file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.BufferNG.fst
FStar.BufferNG.fill
val fill: #t:typ -> b:buffer t -> z: P.type_of_typ t -> len:UInt32.t{UInt32.v len <= length b} -> HST.Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ P.modifies (P.loc_buffer (gsub b 0ul len)) h0 h1 /\ Seq.slice (as_seq h1 b) 0 (UInt32.v len) == Seq.create (UInt32.v len) z /\ Seq.slice (as_seq h1 b) (UInt32.v len) (length b) == Seq.slice (as_seq h0 b) (UInt32.v len) (length b) ))
val fill: #t:typ -> b:buffer t -> z: P.type_of_typ t -> len:UInt32.t{UInt32.v len <= length b} -> HST.Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ P.modifies (P.loc_buffer (gsub b 0ul len)) h0 h1 /\ Seq.slice (as_seq h1 b) 0 (UInt32.v len) == Seq.create (UInt32.v len) z /\ Seq.slice (as_seq h1 b) (UInt32.v len) (length b) == Seq.slice (as_seq h0 b) (UInt32.v len) (length b) ))
let fill #t b z len = let h0 = HST.get () in P.fill_buffer b 0ul len z; let h1 = HST.get () in assert (as_seq h1 (gsub b 0ul len) == Seq.slice (as_seq h1 b) 0 (UInt32.v len)); assert (let g = gsub b len (UInt32.sub (P.buffer_length b) len) in as_seq h1 g == as_seq h0 g)
{ "file_name": "ulib/legacy/FStar.BufferNG.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 96, "end_line": 492, "start_col": 0, "start_line": 487 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BufferNG module HH = FStar.HyperStack module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module P = FStar.Pointer (* This module will help for the transition of some buffer-based code It tries to sidestep the following two issues: - the type of elements must be embeddable into P.typ - all elements must always be readable (no uninitialized data) *) let rec supported (t : P.typ) : Tot bool = match t with | P.TBase _ -> true | P.TStruct l -> struct_typ_supported l.P.fields | _ -> false and struct_typ_supported (l: list (string * P.typ)) : Tot bool = match l with | [] -> true | (_, t) :: l' -> supported t && struct_typ_supported l' let typ = (t: P.typ { supported t } ) unfold let buffer (t: typ) : Tot Type0 = P.buffer t unfold let live (#a: typ) (h: HS.mem) (b: buffer a) : GTot Type0 = P.buffer_readable h b unfold let unused_in (#a: typ) (b: buffer a) (h: HS.mem) : GTot Type0 = P.buffer_unused_in b h unfold let length (#a: typ) (b: buffer a) : GTot nat = UInt32.v (P.buffer_length b) unfold let as_addr (#a: typ) (b: buffer a) : GTot nat = P.buffer_as_addr b unfold let frameOf (#a: typ) (b: buffer a) : GTot HH.rid = P.frameOf_buffer b unfold let as_seq (#a: typ) (h: HS.mem) (b: buffer a) : GTot (s: Seq.seq (P.type_of_typ a) { Seq.length s == length b } ) = P.buffer_as_seq h b unfold let equal (#a: typ) (h: HS.mem) (b: buffer a) (h' : HS.mem) (b' : buffer a) : GTot Type0 = as_seq h b == as_seq h' b' unfold let includes (#a: typ) (x y: buffer a) : GTot Type0 = P.buffer_includes x y let includes_live (#a: typ) (h: HS.mem) (x y : buffer a) : Lemma (requires (x `includes` y /\ live h x)) (ensures (live h y)) = P.buffer_includes_elim x y let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = P.buffer_includes_elim x y let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = P.buffer_includes_trans x y z unfold let disjoint (#a #a' : typ) (x: buffer a) (y: buffer a') : GTot Type0 = P.loc_disjoint (P.loc_buffer x) (P.loc_buffer y) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = P.buffer_includes_loc_includes x subx; P.loc_disjoint_includes (P.loc_buffer x) (P.loc_buffer y) (P.loc_buffer subx) (P.loc_buffer y) let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () let lemma_live_disjoint #a #a' h (b:buffer a) (b':buffer a') : Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] = () (** Concrete getters and setters *) val create (#a:typ) (init: P.type_of_typ a) (len:UInt32.t) : HST.StackInline (buffer a) (requires (fun h -> UInt32.v len > 0 )) (ensures (fun (h0: HS.mem) b h1 -> UInt32.v len > 0 /\ b `unused_in` h0 /\ live h1 b /\ length b == UInt32.v len /\ frameOf b == (HS.get_tip h0) /\ P.modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (UInt32.v len) init )) let create #a init len = let len : P.array_length_t = len in let content = P.screate (P.TArray len a) (Some (Seq.create (UInt32.v len) init)) in P.buffer_of_array_pointer content unfold let p (#a:typ) (init:list (P.type_of_typ a)) : GTot Type0 = normalize (0 < FStar.List.Tot.length init) /\ normalize (FStar.List.Tot.length init < UInt.max_int 32) unfold let q (#a:typ) (len:nat) (buf:buffer a) : GTot Type0 = normalize (length buf == len) val createL (#a: typ) (init:list (P.type_of_typ a)) : HST.StackInline (buffer a) (requires (fun h -> p #a init)) (ensures (fun (h0: HS.mem) b h1 -> let len = FStar.List.Tot.length init in len > 0 /\ b `unused_in` h0 /\ live h1 b /\ length b == len /\ frameOf b == (HS.get_tip h0) /\ P.modifies_0 h0 h1 /\ as_seq h1 b == Seq.seq_of_list init /\ q #a len b )) #set-options "--initial_fuel 1 --max_fuel 1" //the normalize_term (length init) in the pre-condition will be unfolded //whereas the L.length init below will not let createL #a init = let len : P.array_length_t = UInt32.uint_to_t (List.Tot.length init) in let s = Seq.seq_of_list init in let content = P.screate (P.TArray len a) (Some s) in P.buffer_of_array_pointer content #reset-options "--initial_fuel 0 --max_fuel 0" val rcreate (#a: typ) (r:HH.rid) (init: P.type_of_typ a) (len:UInt32.t) : HST.ST (buffer a) (requires (fun h -> HST.is_eternal_region r /\ HST.witnessed (HST.region_contains_pred r) /\ UInt32.v len > 0 )) (ensures (fun (h0: HS.mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ length b == UInt32.v len /\ (HS.get_tip h1) == (HS.get_tip h0) /\ P.modifies (P.loc_addresses r Set.empty) h0 h1 /\ as_seq h1 b == Seq.create (UInt32.v len) init )) let rcreate #a r init len = let len : P.array_length_t = len in let content = P.ecreate (P.TArray len a) r (Some (Seq.create (UInt32.v len) init)) in P.buffer_of_array_pointer content val index (#a: typ) (b: buffer a) (n: UInt32.t) : HST.Stack (P.type_of_typ a) (requires (fun h -> UInt32.v n < length b /\ live h b )) (ensures (fun h0 z h1 -> UInt32.v n < length b /\ h1 == h0 /\ z == Seq.index (as_seq h0 b) (UInt32.v n) )) let index #a b n = P.read_buffer b n val upd (#a: typ) (b: buffer a) (n: UInt32.t) (z: P.type_of_typ a) : HST.Stack unit (requires (fun h -> live h b /\ UInt32.v n < length b )) (ensures (fun h0 _ h1 -> live h1 b /\ UInt32.v n < length b /\ P.modifies (P.loc_pointer (P.gpointer_of_buffer_cell b n)) h0 h1 /\ as_seq h1 b == Seq.upd (as_seq h0 b) (UInt32.v n) z )) let upd #a b n z = let h0 = HST.get () in P.write_buffer b n z; let h1 = HST.get () in assert (Seq.equal (as_seq h1 b) (Seq.upd (as_seq h0 b) (UInt32.v n) z)) (* NOTE: Here I cannot fully respect the Buffer interface, because pure sub no longer exists, since it has been split into ghost gsub and stateful sub *) unfold let gsub (#a: typ) (b: buffer a) (i: UInt32.t) (len: UInt32.t) : Ghost (buffer a) (requires (UInt32.v i + UInt32.v len <= length b)) (ensures (fun _ -> True)) = P.gsub_buffer b i len let sub (#a: typ) (b: buffer a) (i: UInt32.t) (len: UInt32.t) : HST.Stack (buffer a) (requires (fun h -> live h b /\ UInt32.v i + UInt32.v len <= length b )) (ensures (fun h0 b' h1 -> live h0 b /\ UInt32.v i + UInt32.v len <= length b /\ h1 == h0 /\ b' == gsub b i len /\ b `includes` b' )) = P.sub_buffer b i len let sub_sub (#a: typ) (b: buffer a) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires ( UInt32.v i1 + UInt32.v len1 <= length b /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 )) (ensures ( UInt32.v i1 + UInt32.v len1 <= length b /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 /\ gsub (gsub b i1 len1) i2 len2 == gsub b (UInt32.add i1 i2) len2 )) = () let sub_zero_length (#a: typ) (b: buffer a) : Lemma (ensures (gsub b (UInt32.uint_to_t 0) (UInt32.uint_to_t (length b)) == b)) = () let lemma_sub_spec (#a:typ) (b:buffer a) (i:UInt32.t) (len:UInt32.t) (h: HS.mem) : Lemma (requires ( UInt32.v i + UInt32.v len <= length b /\ live h b )) (ensures ( UInt32.v i + UInt32.v len <= length b /\ live h (gsub b i len) /\ as_seq h (gsub b i len) == Seq.slice (as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len) )) [SMTPatOr [ [SMTPat (gsub b i len); SMTPat (live h b)]; [SMTPat (live h (gsub b i len))] ]] = Seq.lemma_eq_intro (as_seq h (gsub b i len)) (Seq.slice (as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len)) (* Same here *) let goffset (#a: typ) (b: buffer a) (i: UInt32.t) : Ghost (buffer a) (requires (UInt32.v i <= length b)) (ensures (fun b' -> UInt32.v i <= length b /\ b' == gsub b i (UInt32.sub (P.buffer_length b) i) )) = P.gsub_buffer b i (UInt32.sub (P.buffer_length b) i) let offset (#a:typ) (b:buffer a) (i:UInt32.t) : HST.Stack (buffer a) (requires (fun h0 -> live h0 b /\ UInt32.v i <= length b )) (ensures (fun h0 b' h1 -> h1 == h0 /\ UInt32.v i <= length b /\ b' == goffset b i )) = P.offset_buffer b i let lemma_offset_spec (#a: typ) (b: buffer a) (i: UInt32.t) (h: HS.mem) : Lemma (requires ( UInt32.v i <= length b /\ live h b )) (ensures ( UInt32.v i <= length b /\ as_seq h (goffset b i) == Seq.slice (as_seq h b) (UInt32.v i) (length b) )) = () val eqb: #a:typ -> b1:buffer a -> b2:buffer a -> len:UInt32.t -> HST.ST bool (requires (fun h -> hasEq (P.type_of_typ a) /\ UInt32.v len <= length b1 /\ UInt32.v len <= length b2 /\ live h b1 /\ live h b2 )) (ensures (fun h0 z h1 -> h1 == h0 /\ UInt32.v len <= length b1 /\ UInt32.v len <= length b2 /\ (z <==> equal h0 (gsub b1 0ul len) h0 (gsub b2 0ul len)) )) let eqb #a b1 b2 len = P.buffer_contents_equal b1 b2 len (* JP: if the [val] is not specified, there's an issue with these functions * taking an extra unification parameter at extraction-time... *) val op_Array_Access: #a:typ -> b:buffer a -> n:UInt32.t -> HST.Stack (P.type_of_typ a) (requires (fun h -> UInt32.v n<length b /\ live h b)) (ensures (fun h0 z h1 -> h1 == h0 /\ UInt32.v n<length b /\ z == Seq.index (as_seq h0 b) (UInt32.v n))) let op_Array_Access #a b n = index #a b n val op_Array_Assignment: #a:typ -> b:buffer a -> n:UInt32.t -> z:P.type_of_typ a -> HST.Stack unit (requires (fun h -> live h b /\ UInt32.v n < length b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ UInt32.v n < length b /\ P.modifies (P.loc_pointer (P.gpointer_of_buffer_cell b n)) h0 h1 /\ as_seq h1 b == Seq.upd (as_seq h0 b) (UInt32.v n) z )) let op_Array_Assignment #a b n z = upd #a b n z val live_slice_middle (#t: typ) (b: buffer t) (i: UInt32.t) (len: UInt32.t) (h: HS.mem) : Lemma (requires ( UInt32.v i + UInt32.v len <= length b /\ live h (gsub b 0ul i) /\ live h (gsub b i len) /\ ( let off = UInt32.add i len in live h (gsub b off (UInt32.sub (P.buffer_length b) off)) ))) (ensures (live h b)) [SMTPat (live h (gsub b i len))] let live_slice_middle #t b i len h = P.buffer_readable_gsub_merge b i len h (** Corresponds to memcpy *) val blit: #t:typ -> a:buffer t -> idx_a:UInt32.t -> b:buffer t{disjoint a b} -> idx_b:UInt32.t -> len:UInt32.t{UInt32.v idx_a + UInt32.v len <= length a /\ UInt32.v idx_b + UInt32.v len <= length b} -> HST.Stack unit (requires (fun h -> live h a /\ live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h0 a /\ live h1 b /\ live h1 a /\ P.modifies (P.loc_buffer (gsub b idx_b len)) h0 h1 /\ Seq.slice (as_seq h1 b) (UInt32.v idx_b) (UInt32.v idx_b + UInt32.v len) == Seq.slice (as_seq h0 a) (UInt32.v idx_a) (UInt32.v idx_a + UInt32.v len) /\ Seq.slice (as_seq h1 b) 0 (UInt32.v idx_b) == Seq.slice (as_seq h0 b) 0 (UInt32.v idx_b) /\ Seq.slice (as_seq h1 b) (UInt32.v idx_b+UInt32.v len) (length b) == Seq.slice (as_seq h0 b) (UInt32.v idx_b+UInt32.v len) (length b) )) let blit #t a idx_a b idx_b len = if len = 0ul then () else begin let h0 = HST.get () in P.copy_buffer_contents a idx_a b idx_b len; let h1 = HST.get () in P.buffer_readable_modifies_gsub b idx_b len h0 h1 (P.loc_buffer (P.gsub_buffer b idx_b len)); assert (let g = (gsub b (UInt32.add idx_b len) (UInt32.sub (P.buffer_length b) (UInt32.add idx_b len))) in as_seq h1 g == as_seq h0 g); assert (as_seq h1 (gsub b idx_b len) == as_seq h0 (gsub a idx_a len)); assert (let g = gsub b 0ul idx_b in as_seq h1 g == as_seq h0 g) end (** Corresponds to memset *) val fill: #t:typ -> b:buffer t -> z: P.type_of_typ t -> len:UInt32.t{UInt32.v len <= length b} -> HST.Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ P.modifies (P.loc_buffer (gsub b 0ul len)) h0 h1 /\ Seq.slice (as_seq h1 b) 0 (UInt32.v len) == Seq.create (UInt32.v len) z /\ Seq.slice (as_seq h1 b) (UInt32.v len) (length b) == Seq.slice (as_seq h0 b) (UInt32.v len) (length b) ))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pointer.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.BufferNG.fst" }
[ { "abbrev": true, "full_module": "FStar.Pointer", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HH" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.BufferNG.buffer t -> z: FStar.Pointer.Base.type_of_typ t -> len: FStar.UInt32.t{FStar.UInt32.v len <= FStar.BufferNG.length b} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.BufferNG.typ", "FStar.BufferNG.buffer", "FStar.Pointer.Base.type_of_typ", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.BufferNG.length", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "FStar.BufferNG.as_seq", "FStar.Pointer.Base.buffer", "FStar.BufferNG.gsub", "FStar.UInt32.sub", "FStar.Pointer.Base.buffer_length", "Prims.unit", "FStar.UInt32.__uint_to_t", "FStar.Seq.Base.slice", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.Pointer.Derived3.fill_buffer" ]
[]
false
true
false
false
false
let fill #t b z len =
let h0 = HST.get () in P.fill_buffer b 0ul len z; let h1 = HST.get () in assert (as_seq h1 (gsub b 0ul len) == Seq.slice (as_seq h1 b) 0 (UInt32.v len)); assert (let g = gsub b len (UInt32.sub (P.buffer_length b) len) in as_seq h1 g == as_seq h0 g)
false
Vale.AES.GCTR_BE_s.fst
Vale.AES.GCTR_BE_s.gctr_encrypt_reveal
val gctr_encrypt_reveal : _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.GCTR_BE_s.gctr_encrypt == Vale.AES.GCTR_BE_s.gctr_encrypt_def)
let gctr_encrypt_reveal = opaque_revealer (`%gctr_encrypt) gctr_encrypt gctr_encrypt_def
{ "file_name": "vale/specs/crypto/Vale.AES.GCTR_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 100, "end_line": 70, "start_col": 12, "start_line": 70 }
module Vale.AES.GCTR_BE_s // IMPORTANT: Following NIST's specification, this spec is written assuming a big-endian mapping from bytes to quad32s open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open Vale.AES.AES_BE_s open FStar.Seq // The max length of pow2_32 corresponds to the max length of buffers in Low* // length plain < pow2_32 <= spec max of 2**39 - 256; let is_gctr_plain (p:seq nat8) : prop0 = length p < pow2_32 type gctr_plain:eqtype = p:seq nat8 { is_gctr_plain p } type gctr_plain_internal:eqtype = seq quad32 let inc32 (cb:quad32) (i:int) : quad32 = Mkfour ((cb.lo0 + i) % pow2_32) cb.lo1 cb.hi2 cb.hi3 let gctr_encrypt_block (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = quad32_xor plain (aes_encrypt_word alg key (inc32 icb i)) let rec gctr_encrypt_recursive (icb:quad32) (plain:gctr_plain_internal) (alg:algorithm) (key:aes_key_word alg) (i:int) : Tot (seq quad32) (decreases %[length plain]) = if length plain = 0 then empty else cons (gctr_encrypt_block icb (head plain) alg key i) (gctr_encrypt_recursive icb (tail plain) alg key (i + 1)) let pad_to_128_bits (p:seq nat8) : Pure (seq nat8) (requires True) (ensures fun q -> length q % 16 == 0 /\ length q <= length p + 15) = let num_extra_bytes = length p % 16 in if num_extra_bytes = 0 then p else p @| (create (16 - num_extra_bytes) 0) let gctr_encrypt_def (icb:quad32) (plain:seq nat8) (alg:algorithm) (key:seq nat32) : Pure (seq nat8) (requires is_gctr_plain plain /\ is_aes_key_word alg key) (ensures fun _ -> True) = let num_extra = (length plain) % 16 in if num_extra = 0 then let plain_quads = be_bytes_to_seq_quad32 plain in let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) else let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads = be_bytes_to_seq_quad32 full_blocks in let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in cipher_bytes_full @| final_cipher_bytes
