (B.loc_buffer (MT?.mroot (B.get h0 mt 0)))); RV.as_seq_preserved (MT?.hs (B.get h0 mt 0)) p h0 h1; RV.as_seq_preserved (MT?.rhs (B.get h0 mt 0)) p h0 h1; B.modifies_buffer_elim (MT?.mroot (B.get h0 mt 0)) p h0 h1 /// Construction // Note that the public function for creation is `mt_create` defined below, // which builds a tree with an initial hash. #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" private val create_empty_mt: hash_size:hash_size_t -> hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hash_size)) -> hash_fun:hash_fun_t #hash_size #hash_spec -> r:HST.erid -> HST.ST mt_p (requires (fun _ -> true)) (ensures (fun h0 mt h1 -> let dmt = B.get h1 mt 0 in // memory safety B.frameOf mt = r /\ modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ mt_not_full h1 mt /\ // correctness MT?.hash_size dmt = hash_size /\ MT?.offset dmt = 0UL /\ merkle_tree_lift h1 dmt == MTH.create_empty_mt #_ #(Ghost.reveal hash_spec) ())) let create_empty_mt hsz hash_spec hash_fun r = [@inline_let] let hrg = hreg hsz in [@inline_let] let hvrg = hvreg hsz in [@inline_let] let hvvrg = hvvreg hsz in let hs_region = HST.new_region r in let hs = RV.alloc_rid hvrg merkle_tree_size_lg hs_region in let h0 = HST.get () in mt_safe_elts_init #hsz h0 0ul hs; let rhs_region = HST.new_region r in let rhs = RV.alloc_rid hrg merkle_tree_size_lg rhs_region in let h1 = HST.get () in assert (RV.as_seq h1 rhs == S.create 32 (MTH.hash_init #(U32.v hsz))); RV.rv_inv_preserved hs (V.loc_vector rhs) h0 h1; RV.as_seq_preserved hs (V.loc_vector rhs) h0 h1; V.loc_vector_within_included hs 0ul (V.size_of hs); mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul (V.loc_vector rhs) h0 h1; let mroot_region = HST.new_region r in let mroot = rg_alloc hrg mroot_region in let h2 = HST.get () in RV.as_seq_preserved hs loc_none h1 h2; RV.as_seq_preserved rhs loc_none h1 h2; mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul loc_none h1 h2; let mt = B.malloc r (MT hsz 0UL 0ul 0ul hs false rhs mroot hash_spec hash_fun) 1ul in let h3 = HST.get () in RV.as_seq_preserved hs loc_none h2 h3; RV.as_seq_preserved rhs loc_none h2 h3; Rgl?.r_sep hrg mroot loc_none h2 h3; mt_safe_elts_preserved #hsz 0ul hs 0ul 0ul loc_none h2 h3; mt #pop-options /// Destruction (free) val mt_free: mt:mt_p -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt)) (ensures (fun h0 _ h1 -> modifies (mt_loc mt) h0 h1)) #push-options "--z3rlimit 100" let mt_free mt = let mtv = !*mt in RV.free (MT?.hs mtv); RV.free (MT?.rhs mtv); [@inline_let] let rg = hreg (MT?.hash_size mtv) in rg_free rg (MT?.mroot mtv); B.free mt #pop-options /// Insertion private val as_seq_sub_upd: #a:Type0 -> #rst:Type -> #rg:regional rst a -> h:HS.mem -> rv:rvector #a #rst rg -> i:uint32_t{i < V.size_of rv} -> v:Rgl?.repr rg -> Lemma (requires (RV.rv_inv h rv)) (ensures (S.equal (S.upd (RV.as_seq h rv) (U32.v i) v) (S.append (RV.as_seq_sub h rv 0ul i) (S.cons v (RV.as_seq_sub h rv (i + 1ul) (V.size_of rv)))))) #push-options "--z3rlimit 20" let as_seq_sub_upd #a #rst #rg h rv i v = Seq.Properties.slice_upd (RV.as_seq h rv) 0 (U32.v i) (U32.v i) v; Seq.Properties.slice_upd (RV.as_seq h rv) (U32.v i + 1) (U32.v (V.size_of rv)) (U32.v i) v; RV.as_seq_seq_slice rg h (V.as_seq h rv) 0 (U32.v (V.size_of rv)) 0 (U32.v i); assert (S.equal (S.slice (RV.as_seq h rv) 0 (U32.v i)) (RV.as_seq_sub h rv 0ul i)); RV.as_seq_seq_slice rg h (V.as_seq h rv) 0 (U32.v (V.size_of rv)) (U32.v i + 1) (U32.v (V.size_of rv)); assert (S.equal (S.slice (RV.as_seq h rv) (U32.v i + 1) (U32.v (V.size_of rv))) (RV.as_seq_sub h rv (i + 1ul) (V.size_of rv))); assert (S.index (S.upd (RV.as_seq h rv) (U32.v i) v) (U32.v i) == v) #pop-options // `hash_vv_insert_copy` inserts a hash element at a level `lv`, by copying // and pushing its content to `hs[lv]`. For detailed insertion procedure, see // `insert_` and `mt_insert`. #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1" private inline_for_extraction val hash_vv_insert_copy: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> i:Ghost.erased index_t -> j:index_t{ Ghost.reveal i <= j && U32.v j < pow2 (32 - U32.v lv) - 1 && j < uint32_32_max} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> v:hash #hsz -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ Rgl?.r_inv (hreg hsz) h0 v /\ HH.disjoint (V.frameOf hs) (B.frameOf v) /\ mt_safe_elts #hsz h0 lv hs (Ghost.reveal i) j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) h0 h1 /\ RV.rv_inv h1 hs /\ Rgl?.r_inv (hreg hsz) h1 v /\ V.size_of (V.get h1 hs lv) == j + 1ul - offset_of (Ghost.reveal i) /\ V.size_of (V.get h1 hs lv) == V.size_of (V.get h0 hs lv) + 1ul /\ mt_safe_elts #hsz h1 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) /\ RV.rv_loc_elems h0 hs (lv + 1ul) (V.size_of hs) == RV.rv_loc_elems h1 hs (lv + 1ul) (V.size_of hs) /\ // correctness (mt_safe_elts_spec #hsz h0 lv hs (Ghost.reveal i) j; S.equal (RV.as_seq h1 hs) (MTH.hashess_insert (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq h0 hs) (Rgl?.r_repr (hreg hsz) h0 v))) /\ S.equal (S.index (RV.as_seq h1 hs) (U32.v lv)) (S.snoc (S.index (RV.as_seq h0 hs) (U32.v lv)) (Rgl?.r_repr (hreg hsz) h0 v)))) let hash_vv_insert_copy #hsz lv i j hs v = let hh0 = HST.get () in mt_safe_elts_rec hh0 lv hs (Ghost.reveal i) j; /// 1) Insert an element at the level `lv`, where the new vector is not yet /// connected to `hs`. let ihv = RV.insert_copy (hcpy hsz) (V.index hs lv) v in let hh1 = HST.get () in // 1-0) Basic disjointness conditions V.forall2_forall_left hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall2_forall_right hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); // 1-1) For the `modifies` postcondition. assert (modifies (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) hh0 hh1); // 1-2) Preservation Rgl?.r_sep (hreg hsz) v (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // 1-3) For `mt_safe_elts` assert (V.size_of ihv == j + 1ul - offset_of (Ghost.reveal i)); // head updated mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // tail not yet // 1-4) For the `rv_inv` postcondition RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) 0 (U32.v lv) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v lv); RV.rv_elems_inv_preserved hs 0ul lv (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs 0ul lv); RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) (U32.v lv + 1) (U32.v (V.size_of hs)) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) (U32.v lv + 1) (U32.v (V.size_of hs)); RV.rv_elems_inv_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs (lv + 1ul) (V.size_of hs)); // assert (rv_itself_inv hh1 hs); // assert (elems_reg hh1 hs); // 1-5) Correctness assert (S.equal (RV.as_seq hh1 ihv) (S.snoc (RV.as_seq hh0 (V.get hh0 hs lv)) (Rgl?.r_repr (hreg hsz) hh0 v))); /// 2) Assign the updated vector to `hs` at the level `lv`. RV.assign hs lv ihv; let hh2 = HST.get () in // 2-1) For the `modifies` postcondition. assert (modifies (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh2); // 2-2) Preservation Rgl?.r_sep (hreg hsz) v (RV.loc_rvector hs) hh1 hh2; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-3) For `mt_safe_elts` assert (V.size_of (V.get hh2 hs lv) == j + 1ul - offset_of (Ghost.reveal i)); mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-4) Correctness RV.as_seq_sub_preserved hs 0ul lv (loc_rvector ihv) hh0 hh1; RV.as_seq_sub_preserved hs (lv + 1ul) merkle_tree_size_lg (loc_rvector ihv) hh0 hh1; assert (S.equal (RV.as_seq hh2 hs) (S.append (RV.as_seq_sub hh0 hs 0ul lv) (S.cons (RV.as_seq hh1 ihv) (RV.as_seq_sub hh0 hs (lv + 1ul) merkle_tree_size_lg)))); as_seq_sub_upd hh0 hs lv (RV.as_seq hh1 ihv) #pop-options private val insert_index_helper_even: lv:uint32_t{lv < merkle_tree_size_lg} -> j:index_t{U32.v j < pow2 (32 - U32.v lv) - 1} -> Lemma (requires (j % 2ul <> 1ul)) (ensures (U32.v j % 2 <> 1 /\ j / 2ul == (j + 1ul) / 2ul)) let insert_index_helper_even lv j = () #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" private val insert_index_helper_odd: lv:uint32_t{lv < merkle_tree_size_lg} -> i:index_t -> j:index_t{i <= j && U32.v j < pow2 (32 - U32.v lv) - 1} -> Lemma (requires (j % 2ul = 1ul /\ j < uint32_32_max)) (ensures (U32.v j % 2 = 1 /\ U32.v (j / 2ul) < pow2 (32 - U32.v (lv + 1ul)) - 1 /\ (j + 1ul) / 2ul == j / 2ul + 1ul /\ j - offset_of i > 0ul)) let insert_index_helper_odd lv i j = () #pop-options private val loc_union_assoc_4: a:loc -> b:loc -> c:loc -> d:loc -> Lemma (loc_union (loc_union a b) (loc_union c d) == loc_union (loc_union a c) (loc_union b d)) let loc_union_assoc_4 a b c d = loc_union_assoc (loc_union a b) c d; loc_union_assoc a b c; loc_union_assoc a c b; loc_union_assoc (loc_union a c) b d private val insert_modifies_rec_helper: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> aloc:loc -> h:HS.mem -> Lemma (loc_union (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) aloc) (loc_union (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) aloc) == loc_union (loc_union (RV.rv_loc_elems h hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) aloc) #push-options "--z3rlimit 100 --initial_fuel 2 --max_fuel 2" let insert_modifies_rec_helper #hsz lv hs aloc h = assert (V.loc_vector_within hs lv (V.size_of hs) == loc_union (V.loc_vector_within hs lv (lv + 1ul)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))); RV.rs_loc_elems_rec_inverse (hvreg hsz) (V.as_seq h hs) (U32.v lv) (U32.v (V.size_of hs)); assert (RV.rv_loc_elems h hs lv (V.size_of hs) == loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs))); // Applying some association rules... loc_union_assoc (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) aloc (loc_union (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) aloc); loc_union_assoc (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) aloc aloc; loc_union_assoc (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) aloc; loc_union_assoc_4 (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)) #pop-options private val insert_modifies_union_loc_weakening: l1:loc -> l2:loc -> l3:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (modifies l1 h0 h1)) (ensures (modifies (loc_union (loc_union l1 l2) l3) h0 h1)) let insert_modifies_union_loc_weakening l1 l2 l3 h0 h1 = B.loc_includes_union_l l1 l2 l1; B.loc_includes_union_l (loc_union l1 l2) l3 (loc_union l1 l2) private val insert_snoc_last_helper: #a:Type -> s:S.seq a{S.length s > 0} -> v:a -> Lemma (S.index (S.snoc s v) (S.length s - 1) == S.last s) let insert_snoc_last_helper #a s v = () private val rv_inv_rv_elems_reg: #a:Type0 -> #rst:Type -> #rg:regional rst a -> h:HS.mem -> rv:rvector rg -> i:uint32_t -> j:uint32_t{i <= j && j <= V.size_of rv} -> Lemma (requires (RV.rv_inv h rv)) (ensures (RV.rv_elems_reg h rv i j)) let rv_inv_rv_elems_reg #a #rst #rg h rv i j = () // `insert_` recursively inserts proper hashes to each level `lv` by // accumulating a compressed hash. For example, if there are three leaf elements // in the tree, `insert_` will change `hs` as follow: // (`hij` is a compressed hash from `hi` to `hj`) // // BEFORE INSERTION AFTER INSERTION // lv // 0 h0 h1 h2 ====> h0 h1 h2 h3 // 1 h01 h01 h23 // 2 h03 // private val insert_: #hsz:hash_size_t -> #hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hsz)) -> lv:uint32_t{lv < merkle_tree_size_lg} -> i:Ghost.erased index_t -> j:index_t{ Ghost.reveal i <= j && U32.v j < pow2 (32 - U32.v lv) - 1 && j < uint32_32_max} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> acc:hash #hsz -> hash_fun:hash_fun_t #hsz #hash_spec -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ Rgl?.r_inv (hreg hsz) h0 acc /\ HH.disjoint (V.frameOf hs) (B.frameOf acc) /\ mt_safe_elts h0 lv hs (Ghost.reveal i) j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (loc_union (RV.rv_loc_elems h0 hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc))) h0 h1 /\ RV.rv_inv h1 hs /\ Rgl?.r_inv (hreg hsz) h1 acc /\ mt_safe_elts h1 lv hs (Ghost.reveal i) (j + 1ul) /\ // correctness (mt_safe_elts_spec h0 lv hs (Ghost.reveal i) j; S.equal (RV.as_seq h1 hs) (MTH.insert_ #(U32.v hsz) #hash_spec (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq h0 hs) (Rgl?.r_repr (hreg hsz) h0 acc))))) (decreases (U32.v j)) #push-options "--z3rlimit 800 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec insert_ #hsz #hash_spec lv i j hs acc hash_fun = let hh0 = HST.get () in hash_vv_insert_copy lv i j hs acc; let hh1 = HST.get () in // Base conditions V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); assert (V.size_of (V.get hh1 hs lv) == j + 1ul - offset_of (Ghost.reveal i)); assert (mt_safe_elts hh1 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul)); if j % 2ul = 1ul then (insert_index_helper_odd lv (Ghost.reveal i) j; assert (S.length (S.index (RV.as_seq hh0 hs) (U32.v lv)) > 0); let lvhs = V.index hs lv in assert (U32.v (V.size_of lvhs) == S.length (S.index (RV.as_seq hh0 hs) (U32.v lv)) + 1); assert (V.size_of lvhs > 1ul); /// 3) Update the accumulator `acc`. hash_vec_rv_inv_r_inv hh1 (V.get hh1 hs lv) (V.size_of (V.get hh1 hs lv) - 2ul); assert (Rgl?.r_inv (hreg hsz) hh1 acc); hash_fun (V.index lvhs (V.size_of lvhs - 2ul)) acc acc; let hh2 = HST.get () in // 3-1) For the `modifies` postcondition assert (modifies (B.loc_all_regions_from false (B.frameOf acc)) hh1 hh2); assert (modifies (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (B.loc_all_regions_from false (B.frameOf acc))) hh0 hh2); // 3-2) Preservation RV.rv_inv_preserved hs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.as_seq_preserved hs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (B.loc_region_only false (B.frameOf acc)) hh1 hh2; assert (RV.rv_inv hh2 hs); assert (Rgl?.r_inv (hreg hsz) hh2 acc); // 3-3) For `mt_safe_elts` V.get_preserved hs lv (B.loc_region_only false (B.frameOf acc)) hh1 hh2; // head preserved mt_safe_elts_preserved (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul) (B.loc_region_only false (B.frameOf acc)) hh1 hh2; // tail preserved // 3-4) Correctness insert_snoc_last_helper (RV.as_seq hh0 (V.get hh0 hs lv)) (Rgl?.r_repr (hreg hsz) hh0 acc); assert (S.equal (Rgl?.r_repr (hreg hsz) hh2 acc) // `nacc` in `MTH.insert_` ((Ghost.reveal hash_spec) (S.last (S.index (RV.as_seq hh0 hs) (U32.v lv))) (Rgl?.r_repr (hreg hsz) hh0 acc))); /// 4) Recursion insert_ (lv + 1ul) (Ghost.hide (Ghost.reveal i / 2ul)) (j / 2ul) hs acc hash_fun; let hh3 = HST.get () in // 4-0) Memory safety brought from the postcondition of the recursion assert (RV.rv_inv hh3 hs); assert (Rgl?.r_inv (hreg hsz) hh3 acc); assert (modifies (loc_union (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc))) hh2 hh3); assert (modifies (loc_union (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (B.loc_all_regions_from false (B.frameOf acc))) (loc_union (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc)))) hh0 hh3); // 4-1) For `mt_safe_elts` rv_inv_rv_elems_reg hh2 hs (lv + 1ul) (V.size_of hs); RV.rv_loc_elems_included hh2 hs (lv + 1ul) (V.size_of hs); assert (loc_disjoint (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs))); assert (loc_disjoint (V.loc_vector_within hs lv (lv + 1ul)) (B.loc_all_regions_from false (B.frameOf acc))); V.get_preserved hs lv (loc_union (loc_union (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)) (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc))) hh2 hh3; assert (V.size_of (V.get hh3 hs lv) == j + 1ul - offset_of (Ghost.reveal i)); // head preserved assert (mt_safe_elts hh3 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul + 1ul)); // tail by recursion mt_safe_elts_constr hh3 lv hs (Ghost.reveal i) (j + 1ul); assert (mt_safe_elts hh3 lv hs (Ghost.reveal i) (j + 1ul)); // 4-2) Correctness mt_safe_elts_spec hh2 (lv + 1ul) hs (Ghost.reveal i / 2ul) (j / 2ul); assert (S.equal (RV.as_seq hh3 hs) (MTH.insert_ #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv + 1) (U32.v (Ghost.reveal i) / 2) (U32.v j / 2) (RV.as_seq hh2 hs) (Rgl?.r_repr (hreg hsz) hh2 acc))); mt_safe_elts_spec hh0 lv hs (Ghost.reveal i) j; MTH.insert_rec #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc); assert (S.equal (RV.as_seq hh3 hs) (MTH.insert_ #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc)))) else (insert_index_helper_even lv j; // memory safety assert (mt_safe_elts hh1 (lv + 1ul) hs (Ghost.reveal i / 2ul) ((j + 1ul) / 2ul)); mt_safe_elts_constr hh1 lv hs (Ghost.reveal i) (j + 1ul); assert (mt_safe_elts hh1 lv hs (Ghost.reveal i) (j + 1ul)); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh1); insert_modifies_union_loc_weakening (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (B.loc_all_regions_from false (B.frameOf acc)) (loc_union (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc))) hh0 hh1; // correctness mt_safe_elts_spec hh0 lv hs (Ghost.reveal i) j; MTH.insert_base #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc); assert (S.equal (RV.as_seq hh1 hs) (MTH.insert_ #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc)))); /// 5) Proving the postcondition after recursion let hh4 = HST.get () in // 5-1) For the `modifies` postcondition. assert (modifies (loc_union (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (B.loc_all_regions_from false (B.frameOf acc))) (loc_union (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf acc)))) hh0 hh4); insert_modifies_rec_helper lv hs (B.loc_all_regions_from false (B.frameOf acc)) hh0; // 5-2) For `mt_safe_elts` assert (mt_safe_elts hh4 lv hs (Ghost.reveal i) (j + 1ul)); // 5-3) Preservation assert (RV.rv_inv hh4 hs); assert (Rgl?.r_inv (hreg hsz) hh4 acc); // 5-4) Correctness mt_safe_elts_spec hh0 lv hs (Ghost.reveal i) j; assert (S.equal (RV.as_seq hh4 hs) (MTH.insert_ #(U32.v hsz) #hash_spec (U32.v lv) (U32.v (Ghost.reveal i)) (U32.v j) (RV.as_seq hh0 hs) (Rgl?.r_repr (hreg hsz) hh0 acc))) // QED #pop-options private inline_for_extraction val mt_insert_pre_nst: mtv:merkle_tree -> v:hash #(MT?.hash_size mtv) -> Tot bool let mt_insert_pre_nst mtv v = mt_not_full_nst mtv && add64_fits (MT?.offset mtv) ((MT?.j mtv) + 1ul) val mt_insert_pre: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> v:hash #hsz -> HST.ST bool (requires (fun h0 -> mt_safe h0 (CB.cast mt) /\ (MT?.hash_size (B.get h0 (CB.cast mt) 0)) = Ghost.reveal hsz)) (ensures (fun _ _ _ -> True)) let mt_insert_pre #hsz mt v = let mt = !*(CB.cast mt) in assert (MT?.hash_size mt == (MT?.hash_size mt)); mt_insert_pre_nst mt v // `mt_insert` inserts a hash to a Merkle tree. Note that this operation // manipulates the content in `v`, since it uses `v` as an accumulator during // insertion. #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" val mt_insert: hsz:Ghost.erased hash_size_t -> mt:mt_p -> v:hash #hsz -> HST.ST unit (requires (fun h0 -> let dmt = B.get h0 mt 0 in mt_safe h0 mt /\ Rgl?.r_inv (hreg hsz) h0 v /\ HH.disjoint (B.frameOf mt) (B.frameOf v) /\ MT?.hash_size dmt = Ghost.reveal hsz /\ mt_insert_pre_nst dmt v)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (mt_loc mt) (B.loc_all_regions_from false (B.frameOf v))) h0 h1 /\ mt_safe h1 mt /\ // correctness MT?.hash_size (B.get h1 mt 0) = Ghost.reveal hsz /\ mt_lift h1 mt == MTH.mt_insert (mt_lift h0 mt) (Rgl?.r_repr (hreg hsz) h0 v))) #pop-options #push-options "--z3rlimit 40" let mt_insert hsz mt v = let hh0 = HST.get () in let mtv = !*mt in let hs = MT?.hs mtv in let hsz = MT?.hash_size mtv in insert_ #hsz #(Ghost.reveal (MT?.hash_spec mtv)) 0ul (Ghost.hide (MT?.i mtv)) (MT?.j mtv) hs v (MT?.hash_fun mtv); let hh1 = HST.get () in RV.rv_loc_elems_included hh0 (MT?.hs mtv) 0ul (V.size_of hs); V.loc_vector_within_included hs 0ul (V.size_of hs); RV.rv_inv_preserved (MT?.rhs mtv) (loc_union (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf v))) hh0 hh1; RV.as_seq_preserved (MT?.rhs mtv) (loc_union (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf v))) hh0 hh1; Rgl?.r_sep (hreg hsz) (MT?.mroot mtv) (loc_union (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs))) (B.loc_all_regions_from false (B.frameOf v))) hh0 hh1; mt *= MT (MT?.hash_size mtv) (MT?.offset mtv) (MT?.i mtv) (MT?.j mtv + 1ul) (MT?.hs mtv) false // `rhs` is always deprecated right after an insertion. (MT?.rhs mtv) (MT?.mroot mtv) (MT?.hash_spec mtv) (MT?.hash_fun mtv); let hh2 = HST.get () in RV.rv_inv_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.rv_inv_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; Rgl?.r_sep (hreg hsz) (MT?.mroot mtv) (B.loc_buffer mt) hh1 hh2; mt_safe_elts_preserved 0ul (MT?.hs mtv) (MT?.i mtv) (MT?.j mtv + 1ul) (B.loc_buffer mt) hh1 hh2 #pop-options // `mt_create` initiates a Merkle tree with a given initial hash `init`. // A valid Merkle tree should contain at least one element. val mt_create_custom: hsz:hash_size_t -> hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hsz)) -> r:HST.erid -> init:hash #hsz -> hash_fun:hash_fun_t #hsz #hash_spec -> HST.ST mt_p (requires (fun h0 -> Rgl?.r_inv (hreg hsz) h0 init /\ HH.disjoint r (B.frameOf init))) (ensures (fun h0 mt h1 -> // memory safety modifies (loc_union (mt_loc mt) (B.loc_all_regions_from false (B.frameOf init))) h0 h1 /\ mt_safe h1 mt /\ // correctness MT?.hash_size (B.get h1 mt 0) = hsz /\ mt_lift h1 mt == MTH.mt_create (U32.v hsz) (Ghost.reveal hash_spec) (Rgl?.r_repr (hreg hsz) h0 init))) #push-options "--z3rlimit 40" let mt_create_custom hsz hash_spec r init hash_fun = let hh0 = HST.get () in let mt = create_empty_mt hsz hash_spec hash_fun r in mt_insert hsz mt init; let hh2 = HST.get () in mt #pop-options /// Construction and Destruction of paths // Since each element pointer in `path` is from the target Merkle tree and // each element has different location in `MT?.hs` (thus different region id), // we cannot use the regionality property for `path`s. Hence here we manually // define invariants and representation. noeq type path = | Path: hash_size:hash_size_t -> hashes:V.vector (hash #hash_size) -> path type path_p = B.pointer path type const_path_p = const_pointer path private let phashes (h:HS.mem) (p:path_p) : GTot (V.vector (hash #(Path?.hash_size (B.get h p 0)))) = Path?.hashes (B.get h p 0) // Memory safety of a path as an invariant inline_for_extraction noextract val path_safe: h:HS.mem -> mtr:HH.rid -> p:path_p -> GTot Type0 let path_safe h mtr p = B.live h p /\ B.freeable p /\ V.live h (phashes h p) /\ V.freeable (phashes h p) /\ HST.is_eternal_region (V.frameOf (phashes h p)) /\ (let hsz = Path?.hash_size (B.get h p 0) in V.forall_all h (phashes h p) (fun hp -> Rgl?.r_inv (hreg hsz) h hp /\ HH.includes mtr (Rgl?.region_of (hreg hsz) hp)) /\ HH.extends (V.frameOf (phashes h p)) (B.frameOf p) /\ HH.disjoint mtr (B.frameOf p)) val path_loc: path_p -> GTot loc let path_loc p = B.loc_all_regions_from false (B.frameOf p) val lift_path_: #hsz:hash_size_t -> h:HS.mem -> hs:S.seq (hash #hsz) -> i:nat -> j:nat{ i <= j /\ j <= S.length hs /\ V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h hp)} -> GTot (hp:MTH.path #(U32.v hsz) {S.length hp = j - i}) (decreases j) let rec lift_path_ #hsz h hs i j = if i = j then S.empty else (S.snoc (lift_path_ h hs i (j - 1)) (Rgl?.r_repr (hreg hsz) h (S.index hs (j - 1)))) // Representation of a path val lift_path: #hsz:hash_size_t -> h:HS.mem -> mtr:HH.rid -> p:path_p {path_safe h mtr p /\ (Path?.hash_size (B.get h p 0)) = hsz} -> GTot (hp:MTH.path #(U32.v hsz) {S.length hp = U32.v (V.size_of (phashes h p))}) let lift_path #hsz h mtr p = lift_path_ h (V.as_seq h (phashes h p)) 0 (S.length (V.as_seq h (phashes h p))) val lift_path_index_: #hsz:hash_size_t -> h:HS.mem -> hs:S.seq (hash #hsz) -> i:nat -> j:nat{i <= j && j <= S.length hs} -> k:nat{i <= k && k < j} -> Lemma (requires (V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h hp))) (ensures (Rgl?.r_repr (hreg hsz) h (S.index hs k) == S.index (lift_path_ h hs i j) (k - i))) (decreases j) [SMTPat (S.index (lift_path_ h hs i j) (k - i))] #push-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec lift_path_index_ #hsz h hs i j k = if i = j then () else if k = j - 1 then () else lift_path_index_ #hsz h hs i (j - 1) k #pop-options val lift_path_index: h:HS.mem -> mtr:HH.rid -> p:path_p -> i:uint32_t -> Lemma (requires (path_safe h mtr p /\ i < V.size_of (phashes h p))) (ensures (let hsz = Path?.hash_size (B.get h p 0) in Rgl?.r_repr (hreg hsz) h (V.get h (phashes h p) i) == S.index (lift_path #(hsz) h mtr p) (U32.v i))) let lift_path_index h mtr p i = lift_path_index_ h (V.as_seq h (phashes h p)) 0 (S.length (V.as_seq h (phashes h p))) (U32.v i) val lift_path_eq: #hsz:hash_size_t -> h:HS.mem -> hs1:S.seq (hash #hsz) -> hs2:S.seq (hash #hsz) -> i:nat -> j:nat -> Lemma (requires (i <= j /\ j <= S.length hs1 /\ j <= S.length hs2 /\ S.equal (S.slice hs1 i j) (S.slice hs2 i j) /\ V.forall_seq hs1 i j (fun hp -> Rgl?.r_inv (hreg hsz) h hp) /\ V.forall_seq hs2 i j (fun hp -> Rgl?.r_inv (hreg hsz) h hp))) (ensures (S.equal (lift_path_ h hs1 i j) (lift_path_ h hs2 i j))) let lift_path_eq #hsz h hs1 hs2 i j = assert (forall (k:nat{i <= k && k < j}). S.index (lift_path_ h hs1 i j) (k - i) == Rgl?.r_repr (hreg hsz) h (S.index hs1 k)); assert (forall (k:nat{i <= k && k < j}). S.index (lift_path_ h hs2 i j) (k - i) == Rgl?.r_repr (hreg hsz) h (S.index hs2 k)); assert (forall (k:nat{k < j - i}). S.index (lift_path_ h hs1 i j) k == Rgl?.r_repr (hreg hsz) h (S.index hs1 (k + i))); assert (forall (k:nat{k < j - i}). S.index (lift_path_ h hs2 i j) k == Rgl?.r_repr (hreg hsz) h (S.index hs2 (k + i))); assert (forall (k:nat{k < j - i}). S.index (S.slice hs1 i j) k == S.index (S.slice hs2 i j) k); assert (forall (k:nat{i <= k && k < j}). S.index (S.slice hs1 i j) (k - i) == S.index (S.slice hs2 i j) (k - i)) private val path_safe_preserved_: #hsz:hash_size_t -> mtr:HH.rid -> hs:S.seq (hash #hsz) -> i:nat -> j:nat{i <= j && j <= S.length hs} -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h0 hp /\ HH.includes mtr (Rgl?.region_of (hreg hsz) hp)) /\ loc_disjoint dl (B.loc_all_regions_from false mtr) /\ modifies dl h0 h1)) (ensures (V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h1 hp /\ HH.includes mtr (Rgl?.region_of (hreg hsz) hp)))) (decreases j) let rec path_safe_preserved_ #hsz mtr hs i j dl h0 h1 = if i = j then () else (assert (loc_includes (B.loc_all_regions_from false mtr) (B.loc_all_regions_from false (Rgl?.region_of (hreg hsz) (S.index hs (j - 1))))); Rgl?.r_sep (hreg hsz) (S.index hs (j - 1)) dl h0 h1; path_safe_preserved_ mtr hs i (j - 1) dl h0 h1) val path_safe_preserved: mtr:HH.rid -> p:path_p -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (path_safe h0 mtr p /\ loc_disjoint dl (path_loc p) /\ loc_disjoint dl (B.loc_all_regions_from false mtr) /\ modifies dl h0 h1)) (ensures (path_safe h1 mtr p)) let path_safe_preserved mtr p dl h0 h1 = assert (loc_includes (path_loc p) (B.loc_buffer p)); assert (loc_includes (path_loc p) (V.loc_vector (phashes h0 p))); path_safe_preserved_ mtr (V.as_seq h0 (phashes h0 p)) 0 (S.length (V.as_seq h0 (phashes h0 p))) dl h0 h1 val path_safe_init_preserved: mtr:HH.rid -> p:path_p -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (path_safe h0 mtr p /\ V.size_of (phashes h0 p) = 0ul /\ B.loc_disjoint dl (path_loc p) /\ modifies dl h0 h1)) (ensures (path_safe h1 mtr p /\ V.size_of (phashes h1 p) = 0ul)) let path_safe_init_preserved mtr p dl h0 h1 = assert (loc_includes (path_loc p) (B.loc_buffer p)); assert (loc_includes (path_loc p) (V.loc_vector (phashes h0 p))) val path_preserved_: #hsz:hash_size_t -> mtr:HH.rid -> hs:S.seq (hash #hsz) -> i:nat -> j:nat{i <= j && j <= S.length hs} -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (V.forall_seq hs i j (fun hp -> Rgl?.r_inv (hreg hsz) h0 hp /\ HH.includes mtr (Rgl?.region_of (hreg hsz) hp)) /\ loc_disjoint dl (B.loc_all_regions_from false mtr) /\ modifies dl h0 h1)) (ensures (path_safe_preserved_ mtr hs i j dl h0 h1; S.equal (lift_path_ h0 hs i j) (lift_path_ h1 hs i j))) (decreases j) #push-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec path_preserved_ #hsz mtr hs i j dl h0 h1 = if i = j then () else (path_safe_preserved_ mtr hs i (j - 1) dl h0 h1; path_preserved_ mtr hs i (j - 1) dl h0 h1; assert (loc_includes (B.loc_all_regions_from false mtr) (B.loc_all_regions_from false (Rgl?.region_of (hreg hsz) (S.index hs (j - 1))))); Rgl?.r_sep (hreg hsz) (S.index hs (j - 1)) dl h0 h1) #pop-options val path_preserved: mtr:HH.rid -> p:path_p -> dl:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (path_safe h0 mtr p /\ loc_disjoint dl (path_loc p) /\ loc_disjoint dl (B.loc_all_regions_from false mtr) /\ modifies dl h0 h1)) (ensures (path_safe_preserved mtr p dl h0 h1; let hsz0 = (Path?.hash_size (B.get h0 p 0)) in let hsz1 = (Path?.hash_size (B.get h1 p 0)) in let b:MTH.path = lift_path #hsz0 h0 mtr p in let a:MTH.path = lift_path #hsz1 h1 mtr p in hsz0 = hsz1 /\ S.equal b a)) let path_preserved mtr p dl h0 h1 = assert (loc_includes (path_loc p) (B.loc_buffer p)); assert (loc_includes (path_loc p) (V.loc_vector (phashes h0 p))); path_preserved_ mtr (V.as_seq h0 (phashes h0 p)) 0 (S.length (V.as_seq h0 (phashes h0 p))) dl h0 h1 val init_path: hsz:hash_size_t -> mtr:HH.rid -> r:HST.erid -> HST.ST path_p (requires (fun h0 -> HH.disjoint mtr r)) (ensures (fun h0 p h1 -> // memory safety path_safe h1 mtr p /\ // correctness Path?.hash_size (B.get h1 p 0) = hsz /\ S.equal (lift_path #hsz h1 mtr p) S.empty)) let init_path hsz mtr r = let nrid = HST.new_region r in (B.malloc r (Path hsz (rg_alloc (hvreg hsz) nrid)) 1ul) val clear_path: mtr:HH.rid -> p:path_p -> HST.ST unit (requires (fun h0 -> path_safe h0 mtr p)) (ensures (fun h0 _ h1 -> // memory safety path_safe h1 mtr p /\ // correctness V.size_of (phashes h1 p) = 0ul /\ S.equal (lift_path #(Path?.hash_size (B.get h1 p 0)) h1 mtr p) S.empty)) let clear_path mtr p = let pv = !