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.GCTR_BE_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.GCTR_BE_s.gctr_encrypt == Vale.AES.GCTR_BE_s.gctr_encrypt_def)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Opaque_s.opaque_revealer", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.nat32", "Prims.l_and", "Vale.AES.GCTR_BE_s.is_gctr_plain", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.l_True", "Vale.AES.GCTR_BE_s.gctr_encrypt", "Vale.AES.GCTR_BE_s.gctr_encrypt_def" ]
[]
true
false
true
false
false
let gctr_encrypt_reveal =
opaque_revealer (`%gctr_encrypt) gctr_encrypt gctr_encrypt_def
false
Steel.Channel.Duplex.fsti
Steel.Channel.Duplex.prot
val prot:Type u#1
val prot:Type u#1
let prot : Type u#1 = protocol unit
{ "file_name": "lib/steel/Steel.Channel.Duplex.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 35, "end_line": 31, "start_col": 0, "start_line": 31 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Channel.Duplex open Steel.Channel.Protocol open Steel.Memory open Steel.Effect /// This library provides a model of two-party session types in Steel. /// Protocols are specified using the structure in Steel.Channel.Protocol /// Channels are indexed by a given protocols, and ensure that any message exchanged /// on the channel respect the protocol. /// An implementation of this model is currently available in Duplex.PCM.fst /// Msg int (fun x -> Msg (y:int { y > x }) (fun _ -> Ret unit)) ///
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.fsti.checked", "Steel.Channel.Protocol.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Steel.Channel.Duplex.fsti" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel.Protocol", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "Steel.Channel.Protocol.protocol", "Prims.unit" ]
[]
false
false
false
true
true
let prot:Type u#1 =
protocol unit
false
Vale.AES.GCTR_BE_s.fst
Vale.AES.GCTR_BE_s.gctr_encrypt_block
val gctr_encrypt_block (icb plain: quad32) (alg: algorithm) (key: seq nat32) (i: int) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True)
val gctr_encrypt_block (icb plain: quad32) (alg: algorithm) (key: seq nat32) (i: int) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True)
let gctr_encrypt_block (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = quad32_xor plain (aes_encrypt_word alg key (inc32 icb i))
{ "file_name": "vale/specs/crypto/Vale.AES.GCTR_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 59, "end_line": 28, "start_col": 0, "start_line": 24 }
module Vale.AES.GCTR_BE_s // IMPORTANT: Following NIST's specification, this spec is written assuming a big-endian mapping from bytes to quad32s open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open Vale.AES.AES_BE_s open FStar.Seq // The max length of pow2_32 corresponds to the max length of buffers in Low* // length plain < pow2_32 <= spec max of 2**39 - 256; let is_gctr_plain (p:seq nat8) : prop0 = length p < pow2_32 type gctr_plain:eqtype = p:seq nat8 { is_gctr_plain p } type gctr_plain_internal:eqtype = seq quad32 let inc32 (cb:quad32) (i:int) : quad32 = Mkfour ((cb.lo0 + i) % pow2_32) cb.lo1 cb.hi2 cb.hi3
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.GCTR_BE_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
icb: Vale.Def.Types_s.quad32 -> plain: Vale.Def.Types_s.quad32 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> i: Prims.int -> Prims.Pure Vale.Def.Types_s.quad32
Prims.Pure
[]
[]
[ "Vale.Def.Types_s.quad32", "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Prims.int", "Vale.Def.Types_s.quad32_xor", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.AES.GCTR_BE_s.inc32", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.l_True" ]
[]
false
false
false
false
false
let gctr_encrypt_block (icb plain: quad32) (alg: algorithm) (key: seq nat32) (i: int) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) =
quad32_xor plain (aes_encrypt_word alg key (inc32 icb i))
false
Vale.AES.GCTR_BE_s.fst
Vale.AES.GCTR_BE_s.gctr_encrypt_recursive
val gctr_encrypt_recursive (icb: quad32) (plain: gctr_plain_internal) (alg: algorithm) (key: aes_key_word alg) (i: int) : Tot (seq quad32) (decreases %[length plain])
val gctr_encrypt_recursive (icb: quad32) (plain: gctr_plain_internal) (alg: algorithm) (key: aes_key_word alg) (i: int) : Tot (seq quad32) (decreases %[length plain])
let rec gctr_encrypt_recursive (icb:quad32) (plain:gctr_plain_internal) (alg:algorithm) (key:aes_key_word alg) (i:int) : Tot (seq quad32) (decreases %[length plain]) = if length plain = 0 then empty else cons (gctr_encrypt_block icb (head plain) alg key i) (gctr_encrypt_recursive icb (tail plain) alg key (i + 1))
{ "file_name": "vale/specs/crypto/Vale.AES.GCTR_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 114, "end_line": 35, "start_col": 0, "start_line": 31 }
module Vale.AES.GCTR_BE_s // IMPORTANT: Following NIST's specification, this spec is written assuming a big-endian mapping from bytes to quad32s open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open Vale.AES.AES_BE_s open FStar.Seq // The max length of pow2_32 corresponds to the max length of buffers in Low* // length plain < pow2_32 <= spec max of 2**39 - 256; let is_gctr_plain (p:seq nat8) : prop0 = length p < pow2_32 type gctr_plain:eqtype = p:seq nat8 { is_gctr_plain p } type gctr_plain_internal:eqtype = seq quad32 let inc32 (cb:quad32) (i:int) : quad32 = Mkfour ((cb.lo0 + i) % pow2_32) cb.lo1 cb.hi2 cb.hi3 let gctr_encrypt_block (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = quad32_xor plain (aes_encrypt_word alg key (inc32 icb i))
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.GCTR_BE_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
icb: Vale.Def.Types_s.quad32 -> plain: Vale.AES.GCTR_BE_s.gctr_plain_internal -> alg: Vale.AES.AES_common_s.algorithm -> key: Vale.AES.AES_BE_s.aes_key_word alg -> i: Prims.int -> Prims.Tot (FStar.Seq.Base.seq Vale.Def.Types_s.quad32)
Prims.Tot
[ "total", "" ]
[]
[ "Vale.Def.Types_s.quad32", "Vale.AES.GCTR_BE_s.gctr_plain_internal", "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_BE_s.aes_key_word", "Prims.int", "Prims.op_Equality", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Seq.Base.cons", "Vale.AES.GCTR_BE_s.gctr_encrypt_block", "FStar.Seq.Properties.head", "Vale.AES.GCTR_BE_s.gctr_encrypt_recursive", "FStar.Seq.Properties.tail", "Prims.op_Addition", "FStar.Seq.Base.seq" ]
[ "recursion" ]
false
false
false
false
false
let rec gctr_encrypt_recursive (icb: quad32) (plain: gctr_plain_internal) (alg: algorithm) (key: aes_key_word alg) (i: int) : Tot (seq quad32) (decreases %[length plain]) =
if length plain = 0 then empty else cons (gctr_encrypt_block icb (head plain) alg key i) (gctr_encrypt_recursive icb (tail plain) alg key (i + 1))
false
FStar.BufferNG.fst
FStar.BufferNG.blit
val blit: #t:typ -> a:buffer t -> idx_a:UInt32.t -> b:buffer t{disjoint a b} -> idx_b:UInt32.t -> len:UInt32.t{UInt32.v idx_a + UInt32.v len <= length a /\ UInt32.v idx_b + UInt32.v len <= length b} -> HST.Stack unit (requires (fun h -> live h a /\ live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h0 a /\ live h1 b /\ live h1 a /\ P.modifies (P.loc_buffer (gsub b idx_b len)) h0 h1 /\ Seq.slice (as_seq h1 b) (UInt32.v idx_b) (UInt32.v idx_b + UInt32.v len) == Seq.slice (as_seq h0 a) (UInt32.v idx_a) (UInt32.v idx_a + UInt32.v len) /\ Seq.slice (as_seq h1 b) 0 (UInt32.v idx_b) == Seq.slice (as_seq h0 b) 0 (UInt32.v idx_b) /\ Seq.slice (as_seq h1 b) (UInt32.v idx_b+UInt32.v len) (length b) == Seq.slice (as_seq h0 b) (UInt32.v idx_b+UInt32.v len) (length b) ))
val blit: #t:typ -> a:buffer t -> idx_a:UInt32.t -> b:buffer t{disjoint a b} -> idx_b:UInt32.t -> len:UInt32.t{UInt32.v idx_a + UInt32.v len <= length a /\ UInt32.v idx_b + UInt32.v len <= length b} -> HST.Stack unit (requires (fun h -> live h a /\ live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h0 a /\ live h1 b /\ live h1 a /\ P.modifies (P.loc_buffer (gsub b idx_b len)) h0 h1 /\ Seq.slice (as_seq h1 b) (UInt32.v idx_b) (UInt32.v idx_b + UInt32.v len) == Seq.slice (as_seq h0 a) (UInt32.v idx_a) (UInt32.v idx_a + UInt32.v len) /\ Seq.slice (as_seq h1 b) 0 (UInt32.v idx_b) == Seq.slice (as_seq h0 b) 0 (UInt32.v idx_b) /\ Seq.slice (as_seq h1 b) (UInt32.v idx_b+UInt32.v len) (length b) == Seq.slice (as_seq h0 b) (UInt32.v idx_b+UInt32.v len) (length b) ))
let blit #t a idx_a b idx_b len = if len = 0ul then () else begin let h0 = HST.get () in P.copy_buffer_contents a idx_a b idx_b len; let h1 = HST.get () in P.buffer_readable_modifies_gsub b idx_b len h0 h1 (P.loc_buffer (P.gsub_buffer b idx_b len)); assert (let g = (gsub b (UInt32.add idx_b len) (UInt32.sub (P.buffer_length b) (UInt32.add idx_b len))) in as_seq h1 g == as_seq h0 g); assert (as_seq h1 (gsub b idx_b len) == as_seq h0 (gsub a idx_a len)); assert (let g = gsub b 0ul idx_b in as_seq h1 g == as_seq h0 g) end
{ "file_name": "ulib/legacy/FStar.BufferNG.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 472, "start_col": 0, "start_line": 461 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BufferNG module HH = FStar.HyperStack module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module P = FStar.Pointer (* This module will help for the transition of some buffer-based code It tries to sidestep the following two issues: - the type of elements must be embeddable into P.typ - all elements must always be readable (no uninitialized data) *) let rec supported (t : P.typ) : Tot bool = match t with | P.TBase _ -> true | P.TStruct l -> struct_typ_supported l.P.fields | _ -> false and struct_typ_supported (l: list (string * P.typ)) : Tot bool = match l with | [] -> true | (_, t) :: l' -> supported t && struct_typ_supported l' let typ = (t: P.typ { supported t } ) unfold let buffer (t: typ) : Tot Type0 = P.buffer t unfold let live (#a: typ) (h: HS.mem) (b: buffer a) : GTot Type0 = P.buffer_readable h b unfold let unused_in (#a: typ) (b: buffer a) (h: HS.mem) : GTot Type0 = P.buffer_unused_in b h unfold let length (#a: typ) (b: buffer a) : GTot nat = UInt32.v (P.buffer_length b) unfold let as_addr (#a: typ) (b: buffer a) : GTot nat = P.buffer_as_addr b unfold let frameOf (#a: typ) (b: buffer a) : GTot HH.rid = P.frameOf_buffer b unfold let as_seq (#a: typ) (h: HS.mem) (b: buffer a) : GTot (s: Seq.seq (P.type_of_typ a) { Seq.length s == length b } ) = P.buffer_as_seq h b unfold let equal (#a: typ) (h: HS.mem) (b: buffer a) (h' : HS.mem) (b' : buffer a) : GTot Type0 = as_seq h b == as_seq h' b' unfold let includes (#a: typ) (x y: buffer a) : GTot Type0 = P.buffer_includes x y let includes_live (#a: typ) (h: HS.mem) (x y : buffer a) : Lemma (requires (x `includes` y /\ live h x)) (ensures (live h y)) = P.buffer_includes_elim x y let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = P.buffer_includes_elim x y let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = P.buffer_includes_trans x y z unfold let disjoint (#a #a' : typ) (x: buffer a) (y: buffer a') : GTot Type0 = P.loc_disjoint (P.loc_buffer x) (P.loc_buffer y) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = P.buffer_includes_loc_includes x subx; P.loc_disjoint_includes (P.loc_buffer x) (P.loc_buffer y) (P.loc_buffer subx) (P.loc_buffer y) let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () let lemma_live_disjoint #a #a' h (b:buffer a) (b':buffer a') : Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] = () (** Concrete getters and setters *) val create (#a:typ) (init: P.type_of_typ a) (len:UInt32.t) : HST.StackInline (buffer a) (requires (fun h -> UInt32.v len > 0 )) (ensures (fun (h0: HS.mem) b h1 -> UInt32.v len > 0 /\ b `unused_in` h0 /\ live h1 b /\ length b == UInt32.v len /\ frameOf b == (HS.get_tip h0) /\ P.modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (UInt32.v len) init )) let create #a init len = let len : P.array_length_t = len in let content = P.screate (P.TArray len a) (Some (Seq.create (UInt32.v len) init)) in P.buffer_of_array_pointer content unfold let p (#a:typ) (init:list (P.type_of_typ a)) : GTot Type0 = normalize (0 < FStar.List.Tot.length init) /\ normalize (FStar.List.Tot.length init < UInt.max_int 32) unfold let q (#a:typ) (len:nat) (buf:buffer a) : GTot Type0 = normalize (length buf == len) val createL (#a: typ) (init:list (P.type_of_typ a)) : HST.StackInline (buffer a) (requires (fun h -> p #a init)) (ensures (fun (h0: HS.mem) b h1 -> let len = FStar.List.Tot.length init in len > 0 /\ b `unused_in` h0 /\ live h1 b /\ length b == len /\ frameOf b == (HS.get_tip h0) /\ P.modifies_0 h0 h1 /\ as_seq h1 b == Seq.seq_of_list init /\ q #a len b )) #set-options "--initial_fuel 1 --max_fuel 1" //the normalize_term (length init) in the pre-condition will be unfolded //whereas the L.length init below will not let createL #a init = let len : P.array_length_t = UInt32.uint_to_t (List.Tot.length init) in let s = Seq.seq_of_list init in let content = P.screate (P.TArray len a) (Some s) in P.buffer_of_array_pointer content #reset-options "--initial_fuel 0 --max_fuel 0" val rcreate (#a: typ) (r:HH.rid) (init: P.type_of_typ a) (len:UInt32.t) : HST.ST (buffer a) (requires (fun h -> HST.is_eternal_region r /\ HST.witnessed (HST.region_contains_pred r) /\ UInt32.v len > 0 )) (ensures (fun (h0: HS.mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ length b == UInt32.v len /\ (HS.get_tip h1) == (HS.get_tip h0) /\ P.modifies (P.loc_addresses r Set.empty) h0 h1 /\ as_seq h1 b == Seq.create (UInt32.v len) init )) let rcreate #a r init len = let len : P.array_length_t = len in let content = P.ecreate (P.TArray len a) r (Some (Seq.create (UInt32.v len) init)) in P.buffer_of_array_pointer content val index (#a: typ) (b: buffer a) (n: UInt32.t) : HST.Stack (P.type_of_typ a) (requires (fun h -> UInt32.v n < length b /\ live h b )) (ensures (fun h0 z h1 -> UInt32.v n < length b /\ h1 == h0 /\ z == Seq.index (as_seq h0 b) (UInt32.v n) )) let index #a b n = P.read_buffer b n val upd (#a: typ) (b: buffer a) (n: UInt32.t) (z: P.type_of_typ a) : HST.Stack unit (requires (fun h -> live h b /\ UInt32.v n < length b )) (ensures (fun h0 _ h1 -> live h1 b /\ UInt32.v n < length b /\ P.modifies (P.loc_pointer (P.gpointer_of_buffer_cell b n)) h0 h1 /\ as_seq h1 b == Seq.upd (as_seq h0 b) (UInt32.v n) z )) let upd #a b n z = let h0 = HST.get () in P.write_buffer b n z; let h1 = HST.get () in assert (Seq.equal (as_seq h1 b) (Seq.upd (as_seq h0 b) (UInt32.v n) z)) (* NOTE: Here I cannot fully respect the Buffer interface, because pure sub no longer exists, since it has been split into ghost gsub and stateful sub *) unfold let gsub (#a: typ) (b: buffer a) (i: UInt32.t) (len: UInt32.t) : Ghost (buffer a) (requires (UInt32.v i + UInt32.v len <= length b)) (ensures (fun _ -> True)) = P.gsub_buffer b i len let sub (#a: typ) (b: buffer a) (i: UInt32.t) (len: UInt32.t) : HST.Stack (buffer a) (requires (fun h -> live h b /\ UInt32.v i + UInt32.v len <= length b )) (ensures (fun h0 b' h1 -> live h0 b /\ UInt32.v i + UInt32.v len <= length b /\ h1 == h0 /\ b' == gsub b i len /\ b `includes` b' )) = P.sub_buffer b i len let sub_sub (#a: typ) (b: buffer a) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires ( UInt32.v i1 + UInt32.v len1 <= length b /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 )) (ensures ( UInt32.v i1 + UInt32.v len1 <= length b /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 /\ gsub (gsub b i1 len1) i2 len2 == gsub b (UInt32.add i1 i2) len2 )) = () let sub_zero_length (#a: typ) (b: buffer a) : Lemma (ensures (gsub b (UInt32.uint_to_t 0) (UInt32.uint_to_t (length b)) == b)) = () let lemma_sub_spec (#a:typ) (b:buffer a) (i:UInt32.t) (len:UInt32.t) (h: HS.mem) : Lemma (requires ( UInt32.v i + UInt32.v len <= length b /\ live h b )) (ensures ( UInt32.v i + UInt32.v len <= length b /\ live h (gsub b i len) /\ as_seq h (gsub b i len) == Seq.slice (as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len) )) [SMTPatOr [ [SMTPat (gsub b i len); SMTPat (live h b)]; [SMTPat (live h (gsub b i len))] ]] = Seq.lemma_eq_intro (as_seq h (gsub b i len)) (Seq.slice (as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len)) (* Same here *) let goffset (#a: typ) (b: buffer a) (i: UInt32.t) : Ghost (buffer a) (requires (UInt32.v i <= length b)) (ensures (fun b' -> UInt32.v i <= length b /\ b' == gsub b i (UInt32.sub (P.buffer_length b) i) )) = P.gsub_buffer b i (UInt32.sub (P.buffer_length b) i) let offset (#a:typ) (b:buffer a) (i:UInt32.t) : HST.Stack (buffer a) (requires (fun h0 -> live h0 b /\ UInt32.v i <= length b )) (ensures (fun h0 b' h1 -> h1 == h0 /\ UInt32.v i <= length b /\ b' == goffset b i )) = P.offset_buffer b i let lemma_offset_spec (#a: typ) (b: buffer a) (i: UInt32.t) (h: HS.mem) : Lemma (requires ( UInt32.v i <= length b /\ live h b )) (ensures ( UInt32.v i <= length b /\ as_seq h (goffset b i) == Seq.slice (as_seq h b) (UInt32.v i) (length b) )) = () val eqb: #a:typ -> b1:buffer a -> b2:buffer a -> len:UInt32.t -> HST.ST bool (requires (fun h -> hasEq (P.type_of_typ a) /\ UInt32.v len <= length b1 /\ UInt32.v len <= length b2 /\ live h b1 /\ live h b2 )) (ensures (fun h0 z h1 -> h1 == h0 /\ UInt32.v len <= length b1 /\ UInt32.v len <= length b2 /\ (z <==> equal h0 (gsub b1 0ul len) h0 (gsub b2 0ul len)) )) let eqb #a b1 b2 len = P.buffer_contents_equal b1 b2 len (* JP: if the [val] is not specified, there's an issue with these functions * taking an extra unification parameter at extraction-time... *) val op_Array_Access: #a:typ -> b:buffer a -> n:UInt32.t -> HST.Stack (P.type_of_typ a) (requires (fun h -> UInt32.v n<length b /\ live h b)) (ensures (fun h0 z h1 -> h1 == h0 /\ UInt32.v n<length b /\ z == Seq.index (as_seq h0 b) (UInt32.v n))) let op_Array_Access #a b n = index #a b n val op_Array_Assignment: #a:typ -> b:buffer a -> n:UInt32.t -> z:P.type_of_typ a -> HST.Stack unit (requires (fun h -> live h b /\ UInt32.v n < length b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ UInt32.v n < length b /\ P.modifies (P.loc_pointer (P.gpointer_of_buffer_cell b n)) h0 h1 /\ as_seq h1 b == Seq.upd (as_seq h0 b) (UInt32.v n) z )) let op_Array_Assignment #a b n z = upd #a b n z val live_slice_middle (#t: typ) (b: buffer t) (i: UInt32.t) (len: UInt32.t) (h: HS.mem) : Lemma (requires ( UInt32.v i + UInt32.v len <= length b /\ live h (gsub b 0ul i) /\ live h (gsub b i len) /\ ( let off = UInt32.add i len in live h (gsub b off (UInt32.sub (P.buffer_length b) off)) ))) (ensures (live h b)) [SMTPat (live h (gsub b i len))] let live_slice_middle #t b i len h = P.buffer_readable_gsub_merge b i len h (** Corresponds to memcpy *) val blit: #t:typ -> a:buffer t -> idx_a:UInt32.t -> b:buffer t{disjoint a b} -> idx_b:UInt32.t -> len:UInt32.t{UInt32.v idx_a + UInt32.v len <= length a /\ UInt32.v idx_b + UInt32.v len <= length b} -> HST.Stack unit (requires (fun h -> live h a /\ live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h0 a /\ live h1 b /\ live h1 a /\ P.modifies (P.loc_buffer (gsub b idx_b len)) h0 h1 /\ Seq.slice (as_seq h1 b) (UInt32.v idx_b) (UInt32.v idx_b + UInt32.v len) == Seq.slice (as_seq h0 a) (UInt32.v idx_a) (UInt32.v idx_a + UInt32.v len) /\ Seq.slice (as_seq h1 b) 0 (UInt32.v idx_b) == Seq.slice (as_seq h0 b) 0 (UInt32.v idx_b) /\ Seq.slice (as_seq h1 b) (UInt32.v idx_b+UInt32.v len) (length b) == Seq.slice (as_seq h0 b) (UInt32.v idx_b+UInt32.v len) (length b) ))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pointer.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.BufferNG.fst" }
[ { "abbrev": true, "full_module": "FStar.Pointer", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HH" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BufferNG.buffer t -> idx_a: FStar.UInt32.t -> b: FStar.BufferNG.buffer t {FStar.BufferNG.disjoint a b} -> idx_b: FStar.UInt32.t -> len: FStar.UInt32.t { FStar.UInt32.v idx_a + FStar.UInt32.v len <= FStar.BufferNG.length a /\ FStar.UInt32.v idx_b + FStar.UInt32.v len <= FStar.BufferNG.length b } -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.BufferNG.typ", "FStar.BufferNG.buffer", "FStar.UInt32.t", "FStar.BufferNG.disjoint", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.UInt32.v", "FStar.BufferNG.length", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "Prims.unit", "Prims.bool", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.Pointer.Base.type_of_typ", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "FStar.BufferNG.as_seq", "FStar.Pointer.Base.buffer", "FStar.BufferNG.gsub", "FStar.UInt32.add", "FStar.UInt32.sub", "FStar.Pointer.Base.buffer_length", "FStar.Pointer.Derived1.buffer_readable_modifies_gsub", "FStar.Pointer.Base.loc_buffer", "FStar.Pointer.Base.gsub_buffer", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.Pointer.Derived2.copy_buffer_contents" ]
[]
false
true
false
false
false
let blit #t a idx_a b idx_b len =
if len = 0ul then () else let h0 = HST.get () in P.copy_buffer_contents a idx_a b idx_b len; let h1 = HST.get () in P.buffer_readable_modifies_gsub b idx_b len h0 h1 (P.loc_buffer (P.gsub_buffer b idx_b len)); assert (let g = (gsub b (UInt32.add idx_b len) (UInt32.sub (P.buffer_length b) (UInt32.add idx_b len))) in as_seq h1 g == as_seq h0 g); assert (as_seq h1 (gsub b idx_b len) == as_seq h0 (gsub a idx_a len)); assert (let g = gsub b 0ul idx_b in as_seq h1 g == as_seq h0 g)
false
Vale.AES.GCTR_BE_s.fst
Vale.AES.GCTR_BE_s.inc32
val inc32 (cb: quad32) (i: int) : quad32
val inc32 (cb: quad32) (i: int) : quad32
let inc32 (cb:quad32) (i:int) : quad32 = Mkfour ((cb.lo0 + i) % pow2_32) cb.lo1 cb.hi2 cb.hi3
{ "file_name": "vale/specs/crypto/Vale.AES.GCTR_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 22, "start_col": 0, "start_line": 21 }
module Vale.AES.GCTR_BE_s // IMPORTANT: Following NIST's specification, this spec is written assuming a big-endian mapping from bytes to quad32s open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open Vale.AES.AES_BE_s open FStar.Seq // The max length of pow2_32 corresponds to the max length of buffers in Low* // length plain < pow2_32 <= spec max of 2**39 - 256; let is_gctr_plain (p:seq nat8) : prop0 = length p < pow2_32 type gctr_plain:eqtype = p:seq nat8 { is_gctr_plain p } type gctr_plain_internal:eqtype = seq quad32
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.GCTR_BE_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cb: Vale.Def.Types_s.quad32 -> i: Prims.int -> Vale.Def.Types_s.quad32
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.int", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Prims.op_Modulus", "Prims.op_Addition", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3" ]
[]
false
false
false
true
false
let inc32 (cb: quad32) (i: int) : quad32 =
Mkfour ((cb.lo0 + i) % pow2_32) cb.lo1 cb.hi2 cb.hi3
false
Vale.AES.GCTR_BE_s.fst
Vale.AES.GCTR_BE_s.gctr_encrypt_def
val gctr_encrypt_def (icb: quad32) (plain: seq nat8) (alg: algorithm) (key: seq nat32) : Pure (seq nat8) (requires is_gctr_plain plain /\ is_aes_key_word alg key) (ensures fun _ -> True)
val gctr_encrypt_def (icb: quad32) (plain: seq nat8) (alg: algorithm) (key: seq nat32) : Pure (seq nat8) (requires is_gctr_plain plain /\ is_aes_key_word alg key) (ensures fun _ -> True)
let gctr_encrypt_def (icb:quad32) (plain:seq nat8) (alg:algorithm) (key:seq nat32) : Pure (seq nat8) (requires is_gctr_plain plain /\ is_aes_key_word alg key) (ensures fun _ -> True) = let num_extra = (length plain) % 16 in if num_extra = 0 then let plain_quads = be_bytes_to_seq_quad32 plain in let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) else let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads = be_bytes_to_seq_quad32 full_blocks in let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in cipher_bytes_full @| final_cipher_bytes
{ "file_name": "vale/specs/crypto/Vale.AES.GCTR_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 68, "start_col": 0, "start_line": 45 }
module Vale.AES.GCTR_BE_s // IMPORTANT: Following NIST's specification, this spec is written assuming a big-endian mapping from bytes to quad32s open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open Vale.AES.AES_BE_s open FStar.Seq // The max length of pow2_32 corresponds to the max length of buffers in Low* // length plain < pow2_32 <= spec max of 2**39 - 256; let is_gctr_plain (p:seq nat8) : prop0 = length p < pow2_32 type gctr_plain:eqtype = p:seq nat8 { is_gctr_plain p } type gctr_plain_internal:eqtype = seq quad32 let inc32 (cb:quad32) (i:int) : quad32 = Mkfour ((cb.lo0 + i) % pow2_32) cb.lo1 cb.hi2 cb.hi3 let gctr_encrypt_block (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = quad32_xor plain (aes_encrypt_word alg key (inc32 icb i)) let rec gctr_encrypt_recursive (icb:quad32) (plain:gctr_plain_internal) (alg:algorithm) (key:aes_key_word alg) (i:int) : Tot (seq quad32) (decreases %[length plain]) = if length plain = 0 then empty else cons (gctr_encrypt_block icb (head plain) alg key i) (gctr_encrypt_recursive icb (tail plain) alg key (i + 1)) let pad_to_128_bits (p:seq nat8) : Pure (seq nat8) (requires True) (ensures fun q -> length q % 16 == 0 /\ length q <= length p + 15) = let num_extra_bytes = length p % 16 in if num_extra_bytes = 0 then p else p @| (create (16 - num_extra_bytes) 0)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.GCTR_BE_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
icb: Vale.Def.Types_s.quad32 -> plain: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> Prims.Pure (FStar.Seq.Base.seq Vale.Def.Types_s.nat8)
Prims.Pure
[]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.nat32", "Prims.op_Equality", "Prims.int", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.AES.GCTR_BE_s.gctr_encrypt_recursive", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Prims.bool", "FStar.Seq.Base.op_At_Bar", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.AES.GCTR_BE_s.gctr_encrypt_block", "Prims.op_Division", "Vale.Def.Types_s.be_bytes_to_quad32", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "Prims.op_Subtraction", "FStar.Seq.Base.length", "Prims.op_Modulus", "Prims.l_and", "Vale.AES.GCTR_BE_s.is_gctr_plain", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.l_True" ]
[]
false
false
false
false
false
let gctr_encrypt_def (icb: quad32) (plain: seq nat8) (alg: algorithm) (key: seq nat32) : Pure (seq nat8) (requires is_gctr_plain plain /\ is_aes_key_word alg key) (ensures fun _ -> True) =
let num_extra = (length plain) % 16 in if num_extra = 0 then let plain_quads = be_bytes_to_seq_quad32 plain in let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) else let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads = be_bytes_to_seq_quad32 full_blocks in let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in cipher_bytes_full @| final_cipher_bytes
false
FStar.Math.Euclid.fsti
FStar.Math.Euclid.divides
val divides (a b: int) : prop
val divides (a b: int) : prop
let divides (a b:int) : prop = exists q. b = q * a
{ "file_name": "ulib/FStar.Math.Euclid.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 12, "start_col": 0, "start_line": 12 }
module FStar.Math.Euclid open FStar.Mul /// /// Divides relation /// /// It is reflexive, transitive, and antisymmetric up to sign. /// When a <> 0, a `divides` b iff a % b = 0 (this is proved below) ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.Math.Euclid.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.l_Exists", "Prims.b2t", "Prims.op_Equality", "FStar.Mul.op_Star", "Prims.prop" ]
[]
false
false
false
true
true
let divides (a b: int) : prop =
exists q. b = q * a
false
FStar.Math.Euclid.fsti
FStar.Math.Euclid.is_gcd
val is_gcd (a b d: int) : prop
val is_gcd (a b d: int) : prop
let is_gcd (a b d:int) : prop = d `divides` a /\ d `divides` b /\ (forall x. (x `divides` a /\ x `divides` b) ==> x `divides` d)
{ "file_name": "ulib/FStar.Math.Euclid.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 58, "start_col": 0, "start_line": 55 }
module FStar.Math.Euclid open FStar.Mul /// /// Divides relation /// /// It is reflexive, transitive, and antisymmetric up to sign. /// When a <> 0, a `divides` b iff a % b = 0 (this is proved below) /// let divides (a b:int) : prop = exists q. b = q * a val divides_reflexive (a:int) : Lemma (a `divides` a) [SMTPat (a `divides` a)] val divides_transitive (a b c:int) : Lemma (requires a `divides` b /\ b `divides` c) (ensures a `divides` c) val divide_antisym (a b:int) : Lemma (requires a `divides` b /\ b `divides` a) (ensures a = b \/ a = -b) val divides_0 (a:int) : Lemma (a `divides` 0) val divides_1 (a:int) : Lemma (requires a `divides` 1) (ensures a = 1 \/ a = -1) val divides_minus (a b:int) : Lemma (requires a `divides` b) (ensures a `divides` (-b)) val divides_opp (a b:int) : Lemma (requires a `divides` b) (ensures (-a) `divides` b) val divides_plus (a b d:int) : Lemma (requires d `divides` a /\ d `divides` b) (ensures d `divides` (a + b)) val divides_sub (a b d:int) : Lemma (requires d `divides` a /\ d `divides` b) (ensures d `divides` (a - b)) val divides_mult_right (a b d:int) : Lemma (requires d `divides` b) (ensures d `divides` (a * b)) /// /// Greatest Common Divisor (GCD) relation /// /// We deviate from the standard definition in that we allow the divisor to /// be negative. Thus, the GCD of two integers is unique up to sign. ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.Math.Euclid.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> d: Prims.int -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.l_and", "FStar.Math.Euclid.divides", "Prims.l_Forall", "Prims.l_imp", "Prims.prop" ]
[]
false
false
false
true
true
let is_gcd (a b d: int) : prop =
d `divides` a /\ d `divides` b /\ (forall x. (x `divides` a /\ x `divides` b) ==> x `divides` d)
false
Vale.AES.GCTR_BE_s.fst
Vale.AES.GCTR_BE_s.pad_to_128_bits
val pad_to_128_bits (p: seq nat8) : Pure (seq nat8) (requires True) (ensures fun q -> length q % 16 == 0 /\ length q <= length p + 15)
val pad_to_128_bits (p: seq nat8) : Pure (seq nat8) (requires True) (ensures fun q -> length q % 16 == 0 /\ length q <= length p + 15)
let pad_to_128_bits (p:seq nat8) : Pure (seq nat8) (requires True) (ensures fun q -> length q % 16 == 0 /\ length q <= length p + 15) = let num_extra_bytes = length p % 16 in if num_extra_bytes = 0 then p else p @| (create (16 - num_extra_bytes) 0)
{ "file_name": "vale/specs/crypto/Vale.AES.GCTR_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 43, "start_col": 0, "start_line": 37 }
module Vale.AES.GCTR_BE_s // IMPORTANT: Following NIST's specification, this spec is written assuming a big-endian mapping from bytes to quad32s open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open Vale.AES.AES_BE_s open FStar.Seq // The max length of pow2_32 corresponds to the max length of buffers in Low* // length plain < pow2_32 <= spec max of 2**39 - 256; let is_gctr_plain (p:seq nat8) : prop0 = length p < pow2_32 type gctr_plain:eqtype = p:seq nat8 { is_gctr_plain p } type gctr_plain_internal:eqtype = seq quad32 let inc32 (cb:quad32) (i:int) : quad32 = Mkfour ((cb.lo0 + i) % pow2_32) cb.lo1 cb.hi2 cb.hi3 let gctr_encrypt_block (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = quad32_xor plain (aes_encrypt_word alg key (inc32 icb i)) let rec gctr_encrypt_recursive (icb:quad32) (plain:gctr_plain_internal) (alg:algorithm) (key:aes_key_word alg) (i:int) : Tot (seq quad32) (decreases %[length plain]) = if length plain = 0 then empty else cons (gctr_encrypt_block icb (head plain) alg key i) (gctr_encrypt_recursive icb (tail plain) alg key (i + 1))