*p in p *= Path (Path?.hash_size pv) (V.clear (Path?.hashes pv)) val free_path: p:path_p -> HST.ST unit (requires (fun h0 -> B.live h0 p /\ B.freeable p /\ V.live h0 (phashes h0 p) /\ V.freeable (phashes h0 p) /\ HH.extends (V.frameOf (phashes h0 p)) (B.frameOf p))) (ensures (fun h0 _ h1 -> modifies (path_loc p) h0 h1)) let free_path p = let pv = !*p in V.free (Path?.hashes pv); B.free p /// Getting the Merkle root and path // Construct "rightmost hashes" for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. private val construct_rhs: #hsz:hash_size_t -> #hash_spec:Ghost.erased (MTS.hash_fun_t #(U32.v hsz)) -> lv:uint32_t{lv <= merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> rhs:hash_vec #hsz {V.size_of rhs = merkle_tree_size_lg} -> i:index_t -> j:index_t{i <= j && (U32.v j) < pow2 (32 - U32.v lv)} -> acc:hash #hsz -> actd:bool -> hash_fun:hash_fun_t #hsz #(Ghost.reveal hash_spec) -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ RV.rv_inv h0 rhs /\ HH.disjoint (V.frameOf hs) (V.frameOf rhs) /\ Rgl?.r_inv (hreg hsz) h0 acc /\ HH.disjoint (B.frameOf acc) (V.frameOf hs) /\ HH.disjoint (B.frameOf acc) (V.frameOf rhs) /\ mt_safe_elts #hsz h0 lv hs i j)) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.loc_rvector rhs) (B.loc_all_regions_from false (B.frameOf acc))) h0 h1 /\ RV.rv_inv h1 rhs /\ Rgl?.r_inv (hreg hsz) h1 acc /\ // correctness (mt_safe_elts_spec #hsz h0 lv hs i j; MTH.construct_rhs #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (Rgl?.r_repr (hvvreg hsz) h0 hs) (Rgl?.r_repr (hvreg hsz) h0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) h0 acc) actd == (Rgl?.r_repr (hvreg hsz) h1 rhs, Rgl?.r_repr (hreg hsz) h1 acc) ))) (decreases (U32.v j)) #push-options "--z3rlimit 250 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec construct_rhs #hsz #hash_spec lv hs rhs i j acc actd hash_fun = let hh0 = HST.get () in if j = 0ul then begin assert (RV.rv_inv hh0 hs); assert (mt_safe_elts #hsz hh0 lv hs i j); mt_safe_elts_spec #hsz hh0 lv hs 0ul 0ul; assert (MTH.hs_wf_elts #(U32.v hsz) (U32.v lv) (RV.as_seq hh0 hs) (U32.v i) (U32.v j)); let hh1 = HST.get() in assert (MTH.construct_rhs #(U32.v hsz) #(Ghost.reveal hash_spec) (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd == (Rgl?.r_repr (hvreg hsz) hh1 rhs, Rgl?.r_repr (hreg hsz) hh1 acc)) end else let ofs = offset_of i in begin (if j % 2ul = 0ul then begin Math.Lemmas.pow2_double_mult (32 - U32.v lv - 1); mt_safe_elts_rec #hsz hh0 lv hs i j; construct_rhs #hsz #hash_spec (lv + 1ul) hs rhs (i / 2ul) (j / 2ul) acc actd hash_fun; let hh1 = HST.get () in // correctness mt_safe_elts_spec #hsz hh0 lv hs i j; MTH.construct_rhs_even #(U32.v hsz) #hash_spec (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd; assert (MTH.construct_rhs #(U32.v hsz) #hash_spec (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd == (Rgl?.r_repr (hvreg hsz) hh1 rhs, Rgl?.r_repr (hreg hsz) hh1 acc)) end else begin if actd then begin RV.assign_copy (hcpy hsz) rhs lv acc; let hh1 = HST.get () in // memory safety Rgl?.r_sep (hreg hsz) acc (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; RV.rv_inv_preserved hs (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; RV.as_seq_preserved hs (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; RV.rv_inv_preserved (V.get hh0 hs lv) (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; V.loc_vector_within_included hs lv (V.size_of hs); mt_safe_elts_preserved lv hs i j (B.loc_all_regions_from false (V.frameOf rhs)) hh0 hh1; mt_safe_elts_head hh1 lv hs i j; hash_vv_rv_inv_r_inv hh1 hs lv (j - 1ul - ofs); // correctness assert (S.equal (RV.as_seq hh1 rhs) (S.upd (RV.as_seq hh0 rhs) (U32.v lv) (Rgl?.r_repr (hreg hsz) hh0 acc))); hash_fun (V.index (V.index hs lv) (j - 1ul - ofs)) acc acc; let hh2 = HST.get () in // memory safety mt_safe_elts_preserved lv hs i j (B.loc_all_regions_from false (B.frameOf acc)) hh1 hh2; RV.rv_inv_preserved hs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.rv_inv_preserved rhs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.as_seq_preserved hs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; RV.as_seq_preserved rhs (B.loc_region_only false (B.frameOf acc)) hh1 hh2; // correctness hash_vv_as_seq_get_index hh0 hs lv (j - 1ul - ofs); assert (Rgl?.r_repr (hreg hsz) hh2 acc == (Ghost.reveal hash_spec) (S.index (S.index (RV.as_seq hh0 hs) (U32.v lv)) (U32.v j - 1 - U32.v ofs)) (Rgl?.r_repr (hreg hsz) hh0 acc)) end else begin mt_safe_elts_head hh0 lv hs i j; hash_vv_rv_inv_r_inv hh0 hs lv (j - 1ul - ofs); hash_vv_rv_inv_disjoint hh0 hs lv (j - 1ul - ofs) (B.frameOf acc); Cpy?.copy (hcpy hsz) hsz (V.index (V.index hs lv) (j - 1ul - ofs)) acc; let hh1 = HST.get () in // memory safety V.loc_vector_within_included hs lv (V.size_of hs); mt_safe_elts_preserved lv hs i j (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; RV.rv_inv_preserved hs (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; RV.rv_inv_preserved rhs (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; RV.as_seq_preserved hs (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; RV.as_seq_preserved rhs (B.loc_all_regions_from false (B.frameOf acc)) hh0 hh1; // correctness hash_vv_as_seq_get_index hh0 hs lv (j - 1ul - ofs); assert (Rgl?.r_repr (hreg hsz) hh1 acc == S.index (S.index (RV.as_seq hh0 hs) (U32.v lv)) (U32.v j - 1 - U32.v ofs)) end; let hh3 = HST.get () in assert (S.equal (RV.as_seq hh3 hs) (RV.as_seq hh0 hs)); assert (S.equal (RV.as_seq hh3 rhs) (if actd then S.upd (RV.as_seq hh0 rhs) (U32.v lv) (Rgl?.r_repr (hreg hsz) hh0 acc) else RV.as_seq hh0 rhs)); assert (Rgl?.r_repr (hreg hsz) hh3 acc == (if actd then (Ghost.reveal hash_spec) (S.index (S.index (RV.as_seq hh0 hs) (U32.v lv)) (U32.v j - 1 - U32.v ofs)) (Rgl?.r_repr (hreg hsz) hh0 acc) else S.index (S.index (RV.as_seq hh0 hs) (U32.v lv)) (U32.v j - 1 - U32.v ofs))); mt_safe_elts_rec hh3 lv hs i j; construct_rhs #hsz #hash_spec (lv + 1ul) hs rhs (i / 2ul) (j / 2ul) acc true hash_fun; let hh4 = HST.get () in mt_safe_elts_spec hh3 (lv + 1ul) hs (i / 2ul) (j / 2ul); assert (MTH.construct_rhs #(U32.v hsz) #hash_spec (U32.v lv + 1) (Rgl?.r_repr (hvvreg hsz) hh3 hs) (Rgl?.r_repr (hvreg hsz) hh3 rhs) (U32.v i / 2) (U32.v j / 2) (Rgl?.r_repr (hreg hsz) hh3 acc) true == (Rgl?.r_repr (hvreg hsz) hh4 rhs, Rgl?.r_repr (hreg hsz) hh4 acc)); mt_safe_elts_spec hh0 lv hs i j; MTH.construct_rhs_odd #(U32.v hsz) #hash_spec (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd; assert (MTH.construct_rhs #(U32.v hsz) #hash_spec (U32.v lv) (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 acc) actd == (Rgl?.r_repr (hvreg hsz) hh4 rhs, Rgl?.r_repr (hreg hsz) hh4 acc)) end) end #pop-options private inline_for_extraction val mt_get_root_pre_nst: mtv:merkle_tree -> rt:hash #(MT?.hash_size mtv) -> Tot bool let mt_get_root_pre_nst mtv rt = true val mt_get_root_pre: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> rt:hash #hsz -> HST.ST bool (requires (fun h0 -> let mt = CB.cast mt in MT?.hash_size (B.get h0 mt 0) = Ghost.reveal hsz /\ mt_safe h0 mt /\ Rgl?.r_inv (hreg hsz) h0 rt /\ HH.disjoint (B.frameOf mt) (B.frameOf rt))) (ensures (fun _ _ _ -> True)) let mt_get_root_pre #hsz mt rt = let mt = CB.cast mt in let mt = !*mt in let hsz = MT?.hash_size mt in assert (MT?.hash_size mt = hsz); mt_get_root_pre_nst mt rt // `mt_get_root` returns the Merkle root. If it's already calculated with // up-to-date hashes, the root is returned immediately. Otherwise it calls // `construct_rhs` to build rightmost hashes and to calculate the Merkle root // as well. val mt_get_root: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> rt:hash #hsz -> HST.ST unit (requires (fun h0 -> let mt = CB.cast mt in let dmt = B.get h0 mt 0 in MT?.hash_size dmt = (Ghost.reveal hsz) /\ mt_get_root_pre_nst dmt rt /\ mt_safe h0 mt /\ Rgl?.r_inv (hreg hsz) h0 rt /\ HH.disjoint (B.frameOf mt) (B.frameOf rt))) (ensures (fun h0 _ h1 -> let mt = CB.cast mt in // memory safety modifies (loc_union (mt_loc mt) (B.loc_all_regions_from false (B.frameOf rt))) h0 h1 /\ mt_safe h1 mt /\ (let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in MT?.hash_size mtv0 = (Ghost.reveal hsz) /\ MT?.hash_size mtv1 = (Ghost.reveal hsz) /\ MT?.i mtv1 = MT?.i mtv0 /\ MT?.j mtv1 = MT?.j mtv0 /\ MT?.hs mtv1 == MT?.hs mtv0 /\ MT?.rhs mtv1 == MT?.rhs mtv0 /\ MT?.offset mtv1 == MT?.offset mtv0 /\ MT?.rhs_ok mtv1 = true /\ Rgl?.r_inv (hreg hsz) h1 rt /\ // correctness MTH.mt_get_root (mt_lift h0 mt) (Rgl?.r_repr (hreg hsz) h0 rt) == (mt_lift h1 mt, Rgl?.r_repr (hreg hsz) h1 rt)))) #push-options "--z3rlimit 150 --initial_fuel 1 --max_fuel 1" let mt_get_root #hsz mt rt = let mt = CB.cast mt in let hh0 = HST.get () in let mtv = !*mt in let prefix = MT?.offset mtv in let i = MT?.i mtv in let j = MT?.j mtv in let hs = MT?.hs mtv in let rhs = MT?.rhs mtv in let mroot = MT?.mroot mtv in let hash_size = MT?.hash_size mtv in let hash_spec = MT?.hash_spec mtv in let hash_fun = MT?.hash_fun mtv in if MT?.rhs_ok mtv then begin Cpy?.copy (hcpy hash_size) hash_size mroot rt; let hh1 = HST.get () in mt_safe_preserved mt (B.loc_all_regions_from false (Rgl?.region_of (hreg hsz) rt)) hh0 hh1; mt_preserved mt (B.loc_all_regions_from false (Rgl?.region_of (hreg hsz) rt)) hh0 hh1; MTH.mt_get_root_rhs_ok_true (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt); assert (MTH.mt_get_root (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt) == (mt_lift hh1 mt, Rgl?.r_repr (hreg hsz) hh1 rt)) end else begin construct_rhs #hash_size #hash_spec 0ul hs rhs i j rt false hash_fun; let hh1 = HST.get () in // memory safety assert (RV.rv_inv hh1 rhs); assert (Rgl?.r_inv (hreg hsz) hh1 rt); assert (B.live hh1 mt); RV.rv_inv_preserved hs (loc_union (RV.loc_rvector rhs) (B.loc_all_regions_from false (B.frameOf rt))) hh0 hh1; RV.as_seq_preserved hs (loc_union (RV.loc_rvector rhs) (B.loc_all_regions_from false (B.frameOf rt))) hh0 hh1; V.loc_vector_within_included hs 0ul (V.size_of hs); mt_safe_elts_preserved 0ul hs i j (loc_union (RV.loc_rvector rhs) (B.loc_all_regions_from false (B.frameOf rt))) hh0 hh1; // correctness mt_safe_elts_spec hh0 0ul hs i j; assert (MTH.construct_rhs #(U32.v hash_size) #hash_spec 0 (Rgl?.r_repr (hvvreg hsz) hh0 hs) (Rgl?.r_repr (hvreg hsz) hh0 rhs) (U32.v i) (U32.v j) (Rgl?.r_repr (hreg hsz) hh0 rt) false == (Rgl?.r_repr (hvreg hsz) hh1 rhs, Rgl?.r_repr (hreg hsz) hh1 rt)); Cpy?.copy (hcpy hash_size) hash_size rt mroot; let hh2 = HST.get () in // memory safety RV.rv_inv_preserved hs (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; RV.rv_inv_preserved rhs (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; RV.as_seq_preserved hs (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; RV.as_seq_preserved rhs (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; B.modifies_buffer_elim rt (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; mt_safe_elts_preserved 0ul hs i j (B.loc_all_regions_from false (B.frameOf mroot)) hh1 hh2; // correctness assert (Rgl?.r_repr (hreg hsz) hh2 mroot == Rgl?.r_repr (hreg hsz) hh1 rt); mt *= MT hash_size prefix i j hs true rhs mroot hash_spec hash_fun; let hh3 = HST.get () in // memory safety Rgl?.r_sep (hreg hsz) rt (B.loc_buffer mt) hh2 hh3; RV.rv_inv_preserved hs (B.loc_buffer mt) hh2 hh3; RV.rv_inv_preserved rhs (B.loc_buffer mt) hh2 hh3; RV.as_seq_preserved hs (B.loc_buffer mt) hh2 hh3; RV.as_seq_preserved rhs (B.loc_buffer mt) hh2 hh3; Rgl?.r_sep (hreg hsz) mroot (B.loc_buffer mt) hh2 hh3; mt_safe_elts_preserved 0ul hs i j (B.loc_buffer mt) hh2 hh3; assert (mt_safe hh3 mt); // correctness MTH.mt_get_root_rhs_ok_false (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt); assert (MTH.mt_get_root (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt) == (MTH.MT #(U32.v hash_size) (U32.v i) (U32.v j) (RV.as_seq hh0 hs) true (RV.as_seq hh1 rhs) (Rgl?.r_repr (hreg hsz) hh1 rt) hash_spec, Rgl?.r_repr (hreg hsz) hh1 rt)); assert (MTH.mt_get_root (mt_lift hh0 mt) (Rgl?.r_repr (hreg hsz) hh0 rt) == (mt_lift hh3 mt, Rgl?.r_repr (hreg hsz) hh3 rt)) end #pop-options inline_for_extraction val mt_path_insert: #hsz:hash_size_t -> mtr:HH.rid -> p:path_p -> hp:hash #hsz -> HST.ST unit (requires (fun h0 -> path_safe h0 mtr p /\ not (V.is_full (phashes h0 p)) /\ Rgl?.r_inv (hreg hsz) h0 hp /\ HH.disjoint mtr (B.frameOf p) /\ HH.includes mtr (B.frameOf hp) /\ Path?.hash_size (B.get h0 p 0) = hsz)) (ensures (fun h0 _ h1 -> // memory safety modifies (path_loc p) h0 h1 /\ path_safe h1 mtr p /\ // correctness (let hsz0 = Path?.hash_size (B.get h0 p 0) in let hsz1 = Path?.hash_size (B.get h1 p 0) in (let before:(S.seq (MTH.hash #(U32.v hsz0))) = lift_path h0 mtr p in let after:(S.seq (MTH.hash #(U32.v hsz1))) = lift_path h1 mtr p in V.size_of (phashes h1 p) = V.size_of (phashes h0 p) + 1ul /\ hsz = hsz0 /\ hsz = hsz1 /\ (let hspec:(S.seq (MTH.hash #(U32.v hsz))) = (MTH.path_insert #(U32.v hsz) before (Rgl?.r_repr (hreg hsz) h0 hp)) in S.equal hspec after))))) #push-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1" let mt_path_insert #hsz mtr p hp = let pth = !*p in let pv = Path?.hashes pth in let hh0 = HST.get () in let ipv = V.insert pv hp in let hh1 = HST.get () in path_safe_preserved_ mtr (V.as_seq hh0 pv) 0 (S.length (V.as_seq hh0 pv)) (B.loc_all_regions_from false (V.frameOf ipv)) hh0 hh1; path_preserved_ mtr (V.as_seq hh0 pv) 0 (S.length (V.as_seq hh0 pv)) (B.loc_all_regions_from false (V.frameOf ipv)) hh0 hh1; Rgl?.r_sep (hreg hsz) hp (B.loc_all_regions_from false (V.frameOf ipv)) hh0 hh1; p *= Path hsz ipv; let hh2 = HST.get () in path_safe_preserved_ mtr (V.as_seq hh1 ipv) 0 (S.length (V.as_seq hh1 ipv)) (B.loc_region_only false (B.frameOf p)) hh1 hh2; path_preserved_ mtr (V.as_seq hh1 ipv) 0 (S.length (V.as_seq hh1 ipv)) (B.loc_region_only false (B.frameOf p)) hh1 hh2; Rgl?.r_sep (hreg hsz) hp (B.loc_region_only false (B.frameOf p)) hh1 hh2; assert (S.equal (lift_path hh2 mtr p) (lift_path_ hh1 (S.snoc (V.as_seq hh0 pv) hp) 0 (S.length (V.as_seq hh1 ipv)))); lift_path_eq hh1 (S.snoc (V.as_seq hh0 pv) hp) (V.as_seq hh0 pv) 0 (S.length (V.as_seq hh0 pv)) #pop-options // For given a target index `k`, the number of elements (in the tree) `j`, // and a boolean flag (to check the existence of rightmost hashes), we can // calculate a required Merkle path length. // // `mt_path_length` is a postcondition of `mt_get_path`, and a precondition // of `mt_verify`. For detailed description, see `mt_get_path` and `mt_verify`. private val mt_path_length_step: k:index_t -> j:index_t{k <= j} -> actd:bool -> Tot (sl:uint32_t{U32.v sl = MTH.mt_path_length_step (U32.v k) (U32.v j) actd}) let mt_path_length_step k j actd = if j = 0ul then 0ul else (if k % 2ul = 0ul then (if j = k || (j = k + 1ul && not actd) then 0ul else 1ul) else 1ul) private inline_for_extraction val mt_path_length: lv:uint32_t{lv <= merkle_tree_size_lg} -> k:index_t -> j:index_t{k <= j && U32.v j < pow2 (32 - U32.v lv)} -> actd:bool -> Tot (l:uint32_t{ U32.v l = MTH.mt_path_length (U32.v k) (U32.v j) actd && l <= 32ul - lv}) (decreases (U32.v j)) #push-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1" let rec mt_path_length lv k j actd = if j = 0ul then 0ul else (let nactd = actd || (j % 2ul = 1ul) in mt_path_length_step k j actd + mt_path_length (lv + 1ul) (k / 2ul) (j / 2ul) nactd) #pop-options val mt_get_path_length: mtr:HH.rid -> p:const_path_p -> HST.ST uint32_t (requires (fun h0 -> path_safe h0 mtr (CB.cast p))) (ensures (fun h0 _ h1 -> True)) let mt_get_path_length mtr p = let pd = !*(CB.cast p) in V.size_of (Path?.hashes pd) private inline_for_extraction val mt_make_path_step: #hsz:hash_size_t -> lv:uint32_t{lv <= merkle_tree_size_lg} -> mtr:HH.rid -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> rhs:hash_vec #hsz {V.size_of rhs = merkle_tree_size_lg} -> i:index_t -> j:index_t{j <> 0ul /\ i <= j /\ U32.v j < pow2 (32 - U32.v lv)} -> k:index_t{i <= k && k <= j} -> p:path_p -> actd:bool -> HST.ST unit (requires (fun h0 -> HH.includes mtr (V.frameOf hs) /\ HH.includes mtr (V.frameOf rhs) /\ RV.rv_inv h0 hs /\ RV.rv_inv h0 rhs /\ mt_safe_elts h0 lv hs i j /\ path_safe h0 mtr p /\ Path?.hash_size (B.get h0 p 0) = hsz /\ V.size_of (phashes h0 p) <= lv + 1ul)) (ensures (fun h0 _ h1 -> // memory safety modifies (path_loc p) h0 h1 /\ path_safe h1 mtr p /\ V.size_of (phashes h1 p) == V.size_of (phashes h0 p) + mt_path_length_step k j actd /\ V.size_of (phashes h1 p) <= lv + 2ul /\ // correctness (mt_safe_elts_spec h0 lv hs i j; (let hsz0 = Path?.hash_size (B.get h0 p 0) in let hsz1 = Path?.hash_size (B.get h1 p 0) in let before:(S.seq (MTH.hash #(U32.v hsz0))) = lift_path h0 mtr p in let after:(S.seq (MTH.hash #(U32.v hsz1))) = lift_path h1 mtr p in hsz = hsz0 /\ hsz = hsz1 /\ S.equal after (MTH.mt_make_path_step (U32.v lv) (RV.as_seq h0 hs) (RV.as_seq h0 rhs) (U32.v i) (U32.v j) (U32.v k) before actd))))) #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1 --initial_ifuel 2 --max_ifuel 2" let mt_make_path_step #hsz lv mtr hs rhs i j k p actd = let pth = !*p in let hh0 = HST.get () in let ofs = offset_of i in if k % 2ul = 1ul then begin hash_vv_rv_inv_includes hh0 hs lv (k - 1ul - ofs); assert (HH.includes mtr (B.frameOf (V.get hh0 (V.get hh0 hs lv) (k - 1ul - ofs)))); assert(Path?.hash_size pth = hsz); mt_path_insert #hsz mtr p (V.index (V.index hs lv) (k - 1ul - ofs)) end else begin if k = j then () else if k + 1ul = j then (if actd then (assert (HH.includes mtr (B.frameOf (V.get hh0 rhs lv))); mt_path_insert mtr p (V.index rhs lv))) else (hash_vv_rv_inv_includes hh0 hs lv (k + 1ul - ofs); assert (HH.includes mtr (B.frameOf (V.get hh0 (V.get hh0 hs lv) (k + 1ul - ofs)))); mt_path_insert mtr p (V.index (V.index hs lv) (k + 1ul - ofs))) end #pop-options private inline_for_extraction val mt_get_path_step_pre_nst: #hsz:Ghost.erased hash_size_t -> mtr:HH.rid -> p:path -> i:uint32_t -> Tot bool let mt_get_path_step_pre_nst #hsz mtr p i = i < V.size_of (Path?.hashes p) val mt_get_path_step_pre: #hsz:Ghost.erased hash_size_t -> mtr:HH.rid -> p:const_path_p -> i:uint32_t -> HST.ST bool (requires (fun h0 -> path_safe h0 mtr (CB.cast p) /\ (let pv = B.get h0 (CB.cast p) 0 in Path?.hash_size pv = Ghost.reveal hsz /\ live h0 (Path?.hashes pv) /\ mt_get_path_step_pre_nst #hsz mtr pv i))) (ensures (fun _ _ _ -> True)) let mt_get_path_step_pre #hsz mtr p i = let p = CB.cast p in mt_get_path_step_pre_nst #hsz mtr !*p i val mt_get_path_step: #hsz:Ghost.erased hash_size_t -> mtr:HH.rid -> p:const_path_p -> i:uint32_t -> HST.ST (hash #hsz) (requires (fun h0 -> path_safe h0 mtr (CB.cast p) /\ (let pv = B.get h0 (CB.cast p) 0 in Path?.hash_size pv = Ghost.reveal hsz /\ live h0 (Path?.hashes pv) /\ i < V.size_of (Path?.hashes pv)))) (ensures (fun h0 r h1 -> True )) let mt_get_path_step #hsz mtr p i = let pd = !*(CB.cast p) in V.index #(hash #(Path?.hash_size pd)) (Path?.hashes pd) i private val mt_get_path_: #hsz:hash_size_t -> lv:uint32_t{lv <= merkle_tree_size_lg} -> mtr:HH.rid -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> rhs:hash_vec #hsz {V.size_of rhs = merkle_tree_size_lg} -> i:index_t -> j:index_t{i <= j /\ U32.v j < pow2 (32 - U32.v lv)} -> k:index_t{i <= k && k <= j} -> p:path_p -> actd:bool -> HST.ST unit (requires (fun h0 -> HH.includes mtr (V.frameOf hs) /\ HH.includes mtr (V.frameOf rhs) /\ RV.rv_inv h0 hs /\ RV.rv_inv h0 rhs /\ mt_safe_elts h0 lv hs i j /\ path_safe h0 mtr p /\ Path?.hash_size (B.get h0 p 0) = hsz /\ V.size_of (phashes h0 p) <= lv + 1ul)) (ensures (fun h0 _ h1 -> // memory safety modifies (path_loc p) h0 h1 /\ path_safe h1 mtr p /\ V.size_of (phashes h1 p) == V.size_of (phashes h0 p) + mt_path_length lv k j actd /\ // correctness (mt_safe_elts_spec h0 lv hs i j; (let hsz0 = Path?.hash_size (B.get h0 p 0) in let hsz1 = Path?.hash_size (B.get h1 p 0) in let before:(S.seq (MTH.hash #(U32.v hsz0))) = lift_path h0 mtr p in let after:(S.seq (MTH.hash #(U32.v hsz1))) = lift_path h1 mtr p in hsz = hsz0 /\ hsz = hsz1 /\ S.equal after (MTH.mt_get_path_ (U32.v lv) (RV.as_seq h0 hs) (RV.as_seq h0 rhs) (U32.v i) (U32.v j) (U32.v k) before actd))))) (decreases (32 - U32.v lv)) #push-options "--z3rlimit 300 --initial_fuel 1 --max_fuel 1 --max_ifuel 2 --initial_ifuel 2" let rec mt_get_path_ #hsz lv mtr hs rhs i j k p actd = let hh0 = HST.get () in mt_safe_elts_spec hh0 lv hs i j; let ofs = offset_of i in if j = 0ul then () else (mt_make_path_step lv mtr hs rhs i j k p actd; let hh1 = HST.get () in mt_safe_elts_spec hh0 lv hs i j; assert (S.equal (lift_path hh1 mtr p) (MTH.mt_make_path_step (U32.v lv) (RV.as_seq hh0 hs) (RV.as_seq hh0 rhs) (U32.v i) (U32.v j) (U32.v k) (lift_path hh0 mtr p) actd)); RV.rv_inv_preserved hs (path_loc p) hh0 hh1; RV.rv_inv_preserved rhs (path_loc p) hh0 hh1; RV.as_seq_preserved hs (path_loc p) hh0 hh1; RV.as_seq_preserved rhs (path_loc p) hh0 hh1; V.loc_vector_within_included hs lv (V.size_of hs); mt_safe_elts_preserved lv hs i j (path_loc p) hh0 hh1; assert (mt_safe_elts hh1 lv hs i j); mt_safe_elts_rec hh1 lv hs i j; mt_safe_elts_spec hh1 (lv + 1ul) hs (i / 2ul) (j / 2ul); mt_get_path_ (lv + 1ul) mtr hs rhs (i / 2ul) (j / 2ul) (k / 2ul) p (if j % 2ul = 0ul then actd else true); let hh2 = HST.get () in assert (S.equal (lift_path hh2 mtr p) (MTH.mt_get_path_ (U32.v lv + 1) (RV.as_seq hh1 hs) (RV.as_seq hh1 rhs) (U32.v i / 2) (U32.v j / 2) (U32.v k / 2) (lift_path hh1 mtr p) (if U32.v j % 2 = 0 then actd else true))); assert (S.equal (lift_path hh2 mtr p) (MTH.mt_get_path_ (U32.v lv) (RV.as_seq hh0 hs) (RV.as_seq hh0 rhs) (U32.v i) (U32.v j) (U32.v k) (lift_path hh0 mtr p) actd))) #pop-options private inline_for_extraction val mt_get_path_pre_nst: mtv:merkle_tree -> idx:offset_t -> p:path -> root:(hash #(MT?.hash_size mtv)) -> Tot bool let mt_get_path_pre_nst mtv idx p root = offsets_connect (MT?.offset mtv) idx && Path?.hash_size p = MT?.hash_size mtv && ([@inline_let] let idx = split_offset (MT?.offset mtv) idx in MT?.i mtv <= idx && idx < MT?.j mtv && V.size_of (Path?.hashes p) = 0ul) val mt_get_path_pre: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> idx:offset_t -> p:const_path_p -> root:hash #hsz -> HST.ST bool (requires (fun h0 -> let mt = CB.cast mt in let p = CB.cast p in let dmt = B.get h0 mt 0 in let dp = B.get h0 p 0 in MT?.hash_size dmt = (Ghost.reveal hsz) /\ Path?.hash_size dp = (Ghost.reveal hsz) /\ mt_safe h0 mt /\ path_safe h0 (B.frameOf mt) p /\ Rgl?.r_inv (hreg hsz) h0 root /\ HH.disjoint (B.frameOf root) (B.frameOf mt) /\ HH.disjoint (B.frameOf root) (B.frameOf p))) (ensures (fun _ _ _ -> True)) let mt_get_path_pre #_ mt idx p root = let mt = CB.cast mt in let p = CB.cast p in let mtv = !*mt in mt_get_path_pre_nst mtv idx !*p root val mt_get_path_loc_union_helper: l1:loc -> l2:loc -> Lemma (loc_union (loc_union l1 l2) l2 == loc_union l1 l2) let mt_get_path_loc_union_helper l1 l2 = () // Construct a Merkle path for a given index `idx`, hashes `mt.hs`, and rightmost // hashes `mt.rhs`. Note that this operation copies "pointers" into the Merkle tree // to the output path. #push-options "--z3rlimit 60" val mt_get_path: #hsz:Ghost.erased hash_size_t -> mt:const_mt_p -> idx:offset_t -> p:path_p -> root:hash #hsz -> HST.ST index_t (requires (fun h0 -> let mt = CB.cast mt in let dmt = B.get h0 mt 0 in MT?.hash_size dmt = Ghost.reveal hsz /\ Path?.hash_size (B.get h0 p 0) = Ghost.reveal hsz /\ mt_get_path_pre_nst (B.get h0 mt 0) idx (B.get h0 p 0) root /\ mt_safe h0 mt /\ path_safe h0 (B.frameOf mt) p /\ Rgl?.r_inv (hreg hsz) h0 root /\ HH.disjoint (B.frameOf root) (B.frameOf mt) /\ HH.disjoint (B.frameOf root) (B.frameOf p))) (ensures (fun h0 _ h1 -> let mt = CB.cast mt in let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in let idx = split_offset (MT?.offset mtv0) idx in MT?.hash_size mtv0 = Ghost.reveal hsz /\ MT?.hash_size mtv1 = Ghost.reveal hsz /\ Path?.hash_size (B.get h0 p 0) = Ghost.reveal hsz /\ Path?.hash_size (B.get h1 p 0) = Ghost.reveal hsz /\ // memory safety modifies (loc_union (loc_union (mt_loc mt) (B.loc_all_regions_from false (B.frameOf root))) (path_loc p)) h0 h1 /\ mt_safe h1 mt /\ path_safe h1 (B.frameOf mt) p /\ Rgl?.r_inv (hreg hsz) h1 root /\ V.size_of (phashes h1 p) == 1ul + mt_path_length 0ul idx (MT?.j mtv0) false /\ // correctness (let sj, sp, srt = MTH.mt_get_path (mt_lift h0 mt) (U32.v idx) (Rgl?.r_repr (hreg hsz) h0 root) in sj == U32.v (MT?.j mtv1) /\ S.equal sp (lift_path #hsz h1 (B.frameOf mt) p) /\ srt == Rgl?.r_repr (hreg hsz) h1 root))) #pop-options #push-options "--z3rlimit 300 --initial_fuel 1 --max_fuel 1" let mt_get_path #hsz mt idx p root = let ncmt = CB.cast mt in let mtframe = B.frameOf ncmt in let hh0 = HST.get () in mt_get_root mt root; let mtv = !*ncmt in let hsz = MT?.hash_size mtv in let hh1 = HST.get () in path_safe_init_preserved mtframe p (B.loc_union (mt_loc ncmt) (B.loc_all_regions_from false (B.frameOf root))) hh0 hh1; assert (MTH.mt_get_root (mt_lift hh0 ncmt) (Rgl?.r_repr (hreg hsz) hh0 root) == (mt_lift hh1 ncmt, Rgl?.r_repr (hreg hsz) hh1 root)); assert (S.equal (lift_path #hsz hh1 mtframe p) S.empty); let idx = split_offset (MT?.offset mtv) idx in let i = MT?.i mtv in let ofs = offset_of (MT?.i mtv) in let j = MT?.j mtv in let hs = MT?.hs mtv in let rhs = MT?.rhs mtv in assert (mt_safe_elts hh1 0ul hs i j); assert (V.size_of (V.get hh1 hs 0ul) == j - ofs); assert (idx < j); hash_vv_rv_inv_includes hh1 hs 0ul (idx - ofs); hash_vv_rv_inv_r_inv hh1 hs 0ul (idx - ofs); hash_vv_as_seq_get_index hh1 hs 0ul (idx - ofs); let ih = V.index (V.index hs 0ul) (idx - ofs) in mt_path_insert #hsz mtframe p ih; let hh2 = HST.get () in assert (S.equal (lift_path hh2 mtframe p) (MTH.path_insert (lift_path hh1 mtframe p) (S.index (S.index (RV.as_seq hh1 hs) 0) (U32.v idx - U32.v ofs)))); Rgl?.r_sep (hreg hsz) root (path_loc p) hh1 hh2; mt_safe_preserved ncmt (path_loc p) hh1 hh2; mt_preserved ncmt (path_loc p) hh1 hh2; assert (V.size_of (phashes hh2 p) == 1ul); mt_get_path_ 0ul mtframe hs rhs i j idx p false; let hh3 = HST.get () in // memory safety mt_get_path_loc_union_helper (loc_union (mt_loc ncmt) (B.loc_all_regions_from false (B.frameOf root))) (path_loc p); Rgl?.r_sep (hreg hsz) root (path_loc p) hh2 hh3; mt_safe_preserved ncmt (path_loc p) hh2 hh3; mt_preserved ncmt (path_loc p) hh2 hh3; assert (V.size_of (phashes hh3 p) == 1ul + mt_path_length 0ul idx (MT?.j (B.get hh0 ncmt 0)) false); assert (S.length (lift_path #hsz hh3 mtframe p) == S.length (lift_path #hsz hh2 mtframe p) + MTH.mt_path_length (U32.v idx) (U32.v (MT?.j (B.get hh0 ncmt 0))) false); assert (modifies (loc_union (loc_union (mt_loc ncmt) (B.loc_all_regions_from false (B.frameOf root))) (path_loc p)) hh0 hh3); assert (mt_safe hh3 ncmt); assert (path_safe hh3 mtframe p); assert (Rgl?.r_inv (hreg hsz) hh3 root); assert (V.size_of (phashes hh3 p) == 1ul + mt_path_length 0ul idx (MT?.j (B.get hh0 ncmt 0)) false); // correctness mt_safe_elts_spec hh2 0ul hs i j; assert (S.equal (lift_path hh3 mtframe p) (MTH.mt_get_path_ 0 (RV.as_seq hh2 hs) (RV.as_seq hh2 rhs) (U32.v i) (U32.v j) (U32.v idx) (lift_path hh2 mtframe p) false)); assert (MTH.mt_get_path (mt_lift hh0 ncmt) (U32.v idx) (Rgl?.r_repr (hreg hsz) hh0 root) == (U32.v (MT?.j (B.get hh3 ncmt 0)), lift_path hh3 mtframe p, Rgl?.r_repr (hreg hsz) hh3 root)); j #pop-options /// Flushing private val mt_flush_to_modifies_rec_helper: #hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> h:HS.mem -> Lemma (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (loc_union (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) == loc_union (RV.rv_loc_elems h hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) #push-options "--initial_fuel 2 --max_fuel 2" let mt_flush_to_modifies_rec_helper #hsz lv hs h = assert (V.loc_vector_within hs lv (V.size_of hs) == loc_union (V.loc_vector_within hs lv (lv + 1ul)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))); RV.rs_loc_elems_rec_inverse (hvreg hsz) (V.as_seq h hs) (U32.v lv) (U32.v (V.size_of hs)); assert (RV.rv_loc_elems h hs lv (V.size_of hs) == loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs))); loc_union_assoc_4 (RV.rs_loc_elem (hvreg hsz) (V.as_seq h hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems h hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)) #pop-options private val mt_flush_to_: hsz:hash_size_t -> lv:uint32_t{lv < merkle_tree_size_lg} -> hs:hash_vv hsz {V.size_of hs = merkle_tree_size_lg} -> pi:index_t -> i:index_t{i >= pi} -> j:Ghost.erased index_t{ Ghost.reveal j >= i && U32.v (Ghost.reveal j) < pow2 (32 - U32.v lv)} -> HST.ST unit (requires (fun h0 -> RV.rv_inv h0 hs /\ mt_safe_elts h0 lv hs pi (Ghost.reveal j))) (ensures (fun h0 _ h1 -> // memory safety modifies (loc_union (RV.rv_loc_elems h0 hs lv (V.size_of hs)) (V.loc_vector_within hs lv (V.size_of hs))) h0 h1 /\ RV.rv_inv h1 hs /\ mt_safe_elts h1 lv hs i (Ghost.reveal j) /\ // correctness (mt_safe_elts_spec h0 lv hs pi (Ghost.reveal j); S.equal (RV.as_seq h1 hs) (MTH.mt_flush_to_ (U32.v lv) (RV.as_seq h0 hs) (U32.v pi) (U32.v i) (U32.v (Ghost.reveal j)))))) (decreases (U32.v i)) #restart-solver #push-options "--z3rlimit 1500 --fuel 1 --ifuel 0" let rec mt_flush_to_ hsz lv hs pi i j = let hh0 = HST.get () in // Base conditions mt_safe_elts_rec hh0 lv hs pi (Ghost.reveal j); V.loc_vector_within_included hs 0ul lv; V.loc_vector_within_included hs lv (lv + 1ul); V.loc_vector_within_included hs (lv + 1ul) (V.size_of hs); V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); let oi = offset_of i in let opi = offset_of pi in if oi = opi then mt_safe_elts_spec hh0 lv hs pi (Ghost.reveal j) else begin /// 1) Flush hashes at the level `lv`, where the new vector is /// not yet connected to `hs`. let ofs = oi - opi in let hvec = V.index hs lv in let flushed:(rvector (hreg hsz)) = rv_flush_inplace hvec ofs in let hh1 = HST.get () in // 1-0) Basic disjointness conditions for `RV.assign` V.forall2_forall_left hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall2_forall_right hh0 hs 0ul (V.size_of hs) lv (fun b1 b2 -> HH.disjoint (Rgl?.region_of (hvreg hsz) b1) (Rgl?.region_of (hvreg hsz) b2)); V.forall_preserved hs 0ul lv (fun b -> HH.disjoint (Rgl?.region_of (hvreg hsz) hvec) (Rgl?.region_of (hvreg hsz) b)) (RV.loc_rvector hvec) hh0 hh1; V.forall_preserved hs (lv + 1ul) (V.size_of hs) (fun b -> HH.disjoint (Rgl?.region_of (hvreg hsz) hvec) (Rgl?.region_of (hvreg hsz) b)) (RV.loc_rvector hvec) hh0 hh1; assert (Rgl?.region_of (hvreg hsz) hvec == Rgl?.region_of (hvreg hsz) flushed); // 1-1) For the `modifies` postcondition. assert (modifies (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) hh0 hh1); // 1-2) Preservation RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // 1-3) For `mt_safe_elts` assert (V.size_of flushed == Ghost.reveal j - offset_of i); // head updated mt_safe_elts_preserved (lv + 1ul) hs (pi / 2ul) (Ghost.reveal j / 2ul) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; // tail not yet // 1-4) For the `rv_inv` postcondition RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) 0 (U32.v lv) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v lv); RV.rv_elems_inv_preserved hs 0ul lv (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs 0ul lv); RV.rs_loc_elems_elem_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) 0 (U32.v (V.size_of hs)) (U32.v lv + 1) (U32.v (V.size_of hs)) (U32.v lv); RV.rs_loc_elems_parent_disj (hvreg hsz) (V.as_seq hh0 hs) (V.frameOf hs) (U32.v lv + 1) (U32.v (V.size_of hs)); RV.rv_elems_inv_preserved hs (lv + 1ul) (V.size_of hs) (RV.loc_rvector (V.get hh0 hs lv)) hh0 hh1; assert (RV.rv_elems_inv hh1 hs (lv + 1ul) (V.size_of hs)); assert (rv_itself_inv hh1 hs); assert (elems_reg hh1 hs); // 1-5) Correctness assert (S.equal (RV.as_seq hh1 flushed) (S.slice (RV.as_seq hh0 (V.get hh0 hs lv)) (U32.v ofs) (S.length (RV.as_seq hh0 (V.get hh0 hs lv))))); /// 2) Assign the flushed vector to `hs` at the level `lv`. RV.assign hs lv flushed; let hh2 = HST.get () in // 2-1) For the `modifies` postcondition. assert (modifies (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2); assert (modifies (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) hh0 hh2); // 2-2) Preservation V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); RV.rv_loc_elems_preserved hs (lv + 1ul) (V.size_of hs) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-3) For `mt_safe_elts` assert (V.size_of (V.get hh2 hs lv) == Ghost.reveal j - offset_of i); mt_safe_elts_preserved (lv + 1ul) hs (pi / 2ul) (Ghost.reveal j / 2ul) (V.loc_vector_within hs lv (lv + 1ul)) hh1 hh2; // 2-4) Correctness RV.as_seq_sub_preserved hs 0ul lv (loc_rvector flushed) hh0 hh1; RV.as_seq_sub_preserved hs (lv + 1ul) merkle_tree_size_lg (loc_rvector flushed) hh0 hh1; assert (S.equal (RV.as_seq hh2 hs) (S.append (RV.as_seq_sub hh0 hs 0ul lv) (S.cons (RV.as_seq hh1 flushed) (RV.as_seq_sub hh0 hs (lv + 1ul) merkle_tree_size_lg)))); as_seq_sub_upd hh0 hs lv (RV.as_seq hh1 flushed); // if `lv = 31` then `pi <= i <= j < 2` thus `oi = opi`, // contradicting the branch. assert (lv + 1ul < merkle_tree_size_lg); assert (U32.v (Ghost.reveal j / 2ul) < pow2 (32 - U32.v (lv + 1ul))); assert (RV.rv_inv hh2 hs); assert (mt_safe_elts hh2 (lv + 1ul) hs (pi / 2ul) (Ghost.reveal j / 2ul)); /// 3) Recursion mt_flush_to_ hsz (lv + 1ul) hs (pi / 2ul) (i / 2ul) (Ghost.hide (Ghost.reveal j / 2ul)); let hh3 = HST.get () in // 3-0) Memory safety brought from the postcondition of the recursion assert (modifies (loc_union (loc_union (RV.rs_loc_elem (hvreg hsz) (V.as_seq hh0 hs) (U32.v lv)) (V.loc_vector_within hs lv (lv + 1ul))) (loc_union (RV.rv_loc_elems hh0 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs)))) hh0 hh3); mt_flush_to_modifies_rec_helper lv hs hh0; V.loc_vector_within_disjoint hs lv (lv + 1ul) (lv + 1ul) (V.size_of hs); V.loc_vector_within_included hs lv (lv + 1ul); RV.rv_loc_elems_included hh2 hs (lv + 1ul) (V.size_of hs); assert (loc_disjoint (V.loc_vector_within hs lv (lv + 1ul)) (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs))); V.get_preserved hs lv (loc_union (RV.rv_loc_elems hh2 hs (lv + 1ul) (V.size_of hs)) (V.loc_vector_within hs (lv + 1ul) (V.size_of hs))) hh2 hh3; assert (V.size_of (V.get hh3 hs lv) == Ghost.reveal j - offset_of i); assert (RV.rv_inv hh3 hs); mt_safe_elts_constr hh3 lv hs i (Ghost.reveal j); assert (mt_safe_elts hh3 lv hs i (Ghost.reveal j)); // 3-1) Correctness mt_safe_elts_spec hh2 (lv + 1ul) hs (pi / 2ul) (Ghost.reveal j / 2ul); assert (S.equal (RV.as_seq hh3 hs) (MTH.mt_flush_to_ (U32.v lv + 1) (RV.as_seq hh2 hs) (U32.v pi / 2) (U32.v i / 2) (U32.v (Ghost.reveal j) / 2))); mt_safe_elts_spec hh0 lv hs pi (Ghost.reveal j); MTH.mt_flush_to_rec (U32.v lv) (RV.as_seq hh0 hs) (U32.v pi) (U32.v i) (U32.v (Ghost.reveal j)); assert (S.equal (RV.as_seq hh3 hs) (MTH.mt_flush_to_ (U32.v lv) (RV.as_seq hh0 hs) (U32.v pi) (U32.v i) (U32.v (Ghost.reveal j)))) end #pop-options // `mt_flush_to` flushes old hashes in the Merkle tree. It removes hash elements // from `MT?.i` to **`offset_of (idx - 1)`**, but maintains the tree structure, // i.e., the tree still holds some old internal hashes (compressed from old // hashes) which are required to generate Merkle paths for remaining hashes. // // Note that `mt_flush_to` (and `mt_flush`) always remain at least one base hash // elements. If there are `MT?.j` number of elements in the tree, because of the // precondition `MT?.i <= idx < MT?.j` we still have `idx`-th element after // flushing. private inline_for_extraction val mt_flush_to_pre_nst: mtv:merkle_tree -> idx:offset_t -> Tot bool let mt_flush_to_pre_nst mtv idx = offsets_connect (MT?.offset mtv) idx && ([@inline_let] let idx = split_offset (MT?.offset mtv) idx in idx >= MT?.i mtv && idx < MT?.j mtv) val mt_flush_to_pre: mt:const_mt_p -> idx:offset_t -> HST.ST bool (requires (fun h0 -> mt_safe h0 (CB.cast mt))) (ensures (fun _ _ _ -> True)) let mt_flush_to_pre mt idx = let mt = CB.cast mt in let h0 = HST.get() in let mtv = !*mt in mt_flush_to_pre_nst mtv idx #push-options "--z3rlimit 100 --initial_fuel 1 --max_fuel 1" val mt_flush_to: mt:mt_p -> idx:offset_t -> HST.ST unit (requires (fun h0 -> mt_safe h0 mt /\ mt_flush_to_pre_nst (B.get h0 mt 0) idx)) (ensures (fun h0 _ h1 -> // memory safety modifies (mt_loc mt) h0 h1 /\ mt_safe h1 mt /\ // correctness (let mtv0 = B.get h0 mt 0 in let mtv1 = B.get h1 mt 0 in let off = MT?.offset mtv0 in let idx = split_offset off idx in MT?.hash_size mtv0 = MT?.hash_size mtv1 /\
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "MerkleTree.Low.VectorExtras.fst.checked", "MerkleTree.Low.Hashfunctions.fst.checked", "MerkleTree.Low.Datastructures.fst.checked", "LowStar.Vector.fst.checked", "LowStar.RVector.fst.checked", "LowStar.Regional.Instances.fst.checked", "LowStar.Regional.fst.checked", "LowStar.ConstBuffer.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.HyperStack.fsti.checked", "FStar.Monotonic.HyperHeap.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.All.fst.checked", "EverCrypt.Helpers.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.Low.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.Low.VectorExtras", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.Low.Hashfunctions", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.Low.Datastructures", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "MerkleTree.New.High", "short_module": "MTH" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Regional.Instances", "short_module": "RVI" }, { "abbrev": true, "full_module": "LowStar.RVector", "short_module": "RV" }, { "abbrev": true, "full_module": "LowStar.Vector", "short_module": "V" }, { "abbrev": true, "full_module": "LowStar.ConstBuffer", "short_module": "CB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Monotonic.HyperHeap", "short_module": "HH" }, { "abbrev": true, "full_module": "FStar.Monotonic.HyperStack", "short_module": "MHS" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.Regional.Instances", "short_module": null }, { "abbrev": false, "full_module": "LowStar.RVector", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Regional", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Vector", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mt: MerkleTree.Low.mt_p -> idx: MerkleTree.Low.offset_t -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "MerkleTree.Low.mt_p", "MerkleTree.Low.offset_t", "MerkleTree.Low.mt_safe_elts_preserved", "MerkleTree.Low.__proj__MT__item__hash_size", "FStar.UInt32.__uint_to_t", "MerkleTree.Low.__proj__MT__item__j", "LowStar.Monotonic.Buffer.loc_buffer", "MerkleTree.Low.merkle_tree", "LowStar.Buffer.trivial_preorder", "Prims.unit", "LowStar.Regional.__proj__Rgl__item__r_sep", "MerkleTree.Low.Datastructures.hash_size_t", "MerkleTree.Low.Datastructures.hash", "MerkleTree.Low.Datastructures.hreg", "MerkleTree.Low.__proj__MT__item__mroot", "LowStar.RVector.as_seq_preserved", "MerkleTree.Low.__proj__MT__item__rhs", "MerkleTree.Low.Datastructures.hash_vec", "MerkleTree.Low.Datastructures.hvreg", "MerkleTree.Low.__proj__MT__item__hs", "LowStar.RVector.rv_inv_preserved", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowStar.BufferOps.op_Star_Equals", "MerkleTree.Low.MT", "MerkleTree.Low.__proj__MT__item__offset", "MerkleTree.Low.__proj__MT__item__rhs_ok", "MerkleTree.Low.__proj__MT__item__hash_spec", "MerkleTree.Low.__proj__MT__item__hash_fun", "LowStar.Monotonic.Buffer.loc_union", "LowStar.RVector.rv_loc_elems", "LowStar.Vector.size_of", "LowStar.Vector.loc_vector_within", "LowStar.Vector.loc_vector_within_included", "LowStar.RVector.rv_loc_elems_included", "MerkleTree.Low.mt_flush_to_", "MerkleTree.Low.__proj__MT__item__i", "FStar.Ghost.hide", "MerkleTree.Low.index_t", "MerkleTree.Low.Datastructures.hash_vv", "Prims.b2t", "Prims.op_Equality", "LowStar.Vector.uint32_t", "MerkleTree.Low.merkle_tree_size_lg", "MerkleTree.Low.split_offset", "Prims.l_and", "FStar.UInt32.lte", "MerkleTree.Low.add64_fits", "LowStar.BufferOps.op_Bang_Star" ]
[]
false
true
false
false
false
let mt_flush_to mt idx =
let hh0 = HST.get () in let mtv = !*mt in let offset = MT?.offset mtv in let j = MT?.j mtv in let hsz = MT?.hash_size mtv in let idx = split_offset offset idx in let hs = MT?.hs mtv in mt_flush_to_ hsz 0ul hs (MT?.i mtv) idx (Ghost.hide (MT?.j mtv)); let hh1 = HST.get () in RV.rv_loc_elems_included hh0 hs 0ul (V.size_of hs); V.loc_vector_within_included hs 0ul (V.size_of hs); RV.rv_inv_preserved (MT?.rhs mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs)) ) hh0 hh1; RV.as_seq_preserved (MT?.rhs mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs)) ) hh0 hh1; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) (loc_union (RV.rv_loc_elems hh0 hs 0ul (V.size_of hs)) (V.loc_vector_within hs 0ul (V.size_of hs)) ) hh0 hh1; mt *= MT (MT?.hash_size mtv) (MT?.offset mtv) idx (MT?.j mtv) hs (MT?.rhs_ok mtv) (MT?.rhs mtv) (MT?.mroot mtv) (MT?.hash_spec mtv) (MT?.hash_fun mtv); let hh2 = HST.get () in RV.rv_inv_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.rv_inv_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.hs mtv) (B.loc_buffer mt) hh1 hh2; RV.as_seq_preserved (MT?.rhs mtv) (B.loc_buffer mt) hh1 hh2; Rgl?.r_sep (hreg (MT?.hash_size mtv)) (MT?.mroot mtv) (B.loc_buffer mt) hh1 hh2; mt_safe_elts_preserved 0ul hs idx (MT?.j mtv) (B.loc_buffer mt) hh1 hh2
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicFlagValuesAreSame
val publicFlagValuesAreSame : ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags)
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 17, "start_col": 0, "start_line": 16 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Leakage_s.__proj__LeakageTaints__item__flagsTaint", "Vale.Arch.HeapTypes_s.Public", "Prims.eq2", "Vale.X64.Machine_Semantics_s.flags_t", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags", "Prims.logical" ]
[]
false
false
false
true
true
let publicFlagValuesAreSame (ts: leakage_taints) (s1 s2: machine_state) =
ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags)
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicMemValuesAreSame
val publicMemValuesAreSame : s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 118, "end_line": 39, "start_col": 0, "start_line": 37 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x]
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_Forall", "Prims.int", "Vale.X64.Leakage_s.publicMemValueIsSame", "Vale.Arch.Heap.heap_get", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.Arch.Heap.heap_taint", "Vale.X64.Machine_Semantics_s.op_String_Access", "Vale.Def.Types_s.nat8", "Vale.Arch.HeapTypes_s.taint", "Prims.logical" ]
[]
false
false
false
true
true
let publicMemValuesAreSame (s1 s2: machine_state) =
forall x. {:pattern (heap_taint s1.ms_heap).[ x ]\/(heap_taint s2.ms_heap).[ x ]\/(heap_get s1.ms_heap).[ x ]\/(heap_get s2.ms_heap).[ x ]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicMemValueIsSame
val publicMemValueIsSame : mem1: Vale.Arch.MachineHeap_s.machine_heap -> mem2: Vale.Arch.MachineHeap_s.machine_heap -> memTaint1: FStar.Map.t Prims.int Vale.Arch.HeapTypes_s.taint -> memTaint2: FStar.Map.t Prims.int Vale.Arch.HeapTypes_s.taint -> x: Prims.int -> Prims.logical
let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x]
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 35, "start_col": 0, "start_line": 30 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mem1: Vale.Arch.MachineHeap_s.machine_heap -> mem2: Vale.Arch.MachineHeap_s.machine_heap -> memTaint1: FStar.Map.t Prims.int Vale.Arch.HeapTypes_s.taint -> memTaint2: FStar.Map.t Prims.int Vale.Arch.HeapTypes_s.taint -> x: Prims.int -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.MachineHeap_s.machine_heap", "FStar.Map.t", "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Prims.l_imp", "Prims.b2t", "Prims.op_BarBar", "Vale.Arch.HeapTypes_s.uu___is_Public", "Vale.X64.Machine_Semantics_s.op_String_Access", "Prims.eq2", "Vale.Def.Types_s.nat8", "Prims.logical" ]
[]
false
false
false
true
true
let publicMemValueIsSame (mem1 mem2: machine_heap) (memTaint1 memTaint2: Map.t int taint) (x: int) =
(Public? (memTaint1.[ x ]) || Public? (memTaint2.[ x ])) ==> mem1.[ x ] == mem2.[ x ]
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicStackValuesAreSame
val publicStackValuesAreSame : s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 76, "end_line": 52, "start_col": 0, "start_line": 48 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x]
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.machine_state", "Vale.Def.Types_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Prims.int", "Vale.Def.Types_s.nat8", "Prims.l_Forall", "Vale.X64.Leakage_s.publicStackValueIsSame", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stackTaint", "Vale.X64.Machine_Semantics_s.op_String_Access", "Vale.Arch.HeapTypes_s.taint", "Prims.logical", "Vale.X64.Machine_Semantics_s.machine_stack", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack" ]
[]
false
false
false
true
true
let publicStackValuesAreSame (s1 s2: machine_state) =
let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x. {:pattern s1.ms_stackTaint.[ x ]\/s2.ms_stackTaint.[ x ]\/stack1.[ x ]\/stack2.[ x ]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicStackValueIsSame
val publicStackValueIsSame : stack1: Vale.Arch.MachineHeap_s.machine_heap -> stack2: Vale.Arch.MachineHeap_s.machine_heap -> stackTaint1: FStar.Map.t Prims.int Vale.Arch.HeapTypes_s.taint -> stackTaint2: FStar.Map.t Prims.int Vale.Arch.HeapTypes_s.taint -> x: Prims.int -> Prims.logical
let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x]
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 46, "start_col": 0, "start_line": 41 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
stack1: Vale.Arch.MachineHeap_s.machine_heap -> stack2: Vale.Arch.MachineHeap_s.machine_heap -> stackTaint1: FStar.Map.t Prims.int Vale.Arch.HeapTypes_s.taint -> stackTaint2: FStar.Map.t Prims.int Vale.Arch.HeapTypes_s.taint -> x: Prims.int -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.MachineHeap_s.machine_heap", "FStar.Map.t", "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Prims.l_imp", "Prims.b2t", "Prims.op_BarBar", "Vale.Arch.HeapTypes_s.uu___is_Public", "Vale.X64.Machine_Semantics_s.op_String_Access", "Prims.eq2", "Vale.Def.Types_s.nat8", "Prims.logical" ]
[]
false
false
false
true
true
let publicStackValueIsSame (stack1 stack2: machine_heap) (stackTaint1 stackTaint2: Map.t int taint) (x: int) =
(Public? (stackTaint1.[ x ]) || Public? (stackTaint2.[ x ])) ==> stack1.[ x ] == stack2.[ x ]
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicValuesAreSame
val publicValuesAreSame : ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 60, "start_col": 0, "start_line": 54 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_and", "Vale.X64.Leakage_s.publicRegisterValuesAreSame", "Vale.X64.Leakage_s.publicFlagValuesAreSame", "Vale.X64.Leakage_s.publicCfFlagValuesAreSame", "Vale.X64.Leakage_s.publicOfFlagValuesAreSame", "Vale.X64.Leakage_s.publicMemValuesAreSame", "Vale.X64.Leakage_s.publicStackValuesAreSame", "Prims.logical" ]
[]
false
false
false
true
true
let publicValuesAreSame (ts: leakage_taints) (s1 s2: machine_state) =
publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.isConstantTime
val isConstantTime : code: Vale.X64.Machine_Semantics_s.code -> ts: Vale.X64.Leakage_s.leakage_taints -> Prims.logical
let isConstantTime (code:code) (ts:leakage_taints) = forall s1 s2 fuel. isConstantTimeGivenStates code fuel ts s1 s2
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 78, "start_col": 0, "start_line": 76 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2 let constTimeInvariant (ts:leakage_taints) (s:machine_state) (s':machine_state) = publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace let isConstantTimeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in ( (Some? r1) /\ (Some? r2) /\ s1.ms_ok /\ (Some?.v r1).ms_ok /\ s2.ms_ok /\ (Some?.v r2).ms_ok /\ constTimeInvariant ts s1 s2 ) ==> (Some?.v r1).ms_trace = (Some?.v r2).ms_trace
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
code: Vale.X64.Machine_Semantics_s.code -> ts: Vale.X64.Leakage_s.leakage_taints -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Vale.X64.Leakage_s.leakage_taints", "Prims.l_Forall", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.nat", "Vale.X64.Leakage_s.isConstantTimeGivenStates", "Prims.logical" ]
[]
false
false
false
true
true
let isConstantTime (code: code) (ts: leakage_taints) =
forall s1 s2 fuel. isConstantTimeGivenStates code fuel ts s1 s2
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.isExplicitLeakageFree
val isExplicitLeakageFree : code: Vale.X64.Machine_Semantics_s.code -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> Prims.logical
let isExplicitLeakageFree (code:code) (ts:leakage_taints) (ts':leakage_taints) = forall s1 s2 fuel. isExplicitLeakageFreeGivenStates code fuel ts ts' s1 s2
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 59, "end_line": 99, "start_col": 0, "start_line": 97 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2 let constTimeInvariant (ts:leakage_taints) (s:machine_state) (s':machine_state) = publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace let isConstantTimeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in ( (Some? r1) /\ (Some? r2) /\ s1.ms_ok /\ (Some?.v r1).ms_ok /\ s2.ms_ok /\ (Some?.v r2).ms_ok /\ constTimeInvariant ts s1 s2 ) ==> (Some?.v r1).ms_trace = (Some?.v r2).ms_trace let isConstantTime (code:code) (ts:leakage_taints) = forall s1 s2 fuel. isConstantTimeGivenStates code fuel ts s1 s2 let is_explicit_leakage_free_lhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = s1.ms_ok /\ s2.ms_ok /\ constTimeInvariant ts s1 s2 /\ (let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ (Some?.v r1).ms_ok /\ (Some?.v r2).ms_ok) let is_explicit_leakage_free_rhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ publicValuesAreSame ts' (Some?.v r1) (Some?.v r2) let isExplicitLeakageFreeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = is_explicit_leakage_free_lhs code fuel ts ts' s1 s2 ==> is_explicit_leakage_free_rhs code fuel ts ts' s1 s2
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
code: Vale.X64.Machine_Semantics_s.code -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Vale.X64.Leakage_s.leakage_taints", "Prims.l_Forall", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.nat", "Vale.X64.Leakage_s.isExplicitLeakageFreeGivenStates", "Prims.logical" ]
[]
false
false
false
true
true
let isExplicitLeakageFree (code: code) (ts ts': leakage_taints) =
forall s1 s2 fuel. isExplicitLeakageFreeGivenStates code fuel ts ts' s1 s2
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicCfFlagValuesAreSame
val publicCfFlagValuesAreSame : ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags)
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 20, "start_col": 0, "start_line": 19 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_imp", "Prims.b2t", "Vale.Arch.HeapTypes_s.uu___is_Public", "Vale.X64.Leakage_s.__proj__LeakageTaints__item__cfFlagsTaint", "Prims.op_Equality", "Vale.X64.Machine_Semantics_s.flag_val_t", "Vale.X64.Machine_Semantics_s.cf", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags", "Prims.logical" ]
[]
false
false
false
true
true
let publicCfFlagValuesAreSame (ts: leakage_taints) (s1 s2: machine_state) =
Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags)
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicRegisterValuesAreSame
val publicRegisterValuesAreSame : ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r)
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 28, "start_col": 0, "start_line": 25 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_Forall", "Vale.X64.Machine_s.reg", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Leakage_s.__proj__LeakageTaints__item__regTaint", "Vale.Arch.HeapTypes_s.Public", "Vale.X64.Machine_s.t_reg", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_regs", "Prims.logical" ]
[]
false
false
false
true
true
let publicRegisterValuesAreSame (ts: leakage_taints) (s1 s2: machine_state) =
forall r. {:pattern ts.regTaint r\/s1.ms_regs r\/s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r)
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.publicOfFlagValuesAreSame
val publicOfFlagValuesAreSame : ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags)
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 75, "end_line": 23, "start_col": 0, "start_line": 22 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_imp", "Prims.b2t", "Vale.Arch.HeapTypes_s.uu___is_Public", "Vale.X64.Leakage_s.__proj__LeakageTaints__item__ofFlagsTaint", "Prims.op_Equality", "Vale.X64.Machine_Semantics_s.flag_val_t", "Vale.X64.Machine_Semantics_s.overflow", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags", "Prims.logical" ]
[]
false
false
false
true
true
let publicOfFlagValuesAreSame (ts: leakage_taints) (s1 s2: machine_state) =
Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags)
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.isExplicitLeakageFreeGivenStates
val isExplicitLeakageFreeGivenStates : code: Vale.X64.Machine_Semantics_s.code -> fuel: Prims.nat -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let isExplicitLeakageFreeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = is_explicit_leakage_free_lhs code fuel ts ts' s1 s2 ==> is_explicit_leakage_free_rhs code fuel ts ts' s1 s2
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 111, "end_line": 95, "start_col": 0, "start_line": 93 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2 let constTimeInvariant (ts:leakage_taints) (s:machine_state) (s':machine_state) = publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace let isConstantTimeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in ( (Some? r1) /\ (Some? r2) /\ s1.ms_ok /\ (Some?.v r1).ms_ok /\ s2.ms_ok /\ (Some?.v r2).ms_ok /\ constTimeInvariant ts s1 s2 ) ==> (Some?.v r1).ms_trace = (Some?.v r2).ms_trace let isConstantTime (code:code) (ts:leakage_taints) = forall s1 s2 fuel. isConstantTimeGivenStates code fuel ts s1 s2 let is_explicit_leakage_free_lhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = s1.ms_ok /\ s2.ms_ok /\ constTimeInvariant ts s1 s2 /\ (let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ (Some?.v r1).ms_ok /\ (Some?.v r2).ms_ok) let is_explicit_leakage_free_rhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ publicValuesAreSame ts' (Some?.v r1) (Some?.v r2)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
code: Vale.X64.Machine_Semantics_s.code -> fuel: Prims.nat -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Prims.nat", "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_imp", "Vale.X64.Leakage_s.is_explicit_leakage_free_lhs", "Vale.X64.Leakage_s.is_explicit_leakage_free_rhs", "Prims.logical" ]
[]
false
false
false
true
true
let isExplicitLeakageFreeGivenStates (code: code) (fuel: nat) (ts ts': leakage_taints) (s1 s2: machine_state) =
is_explicit_leakage_free_lhs code fuel ts ts' s1 s2 ==> is_explicit_leakage_free_rhs code fuel ts ts' s1 s2
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.isLeakageFree
val isLeakageFree : code: Vale.X64.Machine_Semantics_s.code -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> Prims.logical
let isLeakageFree (code:code) (ts:leakage_taints) (ts':leakage_taints) = isConstantTime code ts /\ isExplicitLeakageFree code ts ts'
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 103, "start_col": 0, "start_line": 101 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2 let constTimeInvariant (ts:leakage_taints) (s:machine_state) (s':machine_state) = publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace let isConstantTimeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in ( (Some? r1) /\ (Some? r2) /\ s1.ms_ok /\ (Some?.v r1).ms_ok /\ s2.ms_ok /\ (Some?.v r2).ms_ok /\ constTimeInvariant ts s1 s2 ) ==> (Some?.v r1).ms_trace = (Some?.v r2).ms_trace let isConstantTime (code:code) (ts:leakage_taints) = forall s1 s2 fuel. isConstantTimeGivenStates code fuel ts s1 s2 let is_explicit_leakage_free_lhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = s1.ms_ok /\ s2.ms_ok /\ constTimeInvariant ts s1 s2 /\ (let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ (Some?.v r1).ms_ok /\ (Some?.v r2).ms_ok) let is_explicit_leakage_free_rhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ publicValuesAreSame ts' (Some?.v r1) (Some?.v r2) let isExplicitLeakageFreeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = is_explicit_leakage_free_lhs code fuel ts ts' s1 s2 ==> is_explicit_leakage_free_rhs code fuel ts ts' s1 s2 let isExplicitLeakageFree (code:code) (ts:leakage_taints) (ts':leakage_taints) = forall s1 s2 fuel. isExplicitLeakageFreeGivenStates code fuel ts ts' s1 s2
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
code: Vale.X64.Machine_Semantics_s.code -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Vale.X64.Leakage_s.leakage_taints", "Prims.l_and", "Vale.X64.Leakage_s.isConstantTime", "Vale.X64.Leakage_s.isExplicitLeakageFree", "Prims.logical" ]
[]
false
false
false
true
true
let isLeakageFree (code: code) (ts ts': leakage_taints) =
isConstantTime code ts /\ isExplicitLeakageFree code ts ts'
false
IMSTsub.fst
IMSTsub.st_pre
val st_pre : s: Type0 -> Type
let st_pre (s:Type0) = s -> GTot Type0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 30, "start_col": 0, "start_line": 30 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Type0 -> Type