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.GCTR_BE_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 -> Prims.Pure (FStar.Seq.Base.seq Vale.Def.Types_s.nat8)
Prims.Pure
[]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Base.op_At_Bar", "FStar.Seq.Base.create", "Prims.op_Subtraction", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.l_True", "Prims.l_and", "Prims.eq2", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition" ]
[]
false
false
false
false
false
let pad_to_128_bits (p: seq nat8) : Pure (seq nat8) (requires True) (ensures fun q -> length q % 16 == 0 /\ length q <= length p + 15) =
let num_extra_bytes = length p % 16 in if num_extra_bytes = 0 then p else p @| (create (16 - num_extra_bytes) 0)
false
FStar.Math.Euclid.fsti
FStar.Math.Euclid.is_prime
val is_prime : p: Prims.int -> Prims.logical
let is_prime (p:int) = 1 < p /\ (forall (d:int).{:pattern (d `divides` p)} (d `divides` p ==> (d = 1 \/ d = -1 \/ d = p \/ d = -p)))
{ "file_name": "ulib/FStar.Math.Euclid.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 108, "start_col": 0, "start_line": 105 }
module FStar.Math.Euclid open FStar.Mul /// /// Divides relation /// /// It is reflexive, transitive, and antisymmetric up to sign. /// When a <> 0, a `divides` b iff a % b = 0 (this is proved below) /// let divides (a b:int) : prop = exists q. b = q * a val divides_reflexive (a:int) : Lemma (a `divides` a) [SMTPat (a `divides` a)] val divides_transitive (a b c:int) : Lemma (requires a `divides` b /\ b `divides` c) (ensures a `divides` c) val divide_antisym (a b:int) : Lemma (requires a `divides` b /\ b `divides` a) (ensures a = b \/ a = -b) val divides_0 (a:int) : Lemma (a `divides` 0) val divides_1 (a:int) : Lemma (requires a `divides` 1) (ensures a = 1 \/ a = -1) val divides_minus (a b:int) : Lemma (requires a `divides` b) (ensures a `divides` (-b)) val divides_opp (a b:int) : Lemma (requires a `divides` b) (ensures (-a) `divides` b) val divides_plus (a b d:int) : Lemma (requires d `divides` a /\ d `divides` b) (ensures d `divides` (a + b)) val divides_sub (a b d:int) : Lemma (requires d `divides` a /\ d `divides` b) (ensures d `divides` (a - b)) val divides_mult_right (a b d:int) : Lemma (requires d `divides` b) (ensures d `divides` (a * b)) /// /// Greatest Common Divisor (GCD) relation /// /// We deviate from the standard definition in that we allow the divisor to /// be negative. Thus, the GCD of two integers is unique up to sign. /// let is_gcd (a b d:int) : prop = d `divides` a /\ d `divides` b /\ (forall x. (x `divides` a /\ x `divides` b) ==> x `divides` d) val mod_divides (a:int) (b:nonzero) : Lemma (requires a % b = 0) (ensures b `divides` a) val divides_mod (a:int) (b:nonzero) : Lemma (requires b `divides` a) (ensures a % b = 0) val is_gcd_unique (a b c d:int) : Lemma (requires is_gcd a b c /\ is_gcd a b d) (ensures c = d \/ c = -d) val is_gcd_reflexive (a:int) : Lemma (is_gcd a a a) val is_gcd_symmetric (a b d:int) : Lemma (requires is_gcd a b d) (ensures is_gcd b a d) val is_gcd_0 (a:int) : Lemma (is_gcd a 0 a) val is_gcd_1 (a:int) : Lemma (is_gcd a 1 1) val is_gcd_minus (a b d:int) : Lemma (requires is_gcd a (-b) d) (ensures is_gcd b a d) val is_gcd_opp (a b d:int) : Lemma (requires is_gcd a b d) (ensures is_gcd b a (-d)) val is_gcd_plus (a b q d:int) : Lemma (requires is_gcd a b d) (ensures is_gcd a (b + q * a) d) /// /// Extended Euclidean algorithm /// /// Computes the GCD of two integers (a, b) together with Bézout coefficients /// (r, s) satisfying r a + s b = gcd(a, b) /// val euclid_gcd (a b:int) : Pure (int & int & int) (requires True) (ensures fun (r, s, d) -> r * a + s * b = d /\ is_gcd a b d) /// /// A definition of primality based on the divides relation ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.Math.Euclid.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.l_Forall", "Prims.l_imp", "FStar.Math.Euclid.divides", "Prims.l_or", "Prims.op_Equality", "Prims.op_Minus", "Prims.logical" ]
[]
false
false
false
true
true
let is_prime (p: int) =
1 < p /\ (forall (d: int). {:pattern (d `divides` p)} (d `divides` p ==> (d = 1 \/ d = - 1 \/ d = p \/ d = - p)))
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul
val aff_point_mul : a: Prims.nat -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point
let aff_point_mul = S.aff_point_mul
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 15, "start_col": 0, "start_line": 15 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point
Prims.Tot
[ "total" ]
[]
[ "Spec.K256.aff_point_mul" ]
[]
false
false
false
true
false
let aff_point_mul =
S.aff_point_mul
false
LowParse.Spec.Endianness.Instances.fst
LowParse.Spec.Endianness.Instances.uint64
val uint64:uinttype U64.t 8
val uint64:uinttype U64.t 8
let uint64 : uinttype U64.t 8 = UIntType (fun x -> U64.v x) (fun x -> FStar.Int.Cast.uint64_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint64 x) 0uL (fun _ _ -> ()) (fun x y -> x `U64.add` y) (fun x -> x `U64.mul` 256uL) (fun x -> x `U64.div` 256uL)
{ "file_name": "src/lowparse/LowParse.Spec.Endianness.Instances.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 62, "start_col": 0, "start_line": 53 }
module LowParse.Spec.Endianness.Instances include LowParse.Spec.Endianness module U8 = FStar.UInt8 inline_for_extraction noextract let uint8 : uinttype U8.t 1 = UIntType (fun x -> U8.v x) (fun x -> x) (fun x -> x) 0uy (fun _ _ -> ()) (fun x y -> x `U8.add` y) (fun x -> 0uy) (fun x -> 0uy) module U16 = FStar.UInt16 inline_for_extraction noextract let uint16 : uinttype U16.t 2 = UIntType (fun x -> U16.v x) (fun x -> FStar.Int.Cast.uint16_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint16 x) 0us (fun _ _ -> ()) (fun x y -> x `U16.add` y) (fun x -> x `U16.mul` 256us) (fun x -> x `U16.div` 256us) module U32 = FStar.UInt32 inline_for_extraction noextract let uint32 : uinttype U32.t 4 = UIntType (fun x -> U32.v x) (fun x -> FStar.Int.Cast.uint32_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint32 x) 0ul (fun _ _ -> ()) (fun x y -> x `U32.add` y) (fun x -> x `U32.mul` 256ul) (fun x -> x `U32.div` 256ul) module U64 = FStar.UInt64 inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Endianness.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.Cast.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Endianness.Instances.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Endianness.uinttype FStar.UInt64.t 8
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Endianness.UIntType", "FStar.UInt64.t", "FStar.UInt64.v", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "FStar.Int.Cast.uint64_to_uint8", "FStar.UInt8.t", "Prims.eq2", "Prims.int", "FStar.UInt8.v", "Prims.op_Modulus", "FStar.Int.Cast.uint8_to_uint64", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt8.n", "FStar.UInt64.__uint_to_t", "Prims.unit", "FStar.UInt64.add", "FStar.UInt64.mul", "FStar.UInt64.div" ]
[]
false
false
false
false
false
let uint64:uinttype U64.t 8 =
UIntType (fun x -> U64.v x) (fun x -> FStar.Int.Cast.uint64_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint64 x) 0uL (fun _ _ -> ()) (fun x y -> x `U64.add` y) (fun x -> x `U64.mul` 256uL) (fun x -> x `U64.div` 256uL)
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg
val aff_point_mul_neg (a: int) (p: S.aff_point) : S.aff_point
val aff_point_mul_neg (a: int) (p: S.aff_point) : S.aff_point
let aff_point_mul_neg (a:int) (p:S.aff_point) : S.aff_point = LE.pow_neg S.mk_k256_abelian_group p a
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 19, "start_col": 0, "start_line": 18 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" // [a]P in affine coordinates for a >= 0 let aff_point_mul = S.aff_point_mul
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Spec.K256.PointOps.aff_point", "Lib.Exponentiation.Definition.pow_neg", "Spec.K256.mk_k256_abelian_group" ]
[]
false
false
false
true
false
let aff_point_mul_neg (a: int) (p: S.aff_point) : S.aff_point =
LE.pow_neg S.mk_k256_abelian_group p a
false
LowParse.Spec.Endianness.Instances.fst
LowParse.Spec.Endianness.Instances.uint32
val uint32:uinttype U32.t 4
val uint32:uinttype U32.t 4
let uint32 : uinttype U32.t 4 = UIntType (fun x -> U32.v x) (fun x -> FStar.Int.Cast.uint32_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint32 x) 0ul (fun _ _ -> ()) (fun x y -> x `U32.add` y) (fun x -> x `U32.mul` 256ul) (fun x -> x `U32.div` 256ul)
{ "file_name": "src/lowparse/LowParse.Spec.Endianness.Instances.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 47, "start_col": 0, "start_line": 38 }
module LowParse.Spec.Endianness.Instances include LowParse.Spec.Endianness module U8 = FStar.UInt8 inline_for_extraction noextract let uint8 : uinttype U8.t 1 = UIntType (fun x -> U8.v x) (fun x -> x) (fun x -> x) 0uy (fun _ _ -> ()) (fun x y -> x `U8.add` y) (fun x -> 0uy) (fun x -> 0uy) module U16 = FStar.UInt16 inline_for_extraction noextract let uint16 : uinttype U16.t 2 = UIntType (fun x -> U16.v x) (fun x -> FStar.Int.Cast.uint16_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint16 x) 0us (fun _ _ -> ()) (fun x y -> x `U16.add` y) (fun x -> x `U16.mul` 256us) (fun x -> x `U16.div` 256us) module U32 = FStar.UInt32 inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Endianness.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.Cast.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Endianness.Instances.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Endianness.uinttype FStar.UInt32.t 4
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Endianness.UIntType", "FStar.UInt32.t", "FStar.UInt32.v", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "FStar.Int.Cast.uint32_to_uint8", "FStar.UInt8.t", "Prims.eq2", "Prims.int", "FStar.UInt8.v", "Prims.op_Modulus", "FStar.Int.Cast.uint8_to_uint32", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt8.n", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.UInt32.add", "FStar.UInt32.mul", "FStar.UInt32.div" ]
[]
false
false
false
false
false
let uint32:uinttype U32.t 4 =
UIntType (fun x -> U32.v x) (fun x -> FStar.Int.Cast.uint32_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint32 x) 0ul (fun _ _ -> ()) (fun x y -> x `U32.add` y) (fun x -> x `U32.mul` 256ul) (fun x -> x `U32.div` 256ul)
false
LowParse.Spec.Endianness.Instances.fst
LowParse.Spec.Endianness.Instances.uint16
val uint16:uinttype U16.t 2
val uint16:uinttype U16.t 2
let uint16 : uinttype U16.t 2 = UIntType (fun x -> U16.v x) (fun x -> FStar.Int.Cast.uint16_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint16 x) 0us (fun _ _ -> ()) (fun x y -> x `U16.add` y) (fun x -> x `U16.mul` 256us) (fun x -> x `U16.div` 256us)
{ "file_name": "src/lowparse/LowParse.Spec.Endianness.Instances.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 32, "start_col": 0, "start_line": 23 }
module LowParse.Spec.Endianness.Instances include LowParse.Spec.Endianness module U8 = FStar.UInt8 inline_for_extraction noextract let uint8 : uinttype U8.t 1 = UIntType (fun x -> U8.v x) (fun x -> x) (fun x -> x) 0uy (fun _ _ -> ()) (fun x y -> x `U8.add` y) (fun x -> 0uy) (fun x -> 0uy) module U16 = FStar.UInt16 inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Endianness.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.Cast.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Endianness.Instances.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Endianness.uinttype FStar.UInt16.t 2
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Endianness.UIntType", "FStar.UInt16.t", "FStar.UInt16.v", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "FStar.Int.Cast.uint16_to_uint8", "FStar.UInt8.t", "Prims.eq2", "Prims.int", "FStar.UInt8.v", "Prims.op_Modulus", "FStar.Int.Cast.uint8_to_uint16", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt8.n", "FStar.UInt16.__uint_to_t", "Prims.unit", "FStar.UInt16.add", "FStar.UInt16.mul", "FStar.UInt16.div" ]
[]
false
false
false
false
false
let uint16:uinttype U16.t 2 =
UIntType (fun x -> U16.v x) (fun x -> FStar.Int.Cast.uint16_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint16 x) 0us (fun _ _ -> ()) (fun x y -> x `U16.add` y) (fun x -> x `U16.mul` 256us) (fun x -> x `U16.div` 256us)
false
LowParse.Spec.Endianness.Instances.fst
LowParse.Spec.Endianness.Instances.uint8
val uint8:uinttype U8.t 1
val uint8:uinttype U8.t 1
let uint8 : uinttype U8.t 1 = UIntType (fun x -> U8.v x) (fun x -> x) (fun x -> x) 0uy (fun _ _ -> ()) (fun x y -> x `U8.add` y) (fun x -> 0uy) (fun x -> 0uy)
{ "file_name": "src/lowparse/LowParse.Spec.Endianness.Instances.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 18, "end_line": 17, "start_col": 0, "start_line": 8 }
module LowParse.Spec.Endianness.Instances include LowParse.Spec.Endianness module U8 = FStar.UInt8 inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Endianness.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.Cast.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Endianness.Instances.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Endianness.uinttype FStar.UInt8.t 1
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Endianness.UIntType", "FStar.UInt8.t", "FStar.UInt8.v", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt8.n", "FStar.UInt8.__uint_to_t", "Prims.unit", "FStar.UInt8.add" ]
[]
false
false
false
false
false
let uint8:uinttype U8.t 1 =
UIntType (fun x -> U8.v x) (fun x -> x) (fun x -> x) 0uy (fun _ _ -> ()) (fun x y -> x `U8.add` y) (fun x -> 0uy) (fun x -> 0uy)
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_add
val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p))
val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p))
let lemma_aff_point_mul_neg_add a b p = LE.lemma_pow_neg_add S.mk_k256_abelian_group p a b
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 36, "start_col": 0, "start_line": 35 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" // [a]P in affine coordinates for a >= 0 let aff_point_mul = S.aff_point_mul // [a]P in affine coordinates for any a let aff_point_mul_neg (a:int) (p:S.aff_point) : S.aff_point = LE.pow_neg S.mk_k256_abelian_group p a assume val lemma_order_of_curve_group (p:S.aff_point) : Lemma (aff_point_mul S.q p == S.aff_point_at_inf) (** Properties for Elliptic Curve Scalar Multiplication in affine coordinates *) // [a + b]P = [a]P + [b]P val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p))
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> p: Spec.K256.PointOps.aff_point -> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg (a + b) p == Spec.K256.PointOps.aff_point_add (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg a p) (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg b p))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Spec.K256.PointOps.aff_point", "Lib.Exponentiation.Definition.lemma_pow_neg_add", "Spec.K256.mk_k256_abelian_group", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_aff_point_mul_neg_add a b p =
LE.lemma_pow_neg_add S.mk_k256_abelian_group p a b
false
LowParse.Spec.Endianness.Instances.fst
LowParse.Spec.Endianness.Instances.bounded_integer
val bounded_integer (i: integer_size) : Tot (uinttype (bounded_integer i) i)
val bounded_integer (i: integer_size) : Tot (uinttype (bounded_integer i) i)
let bounded_integer (i: integer_size) : Tot (uinttype (bounded_integer i) i) = UIntType (fun (x: bounded_integer i) -> bounded_integer_prop_equiv i x; U32.v x) (fun x -> FStar.Int.Cast.uint32_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint32 x) 0ul (fun _ _ -> ()) (fun x y -> x `U32.add` y) (fun x -> x `U32.mul` 256ul) (fun x -> x `U32.div` 256ul)