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
true
let st_pre (s: Type0) =
s -> GTot Type0
false
IMSTsub.fst
IMSTsub.st_post'
val st_post' : s: Type0 -> a: Type -> pre: Type -> Type
let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 31, "start_col": 0, "start_line": 31 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Type0 -> a: Type -> pre: Type -> Type
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
true
let st_post' (s: Type0) (a pre: Type) =
a -> _: s{pre} -> GTot Type0
false
IMSTsub.fst
IMSTsub.st_wp
val st_wp : a: Type -> Type
let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s)
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 84, "end_line": 33, "start_col": 0, "start_line": 33 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Preorder.preorder", "FStar.Pervasives.st_post_h", "FStar.Pervasives.st_pre_h" ]
[]
false
false
false
true
true
let st_wp (a: Type) =
s: Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s)
false
IMSTsub.fst
IMSTsub.st_return
val st_return : a: Type -> x: a -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s a -> s0: s -> Prims.logical
let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 38, "start_col": 0, "start_line": 37 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> x: a -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s a -> s0: s -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Preorder.preorder", "IMSTsub.st_post", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "Prims.logical" ]
[]
false
false
false
true
true
let st_return (a: Type) (x: a) (s: Type0) (rel: preorder s) (post: st_post s a) (s0: s) =
forall v. v == x ==> post v s0
false
IMSTsub.fst
IMSTsub.st_post
val st_post : s: Type0 -> a: Type -> Type
let st_post (s:Type0) (a:Type) = st_post_h' s a True
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 32, "start_col": 0, "start_line": 32 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Type0 -> a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.st_post_h'", "Prims.l_True" ]
[]
false
false
false
true
true
let st_post (s: Type0) (a: Type) =
st_post_h' s a True
false
IMSTsub.fst
IMSTsub.st_bind
val st_bind : a: Type -> b: Type -> wp1: IMSTsub.st_wp a -> wp2: (_: a -> IMSTsub.st_wp b) -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s b -> s0: s -> Type0
let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 44, "start_col": 0, "start_line": 41 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> wp1: IMSTsub.st_wp a -> wp2: (_: a -> IMSTsub.st_wp b) -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s b -> s0: s -> Type0
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.st_wp", "FStar.Preorder.preorder", "IMSTsub.st_post", "Prims.l_True" ]
[]
false
false
false
true
true
let st_bind (a b: Type) (wp1: st_wp a) (wp2: (a -> Tot (st_wp b))) (s: Type0) (rel: preorder s) (post: st_post s b) (s0: s) =
wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.constTimeInvariant
val constTimeInvariant : ts: Vale.X64.Leakage_s.leakage_taints -> s: Vale.X64.Machine_Semantics_s.machine_state -> s': Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let constTimeInvariant (ts:leakage_taints) (s:machine_state) (s':machine_state) = publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 64, "start_col": 0, "start_line": 62 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ts: Vale.X64.Leakage_s.leakage_taints -> s: Vale.X64.Machine_Semantics_s.machine_state -> s': Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_and", "Vale.X64.Leakage_s.publicValuesAreSame", "Prims.b2t", "Prims.op_Equality", "Prims.list", "Vale.X64.Machine_s.observation", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_trace", "Prims.logical" ]
[]
false
false
false
true
true
let constTimeInvariant (ts: leakage_taints) (s s': machine_state) =
publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace
false
IMSTsub.fst
IMSTsub.st_ite
val st_ite : a: Type -> wp: IMSTsub.st_wp a -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s a -> s0: s -> Prims.logical
let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 56, "start_col": 0, "start_line": 53 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp: IMSTsub.st_wp a -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s a -> s0: s -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.st_wp", "FStar.Preorder.preorder", "IMSTsub.st_post", "Prims.l_Forall", "Prims.l_imp", "Prims.guard_free", "Prims.logical" ]
[]
false
false
false
true
true
let st_ite (a: Type) (wp: st_wp a) (s: Type0) (rel: preorder s) (post: st_post s a) (s0: s) =
forall (k: st_post s a). (forall (x: a) (s1: s). {:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0
false
IMSTsub.fst
IMSTsub.st_close
val st_close : a: Type -> b: Type -> wp: (_: b -> Prims.GTot (IMSTsub.st_wp a)) -> s: Type0 -> rel: FStar.Preorder.preorder s -> p: IMSTsub.st_post s a -> s0: s -> Prims.logical
let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 66, "start_col": 0, "start_line": 64 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> wp: (_: b -> Prims.GTot (IMSTsub.st_wp a)) -> s: Type0 -> rel: FStar.Preorder.preorder s -> p: IMSTsub.st_post s a -> s0: s -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.st_wp", "FStar.Preorder.preorder", "IMSTsub.st_post", "Prims.l_Forall", "Prims.logical" ]
[]
false
false
false
false
true
let st_close (a b: Type) (wp: (b -> GTot (st_wp a))) (s: Type0) (rel: preorder s) (p: st_post s a) (s0: s) =
forall x. wp x s rel p s0
false
IMSTsub.fst
IMSTsub.st_if_then_else
val st_if_then_else : a: Type -> p: Type0 -> wp_then: IMSTsub.st_wp a -> wp_else: IMSTsub.st_wp a -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s a -> s0: s -> Prims.logical
let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0)
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 50, "start_col": 0, "start_line": 47 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> p: Type0 -> wp_then: IMSTsub.st_wp a -> wp_else: IMSTsub.st_wp a -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s a -> s0: s -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.st_wp", "FStar.Preorder.preorder", "IMSTsub.st_post", "Prims.l_ITE", "Prims.logical" ]
[]
false
false
false
true
true
let st_if_then_else (a p: Type) (wp_then wp_else: st_wp a) (s: Type0) (rel: preorder s) (post: st_post s a) (s0: s) =
l_ITE p (wp_then s rel post s0) (wp_else s rel post s0)
false
IMSTsub.fst
IMSTsub.st_trivial
val st_trivial : a: Type -> wp: IMSTsub.st_wp a -> Prims.logical
let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 70, "start_col": 0, "start_line": 69 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp: IMSTsub.st_wp a -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.st_wp", "Prims.l_Forall", "FStar.Preorder.preorder", "Prims.l_True", "Prims.logical" ]
[]
false
false
false
true
true
let st_trivial (a: Type) (wp: st_wp a) =
forall s rel s0. wp s rel (fun _ _ -> True) s0
false
IMSTsub.fst
IMSTsub.st_stronger
val st_stronger : a: Type -> wp1: IMSTsub.st_wp a -> wp2: IMSTsub.st_wp a -> Prims.logical
let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 61, "start_col": 0, "start_line": 59 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp1: IMSTsub.st_wp a -> wp2: IMSTsub.st_wp a -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.st_wp", "Prims.l_Forall", "FStar.Preorder.preorder", "IMSTsub.st_post", "Prims.l_imp", "Prims.logical" ]
[]
false
false
false
true
true
let st_stronger (a: Type) (wp1 wp2: st_wp a) =
forall (s: Type0) (rel: preorder s) (p: st_post s a) (s0: s). wp1 s rel p s0 ==> wp2 s rel p s0
false
IMSTsub.fst
IMSTsub.st_wp'
val st_wp' : a: Type -> s: Type0 -> Type
let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s)
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 98, "start_col": 0, "start_line": 97 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> s: Type0 -> Type
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.st_post", "IMSTsub.st_pre" ]
[]
false
false
false
true
true
let st_wp' (a: Type) (s: Type0) =
st_post s a -> Tot (st_pre s)
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.is_explicit_leakage_free_lhs
val is_explicit_leakage_free_lhs : code: Vale.X64.Machine_Semantics_s.code -> fuel: Prims.nat -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let is_explicit_leakage_free_lhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = s1.ms_ok /\ s2.ms_ok /\ constTimeInvariant ts s1 s2 /\ (let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ (Some?.v r1).ms_ok /\ (Some?.v r2).ms_ok)
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 70, "end_line": 85, "start_col": 0, "start_line": 80 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2 let constTimeInvariant (ts:leakage_taints) (s:machine_state) (s':machine_state) = publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace let isConstantTimeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in ( (Some? r1) /\ (Some? r2) /\ s1.ms_ok /\ (Some?.v r1).ms_ok /\ s2.ms_ok /\ (Some?.v r2).ms_ok /\ constTimeInvariant ts s1 s2 ) ==> (Some?.v r1).ms_trace = (Some?.v r2).ms_trace let isConstantTime (code:code) (ts:leakage_taints) = forall s1 s2 fuel. isConstantTimeGivenStates code fuel ts s1 s2
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
code: Vale.X64.Machine_Semantics_s.code -> fuel: Prims.nat -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Prims.nat", "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_and", "Prims.b2t", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "Vale.X64.Leakage_s.constTimeInvariant", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Prims.logical" ]
[]
false
false
false
true
true
let is_explicit_leakage_free_lhs (code: code) (fuel: nat) (ts ts': leakage_taints) (s1 s2: machine_state) =
s1.ms_ok /\ s2.ms_ok /\ constTimeInvariant ts s1 s2 /\ (let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ (Some?.v r1).ms_ok /\ (Some?.v r2).ms_ok)
false
IMSTsub.fst
IMSTsub.lift_div_imst
val lift_div_imst : a: Type -> wp: Prims.pure_wp a -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s a -> s0: s -> Prims.pure_pre
let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0)
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 91, "start_col": 0, "start_line": 89 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp: Prims.pure_wp a -> s: Type0 -> rel: FStar.Preorder.preorder s -> post: IMSTsub.st_post s a -> s0: s -> Prims.pure_pre
Prims.Tot
[ "total" ]
[]
[ "Prims.pure_wp", "FStar.Preorder.preorder", "IMSTsub.st_post", "Prims.l_True", "Prims.pure_pre" ]
[]
false
false
false
true
false
let lift_div_imst (a: Type) (wp: pure_wp a) (s: Type0) (rel: preorder s) (post: st_post s a) (s0: s) =
wp (fun x -> post x s0)
false
IMSTsub.fst
IMSTsub.nat_rel'
val nat_rel':relation nat
val nat_rel':relation nat
let nat_rel' : relation nat = fun i j -> i <= j
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 125, "start_col": 0, "start_line": 124 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) //using idx instead of (><) to avoid complicating things with dependent pairs (mixfix operators, anyone?) unfold let idx (#a:Type) (s:Type0) (rel:preorder s) (wp:st_wp' a s) : st_wp a = fun s' rel' post s0 -> s == s' /\ (forall x y . rel x y ==> rel' x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s (idx s rel (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit (idx s rel (fun p s0 -> rel s0 s1 /\ p () s1)) let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p assume val witness (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ q s0 /\ (witnessed #s #rel q ==> p () s0))) assume val recall (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ witnessed #s #rel q /\ (q s0 ==> p () s0))) (* Some sample code *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Preorder.relation Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual" ]
[]
false
false
false
true
false
let nat_rel':relation nat =
fun i j -> i <= j
false
HaclExample2.fst
HaclExample2.five
val five : Type0
let five = normalize (nat_t_of_nat 5)
{ "file_name": "share/steel/examples/steelc/HaclExample2.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 69, "end_line": 19, "start_col": 32, "start_line": 19 }
module HaclExample2 open Steel.ST.GenElim open Steel.ST.C.Types open Steel.C.Typenat open Steel.C.Typestring module SZ = FStar.SizeT module U64 = FStar.UInt64 (** In this file we demonstrate how Steel could be used to manipulate the following data type used in Hacl*: https://github.com/project-everest/hacl-star/blob/master/code/poly1305/Hacl.Impl.Poly1305.fsti#L18 This Low* definition amounts to the struct definition struct poly1305_ctx { uint64_t limbs[5]; uint64_t precomp[20]; }; and, with our new model of structs and arrays and pointer-to-field, can be expresesd directly in Steel. See PointStruct.fst for more detailed explanations of the various definitions needed below. *)
{ "checked_file": "/", "dependencies": [ "Steel.ST.GenElim.fsti.checked", "Steel.ST.C.Types.fst.checked", "Steel.C.Typestring.fsti.checked", "Steel.C.Typenat.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "HaclExample2.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": false, "full_module": "Steel.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Steel.C.Typenat", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.normalize", "Steel.C.Typenat.nat_t_of_nat" ]
[]
false
false
false
true
true
let five =
normalize (nat_t_of_nat 5)
false
IMSTsub.fst
IMSTsub.witnessed
val witnessed (#s: Type) (#rel: preorder s) (p: predicate s) : Type0
val witnessed (#s: Type) (#rel: preorder s) (p: predicate s) : Type0
let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 84, "end_line": 112, "start_col": 0, "start_line": 112 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) //using idx instead of (><) to avoid complicating things with dependent pairs (mixfix operators, anyone?) unfold let idx (#a:Type) (s:Type0) (rel:preorder s) (wp:st_wp' a s) : st_wp a = fun s' rel' post s0 -> s == s' /\ (forall x y . rel x y ==> rel' x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s (idx s rel (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit (idx s rel (fun p s0 -> rel s0 s1 /\ p () s1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.Preorder.predicate s -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Preorder.preorder", "FStar.Preorder.predicate", "FStar.Monotonic.Witnessed.witnessed" ]
[]
false
false
false
true
true
let witnessed (#s: Type) (#rel: preorder s) (p: predicate s) : Type0 =
W.witnessed rel p
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.is_explicit_leakage_free_rhs
val is_explicit_leakage_free_rhs : code: Vale.X64.Machine_Semantics_s.code -> fuel: Prims.nat -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let is_explicit_leakage_free_rhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ publicValuesAreSame ts' (Some?.v r1) (Some?.v r2)
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 91, "start_col": 0, "start_line": 87 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2 let constTimeInvariant (ts:leakage_taints) (s:machine_state) (s':machine_state) = publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace let isConstantTimeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in ( (Some? r1) /\ (Some? r2) /\ s1.ms_ok /\ (Some?.v r1).ms_ok /\ s2.ms_ok /\ (Some?.v r2).ms_ok /\ constTimeInvariant ts s1 s2 ) ==> (Some?.v r1).ms_trace = (Some?.v r2).ms_trace let isConstantTime (code:code) (ts:leakage_taints) = forall s1 s2 fuel. isConstantTimeGivenStates code fuel ts s1 s2 let is_explicit_leakage_free_lhs (code:code) (fuel:nat) (ts:leakage_taints) (ts':leakage_taints) (s1:machine_state) (s2:machine_state) = s1.ms_ok /\ s2.ms_ok /\ constTimeInvariant ts s1 s2 /\ (let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ (Some?.v r1).ms_ok /\ (Some?.v r2).ms_ok)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
code: Vale.X64.Machine_Semantics_s.code -> fuel: Prims.nat -> ts: Vale.X64.Leakage_s.leakage_taints -> ts': Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Prims.nat", "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_and", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Vale.X64.Leakage_s.publicValuesAreSame", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Prims.logical" ]
[]
false
false
false
true
true
let is_explicit_leakage_free_rhs (code: code) (fuel: nat) (ts ts': leakage_taints) (s1 s2: machine_state) =
let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in Some? r1 /\ Some? r2 /\ publicValuesAreSame ts' (Some?.v r1) (Some?.v r2)
false
HaclExample2.fst
HaclExample2.twenty
val twenty : Type0
let twenty = normalize (nat_t_of_nat 20)
{ "file_name": "share/steel/examples/steelc/HaclExample2.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 72, "end_line": 20, "start_col": 32, "start_line": 20 }
module HaclExample2 open Steel.ST.GenElim open Steel.ST.C.Types open Steel.C.Typenat open Steel.C.Typestring module SZ = FStar.SizeT module U64 = FStar.UInt64 (** In this file we demonstrate how Steel could be used to manipulate the following data type used in Hacl*: https://github.com/project-everest/hacl-star/blob/master/code/poly1305/Hacl.Impl.Poly1305.fsti#L18 This Low* definition amounts to the struct definition struct poly1305_ctx { uint64_t limbs[5]; uint64_t precomp[20]; }; and, with our new model of structs and arrays and pointer-to-field, can be expresesd directly in Steel. See PointStruct.fst for more detailed explanations of the various definitions needed below. *)
{ "checked_file": "/", "dependencies": [ "Steel.ST.GenElim.fsti.checked", "Steel.ST.C.Types.fst.checked", "Steel.C.Typestring.fsti.checked", "Steel.C.Typenat.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "HaclExample2.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": false, "full_module": "Steel.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Steel.C.Typenat", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.normalize", "Steel.C.Typenat.nat_t_of_nat" ]
[]
false
false
false
true
true
let twenty =
normalize (nat_t_of_nat 20)
false
Vale.X64.Leakage_s.fst
Vale.X64.Leakage_s.isConstantTimeGivenStates
val isConstantTimeGivenStates : code: Vale.X64.Machine_Semantics_s.code -> fuel: Prims.nat -> ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
let isConstantTimeGivenStates (code:code) (fuel:nat) (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in ( (Some? r1) /\ (Some? r2) /\ s1.ms_ok /\ (Some?.v r1).ms_ok /\ s2.ms_ok /\ (Some?.v r2).ms_ok /\ constTimeInvariant ts s1 s2 ) ==> (Some?.v r1).ms_trace = (Some?.v r2).ms_trace
{ "file_name": "vale/specs/hardware/Vale.X64.Leakage_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 74, "start_col": 0, "start_line": 67 }
module Vale.X64.Leakage_s open FStar.Mul open Vale.Arch.HeapTypes_s open Vale.Arch.Heap open Vale.X64.Machine_s open Vale.X64.Machine_Semantics_s module F = FStar.FunctionalExtensionality type reg_taint = F.restricted_t reg (fun _ -> taint) noeq type leakage_taints = | LeakageTaints: regTaint: reg_taint -> flagsTaint: taint -> cfFlagsTaint: taint -> ofFlagsTaint: taint -> leakage_taints let publicFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = ts.flagsTaint = Public ==> (s1.ms_flags == s2.ms_flags) let publicCfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.cfFlagsTaint ==> (cf s1.ms_flags = cf s2.ms_flags) let publicOfFlagValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = Public? ts.ofFlagsTaint ==> (overflow s1.ms_flags = overflow s2.ms_flags) let publicRegisterValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = forall r.{:pattern ts.regTaint r \/ s1.ms_regs r \/ s2.ms_regs r} ts.regTaint r = Public ==> (s1.ms_regs r = s2.ms_regs r) let publicMemValueIsSame (mem1 mem2:machine_heap) (memTaint1 memTaint2:Map.t int taint) (x:int) = (Public? (memTaint1.[x]) || Public? (memTaint2.[x])) ==> mem1.[x] == mem2.[x] let publicMemValuesAreSame (s1:machine_state) (s2:machine_state) = forall x.{:pattern (heap_taint s1.ms_heap).[x] \/ (heap_taint s2.ms_heap).[x] \/ (heap_get s1.ms_heap).[x] \/ (heap_get s2.ms_heap).[x]} publicMemValueIsSame (heap_get s1.ms_heap) (heap_get s2.ms_heap) (heap_taint s1.ms_heap) (heap_taint s2.ms_heap) x let publicStackValueIsSame (stack1 stack2:machine_heap) (stackTaint1 stackTaint2:Map.t int taint) (x:int) = (Public? (stackTaint1.[x]) || Public? (stackTaint2.[x])) ==> stack1.[x] == stack2.[x] let publicStackValuesAreSame (s1:machine_state) (s2:machine_state) = let Machine_stack _ stack1 = s1.ms_stack in let Machine_stack _ stack2 = s2.ms_stack in forall x.{:pattern s1.ms_stackTaint.[x] \/ s2.ms_stackTaint.[x] \/ stack1.[x] \/ stack2.[x]} publicStackValueIsSame stack1 stack2 s1.ms_stackTaint s2.ms_stackTaint x let publicValuesAreSame (ts:leakage_taints) (s1:machine_state) (s2:machine_state) = publicRegisterValuesAreSame ts s1 s2 /\ publicFlagValuesAreSame ts s1 s2 /\ publicCfFlagValuesAreSame ts s1 s2 /\ publicOfFlagValuesAreSame ts s1 s2 /\ publicMemValuesAreSame s1 s2 /\ publicStackValuesAreSame s1 s2 let constTimeInvariant (ts:leakage_taints) (s:machine_state) (s':machine_state) = publicValuesAreSame ts s s' /\ s.ms_trace = s'.ms_trace
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Leakage_s.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
code: Vale.X64.Machine_Semantics_s.code -> fuel: Prims.nat -> ts: Vale.X64.Leakage_s.leakage_taints -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Machine_Semantics_s.code", "Prims.nat", "Vale.X64.Leakage_s.leakage_taints", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "FStar.Pervasives.Native.__proj__Some__item__v", "Vale.X64.Leakage_s.constTimeInvariant", "Prims.op_Equality", "Prims.list", "Vale.X64.Machine_s.observation", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_trace", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Prims.logical" ]
[]
false
false
false
true
true
let isConstantTimeGivenStates (code: code) (fuel: nat) (ts: leakage_taints) (s1 s2: machine_state) =
let r1 = machine_eval_code code fuel s1 in let r2 = machine_eval_code code fuel s2 in ((Some? r1) /\ (Some? r2) /\ s1.ms_ok /\ (Some?.v r1).ms_ok /\ s2.ms_ok /\ (Some?.v r2).ms_ok /\ constTimeInvariant ts s1 s2) ==> (Some?.v r1).ms_trace = (Some?.v r2).ms_trace
false
IMSTsub.fst
IMSTsub.idx
val idx (#a: Type) (s: Type0) (rel: preorder s) (wp: st_wp' a s) : st_wp a
val idx (#a: Type) (s: Type0) (rel: preorder s) (wp: st_wp' a s) : st_wp a
let idx (#a:Type) (s:Type0) (rel:preorder s) (wp:st_wp' a s) : st_wp a = fun s' rel' post s0 -> s == s' /\ (forall x y . rel x y ==> rel' x y) /\ wp post s0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 103, "start_col": 0, "start_line": 102 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) //using idx instead of (><) to avoid complicating things with dependent pairs (mixfix operators, anyone?)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Type0 -> rel: FStar.Preorder.preorder s -> wp: IMSTsub.st_wp' a s -> IMSTsub.st_wp a
Prims.Tot
[ "total" ]
[]
[ "FStar.Preorder.preorder", "IMSTsub.st_wp'", "FStar.Pervasives.st_post_h", "Prims.l_and", "Prims.eq2", "Prims.l_Forall", "Prims.l_imp", "IMSTsub.st_wp" ]
[]
false
false
false
true
false
let idx (#a: Type) (s: Type0) (rel: preorder s) (wp: st_wp' a s) : st_wp a =
fun s' rel' post s0 -> s == s' /\ (forall x y. rel x y ==> rel' x y) /\ wp post s0
false
IMSTsub.fst
IMSTsub.nat_rel
val nat_rel:preorder nat
val nat_rel:preorder nat
let nat_rel : preorder nat = nat_rel'
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 127, "start_col": 0, "start_line": 127 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) //using idx instead of (><) to avoid complicating things with dependent pairs (mixfix operators, anyone?) unfold let idx (#a:Type) (s:Type0) (rel:preorder s) (wp:st_wp' a s) : st_wp a = fun s' rel' post s0 -> s == s' /\ (forall x y . rel x y ==> rel' x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s (idx s rel (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit (idx s rel (fun p s0 -> rel s0 s1 /\ p () s1)) let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p assume val witness (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ q s0 /\ (witnessed #s #rel q ==> p () s0))) assume val recall (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ witnessed #s #rel q /\ (q s0 ==> p () s0))) (* Some sample code *) let nat_rel' : relation nat = fun i j -> i <= j
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Preorder.preorder Prims.nat
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.nat_rel'" ]
[]
false
false
false
true
false
let nat_rel:preorder nat =
nat_rel'
false
IMSTsub.fst
IMSTsub.eq_rel'
val eq_rel':relation nat
val eq_rel':relation nat
let eq_rel' : relation nat = fun i j -> i = j
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 130, "start_col": 0, "start_line": 129 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) //using idx instead of (><) to avoid complicating things with dependent pairs (mixfix operators, anyone?) unfold let idx (#a:Type) (s:Type0) (rel:preorder s) (wp:st_wp' a s) : st_wp a = fun s' rel' post s0 -> s == s' /\ (forall x y . rel x y ==> rel' x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s (idx s rel (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit (idx s rel (fun p s0 -> rel s0 s1 /\ p () s1)) let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p assume val witness (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ q s0 /\ (witnessed #s #rel q ==> p () s0))) assume val recall (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ witnessed #s #rel q /\ (q s0 ==> p () s0))) (* Some sample code *) let nat_rel' : relation nat = fun i j -> i <= j let nat_rel : preorder nat = nat_rel'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Preorder.relation Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_Equality" ]
[]
false
false
false
true
false
let eq_rel':relation nat =
fun i j -> i = j
false
IMSTsub.fst
IMSTsub.eq_rel
val eq_rel:preorder nat
val eq_rel:preorder nat
let eq_rel : preorder nat = eq_rel'
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 132, "start_col": 0, "start_line": 132 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) //using idx instead of (><) to avoid complicating things with dependent pairs (mixfix operators, anyone?) unfold let idx (#a:Type) (s:Type0) (rel:preorder s) (wp:st_wp' a s) : st_wp a = fun s' rel' post s0 -> s == s' /\ (forall x y . rel x y ==> rel' x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s (idx s rel (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit (idx s rel (fun p s0 -> rel s0 s1 /\ p () s1)) let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p assume val witness (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ q s0 /\ (witnessed #s #rel q ==> p () s0))) assume val recall (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ witnessed #s #rel q /\ (q s0 ==> p () s0))) (* Some sample code *) let nat_rel' : relation nat = fun i j -> i <= j let nat_rel : preorder nat = nat_rel' let eq_rel' : relation nat = fun i j -> i = j
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Preorder.preorder Prims.nat
Prims.Tot
[ "total" ]
[]
[ "IMSTsub.eq_rel'" ]
[]
false
false
false
true
false
let eq_rel:preorder nat =
eq_rel'
false
HaclExample2.fst
HaclExample2.comp_name
val comp_name : Type0
let comp_name = normalize (mk_string_t "HaclExample2.comp")
{ "file_name": "share/steel/examples/steelc/HaclExample2.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 91, "end_line": 21, "start_col": 32, "start_line": 21 }
module HaclExample2 open Steel.ST.GenElim open Steel.ST.C.Types open Steel.C.Typenat open Steel.C.Typestring module SZ = FStar.SizeT module U64 = FStar.UInt64 (** In this file we demonstrate how Steel could be used to manipulate the following data type used in Hacl*: https://github.com/project-everest/hacl-star/blob/master/code/poly1305/Hacl.Impl.Poly1305.fsti#L18 This Low* definition amounts to the struct definition struct poly1305_ctx { uint64_t limbs[5]; uint64_t precomp[20]; }; and, with our new model of structs and arrays and pointer-to-field, can be expresesd directly in Steel. See PointStruct.fst for more detailed explanations of the various definitions needed below. *) noextract inline_for_extraction let five = normalize (nat_t_of_nat 5)
{ "checked_file": "/", "dependencies": [ "Steel.ST.GenElim.fsti.checked", "Steel.ST.C.Types.fst.checked", "Steel.C.Typestring.fsti.checked", "Steel.C.Typenat.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "HaclExample2.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": false, "full_module": "Steel.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Steel.C.Typenat", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.normalize", "Steel.C.Typestring.mk_string_t" ]
[]
false
false
false
true
true
let comp_name =
normalize (mk_string_t "HaclExample2.comp")
false
HaclExample2.fst
HaclExample2.comp
val comp : Steel.ST.C.Types.Base.typedef (Steel.ST.C.Types.Struct.struct_t0 HaclExample2.comp_name "HaclExample2.comp" HaclExample2.comp_fields)
let comp = struct0 comp_name "HaclExample2.comp" comp_fields
{ "file_name": "share/steel/examples/steelc/HaclExample2.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 60, "end_line": 33, "start_col": 0, "start_line": 33 }
module HaclExample2 open Steel.ST.GenElim open Steel.ST.C.Types open Steel.C.Typenat open Steel.C.Typestring module SZ = FStar.SizeT module U64 = FStar.UInt64 (** In this file we demonstrate how Steel could be used to manipulate the following data type used in Hacl*: https://github.com/project-everest/hacl-star/blob/master/code/poly1305/Hacl.Impl.Poly1305.fsti#L18 This Low* definition amounts to the struct definition struct poly1305_ctx { uint64_t limbs[5]; uint64_t precomp[20]; }; and, with our new model of structs and arrays and pointer-to-field, can be expresesd directly in Steel. See PointStruct.fst for more detailed explanations of the various definitions needed below. *) noextract inline_for_extraction let five = normalize (nat_t_of_nat 5) noextract inline_for_extraction let twenty = normalize (nat_t_of_nat 20) noextract inline_for_extraction let comp_name = normalize (mk_string_t "HaclExample2.comp") noextract inline_for_extraction [@@norm_field_attr] let comp_fields = field_description_cons "limbs" (base_array0 five (scalar U64.t) 5sz) ( field_description_cons "precomp" (base_array0 twenty (scalar U64.t) 20sz) ( field_description_nil ))
{ "checked_file": "/", "dependencies": [ "Steel.ST.GenElim.fsti.checked", "Steel.ST.C.Types.fst.checked", "Steel.C.Typestring.fsti.checked", "Steel.C.Typenat.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "HaclExample2.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": false, "full_module": "Steel.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Steel.C.Typenat", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Steel.ST.C.Types.Base.typedef (Steel.ST.C.Types.Struct.struct_t0 HaclExample2.comp_name "HaclExample2.comp" HaclExample2.comp_fields)
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.C.Types.Struct.struct0", "HaclExample2.comp_name", "Steel.ST.C.Types.Fields.field_t_cons", "Steel.C.Typestring.string_cons", "Steel.C.Typestring.cl", "Steel.C.Typestring.ci", "Steel.C.Typestring.cm", "Steel.C.Typestring.cb", "Steel.C.Typestring.cs", "Steel.C.Typestring.string_nil", "Steel.ST.C.Types.Array.base_array_t", "Steel.ST.C.Types.Scalar.scalar_t", "FStar.UInt64.t", "HaclExample2.five", "FStar.SizeT.__uint_to_t", "Steel.C.Typestring.cp", "Steel.C.Typestring.cr", "Steel.C.Typestring.ce", "Steel.C.Typestring.cc", "Steel.C.Typestring.co", "HaclExample2.twenty", "Steel.ST.C.Types.Fields.field_t_nil", "HaclExample2.comp_fields" ]
[]
false
false
false
false
false
let comp =
struct0 comp_name "HaclExample2.comp" comp_fields
false
IMSTsub.fst
IMSTsub.h
val h: Prims.unit -> IMST nat (idx nat nat_rel (fun p s0 -> forall s1. s1 > s0 ==> p s1 s1))
val h: Prims.unit -> IMST nat (idx nat nat_rel (fun p s0 -> forall s1. s1 > s0 ==> p s1 s1))
let h () : IMST nat (idx nat nat_rel (fun p s0 -> forall s1 . s1 > s0 ==> p s1 s1)) = let s0 = get #nat #eq_rel () in put #nat #eq_rel s0; put #nat #nat_rel (s0 + 1); let s1 = get #nat #eq_rel () in s1
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 6, "end_line": 168, "start_col": 0, "start_line": 162 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) //using idx instead of (><) to avoid complicating things with dependent pairs (mixfix operators, anyone?) unfold let idx (#a:Type) (s:Type0) (rel:preorder s) (wp:st_wp' a s) : st_wp a = fun s' rel' post s0 -> s == s' /\ (forall x y . rel x y ==> rel' x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s (idx s rel (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit (idx s rel (fun p s0 -> rel s0 s1 /\ p () s1)) let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p assume val witness (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ q s0 /\ (witnessed #s #rel q ==> p () s0))) assume val recall (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ witnessed #s #rel q /\ (q s0 ==> p () s0))) (* Some sample code *) let nat_rel' : relation nat = fun i j -> i <= j let nat_rel : preorder nat = nat_rel' let eq_rel' : relation nat = fun i j -> i = j let eq_rel : preorder nat = eq_rel' open FStar.Mul let f () : IMST unit (idx nat nat_rel (fun p s0 -> p () s0)) = () // without setting unfold for lift_div_imst this fails let g () : IMST nat (idx nat nat_rel (fun p s0 -> forall s1 . s1 > s0 ==> p s0 s1)) = let s0 = get #nat #nat_rel () in put #nat #nat_rel (s0 + 1); let s1 = get #nat #nat_rel () in assert (s1 > 0); witness #nat #nat_rel (fun n -> n > 0); put #nat #nat_rel (s1 * 42); recall #nat #nat_rel (fun n -> n > 0); let s2 = get #nat #nat_rel () in assert (s2 > 0); witness #nat #eq_rel (fun n -> n = s2); put #nat #nat_rel (s1 * 43); recall #nat #eq_rel (fun n -> n = s2); let s3 = get #nat #nat_rel () in assert (s1 > 0); assert (s2 = s1 * 42); assert (s3 = s1 * 43); assert (s3 = s2); assert (False); // WHOOPS!!! s0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> IMSTsub.IMST Prims.nat
IMSTsub.IMST
[]
[]
[ "Prims.unit", "Prims.nat", "IMSTsub.get", "IMSTsub.eq_rel", "IMSTsub.put", "IMSTsub.nat_rel", "Prims.op_Addition", "IMSTsub.idx", "Prims.int", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "IMSTsub.st_post", "Prims.l_Forall", "Prims.l_imp", "Prims.op_GreaterThan" ]
[]
false
true
false
false
false
let h () : IMST nat (idx nat nat_rel (fun p s0 -> forall s1. s1 > s0 ==> p s1 s1)) =
let s0 = get #nat #eq_rel () in put #nat #eq_rel s0; put #nat #nat_rel (s0 + 1); let s1 = get #nat #eq_rel () in s1
false
IMSTsub.fst
IMSTsub.g
val g: Prims.unit -> IMST nat (idx nat nat_rel (fun p s0 -> forall s1. s1 > s0 ==> p s0 s1))
val g: Prims.unit -> IMST nat (idx nat nat_rel (fun p s0 -> forall s1. s1 > s0 ==> p s0 s1))
let g () : IMST nat (idx nat nat_rel (fun p s0 -> forall s1 . s1 > s0 ==> p s0 s1)) = let s0 = get #nat #nat_rel () in put #nat #nat_rel (s0 + 1); let s1 = get #nat #nat_rel () in assert (s1 > 0); witness #nat #nat_rel (fun n -> n > 0); put #nat #nat_rel (s1 * 42); recall #nat #nat_rel (fun n -> n > 0); let s2 = get #nat #nat_rel () in assert (s2 > 0); witness #nat #eq_rel (fun n -> n = s2); put #nat #nat_rel (s1 * 43); recall #nat #eq_rel (fun n -> n = s2); let s3 = get #nat #nat_rel () in assert (s1 > 0); assert (s2 = s1 * 42); assert (s3 = s1 * 43); assert (s3 = s2); assert (False); // WHOOPS!!! s0
{ "file_name": "examples/indexed_effects/IMSTsub.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 6, "end_line": 160, "start_col": 0, "start_line": 140 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMSTsub (* A proof-of-concept example of indexed effects (the state-and-preorder indexed, ordered MST effect) encoded using standard F* WP calculi *) (* WARNING: as demonstrated in the function (g) below, the proposition of subtyping preorders + using witness/recall leads to an inconsistency! *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> s -> M (a * s) //pi-types currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) //using idx instead of (><) to avoid complicating things with dependent pairs (mixfix operators, anyone?) unfold let idx (#a:Type) (s:Type0) (rel:preorder s) (wp:st_wp' a s) : st_wp a = fun s' rel' post s0 -> s == s' /\ (forall x y . rel x y ==> rel' x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s (idx s rel (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit (idx s rel (fun p s0 -> rel s0 s1 /\ p () s1)) let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p assume val witness (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ q s0 /\ (witnessed #s #rel q ==> p () s0))) assume val recall (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit (idx s rel (fun p s0 -> stable q rel /\ witnessed #s #rel q /\ (q s0 ==> p () s0))) (* Some sample code *) let nat_rel' : relation nat = fun i j -> i <= j let nat_rel : preorder nat = nat_rel' let eq_rel' : relation nat = fun i j -> i = j let eq_rel : preorder nat = eq_rel' open FStar.Mul let f () : IMST unit (idx nat nat_rel (fun p s0 -> p () s0)) = () // without setting unfold for lift_div_imst this fails
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMSTsub.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> IMSTsub.IMST Prims.nat
IMSTsub.IMST
[]
[]
[ "Prims.unit", "Prims._assert", "Prims.l_False", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "Prims.int", "FStar.Mul.op_Star", "Prims.op_GreaterThan", "IMSTsub.get", "IMSTsub.nat_rel", "IMSTsub.recall", "IMSTsub.eq_rel", "IMSTsub.put", "IMSTsub.witness", "Prims.op_Addition", "IMSTsub.idx", "IMSTsub.st_post", "Prims.l_Forall", "Prims.op_GreaterThanOrEqual", "Prims.l_imp" ]
[]
false
true
false
false
false
let g () : IMST nat (idx nat nat_rel (fun p s0 -> forall s1. s1 > s0 ==> p s0 s1)) =
let s0 = get #nat #nat_rel () in put #nat #nat_rel (s0 + 1); let s1 = get #nat #nat_rel () in assert (s1 > 0); witness #nat #nat_rel (fun n -> n > 0); put #nat #nat_rel (s1 * 42); recall #nat #nat_rel (fun n -> n > 0); let s2 = get #nat #nat_rel () in assert (s2 > 0); witness #nat #eq_rel (fun n -> n = s2); put #nat #nat_rel (s1 * 43); recall #nat #eq_rel (fun n -> n = s2); let s3 = get #nat #nat_rel () in assert (s1 > 0); assert (s2 = s1 * 42); assert (s3 = s1 * 43); assert (s3 = s2); assert (False); s0
false
Steel.ST.PCMReference.fsti
Steel.ST.PCMReference.pts_to
val pts_to : r: Steel.Memory.ref a pcm -> v: a -> Steel.Effect.Common.vprop
let pts_to (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v:a) = to_vprop (pts_to r v)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 77, "end_line": 33, "start_col": 0, "start_line": 33 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.PCMReference open FStar.PCM open FStar.Ghost open Steel.ST.Util /// This module exposes the core PCM-based memory model defined in Steel.Memory /// as stateful Steel computations. #set-options "--ide_id_info_off" /// Lifting the pts_to separation logic, PCM-indexed predicate to a vprop. /// Its selector is non-informative (it is unit) [@@ __steel_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.PCMReference.fsti" }
[ { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a pcm -> v: a -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "FStar.PCM.pcm", "Steel.Memory.ref", "Steel.Effect.Common.to_vprop", "Steel.Memory.pts_to", "Steel.Effect.Common.vprop" ]
[]
false
false
false
false
false
let pts_to (#a: Type) (#pcm: pcm a) (r: ref a pcm) (v: a) =
to_vprop (pts_to r v)
false
Steel.ST.PCMReference.fsti
Steel.ST.PCMReference.fact_valid_compat
val fact_valid_compat : fact: Steel.Memory.stable_property pcm -> v: FStar.Ghost.erased a -> Type0
let fact_valid_compat (#a:Type) (#pcm:pcm a) (fact:stable_property pcm) (v:erased a) = squash (forall z. compatible pcm v z ==> fact z)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 52, "end_line": 128, "start_col": 0, "start_line": 125 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.PCMReference open FStar.PCM open FStar.Ghost open Steel.ST.Util /// This module exposes the core PCM-based memory model defined in Steel.Memory /// as stateful Steel computations. #set-options "--ide_id_info_off" /// Lifting the pts_to separation logic, PCM-indexed predicate to a vprop. /// Its selector is non-informative (it is unit) [@@ __steel_reduce__] unfold let pts_to (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v:a) = to_vprop (pts_to r v) let pts_to_not_null (#opened: _) (#t: Type) (#p: pcm t) (r: ref t p) (v: t) : STGhost unit opened (pts_to r v) (fun _ -> pts_to r v) True (fun _ -> r =!= null) = extract_fact (pts_to r v) (r =!= null) (fun m -> pts_to_not_null r v m) /// Reading the contents of reference [r] in memory. /// The returned value [v] is ensured to be compatible with respect /// to the PCM [pcm] with our current knowledge [v0] val read (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) : ST a (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v /\ True) /// Writing value [v1] in reference [r], as long as it is frame-preserving with our /// current knowledge [v0], and that [v1] is a refined value for the PCM [pcm] val write (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) (v1:a) : ST unit (pts_to r v0) (fun _ -> pts_to r v1) (requires frame_preserving pcm v0 v1 /\ pcm.refine v1) (ensures fun _ -> True) /// Allocates a new reference, initially storing value [x]. val alloc (#a:Type) (#pcm:pcm a) (x:a) : ST (ref a pcm) emp (fun r -> pts_to r x) (requires pcm.refine x) (ensures fun _ -> True) /// Frees reference [r], as long as we have exclusive ownership of [r] /// according to the governing PCM. /// Freeing here sets the value to the unit value of the PCM, one can manually /// call `drop` from Steel.Effect.Atomic to forget it entirely from the context val free (#a:Type) (#p:pcm a) (r:ref a p) (x:erased a) : ST unit (pts_to r x) (fun _ -> pts_to r p.p.one) (requires exclusive p x /\ p.refine p.p.one) (ensures fun _ -> True) /// Splits permission on reference [r], in a way that is compatible with the governing PCM. val split (#inames: _) (#a:Type) (#p:pcm a) (r:ref a p) (v:erased a) (v0:erased a) (v1:erased a) : STGhost unit inames (pts_to r v) (fun _ -> pts_to r v0 `star` pts_to r v1) (requires composable p v0 v1 /\ v == hide (op p v0 v1)) (ensures fun _ -> True) /// Gather permissions on reference [r] val gather (#inames: _) (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p) (v0:erased a) (v1:erased a) : STGhostT (_:unit{composable p v0 v1}) inames (pts_to r v0 `star` pts_to r v1) (fun _ -> pts_to r (op p v0 v1))
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.PCMReference.fsti" }
[ { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fact: Steel.Memory.stable_property pcm -> v: FStar.Ghost.erased a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.PCM.pcm", "Steel.Memory.stable_property", "FStar.Ghost.erased", "Prims.squash", "Prims.l_Forall", "Prims.l_imp", "FStar.PCM.compatible", "FStar.Ghost.reveal" ]
[]
false
false
false
false
true
let fact_valid_compat (#a: Type) (#pcm: pcm a) (fact: stable_property pcm) (v: erased a) =
squash (forall z. compatible pcm v z ==> fact z)
false
Spec.Hash.Lemmas.fst
Spec.Hash.Lemmas.block_length_smaller_than_max_input
val block_length_smaller_than_max_input (a:hash_alg) : Lemma (block_length a `less_than_max_input_length` a)
val block_length_smaller_than_max_input (a:hash_alg) : Lemma (block_length a `less_than_max_input_length` a)
let block_length_smaller_than_max_input (a:hash_alg) = normalize_term_spec(pow2 61 - 1); normalize_term_spec(pow2 125 - 1); normalize_term_spec(pow2 64 - 1)
{ "file_name": "specs/lemmas/Spec.Hash.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 210, "start_col": 0, "start_line": 207 }
module Spec.Hash.Lemmas module S = FStar.Seq open Lib.IntTypes open Spec.Agile.Hash open Spec.Hash.Definitions friend Spec.Agile.Hash (** Lemmas about the behavior of update_multi / update_last *) #push-options "--fuel 0 --ifuel 1 --z3rlimit 50" let update_multi_zero a h = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_zero (block_length a) (Spec.Agile.Hash.update a) h | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a / 8 in let f = Spec.SHA3.absorb_inner rateInBytes in Lib.Sequence.lemma_repeat_blocks_multi rateInBytes S.empty f h; let nb = 0 / rateInBytes in Lib.LoopCombinators.eq_repeati0 nb (Lib.Sequence.repeat_blocks_f rateInBytes S.empty f nb) h let update_multi_zero_blake a prevlen h = Lib.LoopCombinators.eq_repeati0 (0 / block_length a) (Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen S.empty) h #pop-options #push-options "--fuel 1" let update_multi_update (a: md_alg) (h: words_state a) (input: bytes_block a): Lemma (ensures (update_multi a h () input) == (update a h input)) = let h1 = update_multi a h () input in assert(h1 == Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h input); if S.length input = 0 then begin assert(h1 == h) end else begin let block, rem = Lib.UpdateMulti.split_block (block_length a) input 1 in let h2 = update a h block in assert(rem `Seq.equal` Seq.empty); assert(block `Seq.equal` input); let h3 = Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h2 rem in assert(h1 == h3) end #pop-options let update_multi_associative (a: hash_alg{not (is_blake a)}) (h: words_state a) (input1: bytes) (input2: bytes): Lemma (requires S.length input1 % block_length a == 0 /\ S.length input2 % block_length a == 0) (ensures ( let input = S.append input1 input2 in S.length input % block_length a == 0 /\ update_multi a (update_multi a h () input1) () input2 == update_multi a h () input)) = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_associative (block_length a) (Spec.Agile.Hash.update a) h input1 input2 | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a /8 in let f = Spec.SHA3.absorb_inner rateInBytes in let input = input1 `S.append` input2 in assert (input1 `S.equal` S.slice input 0 (S.length input1)); assert (input2 `S.equal` S.slice input (S.length input1) (S.length input)); Lib.Sequence.Lemmas.repeat_blocks_multi_split (block_length a) (S.length input1) input f h let lemma_blocki_aux1 (a:blake_alg) (s1 s2:bytes) (i:nat{i < S.length s1 / block_length a}) : Lemma (Spec.Blake2.get_blocki (to_blake_alg a) s1 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i) = assert (Spec.Blake2.get_blocki (to_blake_alg a) s1 i `S.equal` Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i) #push-options "--fuel 0 --ifuel 0 --z3rlimit 300" open FStar.Mul let lemma_blocki_aux2 (a:blake_alg) (s1 s2:bytes) (nb1 nb2:nat) (i:nat{i < nb2}) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a) (ensures Spec.Blake2.get_blocki (to_blake_alg a) s2 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) (i + nb1)) = let s = s1 `S.append` s2 in let a' = to_blake_alg a in calc (==) { Spec.Blake2.get_blocki a' s (i + nb1); (==) { } S.slice s ((i + nb1) * block_length a) ((i + nb1 + 1) * block_length a); (==) { } S.slice s (i * block_length a + nb1 * block_length a) ((i + 1) * block_length a + nb1 * block_length a); (==) { } S.slice s (i * block_length a + S.length s1) ((i + 1) * block_length a + S.length s1); (==) { S.slice_slice s (S.length s1) (S.length s) (i * block_length a) ((i+1) * block_length a) } S.slice (S.slice s (S.length s1) (S.length s)) (i * block_length a) ((i+1) * block_length a); (==) { S.append_slices s1 s2; assert (s2 `S.equal` S.slice s (S.length s1) (S.length s)) } S.slice s2 (i * block_length a) ((i+1) * block_length a); (==) { } Spec.Blake2.get_blocki a' s2 i; } let lemma_update_aux2 (a:blake_alg) (s1 s2:bytes) (nb1 nb2:nat) (prevlen1 prevlen2:nat) (i:nat{i < nb2}) (acc:words_state a) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a /\ prevlen1 % block_length a == 0 /\ prevlen2 = prevlen1 + S.length s1 /\ (S.length (S.append s1 s2) + prevlen1) `less_than_max_input_length` a) (ensures Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen1 (s1 `S.append` s2) (i + nb1) acc == Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen2 s2 i acc) = let s = s1 `S.append` s2 in let a' = to_blake_alg a in let open Spec.Blake2 in let f1 = blake2_update1 (to_blake_alg a) prevlen1 s in let f2 = blake2_update1 (to_blake_alg a) prevlen2 s2 in let totlen1 = prevlen1 + (i + nb1 + 1) * size_block a' in let totlen2 = prevlen2 + (i + 1) * size_block a' in // Proving totlen1 == totlen2 for the last calc step below calc (==) { totlen2; (==) { } prevlen2 + (i + 1) * block_length a; (==) { } prevlen1 + S.length s1 + (i + 1) * block_length a; (==) { } prevlen1 + nb1 * block_length a + (i + 1) * block_length a; (==) { Math.Lemmas.distributivity_add_left (i + 1) nb1 (block_length a) } prevlen1 + (i + 1 + nb1) * block_length a; (==) { } totlen1; }; calc (==) { f1 (i + nb1) acc; (==) { } blake2_update_block a' false totlen1 (get_blocki a' s (i + nb1)) acc; (==) { lemma_blocki_aux2 a s1 s2 nb1 nb2 i } blake2_update_block a' false totlen1 (get_blocki a' s2 i) acc; (==) { } f2 i acc; } let update_multi_associative_blake (a: blake_alg) (h: words_state a) (prevlen1: nat) (prevlen2: nat) (input1: bytes) (input2: bytes): Lemma (requires ( prevlen1 % block_length a == 0 /\ S.length input1 % block_length a == 0 /\ S.length input2 % block_length a == 0 /\ prevlen2 = prevlen1 + S.length input1 /\ update_multi_pre a prevlen1 (S.append input1 input2))) (ensures ( let input = S.append input1 input2 in S.length input % block_length a == 0 /\ update_multi_pre a prevlen1 input1 /\ update_multi_pre a prevlen2 input2 /\ update_multi a (update_multi a h prevlen1 input1) prevlen2 input2 == update_multi a h prevlen1 input)) = let input = S.append input1 input2 in let nb1 = S.length input1 / block_length a in let nb2 = S.length input2 / block_length a in let nb = S.length input / block_length a in let a' = to_blake_alg a in let f = Spec.Blake2.blake2_update1 a' prevlen1 input in let f1 = Spec.Blake2.blake2_update1 a' prevlen1 input1 in let f2 = Spec.Blake2.blake2_update1 a' prevlen2 input2 in let aux1 (i:nat{i < nb1}) (acc:words_state a) : Lemma (f i acc == f1 i acc) = lemma_blocki_aux1 a input1 input2 i in let open FStar.Mul in let aux2 (i:nat{i < nb2}) (acc:words_state a) : Lemma (f (i + nb1) acc == f2 i acc) = lemma_update_aux2 a input1 input2 nb1 nb2 prevlen1 prevlen2 i acc in let open Lib.LoopCombinators in let open Lib.Sequence.Lemmas in let fix = fixed_a (words_state a) in calc (==) { update_multi a h prevlen1 input; (==) { } repeati #(words_state a) nb f h; (==) { repeati_def nb f h } repeat_right 0 nb fix f h; (==) { repeat_right_plus 0 nb1 nb fix f h; repeati_def nb1 f h } repeat_right nb1 nb fix f (repeati nb1 f h); (==) { Classical.forall_intro_2 aux1; repeati_extensionality nb1 f f1 h } repeat_right nb1 nb fix f (update_multi a h prevlen1 input1); (==) { Classical.forall_intro_2 aux2; repeat_gen_right_extensionality nb2 nb1 fix fix f2 f (update_multi a h prevlen1 input1) } repeat_right 0 nb2 fix f2 (update_multi a h prevlen1 input1); (==) { repeati_def nb2 f2 (update_multi a h prevlen1 input1) } update_multi a (update_multi a h prevlen1 input1) prevlen2 input2; }
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Spec.Hash.Lemmas.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg -> FStar.Pervasives.Lemma (ensures Spec.Hash.Definitions.less_than_max_input_length (Spec.Hash.Definitions.block_length a) a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.hash_alg", "FStar.Pervasives.normalize_term_spec", "Prims.int", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit" ]
[]
true
false
true
false
false
let block_length_smaller_than_max_input (a: hash_alg) =
normalize_term_spec (pow2 61 - 1); normalize_term_spec (pow2 125 - 1); normalize_term_spec (pow2 64 - 1)
false
Hacl.Chacha20.Vec128.fst
Hacl.Chacha20.Vec128.double_round_128
val double_round_128 : Hacl.Meta.Chacha20.Vec.core32xn_double_round_higher_t Prims.l_True
let double_round_128 = core32xn_double_round_higher #4 True
{ "file_name": "code/chacha20/Hacl.Chacha20.Vec128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 59, "end_line": 7, "start_col": 0, "start_line": 7 }
module Hacl.Chacha20.Vec128 open Hacl.Meta.Chacha20.Vec [@CInline]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Meta.Chacha20.Vec.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20.Vec128.fst" }
[ { "abbrev": false, "full_module": "Hacl.Meta.Chacha20.Vec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Meta.Chacha20.Vec.core32xn_double_round_higher_t Prims.l_True
Prims.Tot
[ "total" ]
[]
[ "Hacl.Meta.Chacha20.Vec.core32xn_double_round_higher", "Prims.l_True" ]
[]
false
false
false
false
false
let double_round_128 =
core32xn_double_round_higher #4 True
false
Spec.Hash.Lemmas.fst
Spec.Hash.Lemmas.lemma_blocki_aux1
val lemma_blocki_aux1 (a: blake_alg) (s1 s2: bytes) (i: nat{i < S.length s1 / block_length a}) : Lemma (Spec.Blake2.get_blocki (to_blake_alg a) s1 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i)
val lemma_blocki_aux1 (a: blake_alg) (s1 s2: bytes) (i: nat{i < S.length s1 / block_length a}) : Lemma (Spec.Blake2.get_blocki (to_blake_alg a) s1 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i)
let lemma_blocki_aux1 (a:blake_alg) (s1 s2:bytes) (i:nat{i < S.length s1 / block_length a}) : Lemma (Spec.Blake2.get_blocki (to_blake_alg a) s1 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i) = assert (Spec.Blake2.get_blocki (to_blake_alg a) s1 i `S.equal` Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i)
{ "file_name": "specs/lemmas/Spec.Hash.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 126, "end_line": 77, "start_col": 0, "start_line": 75 }
module Spec.Hash.Lemmas module S = FStar.Seq open Lib.IntTypes open Spec.Agile.Hash open Spec.Hash.Definitions friend Spec.Agile.Hash (** Lemmas about the behavior of update_multi / update_last *) #push-options "--fuel 0 --ifuel 1 --z3rlimit 50" let update_multi_zero a h = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_zero (block_length a) (Spec.Agile.Hash.update a) h | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a / 8 in let f = Spec.SHA3.absorb_inner rateInBytes in Lib.Sequence.lemma_repeat_blocks_multi rateInBytes S.empty f h; let nb = 0 / rateInBytes in Lib.LoopCombinators.eq_repeati0 nb (Lib.Sequence.repeat_blocks_f rateInBytes S.empty f nb) h let update_multi_zero_blake a prevlen h = Lib.LoopCombinators.eq_repeati0 (0 / block_length a) (Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen S.empty) h #pop-options #push-options "--fuel 1" let update_multi_update (a: md_alg) (h: words_state a) (input: bytes_block a): Lemma (ensures (update_multi a h () input) == (update a h input)) = let h1 = update_multi a h () input in assert(h1 == Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h input); if S.length input = 0 then begin assert(h1 == h) end else begin let block, rem = Lib.UpdateMulti.split_block (block_length a) input 1 in let h2 = update a h block in assert(rem `Seq.equal` Seq.empty); assert(block `Seq.equal` input); let h3 = Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h2 rem in assert(h1 == h3) end #pop-options let update_multi_associative (a: hash_alg{not (is_blake a)}) (h: words_state a) (input1: bytes) (input2: bytes): Lemma (requires S.length input1 % block_length a == 0 /\ S.length input2 % block_length a == 0) (ensures ( let input = S.append input1 input2 in S.length input % block_length a == 0 /\ update_multi a (update_multi a h () input1) () input2 == update_multi a h () input)) = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_associative (block_length a) (Spec.Agile.Hash.update a) h input1 input2 | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a /8 in let f = Spec.SHA3.absorb_inner rateInBytes in let input = input1 `S.append` input2 in assert (input1 `S.equal` S.slice input 0 (S.length input1)); assert (input2 `S.equal` S.slice input (S.length input1) (S.length input)); Lib.Sequence.Lemmas.repeat_blocks_multi_split (block_length a) (S.length input1) input f h
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Spec.Hash.Lemmas.fst" }
[ { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.blake_alg -> s1: Spec.Hash.Definitions.bytes -> s2: Spec.Hash.Definitions.bytes -> i: Prims.nat{i < FStar.Seq.Base.length s1 / Spec.Hash.Definitions.block_length a} -> FStar.Pervasives.Lemma (ensures Spec.Blake2.get_blocki (Spec.Hash.Definitions.to_blake_alg a) s1 i == Spec.Blake2.get_blocki (Spec.Hash.Definitions.to_blake_alg a) (FStar.Seq.Base.append s1 s2) i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.blake_alg", "Spec.Hash.Definitions.bytes", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "FStar.Seq.Base.length", "Lib.IntTypes.uint8", "Spec.Hash.Definitions.block_length", "Prims._assert", "FStar.Seq.Base.equal", "Spec.Blake2.get_blocki", "Spec.Hash.Definitions.to_blake_alg", "FStar.Seq.Base.append", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Spec.Blake2.Definitions.block_s", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_blocki_aux1 (a: blake_alg) (s1 s2: bytes) (i: nat{i < S.length s1 / block_length a}) : Lemma (Spec.Blake2.get_blocki (to_blake_alg a) s1 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i) =
assert ((Spec.Blake2.get_blocki (to_blake_alg a) s1 i) `S.equal` (Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i))
false
Hacl.Chacha20.Vec128.fst
Hacl.Chacha20.Vec128.chacha20_encrypt_128
val chacha20_encrypt_128 : Hacl.Meta.Chacha20.Vec.vec_chacha20_encrypt_higher_t Prims.l_True
let chacha20_encrypt_128 = vec_chacha20_encrypt_higher #4 True chacha20_init_128 chacha20_core_128
{ "file_name": "code/chacha20/Hacl.Chacha20.Vec128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 98, "end_line": 15, "start_col": 0, "start_line": 15 }
module Hacl.Chacha20.Vec128 open Hacl.Meta.Chacha20.Vec [@CInline] private let double_round_128 = core32xn_double_round_higher #4 True [@CInline] private let chacha20_core_128 = vec_chacha20_core_higher #4 True double_round_128 [@CInline] private let chacha20_init_128 = Hacl.Impl.Chacha20.Vec.chacha20_init #4
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Meta.Chacha20.Vec.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20.Vec128.fst" }
[ { "abbrev": false, "full_module": "Hacl.Meta.Chacha20.Vec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Meta.Chacha20.Vec.vec_chacha20_encrypt_higher_t Prims.l_True