{ "file_name": "src/lowparse/LowParse.Spec.Endianness.Instances.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 79, "start_col": 0, "start_line": 68 }
module LowParse.Spec.Endianness.Instances include LowParse.Spec.Endianness module U8 = FStar.UInt8 inline_for_extraction noextract let uint8 : uinttype U8.t 1 = UIntType (fun x -> U8.v x) (fun x -> x) (fun x -> x) 0uy (fun _ _ -> ()) (fun x y -> x `U8.add` y) (fun x -> 0uy) (fun x -> 0uy) module U16 = FStar.UInt16 inline_for_extraction noextract let uint16 : uinttype U16.t 2 = UIntType (fun x -> U16.v x) (fun x -> FStar.Int.Cast.uint16_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint16 x) 0us (fun _ _ -> ()) (fun x y -> x `U16.add` y) (fun x -> x `U16.mul` 256us) (fun x -> x `U16.div` 256us) module U32 = FStar.UInt32 inline_for_extraction noextract let uint32 : uinttype U32.t 4 = UIntType (fun x -> U32.v x) (fun x -> FStar.Int.Cast.uint32_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint32 x) 0ul (fun _ _ -> ()) (fun x y -> x `U32.add` y) (fun x -> x `U32.mul` 256ul) (fun x -> x `U32.div` 256ul) module U64 = FStar.UInt64 inline_for_extraction noextract let uint64 : uinttype U64.t 8 = UIntType (fun x -> U64.v x) (fun x -> FStar.Int.Cast.uint64_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint64 x) 0uL (fun _ _ -> ()) (fun x y -> x `U64.add` y) (fun x -> x `U64.mul` 256uL) (fun x -> x `U64.div` 256uL) open LowParse.Spec.BoundedInt inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Endianness.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.Cast.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Endianness.Instances.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Endianness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: LowParse.Spec.BoundedInt.integer_size -> LowParse.Spec.Endianness.uinttype (LowParse.Spec.BoundedInt.bounded_integer i) i
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.BoundedInt.integer_size", "LowParse.Spec.Endianness.UIntType", "LowParse.Spec.BoundedInt.bounded_integer", "FStar.UInt32.v", "Prims.unit", "LowParse.Spec.BoundedInt.bounded_integer_prop_equiv", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "FStar.Int.Cast.uint32_to_uint8", "FStar.UInt8.t", "Prims.eq2", "Prims.int", "FStar.UInt8.v", "Prims.op_Modulus", "FStar.Int.Cast.uint8_to_uint32", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt8.n", "FStar.UInt32.__uint_to_t", "FStar.UInt32.add", "FStar.UInt32.mul", "FStar.UInt32.div", "LowParse.Spec.Endianness.uinttype" ]
[]
false
false
false
false
false
let bounded_integer (i: integer_size) : Tot (uinttype (bounded_integer i) i) =
UIntType (fun (x: bounded_integer i) -> bounded_integer_prop_equiv i x; U32.v x) (fun x -> FStar.Int.Cast.uint32_to_uint8 x) (fun x -> FStar.Int.Cast.uint8_to_uint32 x) 0ul (fun _ _ -> ()) (fun x y -> x `U32.add` y) (fun x -> x `U32.mul` 256ul) (fun x -> x `U32.div` 256ul)
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.make_minus_b1
val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1)
val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1)
let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 76, "start_col": 0, "start_line": 67 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.K256.Scalar.make_u64_4", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Hacl.Spec.K256.GLV.minus_b1", "Hacl.K256.Scalar.qas_nat4", "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple4", "Lib.IntTypes.uint64", "Lib.IntTypes.u64" ]
[]
false
true
false
false
false
let make_minus_b1 f =
[@@ inline_let ]let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_mul_add
val lemma_aff_point_mul_neg_mul_add (a b c:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b + c) p == S.aff_point_add (aff_point_mul_neg b (aff_point_mul_neg a p)) (aff_point_mul_neg c p))
val lemma_aff_point_mul_neg_mul_add (a b c:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b + c) p == S.aff_point_add (aff_point_mul_neg b (aff_point_mul_neg a p)) (aff_point_mul_neg c p))
let lemma_aff_point_mul_neg_mul_add a b c p = lemma_aff_point_mul_neg_add (a * b) c p; lemma_aff_point_mul_neg_mul a b p
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 54, "start_col": 0, "start_line": 52 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" // [a]P in affine coordinates for a >= 0 let aff_point_mul = S.aff_point_mul // [a]P in affine coordinates for any a let aff_point_mul_neg (a:int) (p:S.aff_point) : S.aff_point = LE.pow_neg S.mk_k256_abelian_group p a assume val lemma_order_of_curve_group (p:S.aff_point) : Lemma (aff_point_mul S.q p == S.aff_point_at_inf) (** Properties for Elliptic Curve Scalar Multiplication in affine coordinates *) // [a + b]P = [a]P + [b]P val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p)) let lemma_aff_point_mul_neg_add a b p = LE.lemma_pow_neg_add S.mk_k256_abelian_group p a b // [a * b]P = [b]([a]P) val lemma_aff_point_mul_neg_mul (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b) p == aff_point_mul_neg b (aff_point_mul_neg a p)) let lemma_aff_point_mul_neg_mul a b p = LE.lemma_pow_neg_mul S.mk_k256_abelian_group p a b // [a * b + c]P = [b]([a]P) + [c]P val lemma_aff_point_mul_neg_mul_add (a b c:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b + c) p == S.aff_point_add (aff_point_mul_neg b (aff_point_mul_neg a p)) (aff_point_mul_neg c p))
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> c: Prims.int -> p: Spec.K256.PointOps.aff_point -> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg (a * b + c) p == Spec.K256.PointOps.aff_point_add (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg b (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg a p)) (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg c p))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Spec.K256.PointOps.aff_point", "Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_mul", "Prims.unit", "Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_add", "FStar.Mul.op_Star" ]
[]
true
false
true
false
false
let lemma_aff_point_mul_neg_mul_add a b c p =
lemma_aff_point_mul_neg_add (a * b) c p; lemma_aff_point_mul_neg_mul a b p
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.make_g2
val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2)
val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2)
let make_g2 f = [@inline_let] let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 130, "start_col": 0, "start_line": 121 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1) let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.K256.Scalar.make_u64_4", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Hacl.Spec.K256.GLV.g2", "Hacl.K256.Scalar.qas_nat4", "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple4", "Lib.IntTypes.uint64", "Lib.IntTypes.u64" ]
[]
false
true
false
false
false
let make_g2 f =
[@@ inline_let ]let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_mul
val lemma_aff_point_mul_neg_mul (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b) p == aff_point_mul_neg b (aff_point_mul_neg a p))
val lemma_aff_point_mul_neg_mul (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b) p == aff_point_mul_neg b (aff_point_mul_neg a p))
let lemma_aff_point_mul_neg_mul a b p = LE.lemma_pow_neg_mul S.mk_k256_abelian_group p a b
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 44, "start_col": 0, "start_line": 43 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" // [a]P in affine coordinates for a >= 0 let aff_point_mul = S.aff_point_mul // [a]P in affine coordinates for any a let aff_point_mul_neg (a:int) (p:S.aff_point) : S.aff_point = LE.pow_neg S.mk_k256_abelian_group p a assume val lemma_order_of_curve_group (p:S.aff_point) : Lemma (aff_point_mul S.q p == S.aff_point_at_inf) (** Properties for Elliptic Curve Scalar Multiplication in affine coordinates *) // [a + b]P = [a]P + [b]P val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p)) let lemma_aff_point_mul_neg_add a b p = LE.lemma_pow_neg_add S.mk_k256_abelian_group p a b // [a * b]P = [b]([a]P) val lemma_aff_point_mul_neg_mul (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b) p == aff_point_mul_neg b (aff_point_mul_neg a p))
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> p: Spec.K256.PointOps.aff_point -> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg (a * b) p == Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg b (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg a p))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Spec.K256.PointOps.aff_point", "Lib.Exponentiation.Definition.lemma_pow_neg_mul", "Spec.K256.mk_k256_abelian_group", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_aff_point_mul_neg_mul a b p =
LE.lemma_pow_neg_mul S.mk_k256_abelian_group p a b
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.make_minus_b2
val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2)
val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2)
let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 94, "start_col": 0, "start_line": 85 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.K256.Scalar.make_u64_4", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Hacl.Spec.K256.GLV.minus_b2", "Hacl.K256.Scalar.qas_nat4", "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple4", "Lib.IntTypes.uint64", "Lib.IntTypes.u64" ]
[]
false
true
false
false
false
let make_minus_b2 f =
[@@ inline_let ]let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_mul_neg_lemma
val aff_point_mul_mul_neg_lemma: a:nat -> b:nat -> p:S.aff_point -> Lemma (aff_point_mul a (S.aff_point_negate (aff_point_mul b p)) == aff_point_mul b (S.aff_point_negate (aff_point_mul a p)))
val aff_point_mul_mul_neg_lemma: a:nat -> b:nat -> p:S.aff_point -> Lemma (aff_point_mul a (S.aff_point_negate (aff_point_mul b p)) == aff_point_mul b (S.aff_point_negate (aff_point_mul a p)))
let aff_point_mul_mul_neg_lemma a b p = let p_neg = S.aff_point_negate p in calc (==) { aff_point_mul a (S.aff_point_negate (aff_point_mul b p)); (==) { aff_point_mul_neg_lemma b p } aff_point_mul a (aff_point_mul b p_neg); (==) { aff_point_mul_mul_lemma a b p_neg } aff_point_mul b (aff_point_mul a p_neg); (==) { aff_point_mul_neg_lemma a p } aff_point_mul b (S.aff_point_negate (aff_point_mul a p)); }
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 145, "start_col": 0, "start_line": 134 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" // [a]P in affine coordinates for a >= 0 let aff_point_mul = S.aff_point_mul // [a]P in affine coordinates for any a let aff_point_mul_neg (a:int) (p:S.aff_point) : S.aff_point = LE.pow_neg S.mk_k256_abelian_group p a assume val lemma_order_of_curve_group (p:S.aff_point) : Lemma (aff_point_mul S.q p == S.aff_point_at_inf) (** Properties for Elliptic Curve Scalar Multiplication in affine coordinates *) // [a + b]P = [a]P + [b]P val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p)) let lemma_aff_point_mul_neg_add a b p = LE.lemma_pow_neg_add S.mk_k256_abelian_group p a b // [a * b]P = [b]([a]P) val lemma_aff_point_mul_neg_mul (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b) p == aff_point_mul_neg b (aff_point_mul_neg a p)) let lemma_aff_point_mul_neg_mul a b p = LE.lemma_pow_neg_mul S.mk_k256_abelian_group p a b // [a * b + c]P = [b]([a]P) + [c]P val lemma_aff_point_mul_neg_mul_add (a b c:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b + c) p == S.aff_point_add (aff_point_mul_neg b (aff_point_mul_neg a p)) (aff_point_mul_neg c p)) let lemma_aff_point_mul_neg_mul_add a b c p = lemma_aff_point_mul_neg_add (a * b) c p; lemma_aff_point_mul_neg_mul a b p // [a]P = [a % S.q]P val lemma_aff_point_mul_neg_modq (a:int) (p:S.aff_point) : Lemma (aff_point_mul_neg a p == aff_point_mul (a % S.q) p) let lemma_aff_point_mul_neg_modq a p = calc (==) { aff_point_mul_neg a p; (==) { Math.Lemmas.euclidean_division_definition a S.q } aff_point_mul_neg (a / S.q * S.q + a % S.q) p; (==) { lemma_aff_point_mul_neg_add (a / S.q * S.q) (a % S.q) p } S.aff_point_add (aff_point_mul_neg (a / S.q * S.q) p) (aff_point_mul_neg (a % S.q) p); (==) { lemma_aff_point_mul_neg_mul (a / S.q) S.q p } S.aff_point_add (aff_point_mul S.q (aff_point_mul_neg (a / S.q) p)) (aff_point_mul (a % S.q) p); (==) { lemma_order_of_curve_group (aff_point_mul_neg (a / S.q) p) } S.aff_point_add S.aff_point_at_inf (aff_point_mul (a % S.q) p); (==) { LS.aff_point_add_comm_lemma S.aff_point_at_inf (aff_point_mul (a % S.q) p) } S.aff_point_add (aff_point_mul (a % S.q) p) S.aff_point_at_inf; (==) { LS.aff_point_at_inf_lemma (aff_point_mul (a % S.q) p) } aff_point_mul (a % S.q) p; } // [a]P = [(-a) % q](-P) val lemma_aff_point_mul_neg: a:S.qelem -> p:S.aff_point -> Lemma (aff_point_mul ((- a) % S.q) (S.aff_point_negate p) == aff_point_mul a p) let lemma_aff_point_mul_neg a p = let cm = S.mk_k256_comm_monoid in let ag = S.mk_k256_abelian_group in let p_neg = S.aff_point_negate p in if a > 0 then begin calc (==) { aff_point_mul ((- a) % S.q) p_neg; (==) { lemma_aff_point_mul_neg_modq (- a) p_neg } aff_point_mul_neg (- a) p_neg; (==) { } S.aff_point_negate (aff_point_mul a p_neg); (==) { LE.lemma_inverse_pow ag p a } S.aff_point_negate (S.aff_point_negate (aff_point_mul a p)); (==) { LE.lemma_inverse_id ag (aff_point_mul a p) } aff_point_mul a p; } end else begin LE.lemma_pow0 cm p; LE.lemma_pow0 cm p_neg end //-------------------------------------------- // [a]([b]P) = [b]([a]P) val aff_point_mul_mul_lemma: a:nat -> b:nat -> p:S.aff_point -> Lemma (aff_point_mul a (aff_point_mul b p) == aff_point_mul b (aff_point_mul a p)) let aff_point_mul_mul_lemma a b p = calc (==) { aff_point_mul a (aff_point_mul b p); (==) { LE.lemma_pow_mul S.mk_k256_comm_monoid p b a } aff_point_mul (a * b) p; (==) { LE.lemma_pow_mul S.mk_k256_comm_monoid p a b } aff_point_mul b (aff_point_mul a p); } // -[a]P = [a](-P) val aff_point_mul_neg_lemma: a:nat -> p:S.aff_point -> Lemma (S.aff_point_negate (aff_point_mul a p) == aff_point_mul a (S.aff_point_negate p)) let aff_point_mul_neg_lemma a p = LE.lemma_inverse_pow S.mk_k256_abelian_group p a // [a](-[b]P) = [b](-[a]P) val aff_point_mul_mul_neg_lemma: a:nat -> b:nat -> p:S.aff_point -> Lemma (aff_point_mul a (S.aff_point_negate (aff_point_mul b p)) == aff_point_mul b (S.aff_point_negate (aff_point_mul a p)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat -> p: Spec.K256.PointOps.aff_point -> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul a (Spec.K256.PointOps.aff_point_negate (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul b p)) == Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul b (Spec.K256.PointOps.aff_point_negate (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul a p)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Spec.K256.PointOps.aff_point", "FStar.Calc.calc_finish", "Prims.eq2", "Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul", "Spec.K256.PointOps.aff_point_negate", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg_lemma", "Prims.squash", "Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_mul_lemma" ]
[]
false
false
true
false
false
let aff_point_mul_mul_neg_lemma a b p =
let p_neg = S.aff_point_negate p in calc ( == ) { aff_point_mul a (S.aff_point_negate (aff_point_mul b p)); ( == ) { aff_point_mul_neg_lemma b p } aff_point_mul a (aff_point_mul b p_neg); ( == ) { aff_point_mul_mul_lemma a b p_neg } aff_point_mul b (aff_point_mul a p_neg); ( == ) { aff_point_mul_neg_lemma a p } aff_point_mul b (S.aff_point_negate (aff_point_mul a p)); }
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg_lemma
val aff_point_mul_neg_lemma: a:nat -> p:S.aff_point -> Lemma (S.aff_point_negate (aff_point_mul a p) == aff_point_mul a (S.aff_point_negate p))
val aff_point_mul_neg_lemma: a:nat -> p:S.aff_point -> Lemma (S.aff_point_negate (aff_point_mul a p) == aff_point_mul a (S.aff_point_negate p))
let aff_point_mul_neg_lemma a p = LE.lemma_inverse_pow S.mk_k256_abelian_group p a
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 126, "start_col": 0, "start_line": 125 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" // [a]P in affine coordinates for a >= 0 let aff_point_mul = S.aff_point_mul // [a]P in affine coordinates for any a let aff_point_mul_neg (a:int) (p:S.aff_point) : S.aff_point = LE.pow_neg S.mk_k256_abelian_group p a assume val lemma_order_of_curve_group (p:S.aff_point) : Lemma (aff_point_mul S.q p == S.aff_point_at_inf) (** Properties for Elliptic Curve Scalar Multiplication in affine coordinates *) // [a + b]P = [a]P + [b]P val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p)) let lemma_aff_point_mul_neg_add a b p = LE.lemma_pow_neg_add S.mk_k256_abelian_group p a b // [a * b]P = [b]([a]P) val lemma_aff_point_mul_neg_mul (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b) p == aff_point_mul_neg b (aff_point_mul_neg a p)) let lemma_aff_point_mul_neg_mul a b p = LE.lemma_pow_neg_mul S.mk_k256_abelian_group p a b // [a * b + c]P = [b]([a]P) + [c]P val lemma_aff_point_mul_neg_mul_add (a b c:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b + c) p == S.aff_point_add (aff_point_mul_neg b (aff_point_mul_neg a p)) (aff_point_mul_neg c p)) let lemma_aff_point_mul_neg_mul_add a b c p = lemma_aff_point_mul_neg_add (a * b) c p; lemma_aff_point_mul_neg_mul a b p // [a]P = [a % S.q]P val lemma_aff_point_mul_neg_modq (a:int) (p:S.aff_point) : Lemma (aff_point_mul_neg a p == aff_point_mul (a % S.q) p) let lemma_aff_point_mul_neg_modq a p = calc (==) { aff_point_mul_neg a p; (==) { Math.Lemmas.euclidean_division_definition a S.q } aff_point_mul_neg (a / S.q * S.q + a % S.q) p; (==) { lemma_aff_point_mul_neg_add (a / S.q * S.q) (a % S.q) p } S.aff_point_add (aff_point_mul_neg (a / S.q * S.q) p) (aff_point_mul_neg (a % S.q) p); (==) { lemma_aff_point_mul_neg_mul (a / S.q) S.q p } S.aff_point_add (aff_point_mul S.q (aff_point_mul_neg (a / S.q) p)) (aff_point_mul (a % S.q) p); (==) { lemma_order_of_curve_group (aff_point_mul_neg (a / S.q) p) } S.aff_point_add S.aff_point_at_inf (aff_point_mul (a % S.q) p); (==) { LS.aff_point_add_comm_lemma S.aff_point_at_inf (aff_point_mul (a % S.q) p) } S.aff_point_add (aff_point_mul (a % S.q) p) S.aff_point_at_inf; (==) { LS.aff_point_at_inf_lemma (aff_point_mul (a % S.q) p) } aff_point_mul (a % S.q) p; } // [a]P = [(-a) % q](-P) val lemma_aff_point_mul_neg: a:S.qelem -> p:S.aff_point -> Lemma (aff_point_mul ((- a) % S.q) (S.aff_point_negate p) == aff_point_mul a p) let lemma_aff_point_mul_neg a p = let cm = S.mk_k256_comm_monoid in let ag = S.mk_k256_abelian_group in let p_neg = S.aff_point_negate p in if a > 0 then begin calc (==) { aff_point_mul ((- a) % S.q) p_neg; (==) { lemma_aff_point_mul_neg_modq (- a) p_neg } aff_point_mul_neg (- a) p_neg; (==) { } S.aff_point_negate (aff_point_mul a p_neg); (==) { LE.lemma_inverse_pow ag p a } S.aff_point_negate (S.aff_point_negate (aff_point_mul a p)); (==) { LE.lemma_inverse_id ag (aff_point_mul a p) } aff_point_mul a p; } end else begin LE.lemma_pow0 cm p; LE.lemma_pow0 cm p_neg end //-------------------------------------------- // [a]([b]P) = [b]([a]P) val aff_point_mul_mul_lemma: a:nat -> b:nat -> p:S.aff_point -> Lemma (aff_point_mul a (aff_point_mul b p) == aff_point_mul b (aff_point_mul a p)) let aff_point_mul_mul_lemma a b p = calc (==) { aff_point_mul a (aff_point_mul b p); (==) { LE.lemma_pow_mul S.mk_k256_comm_monoid p b a } aff_point_mul (a * b) p; (==) { LE.lemma_pow_mul S.mk_k256_comm_monoid p a b } aff_point_mul b (aff_point_mul a p); } // -[a]P = [a](-P) val aff_point_mul_neg_lemma: a:nat -> p:S.aff_point -> Lemma (S.aff_point_negate (aff_point_mul a p) == aff_point_mul a (S.aff_point_negate p))
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> p: Spec.K256.PointOps.aff_point -> FStar.Pervasives.Lemma (ensures Spec.K256.PointOps.aff_point_negate (Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul a p) == Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul a (Spec.K256.PointOps.aff_point_negate p))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Spec.K256.PointOps.aff_point", "Lib.Exponentiation.Definition.lemma_inverse_pow", "Spec.K256.mk_k256_abelian_group", "Prims.unit" ]
[]
true
false
true
false
false
let aff_point_mul_neg_lemma a p =
LE.lemma_inverse_pow S.mk_k256_abelian_group p a
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.scalar_split_lambda_g1g2
val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2))
val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2))
let scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k = make_g1 tmp1; // tmp1 = g1 make_g2 tmp2; // tmp2 = g2 qmul_shift_384 r1 k tmp1; // r1 = c1 = qmul_shift_384 k g1 qmul_shift_384 r2 k tmp2; // r2 = c2 = qmul_shift_384 k g2 let h0 = ST.get () in SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp1); SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp2); assert (qas_nat h0 r1 < S.q /\ qas_nat h0 r2 < S.q)
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 161, "start_col": 0, "start_line": 153 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1) let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2) let make_g2 f = [@inline_let] let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x (** Representing a scalar k as (r1 + r2 * lambda) mod S.q, s.t. r1 and r2 are ~128 bits long *) inline_for_extraction noextract val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmp1: Hacl.K256.Scalar.qelem -> tmp2: Hacl.K256.Scalar.qelem -> r1: Hacl.K256.Scalar.qelem -> r2: Hacl.K256.Scalar.qelem -> k: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Prims._assert", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Hacl.K256.Scalar.qas_nat", "Spec.K256.PointOps.q", "Prims.unit", "Hacl.Spec.K256.GLV.qmul_shift_384_lemma", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Scalar.qmul_shift_384", "Hacl.Impl.K256.GLV.Constants.make_g2", "Hacl.Impl.K256.GLV.Constants.make_g1" ]
[]
false
true
false
false
false
let scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k =
make_g1 tmp1; make_g2 tmp2; qmul_shift_384 r1 k tmp1; qmul_shift_384 r2 k tmp2; let h0 = ST.get () in SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp1); SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp2); assert (qas_nat h0 r1 < S.q /\ qas_nat h0 r2 < S.q)
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.make_beta
val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f)
val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f)
let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 58, "start_col": 0, "start_line": 46 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.K256.Field.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Field.felem", "Hacl.K256.Field.make_u52_5", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.nat", "Hacl.Spec.K256.GLV.beta", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Definitions.max48", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.uint64", "Lib.IntTypes.u64" ]
[]
false
true
false
false
false
let make_beta f =
[@@ inline_let ]let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.make_g1
val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1)
val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1)
let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 112, "start_col": 0, "start_line": 103 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.K256.Scalar.make_u64_4", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Hacl.Spec.K256.GLV.g1", "Hacl.K256.Scalar.qas_nat4", "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple4", "Lib.IntTypes.uint64", "Lib.IntTypes.u64" ]
[]
false
true
false
false
false
let make_g1 f =
[@@ inline_let ]let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.make_minus_lambda
val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda)
val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda)
let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 37, "start_col": 0, "start_line": 28 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.K256.Scalar.make_u64_4", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Hacl.Spec.K256.GLV.minus_lambda", "Hacl.K256.Scalar.qas_nat4", "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple4", "Lib.IntTypes.uint64", "Lib.IntTypes.u64" ]
[]
false
true
false
false
false
let make_minus_lambda f =
[@@ inline_let ]let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg
val lemma_aff_point_mul_neg: a:S.qelem -> p:S.aff_point -> Lemma (aff_point_mul ((- a) % S.q) (S.aff_point_negate p) == aff_point_mul a p)
val lemma_aff_point_mul_neg: a:S.qelem -> p:S.aff_point -> Lemma (aff_point_mul ((- a) % S.q) (S.aff_point_negate p) == aff_point_mul a p)
let lemma_aff_point_mul_neg a p = let cm = S.mk_k256_comm_monoid in let ag = S.mk_k256_abelian_group in let p_neg = S.aff_point_negate p in if a > 0 then begin calc (==) { aff_point_mul ((- a) % S.q) p_neg; (==) { lemma_aff_point_mul_neg_modq (- a) p_neg } aff_point_mul_neg (- a) p_neg; (==) { } S.aff_point_negate (aff_point_mul a p_neg); (==) { LE.lemma_inverse_pow ag p a } S.aff_point_negate (S.aff_point_negate (aff_point_mul a p)); (==) { LE.lemma_inverse_id ag (aff_point_mul a p) } aff_point_mul a p; } end else begin LE.lemma_pow0 cm p; LE.lemma_pow0 cm p_neg end
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 103, "start_col": 0, "start_line": 85 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" // [a]P in affine coordinates for a >= 0 let aff_point_mul = S.aff_point_mul // [a]P in affine coordinates for any a let aff_point_mul_neg (a:int) (p:S.aff_point) : S.aff_point = LE.pow_neg S.mk_k256_abelian_group p a assume val lemma_order_of_curve_group (p:S.aff_point) : Lemma (aff_point_mul S.q p == S.aff_point_at_inf) (** Properties for Elliptic Curve Scalar Multiplication in affine coordinates *) // [a + b]P = [a]P + [b]P val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p)) let lemma_aff_point_mul_neg_add a b p = LE.lemma_pow_neg_add S.mk_k256_abelian_group p a b // [a * b]P = [b]([a]P) val lemma_aff_point_mul_neg_mul (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b) p == aff_point_mul_neg b (aff_point_mul_neg a p)) let lemma_aff_point_mul_neg_mul a b p = LE.lemma_pow_neg_mul S.mk_k256_abelian_group p a b // [a * b + c]P = [b]([a]P) + [c]P val lemma_aff_point_mul_neg_mul_add (a b c:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b + c) p == S.aff_point_add (aff_point_mul_neg b (aff_point_mul_neg a p)) (aff_point_mul_neg c p)) let lemma_aff_point_mul_neg_mul_add a b c p = lemma_aff_point_mul_neg_add (a * b) c p; lemma_aff_point_mul_neg_mul a b p // [a]P = [a % S.q]P val lemma_aff_point_mul_neg_modq (a:int) (p:S.aff_point) : Lemma (aff_point_mul_neg a p == aff_point_mul (a % S.q) p) let lemma_aff_point_mul_neg_modq a p = calc (==) { aff_point_mul_neg a p; (==) { Math.Lemmas.euclidean_division_definition a S.q } aff_point_mul_neg (a / S.q * S.q + a % S.q) p; (==) { lemma_aff_point_mul_neg_add (a / S.q * S.q) (a % S.q) p } S.aff_point_add (aff_point_mul_neg (a / S.q * S.q) p) (aff_point_mul_neg (a % S.q) p); (==) { lemma_aff_point_mul_neg_mul (a / S.q) S.q p } S.aff_point_add (aff_point_mul S.q (aff_point_mul_neg (a / S.q) p)) (aff_point_mul (a % S.q) p); (==) { lemma_order_of_curve_group (aff_point_mul_neg (a / S.q) p) } S.aff_point_add S.aff_point_at_inf (aff_point_mul (a % S.q) p); (==) { LS.aff_point_add_comm_lemma S.aff_point_at_inf (aff_point_mul (a % S.q) p) } S.aff_point_add (aff_point_mul (a % S.q) p) S.aff_point_at_inf; (==) { LS.aff_point_at_inf_lemma (aff_point_mul (a % S.q) p) } aff_point_mul (a % S.q) p; } // [a]P = [(-a) % q](-P) val lemma_aff_point_mul_neg: a:S.qelem -> p:S.aff_point -> Lemma (aff_point_mul ((- a) % S.q) (S.aff_point_negate p) == aff_point_mul a p)
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.aff_point -> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul ((- a) % Spec.K256.PointOps.q) (Spec.K256.PointOps.aff_point_negate p) == Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul a p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.K256.PointOps.qelem", "Spec.K256.PointOps.aff_point", "Prims.op_GreaterThan", "FStar.Calc.calc_finish", "Prims.eq2", "Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul", "Prims.op_Modulus", "Prims.op_Minus", "Spec.K256.PointOps.q", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Spec.K256.PointOps.aff_point_negate", "Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_modq", "Prims.squash", "Lib.Exponentiation.Definition.lemma_inverse_pow", "Lib.Exponentiation.Definition.lemma_inverse_id", "Prims.bool", "Lib.Exponentiation.Definition.lemma_pow0", "Lib.Exponentiation.Definition.abelian_group", "Spec.K256.mk_k256_abelian_group", "Lib.Exponentiation.Definition.comm_monoid", "Spec.K256.mk_k256_comm_monoid" ]
[]
false
false
true
false
false
let lemma_aff_point_mul_neg a p =
let cm = S.mk_k256_comm_monoid in let ag = S.mk_k256_abelian_group in let p_neg = S.aff_point_negate p in if a > 0 then calc ( == ) { aff_point_mul ((- a) % S.q) p_neg; ( == ) { lemma_aff_point_mul_neg_modq (- a) p_neg } aff_point_mul_neg (- a) p_neg; ( == ) { () } S.aff_point_negate (aff_point_mul a p_neg); ( == ) { LE.lemma_inverse_pow ag p a } S.aff_point_negate (S.aff_point_negate (aff_point_mul a p)); ( == ) { LE.lemma_inverse_id ag (aff_point_mul a p) } aff_point_mul a p; } else (LE.lemma_pow0 cm p; LE.lemma_pow0 cm p_neg)
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.negate_point_and_scalar_cond_vartime
val negate_point_and_scalar_cond_vartime: k:qelem -> p:point -> Stack bool (requires fun h -> live h k /\ live h p /\ disjoint k p /\ qas_nat h k < S.q /\ point_inv h p) (ensures fun h0 b h1 -> modifies (loc k |+| loc p) h0 h1 /\ b == S.scalar_is_high (qas_nat h0 k) /\ point_inv h1 p /\ (let k_s, p_s = SG.negate_point_and_scalar_cond (qas_nat h0 k) (point_eval h0 p) in qas_nat h1 k == k_s /\ point_eval h1 p == p_s))
val negate_point_and_scalar_cond_vartime: k:qelem -> p:point -> Stack bool (requires fun h -> live h k /\ live h p /\ disjoint k p /\ qas_nat h k < S.q /\ point_inv h p) (ensures fun h0 b h1 -> modifies (loc k |+| loc p) h0 h1 /\ b == S.scalar_is_high (qas_nat h0 k) /\ point_inv h1 p /\ (let k_s, p_s = SG.negate_point_and_scalar_cond (qas_nat h0 k) (point_eval h0 p) in qas_nat h1 k == k_s /\ point_eval h1 p == p_s))
let negate_point_and_scalar_cond_vartime k p = let b = is_qelem_le_q_halved_vartime k in [@inline_let] let if_high = not b in qnegate_conditional_vartime k if_high; point_negate_conditional_vartime p if_high; if_high