Prims.Tot
[ "total" ]
[]
[ "Hacl.Meta.Chacha20.Vec.vec_chacha20_encrypt_higher", "Prims.l_True", "Hacl.Chacha20.Vec128.chacha20_init_128", "Hacl.Chacha20.Vec128.chacha20_core_128" ]
[]
false
false
false
false
false
let chacha20_encrypt_128 =
vec_chacha20_encrypt_higher #4 True chacha20_init_128 chacha20_core_128
false
Hacl.Chacha20.Vec128.fst
Hacl.Chacha20.Vec128.chacha20_decrypt_128
val chacha20_decrypt_128 : Hacl.Meta.Chacha20.Vec.vec_chacha20_decrypt_higher_t Prims.l_True
let chacha20_decrypt_128 = vec_chacha20_decrypt_higher #4 True chacha20_init_128 chacha20_core_128
{ "file_name": "code/chacha20/Hacl.Chacha20.Vec128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 98, "end_line": 16, "start_col": 0, "start_line": 16 }
module Hacl.Chacha20.Vec128 open Hacl.Meta.Chacha20.Vec [@CInline] private let double_round_128 = core32xn_double_round_higher #4 True [@CInline] private let chacha20_core_128 = vec_chacha20_core_higher #4 True double_round_128 [@CInline] private let chacha20_init_128 = Hacl.Impl.Chacha20.Vec.chacha20_init #4
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Meta.Chacha20.Vec.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20.Vec128.fst" }
[ { "abbrev": false, "full_module": "Hacl.Meta.Chacha20.Vec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Meta.Chacha20.Vec.vec_chacha20_decrypt_higher_t Prims.l_True
Prims.Tot
[ "total" ]
[]
[ "Hacl.Meta.Chacha20.Vec.vec_chacha20_decrypt_higher", "Prims.l_True", "Hacl.Chacha20.Vec128.chacha20_init_128", "Hacl.Chacha20.Vec128.chacha20_core_128" ]
[]
false
false
false
false
false
let chacha20_decrypt_128 =
vec_chacha20_decrypt_higher #4 True chacha20_init_128 chacha20_core_128
false
Spec.Hash.Lemmas.fst
Spec.Hash.Lemmas.update_multi_zero_blake
val update_multi_zero_blake (a: hash_alg { is_blake a } ) (prevlen: extra_state a) (h: words_state a): Lemma (requires (update_multi_pre a prevlen S.empty)) (ensures (update_multi a h prevlen S.empty == h))
val update_multi_zero_blake (a: hash_alg { is_blake a } ) (prevlen: extra_state a) (h: words_state a): Lemma (requires (update_multi_pre a prevlen S.empty)) (ensures (update_multi a h prevlen S.empty == h))
let update_multi_zero_blake a prevlen h = Lib.LoopCombinators.eq_repeati0 (0 / block_length a) (Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen S.empty) h
{ "file_name": "specs/lemmas/Spec.Hash.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 118, "end_line": 28, "start_col": 0, "start_line": 27 }
module Spec.Hash.Lemmas module S = FStar.Seq open Lib.IntTypes open Spec.Agile.Hash open Spec.Hash.Definitions friend Spec.Agile.Hash (** Lemmas about the behavior of update_multi / update_last *) #push-options "--fuel 0 --ifuel 1 --z3rlimit 50" let update_multi_zero a h = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_zero (block_length a) (Spec.Agile.Hash.update a) h | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a / 8 in let f = Spec.SHA3.absorb_inner rateInBytes in Lib.Sequence.lemma_repeat_blocks_multi rateInBytes S.empty f h; let nb = 0 / rateInBytes in Lib.LoopCombinators.eq_repeati0 nb (Lib.Sequence.repeat_blocks_f rateInBytes S.empty f nb) h
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Spec.Hash.Lemmas.fst" }
[ { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.Hash.Definitions.is_blake a} -> prevlen: Spec.Hash.Definitions.extra_state a -> h: Spec.Hash.Definitions.words_state a -> FStar.Pervasives.Lemma (requires Spec.Agile.Hash.update_multi_pre a prevlen FStar.Seq.Base.empty) (ensures Spec.Agile.Hash.update_multi a h prevlen FStar.Seq.Base.empty == h)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.Hash.Definitions.is_blake", "Spec.Hash.Definitions.extra_state", "Spec.Hash.Definitions.words_state", "Lib.LoopCombinators.eq_repeati0", "Spec.Blake2.Definitions.state", "Spec.Hash.Definitions.to_blake_alg", "Prims.op_Division", "Spec.Hash.Definitions.block_length", "Spec.Blake2.blake2_update1", "FStar.Seq.Base.empty", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit" ]
[]
true
false
true
false
false
let update_multi_zero_blake a prevlen h =
Lib.LoopCombinators.eq_repeati0 (0 / block_length a) (Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen S.empty) h
false
Spec.Hash.Lemmas.fst
Spec.Hash.Lemmas.update_multi_update
val update_multi_update (a: md_alg) (h: words_state a) (input: bytes_block a): Lemma (ensures (update_multi a h () input == update a h input))
val update_multi_update (a: md_alg) (h: words_state a) (input: bytes_block a): Lemma (ensures (update_multi a h () input == update a h input))
let update_multi_update (a: md_alg) (h: words_state a) (input: bytes_block a): Lemma (ensures (update_multi a h () input) == (update a h input)) = let h1 = update_multi a h () input in assert(h1 == Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h input); if S.length input = 0 then begin assert(h1 == h) end else begin let block, rem = Lib.UpdateMulti.split_block (block_length a) input 1 in let h2 = update a h block in assert(rem `Seq.equal` Seq.empty); assert(block `Seq.equal` input); let h3 = Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h2 rem in assert(h1 == h3) end
{ "file_name": "specs/lemmas/Spec.Hash.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 7, "end_line": 49, "start_col": 0, "start_line": 32 }
module Spec.Hash.Lemmas module S = FStar.Seq open Lib.IntTypes open Spec.Agile.Hash open Spec.Hash.Definitions friend Spec.Agile.Hash (** Lemmas about the behavior of update_multi / update_last *) #push-options "--fuel 0 --ifuel 1 --z3rlimit 50" let update_multi_zero a h = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_zero (block_length a) (Spec.Agile.Hash.update a) h | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a / 8 in let f = Spec.SHA3.absorb_inner rateInBytes in Lib.Sequence.lemma_repeat_blocks_multi rateInBytes S.empty f h; let nb = 0 / rateInBytes in Lib.LoopCombinators.eq_repeati0 nb (Lib.Sequence.repeat_blocks_f rateInBytes S.empty f nb) h let update_multi_zero_blake a prevlen h = Lib.LoopCombinators.eq_repeati0 (0 / block_length a) (Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen S.empty) h #pop-options
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Spec.Hash.Lemmas.fst" }
[ { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.md_alg -> h: Spec.Hash.Definitions.words_state a -> input: Spec.Hash.Definitions.bytes_block a -> FStar.Pervasives.Lemma (ensures Spec.Agile.Hash.update_multi a h () input == Spec.Agile.Hash.update a h input)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.md_alg", "Spec.Hash.Definitions.words_state", "Spec.Hash.Definitions.bytes_block", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Lib.IntTypes.uint8", "Prims._assert", "Prims.eq2", "Prims.bool", "FStar.Seq.Base.seq", "Lib.UpdateMulti.uint8", "Lib.UpdateMulti.mk_update_multi", "Spec.Hash.Definitions.block_length", "Spec.Agile.Hash.update", "Prims.unit", "FStar.Seq.Base.equal", "FStar.Seq.Base.empty", "FStar.Pervasives.Native.tuple2", "Lib.UpdateMulti.split_block", "Spec.Agile.Hash.update_multi", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let update_multi_update (a: md_alg) (h: words_state a) (input: bytes_block a) : Lemma (ensures (update_multi a h () input) == (update a h input)) =
let h1 = update_multi a h () input in assert (h1 == Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h input); if S.length input = 0 then assert (h1 == h) else let block, rem = Lib.UpdateMulti.split_block (block_length a) input 1 in let h2 = update a h block in assert (rem `Seq.equal` Seq.empty); assert (block `Seq.equal` input); let h3 = Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h2 rem in assert (h1 == h3)
false
Hacl.Chacha20.Vec128.fst
Hacl.Chacha20.Vec128.chacha20_init_128
val chacha20_init_128 : ctx: Hacl.Impl.Chacha20.Core32xN.state 4 -> k: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> n: Lib.Buffer.lbuffer Lib.IntTypes.uint8 12ul -> ctr0: Lib.IntTypes.size_t -> FStar.HyperStack.ST.Stack Prims.unit
let chacha20_init_128 = Hacl.Impl.Chacha20.Vec.chacha20_init #4
{ "file_name": "code/chacha20/Hacl.Chacha20.Vec128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 13, "start_col": 0, "start_line": 13 }
module Hacl.Chacha20.Vec128 open Hacl.Meta.Chacha20.Vec [@CInline] private let double_round_128 = core32xn_double_round_higher #4 True [@CInline] private let chacha20_core_128 = vec_chacha20_core_higher #4 True double_round_128 [@CInline]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Meta.Chacha20.Vec.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20.Vec128.fst" }
[ { "abbrev": false, "full_module": "Hacl.Meta.Chacha20.Vec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ctx: Hacl.Impl.Chacha20.Core32xN.state 4 -> k: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> n: Lib.Buffer.lbuffer Lib.IntTypes.uint8 12ul -> ctr0: Lib.IntTypes.size_t -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Chacha20.Vec.chacha20_init" ]
[]
false
true
false
false
false
let chacha20_init_128 =
Hacl.Impl.Chacha20.Vec.chacha20_init #4
false
FStar.Tactics.Canon.fst
FStar.Tactics.Canon.step_lemma
val step_lemma (lem: term) : Tac unit
val step_lemma (lem: term) : Tac unit
let step_lemma (lem : term) : Tac unit = step (fun () -> apply_lemma lem)
{ "file_name": "ulib/FStar.Tactics.Canon.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 131, "start_col": 0, "start_line": 130 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Canon open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Reflection.V2.Arith open FStar.Mul module O = FStar.Order private val distr : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y + z) == x * y + x * z) private let distr #x #y #z = () private val distl : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) * z == x * z + y * z) private let distl #x #y #z = () private val ass_plus_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x + (y + z) == (x + y) + z) private let ass_plus_l #x #y #z = () private val ass_mult_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y * z) == (x * y) * z) private let ass_mult_l #x #y #z = () private val comm_plus : (#x : int) -> (#y : int) -> Lemma (x + y == y + x) private let comm_plus #x #y = () private val sw_plus : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) + z == (x + z) + y) private let sw_plus #x #y #z = () private val sw_mult : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x * y) * z == (x * z) * y) private let sw_mult #x #y #z = () private val comm_mult : (#x : int) -> (#y : int) -> Lemma (x * y == y * x) private let comm_mult #x #y = () private val trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) -> squash (x == y) -> squash (y == z) -> Lemma (x == z) private let trans #a #x #z #y e1 e2 = () private val cong_plus : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w + x == y + z) private let cong_plus #w #x #y #z p q = () private val cong_mult : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w * x == y * z) private let cong_mult #w #x #y #z p q = () private val neg_minus_one : (#x:int) -> Lemma (-x == (-1) * x) private let neg_minus_one #x = () private val x_plus_zero : (#x:int) -> Lemma (x + 0 == x) private let x_plus_zero #x = () private val zero_plus_x : (#x:int) -> Lemma (0 + x == x) private let zero_plus_x #x = () private val x_mult_zero : (#x:int) -> Lemma (x * 0 == 0) private let x_mult_zero #x = () private val zero_mult_x : (#x:int) -> Lemma (0 * x == 0) private let zero_mult_x #x = () private val x_mult_one : (#x:int) -> Lemma (x * 1 == x) private let x_mult_one #x = () private val one_mult_x : (#x:int) -> Lemma (1 * x == x) private let one_mult_x #x = () private val minus_is_plus : (#x : int) -> (#y : int) -> Lemma (x - y == x + (-y)) private let minus_is_plus #x #y = () private let step (t : unit -> Tac unit) : Tac unit = apply_lemma (`trans); t ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Reflection.V2.Arith.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Order.fst.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Canon.fst" }
[ { "abbrev": true, "full_module": "FStar.Order", "short_module": "O" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Arith", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lem: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.Canon.step", "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
false
true
false
false
false
let step_lemma (lem: term) : Tac unit =
step (fun () -> apply_lemma lem)
false
Hacl.Chacha20.Vec128.fst
Hacl.Chacha20.Vec128.chacha20_core_128
val chacha20_core_128 : Hacl.Meta.Chacha20.Vec.vec_chacha20_core_higher_t Prims.l_True
let chacha20_core_128 = vec_chacha20_core_higher #4 True double_round_128
{ "file_name": "code/chacha20/Hacl.Chacha20.Vec128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 10, "start_col": 0, "start_line": 10 }
module Hacl.Chacha20.Vec128 open Hacl.Meta.Chacha20.Vec [@CInline] private let double_round_128 = core32xn_double_round_higher #4 True [@CInline]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Meta.Chacha20.Vec.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20.Vec128.fst" }
[ { "abbrev": false, "full_module": "Hacl.Meta.Chacha20.Vec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Meta.Chacha20.Vec.vec_chacha20_core_higher_t Prims.l_True
Prims.Tot
[ "total" ]
[]
[ "Hacl.Meta.Chacha20.Vec.vec_chacha20_core_higher", "Prims.l_True", "Hacl.Chacha20.Vec128.double_round_128" ]
[]
false
false
false
false
false
let chacha20_core_128 =
vec_chacha20_core_higher #4 True double_round_128
false
FStar.Tactics.Canon.fst
FStar.Tactics.Canon.step
val step (t: (unit -> Tac unit)) : Tac unit
val step (t: (unit -> Tac unit)) : Tac unit
let step (t : unit -> Tac unit) : Tac unit = apply_lemma (`trans); t ()
{ "file_name": "ulib/FStar.Tactics.Canon.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 8, "end_line": 127, "start_col": 0, "start_line": 125 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Canon open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Reflection.V2.Arith open FStar.Mul module O = FStar.Order private val distr : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y + z) == x * y + x * z) private let distr #x #y #z = () private val distl : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) * z == x * z + y * z) private let distl #x #y #z = () private val ass_plus_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x + (y + z) == (x + y) + z) private let ass_plus_l #x #y #z = () private val ass_mult_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y * z) == (x * y) * z) private let ass_mult_l #x #y #z = () private val comm_plus : (#x : int) -> (#y : int) -> Lemma (x + y == y + x) private let comm_plus #x #y = () private val sw_plus : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) + z == (x + z) + y) private let sw_plus #x #y #z = () private val sw_mult : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x * y) * z == (x * z) * y) private let sw_mult #x #y #z = () private val comm_mult : (#x : int) -> (#y : int) -> Lemma (x * y == y * x) private let comm_mult #x #y = () private val trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) -> squash (x == y) -> squash (y == z) -> Lemma (x == z) private let trans #a #x #z #y e1 e2 = () private val cong_plus : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w + x == y + z) private let cong_plus #w #x #y #z p q = () private val cong_mult : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w * x == y * z) private let cong_mult #w #x #y #z p q = () private val neg_minus_one : (#x:int) -> Lemma (-x == (-1) * x) private let neg_minus_one #x = () private val x_plus_zero : (#x:int) -> Lemma (x + 0 == x) private let x_plus_zero #x = () private val zero_plus_x : (#x:int) -> Lemma (0 + x == x) private let zero_plus_x #x = () private val x_mult_zero : (#x:int) -> Lemma (x * 0 == 0) private let x_mult_zero #x = () private val zero_mult_x : (#x:int) -> Lemma (0 * x == 0) private let zero_mult_x #x = () private val x_mult_one : (#x:int) -> Lemma (x * 1 == x) private let x_mult_one #x = () private val one_mult_x : (#x:int) -> Lemma (1 * x == x) private let one_mult_x #x = () private val minus_is_plus : (#x : int) -> (#y : int) -> Lemma (x - y == x + (-y)) private let minus_is_plus #x #y = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Reflection.V2.Arith.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Order.fst.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Canon.fst" }
[ { "abbrev": true, "full_module": "FStar.Order", "short_module": "O" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Arith", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
false
true
false
false
false
let step (t: (unit -> Tac unit)) : Tac unit =
apply_lemma (`trans); t ()
false
FStar.Tactics.Canon.fst
FStar.Tactics.Canon.canon
val canon: Prims.unit -> Tac unit
val canon: Prims.unit -> Tac unit
let canon () : Tac unit = pointwise canon_point_entry
{ "file_name": "ulib/FStar.Tactics.Canon.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 281, "start_col": 0, "start_line": 280 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Canon open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Reflection.V2.Arith open FStar.Mul module O = FStar.Order private val distr : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y + z) == x * y + x * z) private let distr #x #y #z = () private val distl : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) * z == x * z + y * z) private let distl #x #y #z = () private val ass_plus_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x + (y + z) == (x + y) + z) private let ass_plus_l #x #y #z = () private val ass_mult_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y * z) == (x * y) * z) private let ass_mult_l #x #y #z = () private val comm_plus : (#x : int) -> (#y : int) -> Lemma (x + y == y + x) private let comm_plus #x #y = () private val sw_plus : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) + z == (x + z) + y) private let sw_plus #x #y #z = () private val sw_mult : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x * y) * z == (x * z) * y) private let sw_mult #x #y #z = () private val comm_mult : (#x : int) -> (#y : int) -> Lemma (x * y == y * x) private let comm_mult #x #y = () private val trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) -> squash (x == y) -> squash (y == z) -> Lemma (x == z) private let trans #a #x #z #y e1 e2 = () private val cong_plus : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w + x == y + z) private let cong_plus #w #x #y #z p q = () private val cong_mult : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w * x == y * z) private let cong_mult #w #x #y #z p q = () private val neg_minus_one : (#x:int) -> Lemma (-x == (-1) * x) private let neg_minus_one #x = () private val x_plus_zero : (#x:int) -> Lemma (x + 0 == x) private let x_plus_zero #x = () private val zero_plus_x : (#x:int) -> Lemma (0 + x == x) private let zero_plus_x #x = () private val x_mult_zero : (#x:int) -> Lemma (x * 0 == 0) private let x_mult_zero #x = () private val zero_mult_x : (#x:int) -> Lemma (0 * x == 0) private let zero_mult_x #x = () private val x_mult_one : (#x:int) -> Lemma (x * 1 == x) private let x_mult_one #x = () private val one_mult_x : (#x:int) -> Lemma (1 * x == x) private let one_mult_x #x = () private val minus_is_plus : (#x : int) -> (#y : int) -> Lemma (x - y == x + (-y)) private let minus_is_plus #x #y = () private let step (t : unit -> Tac unit) : Tac unit = apply_lemma (`trans); t () private let step_lemma (lem : term) : Tac unit = step (fun () -> apply_lemma lem) private val canon_point : expr -> Tac expr private let rec canon_point e = let skip () : Tac expr = trefl (); e in match e with // Evaluate constants | Plus (Lit a) (Lit b) -> norm [primops]; trefl (); Lit (a + b) | Mult (Lit a) (Lit b) -> norm [delta; primops]; // Need delta to turn op_Star into op_Multiply, as there's no primop for it trefl (); Lit (a * b) // Forget about negations | Neg e -> step_lemma (`neg_minus_one); canon_point (Mult (Lit (-1)) e) // Distribute | Mult a (Plus b c) -> step_lemma (`distr); step_lemma (`cong_plus); let l = canon_point (Mult a b) in let r = canon_point (Mult a c) in canon_point (Plus l r) | Mult (Plus a b) c -> step_lemma (`distl); step_lemma (`cong_plus); let l = canon_point (Mult a c) in let r = canon_point (Mult b c) in canon_point (Plus l r) // Associate to the left | Mult a (Mult b c) -> step_lemma (`ass_mult_l); step_lemma (`cong_mult); let l = canon_point (Mult a b) in let r = canon_point c in canon_point (Mult l r) | Plus a (Plus b c) -> step_lemma (`ass_plus_l); step_lemma (`cong_plus); let l = canon_point (Plus a b) in let r = canon_point c in canon_point (Plus l r) | Plus (Plus a b) c -> if O.gt (compare_expr b c) then begin step_lemma (`sw_plus); apply_lemma (`cong_plus); let l = canon_point (Plus a c) in trefl() ; Plus l b end else skip () | Mult (Mult a b) c -> if O.gt (compare_expr b c) then begin step_lemma (`sw_mult); apply_lemma (`cong_mult); let l = canon_point (Mult a c) in trefl (); Mult l b end else skip () | Plus a (Lit 0) -> apply_lemma (`x_plus_zero); a | Plus (Lit 0) b -> apply_lemma (`zero_plus_x); b | Plus a b -> if O.gt (compare_expr a b) then (apply_lemma (`comm_plus); Plus b a) else skip () | Mult (Lit 0) _ -> apply_lemma (`zero_mult_x); Lit 0 | Mult _ (Lit 0) -> apply_lemma (`x_mult_zero); Lit 0 | Mult (Lit 1) r -> apply_lemma (`one_mult_x); r | Mult l (Lit 1) -> apply_lemma (`x_mult_one); l | Mult a b -> if O.gt (compare_expr a b) then (apply_lemma (`comm_mult); Mult b a) else skip () // Forget about subtraction | Minus a b -> step_lemma (`minus_is_plus); step_lemma (`cong_plus); trefl (); let negb = match b with | Lit n -> Lit (-n) | _ -> Neg b in // ^ We need to take care wrt literals, since an application (- N) // will get reduced to the literal -N and then neg_minus_one will not // apply. let r = canon_point negb in canon_point (Plus a r) | _ -> skip () // On canon_point_entry, we interpret the LHS of the goal as an // arithmetic expression, of which we keep track in canon_point so we // avoid reinterpreting the goal, which gives a good speedup. // // However, we are repeating work between canon_point_entry calls, since // in (L + R), we are called once for L, once for R, and once for the // sum which traverses both (their canonized forms, actually). // // The proper way to solve this is have some state-passing in pointwise, // maybe having the inner tactic be of type (list a -> tactic a), where // the list is the collected results for all child calls. let canon_point_entry () : Tac unit = norm [primops]; let g = cur_goal () in match term_as_formula g with | Comp (Eq _) l r -> begin match run_tm (is_arith_expr l) with | Inr e -> (let _e = canon_point e in ()) | Inl _ -> trefl () end | _ -> fail ("impossible: " ^ term_to_string g)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Reflection.V2.Arith.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Order.fst.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Canon.fst" }
[ { "abbrev": true, "full_module": "FStar.Order", "short_module": "O" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Arith", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.pointwise", "FStar.Tactics.Canon.canon_point_entry" ]
[]
false
true
false
false
false
let canon () : Tac unit =
pointwise canon_point_entry
false
Spec.Hash.Lemmas.fst
Spec.Hash.Lemmas.update_multi_zero
val update_multi_zero (a: hash_alg { not (is_blake a)} ) (h: words_state a): Lemma (ensures (update_multi a h () S.empty == h))
val update_multi_zero (a: hash_alg { not (is_blake a)} ) (h: words_state a): Lemma (ensures (update_multi a h () S.empty == h))
let update_multi_zero a h = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_zero (block_length a) (Spec.Agile.Hash.update a) h | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a / 8 in let f = Spec.SHA3.absorb_inner rateInBytes in Lib.Sequence.lemma_repeat_blocks_multi rateInBytes S.empty f h; let nb = 0 / rateInBytes in Lib.LoopCombinators.eq_repeati0 nb (Lib.Sequence.repeat_blocks_f rateInBytes S.empty f nb) h
{ "file_name": "specs/lemmas/Spec.Hash.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 25, "start_col": 0, "start_line": 15 }
module Spec.Hash.Lemmas module S = FStar.Seq open Lib.IntTypes open Spec.Agile.Hash open Spec.Hash.Definitions friend Spec.Agile.Hash (** Lemmas about the behavior of update_multi / update_last *) #push-options "--fuel 0 --ifuel 1 --z3rlimit 50"
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Spec.Hash.Lemmas.fst" }
[ { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Prims.op_Negation (Spec.Hash.Definitions.is_blake a)} -> h: Spec.Hash.Definitions.words_state a -> FStar.Pervasives.Lemma (ensures Spec.Agile.Hash.update_multi a h () FStar.Seq.Base.empty == h)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Prims.op_Negation", "Spec.Hash.Definitions.is_blake", "Spec.Hash.Definitions.words_state", "Lib.UpdateMulti.update_multi_zero", "Spec.Hash.Definitions.block_length", "Spec.Agile.Hash.update", "Lib.LoopCombinators.eq_repeati0", "Spec.SHA3.state", "Lib.Sequence.repeat_blocks_f", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.empty", "Prims.int", "Prims.op_Division", "Prims.unit", "Lib.Sequence.lemma_repeat_blocks_multi", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Spec.SHA3.absorb_inner", "Spec.Hash.Definitions.rate" ]
[]
false
false
true
false
false
let update_multi_zero a h =
match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_zero (block_length a) (Spec.Agile.Hash.update a) h | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a / 8 in let f = Spec.SHA3.absorb_inner rateInBytes in Lib.Sequence.lemma_repeat_blocks_multi rateInBytes S.empty f h; let nb = 0 / rateInBytes in Lib.LoopCombinators.eq_repeati0 nb (Lib.Sequence.repeat_blocks_f rateInBytes S.empty f nb) h
false
FStar.Tactics.Canon.fst
FStar.Tactics.Canon.canon_point
val canon_point : expr -> Tac expr
val canon_point : expr -> Tac expr
let rec canon_point e = let skip () : Tac expr = trefl (); e in match e with // Evaluate constants | Plus (Lit a) (Lit b) -> norm [primops]; trefl (); Lit (a + b) | Mult (Lit a) (Lit b) -> norm [delta; primops]; // Need delta to turn op_Star into op_Multiply, as there's no primop for it trefl (); Lit (a * b) // Forget about negations | Neg e -> step_lemma (`neg_minus_one); canon_point (Mult (Lit (-1)) e) // Distribute | Mult a (Plus b c) -> step_lemma (`distr); step_lemma (`cong_plus); let l = canon_point (Mult a b) in let r = canon_point (Mult a c) in canon_point (Plus l r) | Mult (Plus a b) c -> step_lemma (`distl); step_lemma (`cong_plus); let l = canon_point (Mult a c) in let r = canon_point (Mult b c) in canon_point (Plus l r) // Associate to the left | Mult a (Mult b c) -> step_lemma (`ass_mult_l); step_lemma (`cong_mult); let l = canon_point (Mult a b) in let r = canon_point c in canon_point (Mult l r) | Plus a (Plus b c) -> step_lemma (`ass_plus_l); step_lemma (`cong_plus); let l = canon_point (Plus a b) in let r = canon_point c in canon_point (Plus l r) | Plus (Plus a b) c -> if O.gt (compare_expr b c) then begin step_lemma (`sw_plus); apply_lemma (`cong_plus); let l = canon_point (Plus a c) in trefl() ; Plus l b end else skip () | Mult (Mult a b) c -> if O.gt (compare_expr b c) then begin step_lemma (`sw_mult); apply_lemma (`cong_mult); let l = canon_point (Mult a c) in trefl (); Mult l b end else skip () | Plus a (Lit 0) -> apply_lemma (`x_plus_zero); a | Plus (Lit 0) b -> apply_lemma (`zero_plus_x); b | Plus a b -> if O.gt (compare_expr a b) then (apply_lemma (`comm_plus); Plus b a) else skip () | Mult (Lit 0) _ -> apply_lemma (`zero_mult_x); Lit 0 | Mult _ (Lit 0) -> apply_lemma (`x_mult_zero); Lit 0 | Mult (Lit 1) r -> apply_lemma (`one_mult_x); r | Mult l (Lit 1) -> apply_lemma (`x_mult_one); l | Mult a b -> if O.gt (compare_expr a b) then (apply_lemma (`comm_mult); Mult b a) else skip () // Forget about subtraction | Minus a b -> step_lemma (`minus_is_plus); step_lemma (`cong_plus); trefl (); let negb = match b with | Lit n -> Lit (-n) | _ -> Neg b in // ^ We need to take care wrt literals, since an application (- N) // will get reduced to the literal -N and then neg_minus_one will not // apply. let r = canon_point negb in canon_point (Plus a r) | _ -> skip ()