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 9, "end_line": 256, "start_col": 0, "start_line": 251 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1) let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2) let make_g2 f = [@inline_let] let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x (** Representing a scalar k as (r1 + r2 * lambda) mod S.q, s.t. r1 and r2 are ~128 bits long *) inline_for_extraction noextract val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2)) let scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k = make_g1 tmp1; // tmp1 = g1 make_g2 tmp2; // tmp2 = g2 qmul_shift_384 r1 k tmp1; // r1 = c1 = qmul_shift_384 k g1 qmul_shift_384 r2 k tmp2; // r2 = c2 = qmul_shift_384 k g2 let h0 = ST.get () in SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp1); SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp2); assert (qas_nat h0 r1 < S.q /\ qas_nat h0 r2 < S.q) // k = (r1 + lambda * k2) % S.q val scalar_split_lambda (r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2) h0 h1 /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 k) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s)) [@CInline] let scalar_split_lambda r1 r2 k = push_frame (); let tmp1 = create_qelem () in let tmp2 = create_qelem () in scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k; make_minus_b1 tmp1; // tmp1 = minus_b1 make_minus_b2 tmp2; // tmp2 = minus_b2 qmul r1 r1 tmp1; // r1 = c1 = c1 * minus_b1 qmul r2 r2 tmp2; // r2 = c2 = c2 * minus_b2 make_minus_lambda tmp1; // tmp1 = minus_lambda qadd r2 r1 r2; // r2 = r2 = c1 + c2 qmul tmp2 r2 tmp1; // tmp2 = r2 * minus_lambda qadd r1 k tmp2; // r1 = r1 = k + r2 * minus_lambda pop_frame () (** Fast computation of [lambda]P as (beta * px, py, pz) in projective coordinates *) [@CInline] let point_mul_lambda res p = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let px, py, pz = getx p, gety p, getz p in let beta = create_felem () in make_beta beta; fmul rx beta px; copy_felem ry py; copy_felem rz pz; pop_frame () [@CInline] let point_mul_lambda_inplace res = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let beta = create_felem () in make_beta beta; fmul rx beta rx; pop_frame () inline_for_extraction noextract val point_mul_lambda_and_split_lambda: r1:qelem -> r2:qelem -> lambda_q:point -> scalar:qelem -> q:point -> Stack unit (requires fun h -> live h r1 /\ live h r2 /\ live h lambda_q /\ live h scalar /\ live h q /\ disjoint r1 r2 /\ disjoint r1 lambda_q /\ disjoint r1 scalar /\ disjoint r1 q /\ disjoint r2 lambda_q /\ disjoint r2 scalar /\ disjoint r2 q /\ disjoint lambda_q scalar /\ disjoint lambda_q q /\ point_inv h q /\ qas_nat h scalar < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc lambda_q) h0 h1 /\ point_inv h1 lambda_q /\ point_eval h1 lambda_q == SG.point_mul_lambda (point_eval h0 q) /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 scalar) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s)) let point_mul_lambda_and_split_lambda r1 r2 lambda_q scalar q = scalar_split_lambda r1 r2 scalar; // (r1 + r2 * lambda) % S.q = scalar point_mul_lambda lambda_q q // lambda_q = [lambda]Q inline_for_extraction noextract val negate_point_and_scalar_cond_vartime: k:qelem -> p:point -> Stack bool (requires fun h -> live h k /\ live h p /\ disjoint k p /\ qas_nat h k < S.q /\ point_inv h p) (ensures fun h0 b h1 -> modifies (loc k |+| loc p) h0 h1 /\ b == S.scalar_is_high (qas_nat h0 k) /\ point_inv h1 p /\ (let k_s, p_s = SG.negate_point_and_scalar_cond (qas_nat h0 k) (point_eval h0 p) in qas_nat h1 k == k_s /\ point_eval h1 p == p_s))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Hacl.K256.Scalar.qelem -> p: Hacl.Impl.K256.Point.point -> FStar.HyperStack.ST.Stack Prims.bool
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.Impl.K256.Point.point", "Prims.bool", "Prims.unit", "Hacl.Impl.K256.Point.point_negate_conditional_vartime", "Hacl.K256.Scalar.qnegate_conditional_vartime", "Prims.op_Negation", "Hacl.K256.Scalar.is_qelem_le_q_halved_vartime" ]
[]
false
true
false
false
false
let negate_point_and_scalar_cond_vartime k p =
let b = is_qelem_le_q_halved_vartime k in [@@ inline_let ]let if_high = not b in qnegate_conditional_vartime k if_high; point_negate_conditional_vartime p if_high; if_high
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.point_mul_lambda_and_split_lambda
val point_mul_lambda_and_split_lambda: r1:qelem -> r2:qelem -> lambda_q:point -> scalar:qelem -> q:point -> Stack unit (requires fun h -> live h r1 /\ live h r2 /\ live h lambda_q /\ live h scalar /\ live h q /\ disjoint r1 r2 /\ disjoint r1 lambda_q /\ disjoint r1 scalar /\ disjoint r1 q /\ disjoint r2 lambda_q /\ disjoint r2 scalar /\ disjoint r2 q /\ disjoint lambda_q scalar /\ disjoint lambda_q q /\ point_inv h q /\ qas_nat h scalar < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc lambda_q) h0 h1 /\ point_inv h1 lambda_q /\ point_eval h1 lambda_q == SG.point_mul_lambda (point_eval h0 q) /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 scalar) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s))
val point_mul_lambda_and_split_lambda: r1:qelem -> r2:qelem -> lambda_q:point -> scalar:qelem -> q:point -> Stack unit (requires fun h -> live h r1 /\ live h r2 /\ live h lambda_q /\ live h scalar /\ live h q /\ disjoint r1 r2 /\ disjoint r1 lambda_q /\ disjoint r1 scalar /\ disjoint r1 q /\ disjoint r2 lambda_q /\ disjoint r2 scalar /\ disjoint r2 q /\ disjoint lambda_q scalar /\ disjoint lambda_q q /\ point_inv h q /\ qas_nat h scalar < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc lambda_q) h0 h1 /\ point_inv h1 lambda_q /\ point_eval h1 lambda_q == SG.point_mul_lambda (point_eval h0 q) /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 scalar) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s))
let point_mul_lambda_and_split_lambda r1 r2 lambda_q scalar q = scalar_split_lambda r1 r2 scalar; // (r1 + r2 * lambda) % S.q = scalar point_mul_lambda lambda_q q
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 238, "start_col": 0, "start_line": 236 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1) let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2) let make_g2 f = [@inline_let] let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x (** Representing a scalar k as (r1 + r2 * lambda) mod S.q, s.t. r1 and r2 are ~128 bits long *) inline_for_extraction noextract val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2)) let scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k = make_g1 tmp1; // tmp1 = g1 make_g2 tmp2; // tmp2 = g2 qmul_shift_384 r1 k tmp1; // r1 = c1 = qmul_shift_384 k g1 qmul_shift_384 r2 k tmp2; // r2 = c2 = qmul_shift_384 k g2 let h0 = ST.get () in SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp1); SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp2); assert (qas_nat h0 r1 < S.q /\ qas_nat h0 r2 < S.q) // k = (r1 + lambda * k2) % S.q val scalar_split_lambda (r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2) h0 h1 /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 k) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s)) [@CInline] let scalar_split_lambda r1 r2 k = push_frame (); let tmp1 = create_qelem () in let tmp2 = create_qelem () in scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k; make_minus_b1 tmp1; // tmp1 = minus_b1 make_minus_b2 tmp2; // tmp2 = minus_b2 qmul r1 r1 tmp1; // r1 = c1 = c1 * minus_b1 qmul r2 r2 tmp2; // r2 = c2 = c2 * minus_b2 make_minus_lambda tmp1; // tmp1 = minus_lambda qadd r2 r1 r2; // r2 = r2 = c1 + c2 qmul tmp2 r2 tmp1; // tmp2 = r2 * minus_lambda qadd r1 k tmp2; // r1 = r1 = k + r2 * minus_lambda pop_frame () (** Fast computation of [lambda]P as (beta * px, py, pz) in projective coordinates *) [@CInline] let point_mul_lambda res p = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let px, py, pz = getx p, gety p, getz p in let beta = create_felem () in make_beta beta; fmul rx beta px; copy_felem ry py; copy_felem rz pz; pop_frame () [@CInline] let point_mul_lambda_inplace res = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let beta = create_felem () in make_beta beta; fmul rx beta rx; pop_frame () inline_for_extraction noextract val point_mul_lambda_and_split_lambda: r1:qelem -> r2:qelem -> lambda_q:point -> scalar:qelem -> q:point -> Stack unit (requires fun h -> live h r1 /\ live h r2 /\ live h lambda_q /\ live h scalar /\ live h q /\ disjoint r1 r2 /\ disjoint r1 lambda_q /\ disjoint r1 scalar /\ disjoint r1 q /\ disjoint r2 lambda_q /\ disjoint r2 scalar /\ disjoint r2 q /\ disjoint lambda_q scalar /\ disjoint lambda_q q /\ point_inv h q /\ qas_nat h scalar < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc lambda_q) h0 h1 /\ point_inv h1 lambda_q /\ point_eval h1 lambda_q == SG.point_mul_lambda (point_eval h0 q) /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 scalar) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r1: Hacl.K256.Scalar.qelem -> r2: Hacl.K256.Scalar.qelem -> lambda_q: Hacl.Impl.K256.Point.point -> scalar: Hacl.K256.Scalar.qelem -> q: Hacl.Impl.K256.Point.point -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.Impl.K256.Point.point", "Hacl.Impl.K256.GLV.Constants.point_mul_lambda", "Prims.unit", "Hacl.Impl.K256.GLV.Constants.scalar_split_lambda" ]
[]
false
true
false
false
false
let point_mul_lambda_and_split_lambda r1 r2 lambda_q scalar q =
scalar_split_lambda r1 r2 scalar; point_mul_lambda lambda_q q
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.point_mul_lambda_inplace
val point_mul_lambda_inplace: res:point -> Stack unit (requires fun h -> live h res /\ point_inv h res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ point_inv h1 res /\ point_eval h1 res == SG.point_mul_lambda (point_eval h0 res))
val point_mul_lambda_inplace: res:point -> Stack unit (requires fun h -> live h res /\ point_inv h res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ point_inv h1 res /\ point_eval h1 res == SG.point_mul_lambda (point_eval h0 res))
let point_mul_lambda_inplace res = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let beta = create_felem () in make_beta beta; fmul rx beta rx; pop_frame ()
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 218, "start_col": 0, "start_line": 212 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1) let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2) let make_g2 f = [@inline_let] let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x (** Representing a scalar k as (r1 + r2 * lambda) mod S.q, s.t. r1 and r2 are ~128 bits long *) inline_for_extraction noextract val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2)) let scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k = make_g1 tmp1; // tmp1 = g1 make_g2 tmp2; // tmp2 = g2 qmul_shift_384 r1 k tmp1; // r1 = c1 = qmul_shift_384 k g1 qmul_shift_384 r2 k tmp2; // r2 = c2 = qmul_shift_384 k g2 let h0 = ST.get () in SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp1); SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp2); assert (qas_nat h0 r1 < S.q /\ qas_nat h0 r2 < S.q) // k = (r1 + lambda * k2) % S.q val scalar_split_lambda (r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2) h0 h1 /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 k) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s)) [@CInline] let scalar_split_lambda r1 r2 k = push_frame (); let tmp1 = create_qelem () in let tmp2 = create_qelem () in scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k; make_minus_b1 tmp1; // tmp1 = minus_b1 make_minus_b2 tmp2; // tmp2 = minus_b2 qmul r1 r1 tmp1; // r1 = c1 = c1 * minus_b1 qmul r2 r2 tmp2; // r2 = c2 = c2 * minus_b2 make_minus_lambda tmp1; // tmp1 = minus_lambda qadd r2 r1 r2; // r2 = r2 = c1 + c2 qmul tmp2 r2 tmp1; // tmp2 = r2 * minus_lambda qadd r1 k tmp2; // r1 = r1 = k + r2 * minus_lambda pop_frame () (** Fast computation of [lambda]P as (beta * px, py, pz) in projective coordinates *) [@CInline] let point_mul_lambda res p = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let px, py, pz = getx p, gety p, getz p in let beta = create_felem () in make_beta beta; fmul rx beta px; copy_felem ry py; copy_felem rz pz; pop_frame ()
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
res: Hacl.Impl.K256.Point.point -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.K256.Point.point", "Hacl.K256.Field.felem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.K256.Field.fmul", "Hacl.Impl.K256.GLV.Constants.make_beta", "Hacl.K256.Field.create_felem", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "Hacl.Impl.K256.Point.getz", "Hacl.Impl.K256.Point.gety", "Hacl.Impl.K256.Point.getx", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let point_mul_lambda_inplace res =
push_frame (); let rx, ry, rz = getx res, gety res, getz res in let beta = create_felem () in make_beta beta; fmul rx beta rx; pop_frame ()
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.ecmult_endo_split
val ecmult_endo_split: r1:qelem -> r2:qelem -> q1:point -> q2:point -> scalar:qelem -> q:point -> Stack (bool & bool) (requires fun h -> live h r1 /\ live h r2 /\ live h q1 /\ live h q2 /\ live h scalar /\ live h q /\ disjoint r1 r2 /\ disjoint r1 q1 /\ disjoint r1 q2 /\ disjoint r1 scalar /\ disjoint r1 q /\ disjoint r2 q1 /\ disjoint r2 q2 /\ disjoint r2 scalar /\ disjoint r2 q /\ disjoint q1 q2 /\ disjoint q1 scalar /\ disjoint q1 q /\ disjoint q2 scalar /\ disjoint q2 q /\ point_inv h q /\ qas_nat h scalar < S.q) (ensures fun h0 (is_high1, is_high2) h1 -> modifies (loc r1 |+| loc r2 |+| loc q1 |+| loc q2) h0 h1 /\ point_inv h1 q1 /\ point_inv h1 q2 /\ (let r1_s0, r2_s0 = SG.scalar_split_lambda (qas_nat h0 scalar) in let r1_s, q1_s, r2_s, q2_s = SG.ecmult_endo_split (qas_nat h0 scalar) (point_eval h0 q) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s /\ point_eval h1 q1 == q1_s /\ point_eval h1 q2 == q2_s /\ is_high1 == S.scalar_is_high r1_s0 /\ is_high2 == S.scalar_is_high r2_s0))
val ecmult_endo_split: r1:qelem -> r2:qelem -> q1:point -> q2:point -> scalar:qelem -> q:point -> Stack (bool & bool) (requires fun h -> live h r1 /\ live h r2 /\ live h q1 /\ live h q2 /\ live h scalar /\ live h q /\ disjoint r1 r2 /\ disjoint r1 q1 /\ disjoint r1 q2 /\ disjoint r1 scalar /\ disjoint r1 q /\ disjoint r2 q1 /\ disjoint r2 q2 /\ disjoint r2 scalar /\ disjoint r2 q /\ disjoint q1 q2 /\ disjoint q1 scalar /\ disjoint q1 q /\ disjoint q2 scalar /\ disjoint q2 q /\ point_inv h q /\ qas_nat h scalar < S.q) (ensures fun h0 (is_high1, is_high2) h1 -> modifies (loc r1 |+| loc r2 |+| loc q1 |+| loc q2) h0 h1 /\ point_inv h1 q1 /\ point_inv h1 q2 /\ (let r1_s0, r2_s0 = SG.scalar_split_lambda (qas_nat h0 scalar) in let r1_s, q1_s, r2_s, q2_s = SG.ecmult_endo_split (qas_nat h0 scalar) (point_eval h0 q) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s /\ point_eval h1 q1 == q1_s /\ point_eval h1 q2 == q2_s /\ is_high1 == S.scalar_is_high r1_s0 /\ is_high2 == S.scalar_is_high r2_s0))
let ecmult_endo_split r1 r2 q1 q2 scalar q = let h0 = ST.get () in // modifies r1, r2, q2 s.t. r1 + r2 * lambda = scalar /\ q2 = [lambda]q point_mul_lambda_and_split_lambda r1 r2 q2 scalar q; copy q1 q; // q1 = q // modifies r1, q1 let is_high1 = negate_point_and_scalar_cond_vartime r1 q1 in // modifies r2, q2 let is_high2 = negate_point_and_scalar_cond_vartime r2 q2 in is_high1, is_high2