{ "file_name": "ulib/FStar.Tactics.Canon.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 15, "end_line": 254, "start_col": 8, "start_line": 134 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Canon open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Reflection.V2.Arith open FStar.Mul module O = FStar.Order private val distr : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y + z) == x * y + x * z) private let distr #x #y #z = () private val distl : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) * z == x * z + y * z) private let distl #x #y #z = () private val ass_plus_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x + (y + z) == (x + y) + z) private let ass_plus_l #x #y #z = () private val ass_mult_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y * z) == (x * y) * z) private let ass_mult_l #x #y #z = () private val comm_plus : (#x : int) -> (#y : int) -> Lemma (x + y == y + x) private let comm_plus #x #y = () private val sw_plus : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) + z == (x + z) + y) private let sw_plus #x #y #z = () private val sw_mult : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x * y) * z == (x * z) * y) private let sw_mult #x #y #z = () private val comm_mult : (#x : int) -> (#y : int) -> Lemma (x * y == y * x) private let comm_mult #x #y = () private val trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) -> squash (x == y) -> squash (y == z) -> Lemma (x == z) private let trans #a #x #z #y e1 e2 = () private val cong_plus : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w + x == y + z) private let cong_plus #w #x #y #z p q = () private val cong_mult : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w * x == y * z) private let cong_mult #w #x #y #z p q = () private val neg_minus_one : (#x:int) -> Lemma (-x == (-1) * x) private let neg_minus_one #x = () private val x_plus_zero : (#x:int) -> Lemma (x + 0 == x) private let x_plus_zero #x = () private val zero_plus_x : (#x:int) -> Lemma (0 + x == x) private let zero_plus_x #x = () private val x_mult_zero : (#x:int) -> Lemma (x * 0 == 0) private let x_mult_zero #x = () private val zero_mult_x : (#x:int) -> Lemma (0 * x == 0) private let zero_mult_x #x = () private val x_mult_one : (#x:int) -> Lemma (x * 1 == x) private let x_mult_one #x = () private val one_mult_x : (#x:int) -> Lemma (1 * x == x) private let one_mult_x #x = () private val minus_is_plus : (#x : int) -> (#y : int) -> Lemma (x - y == x + (-y)) private let minus_is_plus #x #y = () private let step (t : unit -> Tac unit) : Tac unit = apply_lemma (`trans); t () private let step_lemma (lem : term) : Tac unit = step (fun () -> apply_lemma lem)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Reflection.V2.Arith.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Order.fst.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Canon.fst" }
[ { "abbrev": true, "full_module": "FStar.Order", "short_module": "O" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Arith", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: FStar.Reflection.V2.Arith.expr -> FStar.Tactics.Effect.Tac FStar.Reflection.V2.Arith.expr
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Reflection.V2.Arith.expr", "Prims.int", "FStar.Reflection.V2.Arith.Lit", "Prims.op_Addition", "Prims.unit", "FStar.Tactics.V2.Derived.trefl", "FStar.Stubs.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.primops", "Prims.Nil", "FStar.Mul.op_Star", "FStar.Pervasives.delta", "FStar.Tactics.Canon.canon_point", "FStar.Reflection.V2.Arith.Mult", "Prims.op_Minus", "FStar.Tactics.Canon.step_lemma", "FStar.Reflection.V2.Arith.Plus", "FStar.Order.gt", "FStar.Reflection.V2.Arith.compare_expr", "FStar.Tactics.V2.Derived.apply_lemma", "Prims.bool", "FStar.Reflection.V2.Arith.Neg" ]
[ "recursion" ]
false
true
false
false
false
let rec canon_point e =
let skip () : Tac expr = trefl (); e in match e with | Plus (Lit a) (Lit b) -> norm [primops]; trefl (); Lit (a + b) | Mult (Lit a) (Lit b) -> norm [delta; primops]; trefl (); Lit (a * b) | Neg e -> step_lemma (`neg_minus_one); canon_point (Mult (Lit (- 1)) e) | Mult a (Plus b c) -> step_lemma (`distr); step_lemma (`cong_plus); let l = canon_point (Mult a b) in let r = canon_point (Mult a c) in canon_point (Plus l r) | Mult (Plus a b) c -> step_lemma (`distl); step_lemma (`cong_plus); let l = canon_point (Mult a c) in let r = canon_point (Mult b c) in canon_point (Plus l r) | Mult a (Mult b c) -> step_lemma (`ass_mult_l); step_lemma (`cong_mult); let l = canon_point (Mult a b) in let r = canon_point c in canon_point (Mult l r) | Plus a (Plus b c) -> step_lemma (`ass_plus_l); step_lemma (`cong_plus); let l = canon_point (Plus a b) in let r = canon_point c in canon_point (Plus l r) | Plus (Plus a b) c -> if O.gt (compare_expr b c) then (step_lemma (`sw_plus); apply_lemma (`cong_plus); let l = canon_point (Plus a c) in trefl (); Plus l b) else skip () | Mult (Mult a b) c -> if O.gt (compare_expr b c) then (step_lemma (`sw_mult); apply_lemma (`cong_mult); let l = canon_point (Mult a c) in trefl (); Mult l b) else skip () | Plus a (Lit 0) -> apply_lemma (`x_plus_zero); a | Plus (Lit 0) b -> apply_lemma (`zero_plus_x); b | Plus a b -> if O.gt (compare_expr a b) then (apply_lemma (`comm_plus); Plus b a) else skip () | Mult (Lit 0) _ -> apply_lemma (`zero_mult_x); Lit 0 | Mult _ (Lit 0) -> apply_lemma (`x_mult_zero); Lit 0 | Mult (Lit 1) r -> apply_lemma (`one_mult_x); r | Mult l (Lit 1) -> apply_lemma (`x_mult_one); l | Mult a b -> if O.gt (compare_expr a b) then (apply_lemma (`comm_mult); Mult b a) else skip () | Minus a b -> step_lemma (`minus_is_plus); step_lemma (`cong_plus); trefl (); let negb = match b with | Lit n -> Lit (- n) | _ -> Neg b in let r = canon_point negb in canon_point (Plus a r) | _ -> skip ()
false
Spec.Hash.Lemmas.fst
Spec.Hash.Lemmas.lemma_blocki_aux2
val lemma_blocki_aux2 (a: blake_alg) (s1 s2: bytes) (nb1 nb2: nat) (i: nat{i < nb2}) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a) (ensures Spec.Blake2.get_blocki (to_blake_alg a) s2 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) (i + nb1))
val lemma_blocki_aux2 (a: blake_alg) (s1 s2: bytes) (nb1 nb2: nat) (i: nat{i < nb2}) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a) (ensures Spec.Blake2.get_blocki (to_blake_alg a) s2 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) (i + nb1))
let lemma_blocki_aux2 (a:blake_alg) (s1 s2:bytes) (nb1 nb2:nat) (i:nat{i < nb2}) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a) (ensures Spec.Blake2.get_blocki (to_blake_alg a) s2 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) (i + nb1)) = let s = s1 `S.append` s2 in let a' = to_blake_alg a in calc (==) { Spec.Blake2.get_blocki a' s (i + nb1); (==) { } S.slice s ((i + nb1) * block_length a) ((i + nb1 + 1) * block_length a); (==) { } S.slice s (i * block_length a + nb1 * block_length a) ((i + 1) * block_length a + nb1 * block_length a); (==) { } S.slice s (i * block_length a + S.length s1) ((i + 1) * block_length a + S.length s1); (==) { S.slice_slice s (S.length s1) (S.length s) (i * block_length a) ((i+1) * block_length a) } S.slice (S.slice s (S.length s1) (S.length s)) (i * block_length a) ((i+1) * block_length a); (==) { S.append_slices s1 s2; assert (s2 `S.equal` S.slice s (S.length s1) (S.length s)) } S.slice s2 (i * block_length a) ((i+1) * block_length a); (==) { } Spec.Blake2.get_blocki a' s2 i; }
{ "file_name": "specs/lemmas/Spec.Hash.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 9, "end_line": 106, "start_col": 0, "start_line": 83 }
module Spec.Hash.Lemmas module S = FStar.Seq open Lib.IntTypes open Spec.Agile.Hash open Spec.Hash.Definitions friend Spec.Agile.Hash (** Lemmas about the behavior of update_multi / update_last *) #push-options "--fuel 0 --ifuel 1 --z3rlimit 50" let update_multi_zero a h = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_zero (block_length a) (Spec.Agile.Hash.update a) h | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a / 8 in let f = Spec.SHA3.absorb_inner rateInBytes in Lib.Sequence.lemma_repeat_blocks_multi rateInBytes S.empty f h; let nb = 0 / rateInBytes in Lib.LoopCombinators.eq_repeati0 nb (Lib.Sequence.repeat_blocks_f rateInBytes S.empty f nb) h let update_multi_zero_blake a prevlen h = Lib.LoopCombinators.eq_repeati0 (0 / block_length a) (Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen S.empty) h #pop-options #push-options "--fuel 1" let update_multi_update (a: md_alg) (h: words_state a) (input: bytes_block a): Lemma (ensures (update_multi a h () input) == (update a h input)) = let h1 = update_multi a h () input in assert(h1 == Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h input); if S.length input = 0 then begin assert(h1 == h) end else begin let block, rem = Lib.UpdateMulti.split_block (block_length a) input 1 in let h2 = update a h block in assert(rem `Seq.equal` Seq.empty); assert(block `Seq.equal` input); let h3 = Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h2 rem in assert(h1 == h3) end #pop-options let update_multi_associative (a: hash_alg{not (is_blake a)}) (h: words_state a) (input1: bytes) (input2: bytes): Lemma (requires S.length input1 % block_length a == 0 /\ S.length input2 % block_length a == 0) (ensures ( let input = S.append input1 input2 in S.length input % block_length a == 0 /\ update_multi a (update_multi a h () input1) () input2 == update_multi a h () input)) = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_associative (block_length a) (Spec.Agile.Hash.update a) h input1 input2 | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a /8 in let f = Spec.SHA3.absorb_inner rateInBytes in let input = input1 `S.append` input2 in assert (input1 `S.equal` S.slice input 0 (S.length input1)); assert (input2 `S.equal` S.slice input (S.length input1) (S.length input)); Lib.Sequence.Lemmas.repeat_blocks_multi_split (block_length a) (S.length input1) input f h let lemma_blocki_aux1 (a:blake_alg) (s1 s2:bytes) (i:nat{i < S.length s1 / block_length a}) : Lemma (Spec.Blake2.get_blocki (to_blake_alg a) s1 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i) = assert (Spec.Blake2.get_blocki (to_blake_alg a) s1 i `S.equal` Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i) #push-options "--fuel 0 --ifuel 0 --z3rlimit 300" open FStar.Mul
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Spec.Hash.Lemmas.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.blake_alg -> s1: Spec.Hash.Definitions.bytes -> s2: Spec.Hash.Definitions.bytes -> nb1: Prims.nat -> nb2: Prims.nat -> i: Prims.nat{i < nb2} -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s1 == nb1 * Spec.Hash.Definitions.block_length a /\ FStar.Seq.Base.length s2 == nb2 * Spec.Hash.Definitions.block_length a) (ensures Spec.Blake2.get_blocki (Spec.Hash.Definitions.to_blake_alg a) s2 i == Spec.Blake2.get_blocki (Spec.Hash.Definitions.to_blake_alg a) (FStar.Seq.Base.append s1 s2) (i + nb1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.blake_alg", "Spec.Hash.Definitions.bytes", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Calc.calc_finish", "Spec.Blake2.Definitions.block_s", "Prims.eq2", "Spec.Blake2.get_blocki", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Seq.Base.slice", "Lib.IntTypes.uint8", "FStar.Mul.op_Star", "Spec.Hash.Definitions.block_length", "FStar.Seq.Base.length", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Seq.Properties.slice_slice", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Properties.append_slices", "Spec.Blake2.Definitions.alg", "Spec.Hash.Definitions.to_blake_alg", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.append", "Prims.l_and", "Prims.int", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_blocki_aux2 (a: blake_alg) (s1 s2: bytes) (nb1 nb2: nat) (i: nat{i < nb2}) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a) (ensures Spec.Blake2.get_blocki (to_blake_alg a) s2 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) (i + nb1)) =
let s = s1 `S.append` s2 in let a' = to_blake_alg a in calc ( == ) { Spec.Blake2.get_blocki a' s (i + nb1); ( == ) { () } S.slice s ((i + nb1) * block_length a) ((i + nb1 + 1) * block_length a); ( == ) { () } S.slice s (i * block_length a + nb1 * block_length a) ((i + 1) * block_length a + nb1 * block_length a); ( == ) { () } S.slice s (i * block_length a + S.length s1) ((i + 1) * block_length a + S.length s1); ( == ) { S.slice_slice s (S.length s1) (S.length s) (i * block_length a) ((i + 1) * block_length a) } S.slice (S.slice s (S.length s1) (S.length s)) (i * block_length a) ((i + 1) * block_length a); ( == ) { (S.append_slices s1 s2; assert (s2 `S.equal` (S.slice s (S.length s1) (S.length s)))) } S.slice s2 (i * block_length a) ((i + 1) * block_length a); ( == ) { () } Spec.Blake2.get_blocki a' s2 i; }
false
TwoLockQueue.fst
TwoLockQueue.full
val full : Steel.FractionalPermission.perm
let full = full_perm
{ "file_name": "share/steel/examples/steel/TwoLockQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 20, "end_line": 30, "start_col": 0, "start_line": 30 }
module TwoLockQueue open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference open Steel.SpinLock module L = FStar.List.Tot module U = Steel.Utils module Q = Queue /// This module provides an implementation of Michael and Scott's two lock queue, using the /// abstract interface for queues provided in Queue.fsti. /// This implementation allows an enqueue and a dequeue operation to safely operate in parallel. /// There is a lock associated to both the enqueuer and the dequeuer, which guards each of those operation, /// ensuring that at most one enqueue (resp. dequeue) is happening at any time /// We only prove that this implementation is memory safe, and do not prove the functional correctness of the concurrent queue #push-options "--ide_id_info_off" /// Adding the definition of the vprop equivalence to the context, for proof purposes let _: squash (forall p q. p `equiv` q <==> hp_of p `Steel.Memory.equiv` hp_of q) = Classical.forall_intro_2 reveal_equiv (* Some wrappers to reduce clutter in the code *)
{ "checked_file": "/", "dependencies": [ "Steel.Utils.fst.checked", "Steel.SpinLock.fsti.checked", "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Queue.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "TwoLockQueue.fst" }
[ { "abbrev": true, "full_module": "Queue", "short_module": "Q" }, { "abbrev": true, "full_module": "Steel.Utils", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.SpinLock", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Steel.FractionalPermission.perm
Prims.Tot
[ "total" ]
[]
[ "Steel.FractionalPermission.full_perm" ]
[]
false
false
false
true
false
let full =
full_perm
false
Spec.Hash.Lemmas.fst
Spec.Hash.Lemmas.lemma_update_aux2
val lemma_update_aux2 (a: blake_alg) (s1 s2: bytes) (nb1 nb2 prevlen1 prevlen2: nat) (i: nat{i < nb2}) (acc: words_state a) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a /\ prevlen1 % block_length a == 0 /\ prevlen2 = prevlen1 + S.length s1 /\ (S.length (S.append s1 s2) + prevlen1) `less_than_max_input_length` a) (ensures Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen1 (s1 `S.append` s2) (i + nb1) acc == Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen2 s2 i acc)
val lemma_update_aux2 (a: blake_alg) (s1 s2: bytes) (nb1 nb2 prevlen1 prevlen2: nat) (i: nat{i < nb2}) (acc: words_state a) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a /\ prevlen1 % block_length a == 0 /\ prevlen2 = prevlen1 + S.length s1 /\ (S.length (S.append s1 s2) + prevlen1) `less_than_max_input_length` a) (ensures Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen1 (s1 `S.append` s2) (i + nb1) acc == Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen2 s2 i acc)
let lemma_update_aux2 (a:blake_alg) (s1 s2:bytes) (nb1 nb2:nat) (prevlen1 prevlen2:nat) (i:nat{i < nb2}) (acc:words_state a) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a /\ prevlen1 % block_length a == 0 /\ prevlen2 = prevlen1 + S.length s1 /\ (S.length (S.append s1 s2) + prevlen1) `less_than_max_input_length` a) (ensures Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen1 (s1 `S.append` s2) (i + nb1) acc == Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen2 s2 i acc) = let s = s1 `S.append` s2 in let a' = to_blake_alg a in let open Spec.Blake2 in let f1 = blake2_update1 (to_blake_alg a) prevlen1 s in let f2 = blake2_update1 (to_blake_alg a) prevlen2 s2 in let totlen1 = prevlen1 + (i + nb1 + 1) * size_block a' in let totlen2 = prevlen2 + (i + 1) * size_block a' in // Proving totlen1 == totlen2 for the last calc step below calc (==) { totlen2; (==) { } prevlen2 + (i + 1) * block_length a; (==) { } prevlen1 + S.length s1 + (i + 1) * block_length a; (==) { } prevlen1 + nb1 * block_length a + (i + 1) * block_length a; (==) { Math.Lemmas.distributivity_add_left (i + 1) nb1 (block_length a) } prevlen1 + (i + 1 + nb1) * block_length a; (==) { } totlen1; }; calc (==) { f1 (i + nb1) acc; (==) { } blake2_update_block a' false totlen1 (get_blocki a' s (i + nb1)) acc; (==) { lemma_blocki_aux2 a s1 s2 nb1 nb2 i } blake2_update_block a' false totlen1 (get_blocki a' s2 i) acc; (==) { } f2 i acc; }
{ "file_name": "specs/lemmas/Spec.Hash.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 151, "start_col": 0, "start_line": 108 }
module Spec.Hash.Lemmas module S = FStar.Seq open Lib.IntTypes open Spec.Agile.Hash open Spec.Hash.Definitions friend Spec.Agile.Hash (** Lemmas about the behavior of update_multi / update_last *) #push-options "--fuel 0 --ifuel 1 --z3rlimit 50" let update_multi_zero a h = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_zero (block_length a) (Spec.Agile.Hash.update a) h | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a / 8 in let f = Spec.SHA3.absorb_inner rateInBytes in Lib.Sequence.lemma_repeat_blocks_multi rateInBytes S.empty f h; let nb = 0 / rateInBytes in Lib.LoopCombinators.eq_repeati0 nb (Lib.Sequence.repeat_blocks_f rateInBytes S.empty f nb) h let update_multi_zero_blake a prevlen h = Lib.LoopCombinators.eq_repeati0 (0 / block_length a) (Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen S.empty) h #pop-options #push-options "--fuel 1" let update_multi_update (a: md_alg) (h: words_state a) (input: bytes_block a): Lemma (ensures (update_multi a h () input) == (update a h input)) = let h1 = update_multi a h () input in assert(h1 == Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h input); if S.length input = 0 then begin assert(h1 == h) end else begin let block, rem = Lib.UpdateMulti.split_block (block_length a) input 1 in let h2 = update a h block in assert(rem `Seq.equal` Seq.empty); assert(block `Seq.equal` input); let h3 = Lib.UpdateMulti.mk_update_multi (block_length a) (update a) h2 rem in assert(h1 == h3) end #pop-options let update_multi_associative (a: hash_alg{not (is_blake a)}) (h: words_state a) (input1: bytes) (input2: bytes): Lemma (requires S.length input1 % block_length a == 0 /\ S.length input2 % block_length a == 0) (ensures ( let input = S.append input1 input2 in S.length input % block_length a == 0 /\ update_multi a (update_multi a h () input1) () input2 == update_multi a h () input)) = match a with | MD5 | SHA1 | SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512 -> Lib.UpdateMulti.update_multi_associative (block_length a) (Spec.Agile.Hash.update a) h input1 input2 | SHA3_224 | SHA3_256 | SHA3_384 | SHA3_512 | Shake128 | Shake256 -> let rateInBytes = rate a /8 in let f = Spec.SHA3.absorb_inner rateInBytes in let input = input1 `S.append` input2 in assert (input1 `S.equal` S.slice input 0 (S.length input1)); assert (input2 `S.equal` S.slice input (S.length input1) (S.length input)); Lib.Sequence.Lemmas.repeat_blocks_multi_split (block_length a) (S.length input1) input f h let lemma_blocki_aux1 (a:blake_alg) (s1 s2:bytes) (i:nat{i < S.length s1 / block_length a}) : Lemma (Spec.Blake2.get_blocki (to_blake_alg a) s1 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i) = assert (Spec.Blake2.get_blocki (to_blake_alg a) s1 i `S.equal` Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) i) #push-options "--fuel 0 --ifuel 0 --z3rlimit 300" open FStar.Mul let lemma_blocki_aux2 (a:blake_alg) (s1 s2:bytes) (nb1 nb2:nat) (i:nat{i < nb2}) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a) (ensures Spec.Blake2.get_blocki (to_blake_alg a) s2 i == Spec.Blake2.get_blocki (to_blake_alg a) (S.append s1 s2) (i + nb1)) = let s = s1 `S.append` s2 in let a' = to_blake_alg a in calc (==) { Spec.Blake2.get_blocki a' s (i + nb1); (==) { } S.slice s ((i + nb1) * block_length a) ((i + nb1 + 1) * block_length a); (==) { } S.slice s (i * block_length a + nb1 * block_length a) ((i + 1) * block_length a + nb1 * block_length a); (==) { } S.slice s (i * block_length a + S.length s1) ((i + 1) * block_length a + S.length s1); (==) { S.slice_slice s (S.length s1) (S.length s) (i * block_length a) ((i+1) * block_length a) } S.slice (S.slice s (S.length s1) (S.length s)) (i * block_length a) ((i+1) * block_length a); (==) { S.append_slices s1 s2; assert (s2 `S.equal` S.slice s (S.length s1) (S.length s)) } S.slice s2 (i * block_length a) ((i+1) * block_length a); (==) { } Spec.Blake2.get_blocki a' s2 i; }
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Spec.Hash.Lemmas.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.blake_alg -> s1: Spec.Hash.Definitions.bytes -> s2: Spec.Hash.Definitions.bytes -> nb1: Prims.nat -> nb2: Prims.nat -> prevlen1: Prims.nat -> prevlen2: Prims.nat -> i: Prims.nat{i < nb2} -> acc: Spec.Hash.Definitions.words_state a -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s1 == nb1 * Spec.Hash.Definitions.block_length a /\ FStar.Seq.Base.length s2 == nb2 * Spec.Hash.Definitions.block_length a /\ prevlen1 % Spec.Hash.Definitions.block_length a == 0 /\ prevlen2 = prevlen1 + FStar.Seq.Base.length s1 /\ Spec.Hash.Definitions.less_than_max_input_length (FStar.Seq.Base.length (FStar.Seq.Base.append s1 s2) + prevlen1) a) (ensures Spec.Blake2.blake2_update1 (Spec.Hash.Definitions.to_blake_alg a) prevlen1 (FStar.Seq.Base.append s1 s2) (i + nb1) acc == Spec.Blake2.blake2_update1 (Spec.Hash.Definitions.to_blake_alg a) prevlen2 s2 i acc)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.blake_alg", "Spec.Hash.Definitions.bytes", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Spec.Hash.Definitions.words_state", "FStar.Calc.calc_finish", "Spec.Blake2.Definitions.state", "Spec.Hash.Definitions.to_blake_alg", "Prims.eq2", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Spec.Blake2.blake2_update_block", "Spec.Blake2.get_blocki", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Spec.Hash.Lemmas.lemma_blocki_aux2", "Prims.int", "FStar.Mul.op_Star", "Spec.Hash.Definitions.block_length", "FStar.Seq.Base.length", "Lib.IntTypes.uint8", "FStar.Math.Lemmas.distributivity_add_left", "Spec.Blake2.Definitions.size_block", "Prims.l_and", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_limb", "Lib.Sequence.lseq", "Spec.Blake2.Definitions.wt", "Spec.Blake2.blake2_update1", "Spec.Blake2.Definitions.alg", "FStar.Seq.Base.seq", "FStar.Seq.Base.append", "Prims.op_Modulus", "Prims.op_Equality", "Spec.Hash.Definitions.less_than_max_input_length", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_update_aux2 (a: blake_alg) (s1 s2: bytes) (nb1 nb2 prevlen1 prevlen2: nat) (i: nat{i < nb2}) (acc: words_state a) : Lemma (requires S.length s1 == nb1 * block_length a /\ S.length s2 == nb2 * block_length a /\ prevlen1 % block_length a == 0 /\ prevlen2 = prevlen1 + S.length s1 /\ (S.length (S.append s1 s2) + prevlen1) `less_than_max_input_length` a) (ensures Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen1 (s1 `S.append` s2) (i + nb1) acc == Spec.Blake2.blake2_update1 (to_blake_alg a) prevlen2 s2 i acc) =
let s = s1 `S.append` s2 in let a' = to_blake_alg a in let open Spec.Blake2 in let f1 = blake2_update1 (to_blake_alg a) prevlen1 s in let f2 = blake2_update1 (to_blake_alg a) prevlen2 s2 in let totlen1 = prevlen1 + (i + nb1 + 1) * size_block a' in let totlen2 = prevlen2 + (i + 1) * size_block a' in calc ( == ) { totlen2; ( == ) { () } prevlen2 + (i + 1) * block_length a; ( == ) { () } prevlen1 + S.length s1 + (i + 1) * block_length a; ( == ) { () } prevlen1 + nb1 * block_length a + (i + 1) * block_length a; ( == ) { Math.Lemmas.distributivity_add_left (i + 1) nb1 (block_length a) } prevlen1 + (i + 1 + nb1) * block_length a; ( == ) { () } totlen1; }; calc ( == ) { f1 (i + nb1) acc; ( == ) { () } blake2_update_block a' false totlen1 (get_blocki a' s (i + nb1)) acc; ( == ) { lemma_blocki_aux2 a s1 s2 nb1 nb2 i } blake2_update_block a' false totlen1 (get_blocki a' s2 i) acc; ( == ) { () } f2 i acc; }
false
FStar.Tactics.Canon.fst
FStar.Tactics.Canon.canon_point_entry
val canon_point_entry: Prims.unit -> Tac unit
val canon_point_entry: Prims.unit -> Tac unit
let canon_point_entry () : Tac unit = norm [primops]; let g = cur_goal () in match term_as_formula g with | Comp (Eq _) l r -> begin match run_tm (is_arith_expr l) with | Inr e -> (let _e = canon_point e in ()) | Inl _ -> trefl () end | _ -> fail ("impossible: " ^ term_to_string g)
{ "file_name": "ulib/FStar.Tactics.Canon.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 277, "start_col": 0, "start_line": 267 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Canon open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Reflection.V2.Arith open FStar.Mul module O = FStar.Order private val distr : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y + z) == x * y + x * z) private let distr #x #y #z = () private val distl : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) * z == x * z + y * z) private let distl #x #y #z = () private val ass_plus_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x + (y + z) == (x + y) + z) private let ass_plus_l #x #y #z = () private val ass_mult_l : (#x : int) -> (#y : int) -> (#z : int) -> Lemma (x * (y * z) == (x * y) * z) private let ass_mult_l #x #y #z = () private val comm_plus : (#x : int) -> (#y : int) -> Lemma (x + y == y + x) private let comm_plus #x #y = () private val sw_plus : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x + y) + z == (x + z) + y) private let sw_plus #x #y #z = () private val sw_mult : (#x : int) -> (#y : int) -> (#z : int) -> Lemma ((x * y) * z == (x * z) * y) private let sw_mult #x #y #z = () private val comm_mult : (#x : int) -> (#y : int) -> Lemma (x * y == y * x) private let comm_mult #x #y = () private val trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) -> squash (x == y) -> squash (y == z) -> Lemma (x == z) private let trans #a #x #z #y e1 e2 = () private val cong_plus : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w + x == y + z) private let cong_plus #w #x #y #z p q = () private val cong_mult : (#w:int) -> (#x:int) -> (#y:int) -> (#z:int) -> squash (w == y) -> squash (x == z) -> Lemma (w * x == y * z) private let cong_mult #w #x #y #z p q = () private val neg_minus_one : (#x:int) -> Lemma (-x == (-1) * x) private let neg_minus_one #x = () private val x_plus_zero : (#x:int) -> Lemma (x + 0 == x) private let x_plus_zero #x = () private val zero_plus_x : (#x:int) -> Lemma (0 + x == x) private let zero_plus_x #x = () private val x_mult_zero : (#x:int) -> Lemma (x * 0 == 0) private let x_mult_zero #x = () private val zero_mult_x : (#x:int) -> Lemma (0 * x == 0) private let zero_mult_x #x = () private val x_mult_one : (#x:int) -> Lemma (x * 1 == x) private let x_mult_one #x = () private val one_mult_x : (#x:int) -> Lemma (1 * x == x) private let one_mult_x #x = () private val minus_is_plus : (#x : int) -> (#y : int) -> Lemma (x - y == x + (-y)) private let minus_is_plus #x #y = () private let step (t : unit -> Tac unit) : Tac unit = apply_lemma (`trans); t () private let step_lemma (lem : term) : Tac unit = step (fun () -> apply_lemma lem) private val canon_point : expr -> Tac expr private let rec canon_point e = let skip () : Tac expr = trefl (); e in match e with // Evaluate constants | Plus (Lit a) (Lit b) -> norm [primops]; trefl (); Lit (a + b) | Mult (Lit a) (Lit b) -> norm [delta; primops]; // Need delta to turn op_Star into op_Multiply, as there's no primop for it trefl (); Lit (a * b) // Forget about negations | Neg e -> step_lemma (`neg_minus_one); canon_point (Mult (Lit (-1)) e) // Distribute | Mult a (Plus b c) -> step_lemma (`distr); step_lemma (`cong_plus); let l = canon_point (Mult a b) in let r = canon_point (Mult a c) in canon_point (Plus l r) | Mult (Plus a b) c -> step_lemma (`distl); step_lemma (`cong_plus); let l = canon_point (Mult a c) in let r = canon_point (Mult b c) in canon_point (Plus l r) // Associate to the left | Mult a (Mult b c) -> step_lemma (`ass_mult_l); step_lemma (`cong_mult); let l = canon_point (Mult a b) in let r = canon_point c in canon_point (Mult l r) | Plus a (Plus b c) -> step_lemma (`ass_plus_l); step_lemma (`cong_plus); let l = canon_point (Plus a b) in let r = canon_point c in canon_point (Plus l r) | Plus (Plus a b) c -> if O.gt (compare_expr b c) then begin step_lemma (`sw_plus); apply_lemma (`cong_plus); let l = canon_point (Plus a c) in trefl() ; Plus l b end else skip () | Mult (Mult a b) c -> if O.gt (compare_expr b c) then begin step_lemma (`sw_mult); apply_lemma (`cong_mult); let l = canon_point (Mult a c) in trefl (); Mult l b end else skip () | Plus a (Lit 0) -> apply_lemma (`x_plus_zero); a | Plus (Lit 0) b -> apply_lemma (`zero_plus_x); b | Plus a b -> if O.gt (compare_expr a b) then (apply_lemma (`comm_plus); Plus b a) else skip () | Mult (Lit 0) _ -> apply_lemma (`zero_mult_x); Lit 0 | Mult _ (Lit 0) -> apply_lemma (`x_mult_zero); Lit 0 | Mult (Lit 1) r -> apply_lemma (`one_mult_x); r | Mult l (Lit 1) -> apply_lemma (`x_mult_one); l | Mult a b -> if O.gt (compare_expr a b) then (apply_lemma (`comm_mult); Mult b a) else skip () // Forget about subtraction | Minus a b -> step_lemma (`minus_is_plus); step_lemma (`cong_plus); trefl (); let negb = match b with | Lit n -> Lit (-n) | _ -> Neg b in // ^ We need to take care wrt literals, since an application (- N) // will get reduced to the literal -N and then neg_minus_one will not // apply. let r = canon_point negb in canon_point (Plus a r) | _ -> skip () // On canon_point_entry, we interpret the LHS of the goal as an // arithmetic expression, of which we keep track in canon_point so we // avoid reinterpreting the goal, which gives a good speedup. // // However, we are repeating work between canon_point_entry calls, since // in (L + R), we are called once for L, once for R, and once for the // sum which traverses both (their canonized forms, actually). // // The proper way to solve this is have some state-passing in pointwise, // maybe having the inner tactic be of type (list a -> tactic a), where
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Reflection.V2.Arith.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Order.fst.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Canon.fst" }
[ { "abbrev": true, "full_module": "FStar.Order", "short_module": "O" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Arith", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.Types.typ", "FStar.Tactics.NamedView.term", "FStar.Reflection.V2.Arith.expr", "FStar.Tactics.Canon.canon_point", "Prims.string", "FStar.Tactics.V2.Derived.trefl", "FStar.Pervasives.either", "FStar.Reflection.V2.Arith.run_tm", "FStar.Reflection.V2.Arith.is_arith_expr", "FStar.Reflection.V2.Formula.formula", "FStar.Tactics.V2.Derived.fail", "Prims.op_Hat", "FStar.Stubs.Tactics.V2.Builtins.term_to_string", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Stubs.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.primops", "Prims.Nil" ]
[]
false
true
false
false
false
let canon_point_entry () : Tac unit =
norm [primops]; let g = cur_goal () in match term_as_formula g with | Comp (Eq _) l r -> (match run_tm (is_arith_expr l) with | Inr e -> (let _e = canon_point e in ()) | Inl _ -> trefl ()) | _ -> fail ("impossible: " ^ term_to_string g)
false
TwoLockQueue.fst
TwoLockQueue.half
val half : Steel.FractionalPermission.perm
let half = half_perm full
{ "file_name": "share/steel/examples/steel/TwoLockQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 25, "end_line": 32, "start_col": 0, "start_line": 32 }
module TwoLockQueue open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference open Steel.SpinLock module L = FStar.List.Tot module U = Steel.Utils module Q = Queue /// This module provides an implementation of Michael and Scott's two lock queue, using the /// abstract interface for queues provided in Queue.fsti. /// This implementation allows an enqueue and a dequeue operation to safely operate in parallel. /// There is a lock associated to both the enqueuer and the dequeuer, which guards each of those operation, /// ensuring that at most one enqueue (resp. dequeue) is happening at any time /// We only prove that this implementation is memory safe, and do not prove the functional correctness of the concurrent queue #push-options "--ide_id_info_off" /// Adding the definition of the vprop equivalence to the context, for proof purposes let _: squash (forall p q. p `equiv` q <==> hp_of p `Steel.Memory.equiv` hp_of q) = Classical.forall_intro_2 reveal_equiv (* Some wrappers to reduce clutter in the code *) [@@__reduce__] let full = full_perm
{ "checked_file": "/", "dependencies": [ "Steel.Utils.fst.checked", "Steel.SpinLock.fsti.checked", "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Queue.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "TwoLockQueue.fst" }
[ { "abbrev": true, "full_module": "Queue", "short_module": "Q" }, { "abbrev": true, "full_module": "Steel.Utils", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.SpinLock", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Steel.FractionalPermission.perm
Prims.Tot
[ "total" ]
[]
[ "Steel.FractionalPermission.half_perm", "TwoLockQueue.full" ]
[]
false
false
false
true
false
let half =
half_perm full
false
Trees.fst
Trees.kv_tree
val kv_tree : a: Type -> b: Type -> Type
let kv_tree (a: Type) (b: Type) = tree (node_data a b)
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 54, "end_line": 22, "start_col": 0, "start_line": 22 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "Trees.tree", "Trees.node_data" ]
[]
false
false
false
true
true
let kv_tree (a b: Type) =
tree (node_data a b)
false
TwoLockQueue.fst
TwoLockQueue.snd
val snd : x: (_ * _) -> _
let snd x = snd x
{ "file_name": "share/steel/examples/steel/TwoLockQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 17, "end_line": 38, "start_col": 0, "start_line": 38 }
module TwoLockQueue open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference open Steel.SpinLock module L = FStar.List.Tot module U = Steel.Utils module Q = Queue /// This module provides an implementation of Michael and Scott's two lock queue, using the /// abstract interface for queues provided in Queue.fsti. /// This implementation allows an enqueue and a dequeue operation to safely operate in parallel. /// There is a lock associated to both the enqueuer and the dequeuer, which guards each of those operation, /// ensuring that at most one enqueue (resp. dequeue) is happening at any time /// We only prove that this implementation is memory safe, and do not prove the functional correctness of the concurrent queue #push-options "--ide_id_info_off" /// Adding the definition of the vprop equivalence to the context, for proof purposes let _: squash (forall p q. p `equiv` q <==> hp_of p `Steel.Memory.equiv` hp_of q) = Classical.forall_intro_2 reveal_equiv (* Some wrappers to reduce clutter in the code *) [@@__reduce__] let full = full_perm [@@__reduce__] let half = half_perm full (* Wrappers around fst and snd to avoid overnormalization. TODO: The frame inference tactic should not normalize fst and snd *)
{ "checked_file": "/", "dependencies": [ "Steel.Utils.fst.checked", "Steel.SpinLock.fsti.checked", "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Queue.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "TwoLockQueue.fst" }
[ { "abbrev": true, "full_module": "Queue", "short_module": "Q" }, { "abbrev": true, "full_module": "Steel.Utils", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.SpinLock", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: (_ * _) -> _
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.snd" ]
[]
false
false
false
true
false
let snd x =
snd x
false
Trees.fst
Trees.key_left
val key_left : compare: Trees.cmp a -> root: a -> key: a -> Prims.bool
let key_left (#a: Type) (compare:cmp a) (root key: a) = compare root key >= 0
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 23, "end_line": 37, "start_col": 0, "start_line": 36 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; } let kv_tree (a: Type) (b: Type) = tree (node_data a b) type cmp (a: Type) = compare: (a -> a -> int){ squash (forall x. compare x x == 0) /\ squash (forall x y. compare x y > 0 <==> compare y x < 0) /\ squash (forall x y z. compare x y >= 0 /\ compare y z >= 0 ==> compare x z >= 0) } let rec forall_keys (#a: Type) (t: tree a) (cond: a -> bool) : bool = match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
compare: Trees.cmp a -> root: a -> key: a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Trees.cmp", "Prims.op_GreaterThanOrEqual", "Prims.bool" ]
[]
false
false
false
true
false
let key_left (#a: Type) (compare: cmp a) (root key: a) =
compare root key >= 0
false
TwoLockQueue.fst
TwoLockQueue.fst
val fst : x: (_ * _) -> _
let fst x = fst x
{ "file_name": "share/steel/examples/steel/TwoLockQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 17, "end_line": 37, "start_col": 0, "start_line": 37 }
module TwoLockQueue open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference open Steel.SpinLock module L = FStar.List.Tot module U = Steel.Utils module Q = Queue /// This module provides an implementation of Michael and Scott's two lock queue, using the /// abstract interface for queues provided in Queue.fsti. /// This implementation allows an enqueue and a dequeue operation to safely operate in parallel. /// There is a lock associated to both the enqueuer and the dequeuer, which guards each of those operation, /// ensuring that at most one enqueue (resp. dequeue) is happening at any time /// We only prove that this implementation is memory safe, and do not prove the functional correctness of the concurrent queue #push-options "--ide_id_info_off" /// Adding the definition of the vprop equivalence to the context, for proof purposes let _: squash (forall p q. p `equiv` q <==> hp_of p `Steel.Memory.equiv` hp_of q) = Classical.forall_intro_2 reveal_equiv (* Some wrappers to reduce clutter in the code *) [@@__reduce__] let full = full_perm [@@__reduce__] let half = half_perm full (* Wrappers around fst and snd to avoid overnormalization. TODO: The frame inference tactic should not normalize fst and snd *)
{ "checked_file": "/", "dependencies": [ "Steel.Utils.fst.checked", "Steel.SpinLock.fsti.checked", "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Queue.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "TwoLockQueue.fst" }
[ { "abbrev": true, "full_module": "Queue", "short_module": "Q" }, { "abbrev": true, "full_module": "Steel.Utils", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.SpinLock", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: (_ * _) -> _
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.fst" ]
[]
false
false
false
true
false
let fst x =
fst x
false
Trees.fst
Trees.bst
val bst : a: Type -> cmp: Trees.cmp a -> Type
let bst (a: Type) (cmp:cmp a) = x:tree a {is_bst cmp x}
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 55, "end_line": 50, "start_col": 0, "start_line": 50 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; } let kv_tree (a: Type) (b: Type) = tree (node_data a b) type cmp (a: Type) = compare: (a -> a -> int){ squash (forall x. compare x x == 0) /\ squash (forall x y. compare x y > 0 <==> compare y x < 0) /\ squash (forall x y z. compare x y >= 0 /\ compare y z >= 0 ==> compare x z >= 0) } let rec forall_keys (#a: Type) (t: tree a) (cond: a -> bool) : bool = match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond let key_left (#a: Type) (compare:cmp a) (root key: a) = compare root key >= 0 let key_right (#a: Type) (compare : cmp a) (root key: a) = compare root key <= 0 let rec is_bst (#a: Type) (compare : cmp a) (x: tree a) : bool = match x with | Leaf -> true | Node data left right -> is_bst compare left && is_bst compare right && forall_keys left (key_left compare data) && forall_keys right (key_right compare data)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> cmp: Trees.cmp a -> Type
Prims.Tot
[ "total" ]
[]
[ "Trees.cmp", "Trees.tree", "Prims.b2t", "Trees.is_bst" ]
[]
false
false
false
true
true
let bst (a: Type) (cmp: cmp a) =
x: tree a {is_bst cmp x}
false
Trees.fst
Trees.key_right
val key_right : compare: Trees.cmp a -> root: a -> key: a -> Prims.bool
let key_right (#a: Type) (compare : cmp a) (root key: a) = compare root key <= 0
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 23, "end_line": 40, "start_col": 0, "start_line": 39 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; } let kv_tree (a: Type) (b: Type) = tree (node_data a b) type cmp (a: Type) = compare: (a -> a -> int){ squash (forall x. compare x x == 0) /\ squash (forall x y. compare x y > 0 <==> compare y x < 0) /\ squash (forall x y z. compare x y >= 0 /\ compare y z >= 0 ==> compare x z >= 0) } let rec forall_keys (#a: Type) (t: tree a) (cond: a -> bool) : bool = match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond let key_left (#a: Type) (compare:cmp a) (root key: a) = compare root key >= 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
compare: Trees.cmp a -> root: a -> key: a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Trees.cmp", "Prims.op_LessThanOrEqual", "Prims.bool" ]
[]
false
false
false
true
false
let key_right (#a: Type) (compare: cmp a) (root key: a) =
compare root key <= 0
false
TwoLockQueue.fst
TwoLockQueue.lock_inv
val lock_inv : ptr: Steel.Reference.ref (Queue.Def.t a) -> ghost: Steel.Reference.ghost_ref (Queue.Def.t a) -> Steel.Effect.Common.vprop
let lock_inv #a (ptr:ref (Q.t a)) (ghost:ghost_ref (Q.t a)) = h_exists (fun (v:Q.t a) -> pts_to ptr full v `star` ghost_pts_to ghost half v)
{ "file_name": "share/steel/examples/steel/TwoLockQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 32, "end_line": 81, "start_col": 0, "start_line": 78 }
module TwoLockQueue open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference open Steel.SpinLock module L = FStar.List.Tot module U = Steel.Utils module Q = Queue /// This module provides an implementation of Michael and Scott's two lock queue, using the /// abstract interface for queues provided in Queue.fsti. /// This implementation allows an enqueue and a dequeue operation to safely operate in parallel. /// There is a lock associated to both the enqueuer and the dequeuer, which guards each of those operation, /// ensuring that at most one enqueue (resp. dequeue) is happening at any time /// We only prove that this implementation is memory safe, and do not prove the functional correctness of the concurrent queue #push-options "--ide_id_info_off" /// Adding the definition of the vprop equivalence to the context, for proof purposes let _: squash (forall p q. p `equiv` q <==> hp_of p `Steel.Memory.equiv` hp_of q) = Classical.forall_intro_2 reveal_equiv (* Some wrappers to reduce clutter in the code *) [@@__reduce__] let full = full_perm [@@__reduce__] let half = half_perm full (* Wrappers around fst and snd to avoid overnormalization. TODO: The frame inference tactic should not normalize fst and snd *) let fst x = fst x let snd x = snd x (* Some wrappers around Steel functions which are easier to use inside this module *) let ghost_gather (#a:Type) (#u:_) (#p0 #p1:perm) (#p:perm{p == sum_perm p0 p1}) (x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r p x0) (requires fun _ -> True) (ensures fun _ _ _ -> x0 == x1) = let _ = ghost_gather_pt #a #u #p0 #p1 r in () let rewrite #u (p q:vprop) : SteelGhost unit u p (fun _ -> q) (requires fun _ -> p `equiv` q) (ensures fun _ _ _ -> True) = rewrite_slprop p q (fun _ -> reveal_equiv p q) let elim_pure (#p:prop) #u () : SteelGhost unit u (pure p) (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> p) = let _ = Steel.Effect.Atomic.elim_pure p in () let open_exists (#a:Type) (#opened_invariants:_) (#p:a -> vprop) (_:unit) : SteelGhostT (Ghost.erased a) opened_invariants (h_exists p) (fun r -> p (reveal r)) = let v : erased a = witness_exists () in v (*** Queue invariant ***) /// The invariant associated to the lock. Basically a variant of the /// Owicki-Gries invariant, but applied to queues
{ "checked_file": "/", "dependencies": [ "Steel.Utils.fst.checked", "Steel.SpinLock.fsti.checked", "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Queue.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "TwoLockQueue.fst" }
[ { "abbrev": true, "full_module": "Queue", "short_module": "Q" }, { "abbrev": true, "full_module": "Steel.Utils", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.SpinLock", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ptr: Steel.Reference.ref (Queue.Def.t a) -> ghost: Steel.Reference.ghost_ref (Queue.Def.t a) -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Steel.Reference.ref", "Queue.Def.t", "Steel.Reference.ghost_ref", "Steel.Effect.Atomic.h_exists", "Steel.Effect.Common.star", "Steel.Reference.pts_to", "TwoLockQueue.full", "Steel.Reference.ghost_pts_to", "TwoLockQueue.half", "Steel.Effect.Common.vprop" ]
[]
false
false
false
true
false
let lock_inv #a (ptr: ref (Q.t a)) (ghost: ghost_ref (Q.t a)) =
h_exists (fun (v: Q.t a) -> (pts_to ptr full v) `star` (ghost_pts_to ghost half v))
false
Trees.fst
Trees.forall_keys
val forall_keys (#a: Type) (t: tree a) (cond: (a -> bool)) : bool
val forall_keys (#a: Type) (t: tree a) (cond: (a -> bool)) : bool
let rec forall_keys (#a: Type) (t: tree a) (cond: a -> bool) : bool = match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 64, "end_line": 34, "start_col": 0, "start_line": 30 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; } let kv_tree (a: Type) (b: Type) = tree (node_data a b) type cmp (a: Type) = compare: (a -> a -> int){ squash (forall x. compare x x == 0) /\ squash (forall x y. compare x y > 0 <==> compare y x < 0) /\ squash (forall x y z. compare x y >= 0 /\ compare y z >= 0 ==> compare x z >= 0) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Trees.tree a -> cond: (_: a -> Prims.bool) -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Trees.tree", "Prims.bool", "Prims.op_AmpAmp", "Trees.forall_keys" ]
[ "recursion" ]
false
false
false
true
false
let rec forall_keys (#a: Type) (t: tree a) (cond: (a -> bool)) : bool =
match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond
false
Trees.fst
Trees.is_avl
val is_avl (#a: Type) (cmp: cmp a) (x: tree a) : prop
val is_avl (#a: Type) (cmp: cmp a) (x: tree a) : prop
let is_avl (#a: Type) (cmp:cmp a) (x: tree a) : prop = is_bst cmp x /\ is_balanced x
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 31, "end_line": 159, "start_col": 0, "start_line": 158 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; } let kv_tree (a: Type) (b: Type) = tree (node_data a b) type cmp (a: Type) = compare: (a -> a -> int){ squash (forall x. compare x x == 0) /\ squash (forall x y. compare x y > 0 <==> compare y x < 0) /\ squash (forall x y z. compare x y >= 0 /\ compare y z >= 0 ==> compare x z >= 0) } let rec forall_keys (#a: Type) (t: tree a) (cond: a -> bool) : bool = match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond let key_left (#a: Type) (compare:cmp a) (root key: a) = compare root key >= 0 let key_right (#a: Type) (compare : cmp a) (root key: a) = compare root key <= 0 let rec is_bst (#a: Type) (compare : cmp a) (x: tree a) : bool = match x with | Leaf -> true | Node data left right -> is_bst compare left && is_bst compare right && forall_keys left (key_left compare data) && forall_keys right (key_right compare data) let bst (a: Type) (cmp:cmp a) = x:tree a {is_bst cmp x} (*** Operations *) (**** Lookup *) let rec mem (#a: Type) (r: tree a) (x: a) : prop = match r with | Leaf -> False | Node data left right -> (data == x) \/ (mem right x) \/ mem left x let rec bst_search (#a: Type) (cmp:cmp a) (x: bst a cmp) (key: a) : option a = match x with | Leaf -> None | Node data left right -> let delta = cmp data key in if delta < 0 then bst_search cmp right key else if delta > 0 then bst_search cmp left key else Some data (**** Height *) let rec height (#a: Type) (x: tree a) : nat = match x with | Leaf -> 0 | Node data left right -> if height left > height right then (height left) + 1 else (height right) + 1 (**** Append *) let rec append_left (#a: Type) (x: tree a) (v: a) : tree a = match x with | Leaf -> Node v Leaf Leaf | Node x left right -> Node x (append_left left v) right let rec append_right (#a: Type) (x: tree a) (v: a) : tree a = match x with | Leaf -> Node v Leaf Leaf | Node x left right -> Node x left (append_right right v) (**** Insertion *) (**** BST insertion *) let rec insert_bst (#a: Type) (cmp:cmp a) (x: bst a cmp) (key: a) : tree a = match x with | Leaf -> Node key Leaf Leaf | Node data left right -> let delta = cmp data key in if delta >= 0 then begin let new_left = insert_bst cmp left key in Node data new_left right end else begin let new_right = insert_bst cmp right key in Node data left new_right end let rec insert_bst_preserves_forall_keys (#a: Type) (cmp:cmp a) (x: bst a cmp) (key: a) (cond: a -> bool) : Lemma (requires (forall_keys x cond /\ cond key)) (ensures (forall_keys (insert_bst cmp x key) cond)) = match x with | Leaf -> () | Node data left right -> let delta = cmp data key in if delta >= 0 then insert_bst_preserves_forall_keys cmp left key cond else insert_bst_preserves_forall_keys cmp right key cond let rec insert_bst_preserves_bst (#a: Type) (cmp:cmp a) (x: bst a cmp) (key: a) : Lemma(is_bst cmp (insert_bst cmp x key)) = match x with | Leaf -> () | Node data left right -> let delta = cmp data key in if delta >= 0 then begin insert_bst_preserves_forall_keys cmp left key (key_left cmp data); insert_bst_preserves_bst cmp left key end else begin insert_bst_preserves_forall_keys cmp right key (key_right cmp data); insert_bst_preserves_bst cmp right key end (**** AVL insertion *) let rec is_balanced (#a: Type) (x: tree a) : bool = match x with | Leaf -> true | Node data left right -> M.abs(height right - height left) <= 1 && is_balanced(right) && is_balanced(left)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cmp: Trees.cmp a -> x: Trees.tree a -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Trees.cmp", "Trees.tree", "Prims.l_and", "Prims.b2t", "Trees.is_bst", "Trees.is_balanced", "Prims.prop" ]
[]
false
false
false
true
true
let is_avl (#a: Type) (cmp: cmp a) (x: tree a) : prop =
is_bst cmp x /\ is_balanced x
false
Trees.fst
Trees.mem
val mem (#a: Type) (r: tree a) (x: a) : prop
val mem (#a: Type) (r: tree a) (x: a) : prop
let rec mem (#a: Type) (r: tree a) (x: a) : prop = match r with | Leaf -> False | Node data left right -> (data == x) \/ (mem right x) \/ mem left x
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 46, "end_line": 60, "start_col": 0, "start_line": 56 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; } let kv_tree (a: Type) (b: Type) = tree (node_data a b) type cmp (a: Type) = compare: (a -> a -> int){ squash (forall x. compare x x == 0) /\ squash (forall x y. compare x y > 0 <==> compare y x < 0) /\ squash (forall x y z. compare x y >= 0 /\ compare y z >= 0 ==> compare x z >= 0) } let rec forall_keys (#a: Type) (t: tree a) (cond: a -> bool) : bool = match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond let key_left (#a: Type) (compare:cmp a) (root key: a) = compare root key >= 0 let key_right (#a: Type) (compare : cmp a) (root key: a) = compare root key <= 0 let rec is_bst (#a: Type) (compare : cmp a) (x: tree a) : bool = match x with | Leaf -> true | Node data left right -> is_bst compare left && is_bst compare right && forall_keys left (key_left compare data) && forall_keys right (key_right compare data) let bst (a: Type) (cmp:cmp a) = x:tree a {is_bst cmp x} (*** Operations *) (**** Lookup *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Trees.tree a -> x: a -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Trees.tree", "Prims.l_False", "Prims.l_or", "Prims.eq2", "Trees.mem", "Prims.prop" ]
[ "recursion" ]
false
false
false
true
true
let rec mem (#a: Type) (r: tree a) (x: a) : prop =
match r with | Leaf -> False | Node data left right -> (data == x) \/ (mem right x) \/ mem left x
false
Trees.fst
Trees.is_bst
val is_bst (#a: Type) (compare: cmp a) (x: tree a) : bool
val is_bst (#a: Type) (compare: cmp a) (x: tree a) : bool
let rec is_bst (#a: Type) (compare : cmp a) (x: tree a) : bool = match x with | Leaf -> true | Node data left right -> is_bst compare left && is_bst compare right && forall_keys left (key_left compare data) && forall_keys right (key_right compare data)
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 46, "end_line": 48, "start_col": 0, "start_line": 42 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; } let kv_tree (a: Type) (b: Type) = tree (node_data a b) type cmp (a: Type) = compare: (a -> a -> int){ squash (forall x. compare x x == 0) /\ squash (forall x y. compare x y > 0 <==> compare y x < 0) /\ squash (forall x y z. compare x y >= 0 /\ compare y z >= 0 ==> compare x z >= 0) } let rec forall_keys (#a: Type) (t: tree a) (cond: a -> bool) : bool = match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond let key_left (#a: Type) (compare:cmp a) (root key: a) = compare root key >= 0 let key_right (#a: Type) (compare : cmp a) (root key: a) = compare root key <= 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
compare: Trees.cmp a -> x: Trees.tree a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Trees.cmp", "Trees.tree", "Prims.op_AmpAmp", "Trees.is_bst", "Trees.forall_keys", "Trees.key_left", "Trees.key_right", "Prims.bool" ]
[ "recursion" ]
false
false
false
true
false
let rec is_bst (#a: Type) (compare: cmp a) (x: tree a) : bool =
match x with | Leaf -> true | Node data left right -> is_bst compare left && is_bst compare right && forall_keys left (key_left compare data) && forall_keys right (key_right compare data)
false
Trees.fst
Trees.avl
val avl : a: Type -> cmp: Trees.cmp a -> Type
let avl (a: Type) (cmp:cmp a) = x: tree a {is_avl cmp x}
{ "file_name": "share/steel/examples/steel/Trees.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 56, "end_line": 161, "start_col": 0, "start_line": 161 }
module Trees module M = FStar.Math.Lib #set-options "--fuel 1 --ifuel 1 --z3rlimit 20" (*** Type definitions *) (**** The tree structure *) type tree (a: Type) = | Leaf : tree a | Node: data: a -> left: tree a -> right: tree a -> tree a (**** Binary search trees *) type node_data (a b: Type) = { key: a; payload: b; } let kv_tree (a: Type) (b: Type) = tree (node_data a b) type cmp (a: Type) = compare: (a -> a -> int){ squash (forall x. compare x x == 0) /\ squash (forall x y. compare x y > 0 <==> compare y x < 0) /\ squash (forall x y z. compare x y >= 0 /\ compare y z >= 0 ==> compare x z >= 0) } let rec forall_keys (#a: Type) (t: tree a) (cond: a -> bool) : bool = match t with | Leaf -> true | Node data left right -> cond data && forall_keys left cond && forall_keys right cond let key_left (#a: Type) (compare:cmp a) (root key: a) = compare root key >= 0 let key_right (#a: Type) (compare : cmp a) (root key: a) = compare root key <= 0 let rec is_bst (#a: Type) (compare : cmp a) (x: tree a) : bool = match x with | Leaf -> true | Node data left right -> is_bst compare left && is_bst compare right && forall_keys left (key_left compare data) && forall_keys right (key_right compare data) let bst (a: Type) (cmp:cmp a) = x:tree a {is_bst cmp x} (*** Operations *) (**** Lookup *) let rec mem (#a: Type) (r: tree a) (x: a) : prop = match r with | Leaf -> False | Node data left right -> (data == x) \/ (mem right x) \/ mem left x let rec bst_search (#a: Type) (cmp:cmp a) (x: bst a cmp) (key: a) : option a = match x with | Leaf -> None | Node data left right -> let delta = cmp data key in if delta < 0 then bst_search cmp right key else if delta > 0 then bst_search cmp left key else Some data (**** Height *) let rec height (#a: Type) (x: tree a) : nat = match x with | Leaf -> 0 | Node data left right -> if height left > height right then (height left) + 1 else (height right) + 1 (**** Append *) let rec append_left (#a: Type) (x: tree a) (v: a) : tree a = match x with | Leaf -> Node v Leaf Leaf | Node x left right -> Node x (append_left left v) right let rec append_right (#a: Type) (x: tree a) (v: a) : tree a = match x with | Leaf -> Node v Leaf Leaf | Node x left right -> Node x left (append_right right v) (**** Insertion *) (**** BST insertion *) let rec insert_bst (#a: Type) (cmp:cmp a) (x: bst a cmp) (key: a) : tree a = match x with | Leaf -> Node key Leaf Leaf | Node data left right -> let delta = cmp data key in if delta >= 0 then begin let new_left = insert_bst cmp left key in Node data new_left right end else begin let new_right = insert_bst cmp right key in Node data left new_right end let rec insert_bst_preserves_forall_keys (#a: Type) (cmp:cmp a) (x: bst a cmp) (key: a) (cond: a -> bool) : Lemma (requires (forall_keys x cond /\ cond key)) (ensures (forall_keys (insert_bst cmp x key) cond)) = match x with | Leaf -> () | Node data left right -> let delta = cmp data key in if delta >= 0 then insert_bst_preserves_forall_keys cmp left key cond else insert_bst_preserves_forall_keys cmp right key cond let rec insert_bst_preserves_bst (#a: Type) (cmp:cmp a) (x: bst a cmp) (key: a) : Lemma(is_bst cmp (insert_bst cmp x key)) = match x with | Leaf -> () | Node data left right -> let delta = cmp data key in if delta >= 0 then begin insert_bst_preserves_forall_keys cmp left key (key_left cmp data); insert_bst_preserves_bst cmp left key end else begin insert_bst_preserves_forall_keys cmp right key (key_right cmp data); insert_bst_preserves_bst cmp right key end (**** AVL insertion *) let rec is_balanced (#a: Type) (x: tree a) : bool = match x with | Leaf -> true | Node data left right -> M.abs(height right - height left) <= 1 && is_balanced(right) && is_balanced(left) let is_avl (#a: Type) (cmp:cmp a) (x: tree a) : prop = is_bst cmp x /\ is_balanced x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Trees.fst" }
[ { "abbrev": true, "full_module": "FStar.Math.Lib", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> cmp: Trees.cmp a -> Type
Prims.Tot
[ "total" ]
[]
[ "Trees.cmp", "Trees.tree", "Trees.is_avl" ]
[]
false
false
false
true
true
let avl (a: Type) (cmp: cmp a) =
x: tree a {is_avl cmp x}
false