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 269, "start_col": 0, "start_line": 260 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1) let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2) let make_g2 f = [@inline_let] let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x (** Representing a scalar k as (r1 + r2 * lambda) mod S.q, s.t. r1 and r2 are ~128 bits long *) inline_for_extraction noextract val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2)) let scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k = make_g1 tmp1; // tmp1 = g1 make_g2 tmp2; // tmp2 = g2 qmul_shift_384 r1 k tmp1; // r1 = c1 = qmul_shift_384 k g1 qmul_shift_384 r2 k tmp2; // r2 = c2 = qmul_shift_384 k g2 let h0 = ST.get () in SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp1); SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp2); assert (qas_nat h0 r1 < S.q /\ qas_nat h0 r2 < S.q) // k = (r1 + lambda * k2) % S.q val scalar_split_lambda (r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2) h0 h1 /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 k) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s)) [@CInline] let scalar_split_lambda r1 r2 k = push_frame (); let tmp1 = create_qelem () in let tmp2 = create_qelem () in scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k; make_minus_b1 tmp1; // tmp1 = minus_b1 make_minus_b2 tmp2; // tmp2 = minus_b2 qmul r1 r1 tmp1; // r1 = c1 = c1 * minus_b1 qmul r2 r2 tmp2; // r2 = c2 = c2 * minus_b2 make_minus_lambda tmp1; // tmp1 = minus_lambda qadd r2 r1 r2; // r2 = r2 = c1 + c2 qmul tmp2 r2 tmp1; // tmp2 = r2 * minus_lambda qadd r1 k tmp2; // r1 = r1 = k + r2 * minus_lambda pop_frame () (** Fast computation of [lambda]P as (beta * px, py, pz) in projective coordinates *) [@CInline] let point_mul_lambda res p = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let px, py, pz = getx p, gety p, getz p in let beta = create_felem () in make_beta beta; fmul rx beta px; copy_felem ry py; copy_felem rz pz; pop_frame () [@CInline] let point_mul_lambda_inplace res = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let beta = create_felem () in make_beta beta; fmul rx beta rx; pop_frame () inline_for_extraction noextract val point_mul_lambda_and_split_lambda: r1:qelem -> r2:qelem -> lambda_q:point -> scalar:qelem -> q:point -> Stack unit (requires fun h -> live h r1 /\ live h r2 /\ live h lambda_q /\ live h scalar /\ live h q /\ disjoint r1 r2 /\ disjoint r1 lambda_q /\ disjoint r1 scalar /\ disjoint r1 q /\ disjoint r2 lambda_q /\ disjoint r2 scalar /\ disjoint r2 q /\ disjoint lambda_q scalar /\ disjoint lambda_q q /\ point_inv h q /\ qas_nat h scalar < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc lambda_q) h0 h1 /\ point_inv h1 lambda_q /\ point_eval h1 lambda_q == SG.point_mul_lambda (point_eval h0 q) /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 scalar) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s)) let point_mul_lambda_and_split_lambda r1 r2 lambda_q scalar q = scalar_split_lambda r1 r2 scalar; // (r1 + r2 * lambda) % S.q = scalar point_mul_lambda lambda_q q // lambda_q = [lambda]Q inline_for_extraction noextract val negate_point_and_scalar_cond_vartime: k:qelem -> p:point -> Stack bool (requires fun h -> live h k /\ live h p /\ disjoint k p /\ qas_nat h k < S.q /\ point_inv h p) (ensures fun h0 b h1 -> modifies (loc k |+| loc p) h0 h1 /\ b == S.scalar_is_high (qas_nat h0 k) /\ point_inv h1 p /\ (let k_s, p_s = SG.negate_point_and_scalar_cond (qas_nat h0 k) (point_eval h0 p) in qas_nat h1 k == k_s /\ point_eval h1 p == p_s)) let negate_point_and_scalar_cond_vartime k p = let b = is_qelem_le_q_halved_vartime k in [@inline_let] let if_high = not b in qnegate_conditional_vartime k if_high; point_negate_conditional_vartime p if_high; if_high
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r1: Hacl.K256.Scalar.qelem -> r2: Hacl.K256.Scalar.qelem -> q1: Hacl.Impl.K256.Point.point -> q2: Hacl.Impl.K256.Point.point -> scalar: Hacl.K256.Scalar.qelem -> q: Hacl.Impl.K256.Point.point -> FStar.HyperStack.ST.Stack (Prims.bool * Prims.bool)
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.Impl.K256.Point.point", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "FStar.Pervasives.Native.tuple2", "Hacl.Impl.K256.GLV.Constants.negate_point_and_scalar_cond_vartime", "Prims.unit", "Lib.Buffer.copy", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Hacl.Impl.K256.GLV.Constants.point_mul_lambda_and_split_lambda", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let ecmult_endo_split r1 r2 q1 q2 scalar q =
let h0 = ST.get () in point_mul_lambda_and_split_lambda r1 r2 q2 scalar q; copy q1 q; let is_high1 = negate_point_and_scalar_cond_vartime r1 q1 in let is_high2 = negate_point_and_scalar_cond_vartime r2 q2 in is_high1, is_high2
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.point_mul_lambda
val point_mul_lambda: res:point -> p:point -> Stack unit (requires fun h -> live h res /\ live h p /\ eq_or_disjoint res p /\ point_inv h p) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ point_inv h1 res /\ point_eval h1 res == SG.point_mul_lambda (point_eval h0 p))
val point_mul_lambda: res:point -> p:point -> Stack unit (requires fun h -> live h res /\ live h p /\ eq_or_disjoint res p /\ point_inv h p) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ point_inv h1 res /\ point_eval h1 res == SG.point_mul_lambda (point_eval h0 p))
let point_mul_lambda res p = push_frame (); let rx, ry, rz = getx res, gety res, getz res in let px, py, pz = getx p, gety p, getz p in let beta = create_felem () in make_beta beta; fmul rx beta px; copy_felem ry py; copy_felem rz pz; pop_frame ()
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 208, "start_col": 0, "start_line": 198 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1) let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2) let make_g2 f = [@inline_let] let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x (** Representing a scalar k as (r1 + r2 * lambda) mod S.q, s.t. r1 and r2 are ~128 bits long *) inline_for_extraction noextract val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2)) let scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k = make_g1 tmp1; // tmp1 = g1 make_g2 tmp2; // tmp2 = g2 qmul_shift_384 r1 k tmp1; // r1 = c1 = qmul_shift_384 k g1 qmul_shift_384 r2 k tmp2; // r2 = c2 = qmul_shift_384 k g2 let h0 = ST.get () in SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp1); SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp2); assert (qas_nat h0 r1 < S.q /\ qas_nat h0 r2 < S.q) // k = (r1 + lambda * k2) % S.q val scalar_split_lambda (r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2) h0 h1 /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 k) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s)) [@CInline] let scalar_split_lambda r1 r2 k = push_frame (); let tmp1 = create_qelem () in let tmp2 = create_qelem () in scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k; make_minus_b1 tmp1; // tmp1 = minus_b1 make_minus_b2 tmp2; // tmp2 = minus_b2 qmul r1 r1 tmp1; // r1 = c1 = c1 * minus_b1 qmul r2 r2 tmp2; // r2 = c2 = c2 * minus_b2 make_minus_lambda tmp1; // tmp1 = minus_lambda qadd r2 r1 r2; // r2 = r2 = c1 + c2 qmul tmp2 r2 tmp1; // tmp2 = r2 * minus_lambda qadd r1 k tmp2; // r1 = r1 = k + r2 * minus_lambda pop_frame () (** Fast computation of [lambda]P as (beta * px, py, pz) in projective coordinates *)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
res: Hacl.Impl.K256.Point.point -> p: Hacl.Impl.K256.Point.point -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.K256.Point.point", "Hacl.K256.Field.felem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.K256.Field.copy_felem", "Hacl.K256.Field.fmul", "Hacl.Impl.K256.GLV.Constants.make_beta", "Hacl.K256.Field.create_felem", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "Hacl.Impl.K256.Point.getz", "Hacl.Impl.K256.Point.gety", "Hacl.Impl.K256.Point.getx", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let point_mul_lambda res p =
push_frame (); let rx, ry, rz = getx res, gety res, getz res in let px, py, pz = getx p, gety p, getz p in let beta = create_felem () in make_beta beta; fmul rx beta px; copy_felem ry py; copy_felem rz pz; pop_frame ()
false
Vale.Wrapper.X64.Poly.fsti
Vale.Wrapper.X64.Poly.uint64
val uint64 : Prims.eqtype
let uint64 = UInt64.t
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Poly.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 19, "start_col": 0, "start_line": 19 }
module Vale.Wrapper.X64.Poly open FStar.HyperStack.ST module B = LowStar.Buffer module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up module HS = FStar.HyperStack open FStar.Mul open Vale.Poly1305.Util open Vale.Poly1305.Math open Vale.Poly1305.Spec_s open Vale.Def.Types_s open Vale.Interop.Base module MH = Vale.AsLowStar.MemoryHelpers unfold let uint8_p = B.buffer UInt8.t
{ "checked_file": "/", "dependencies": [ "Vale.Poly1305.Util.fsti.checked", "Vale.Poly1305.Spec_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Interop.Views.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Wrapper.X64.Poly.fsti" }
[ { "abbrev": true, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": "MH" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Spec_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t" ]
[]
false
false
false
true
false
let uint64 =
UInt64.t
false
Vale.Wrapper.X64.Poly.fsti
Vale.Wrapper.X64.Poly.uint8_p
val uint8_p : Type0
let uint8_p = B.buffer UInt8.t
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Poly.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 17, "start_col": 0, "start_line": 17 }
module Vale.Wrapper.X64.Poly open FStar.HyperStack.ST module B = LowStar.Buffer module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up module HS = FStar.HyperStack open FStar.Mul open Vale.Poly1305.Util open Vale.Poly1305.Math open Vale.Poly1305.Spec_s open Vale.Def.Types_s open Vale.Interop.Base module MH = Vale.AsLowStar.MemoryHelpers
{ "checked_file": "/", "dependencies": [ "Vale.Poly1305.Util.fsti.checked", "Vale.Poly1305.Spec_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Interop.Views.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Wrapper.X64.Poly.fsti" }
[ { "abbrev": true, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": "MH" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Spec_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.Buffer.buffer", "FStar.UInt8.t" ]
[]
false
false
false
true
true
let uint8_p =
B.buffer UInt8.t
false
Hacl.Impl.K256.GLV.Constants.fst
Hacl.Impl.K256.GLV.Constants.scalar_split_lambda
val scalar_split_lambda (r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2) h0 h1 /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 k) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s))
val scalar_split_lambda (r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2) h0 h1 /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 k) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s))
let scalar_split_lambda r1 r2 k = push_frame (); let tmp1 = create_qelem () in let tmp2 = create_qelem () in scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k; make_minus_b1 tmp1; // tmp1 = minus_b1 make_minus_b2 tmp2; // tmp2 = minus_b2 qmul r1 r1 tmp1; // r1 = c1 = c1 * minus_b1 qmul r2 r2 tmp2; // r2 = c2 = c2 * minus_b2 make_minus_lambda tmp1; // tmp1 = minus_lambda qadd r2 r1 r2; // r2 = r2 = c1 + c2 qmul tmp2 r2 tmp1; // tmp2 = r2 * minus_lambda qadd r1 k tmp2; // r1 = r1 = k + r2 * minus_lambda pop_frame ()
{ "file_name": "code/k256/Hacl.Impl.K256.GLV.Constants.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 190, "start_col": 0, "start_line": 175 }
module Hacl.Impl.K256.GLV.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module SG = Hacl.Spec.K256.GLV module SGL = Hacl.Spec.K256.GLV.Lemmas open Hacl.K256.Field open Hacl.K256.Scalar open Hacl.Impl.K256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val make_minus_lambda: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_lambda) let make_minus_lambda f = [@inline_let] let x = (u64 0xe0cfc810b51283cf, u64 0xa880b9fc8ec739c2, u64 0x5ad9e3fd77ed9ba4, u64 0xac9c52b33fa3cf1f) in assert_norm (SG.minus_lambda == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_beta: f:felem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ as_nat h1 f == SG.beta /\ inv_fully_reduced h1 f) let make_beta f = [@inline_let] let x = (u64 0x96c28719501ee, u64 0x7512f58995c13, u64 0xc3434e99cf049, u64 0x7106e64479ea, u64 0x7ae96a2b657c) in assert_norm (0x96c28719501ee <= max52); assert_norm (0x7ae96a2b657c <= max48); assert_norm (SG.beta == as_nat5 x); make_u52_5 f x inline_for_extraction noextract val make_minus_b1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b1) let make_minus_b1 f = [@inline_let] let x = (u64 0x6f547fa90abfe4c3, u64 0xe4437ed6010e8828, u64 0x0, u64 0x0) in assert_norm (SG.minus_b1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_minus_b2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.minus_b2) let make_minus_b2 f = [@inline_let] let x = (u64 0xd765cda83db1562c, u64 0x8a280ac50774346d, u64 0xfffffffffffffffe, u64 0xffffffffffffffff) in assert_norm (SG.minus_b2 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g1: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g1) let make_g1 f = [@inline_let] let x = (u64 0xe893209a45dbb031, u64 0x3daa8a1471e8ca7f, u64 0xe86c90e49284eb15, u64 0x3086d221a7d46bcd) in assert_norm (SG.g1 == qas_nat4 x); make_u64_4 f x inline_for_extraction noextract val make_g2: f:qelem -> Stack unit (requires fun h -> live h f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ qas_nat h1 f == SG.g2) let make_g2 f = [@inline_let] let x = (u64 0x1571b4ae8ac47f71, u64 0x221208ac9df506c6, u64 0x6f547fa90abfe4c4, u64 0xe4437ed6010e8828) in assert_norm (SG.g2 == qas_nat4 x); make_u64_4 f x (** Representing a scalar k as (r1 + r2 * lambda) mod S.q, s.t. r1 and r2 are ~128 bits long *) inline_for_extraction noextract val scalar_split_lambda_g1g2 (tmp1 tmp2 r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ live h tmp1 /\ live h tmp2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ disjoint tmp1 r1 /\ disjoint tmp1 r2 /\ disjoint tmp1 k /\ disjoint tmp2 r1 /\ disjoint tmp2 r2 /\ disjoint tmp2 k /\ disjoint tmp1 tmp2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ (let r1 = qas_nat h1 r1 in let r2 = qas_nat h1 r2 in r1 < S.q /\ r1 = SG.qmul_shift_384 (qas_nat h0 k) SG.g1 /\ r2 < S.q /\ r2 = SG.qmul_shift_384 (qas_nat h0 k) SG.g2)) let scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k = make_g1 tmp1; // tmp1 = g1 make_g2 tmp2; // tmp2 = g2 qmul_shift_384 r1 k tmp1; // r1 = c1 = qmul_shift_384 k g1 qmul_shift_384 r2 k tmp2; // r2 = c2 = qmul_shift_384 k g2 let h0 = ST.get () in SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp1); SG.qmul_shift_384_lemma (qas_nat h0 k) (qas_nat h0 tmp2); assert (qas_nat h0 r1 < S.q /\ qas_nat h0 r2 < S.q) // k = (r1 + lambda * k2) % S.q val scalar_split_lambda (r1 r2 k: qelem) : Stack unit (requires fun h -> live h k /\ live h r1 /\ live h r2 /\ disjoint k r1 /\ disjoint k r2 /\ disjoint r1 r2 /\ qas_nat h k < S.q) (ensures fun h0 _ h1 -> modifies (loc r1 |+| loc r2) h0 h1 /\ (let r1_s, r2_s = SG.scalar_split_lambda (qas_nat h0 k) in qas_nat h1 r1 == r1_s /\ qas_nat h1 r2 == r2_s))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.GLV.Lemmas.fst.checked", "Hacl.Spec.K256.GLV.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.K256.GLV.Constants.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV.Lemmas", "short_module": "SGL" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.GLV", "short_module": "SG" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r1: Hacl.K256.Scalar.qelem -> r2: Hacl.K256.Scalar.qelem -> k: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.K256.Scalar.qadd", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.GLV.Constants.make_minus_lambda", "Hacl.Impl.K256.GLV.Constants.make_minus_b2", "Hacl.Impl.K256.GLV.Constants.make_minus_b1", "Hacl.Impl.K256.GLV.Constants.scalar_split_lambda_g1g2", "Hacl.K256.Scalar.create_qelem", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let scalar_split_lambda r1 r2 k =
push_frame (); let tmp1 = create_qelem () in let tmp2 = create_qelem () in scalar_split_lambda_g1g2 tmp1 tmp2 r1 r2 k; make_minus_b1 tmp1; make_minus_b2 tmp2; qmul r1 r1 tmp1; qmul r2 r2 tmp2; make_minus_lambda tmp1; qadd r2 r1 r2; qmul tmp2 r2 tmp1; qadd r1 k tmp2; pop_frame ()
false
LowParse.Low.ListUpTo.fst
LowParse.Low.ListUpTo.jump_list_up_to_inv
val jump_list_up_to_inv (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) (h: HS.mem) (stop: bool) : GTot Type0
val jump_list_up_to_inv (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) (h: HS.mem) (stop: bool) : GTot Type0
let jump_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U32.v pos /\ valid q h0 sl pos0 /\ begin if stop then get_valid_pos q h0 sl pos0 == pos else valid q h0 sl pos /\ get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos end
{ "file_name": "src/lowparse/LowParse.Low.ListUpTo.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 168, "start_col": 0, "start_line": 140 }
module LowParse.Low.ListUpTo include LowParse.Spec.ListUpTo include LowParse.Low.Base module U32 = FStar.UInt32 module U64 = FStar.UInt64 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer unfold let validate_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U64.v pos /\ begin if is_success pos then let pos = uint64_to_uint32 pos in U32.v pos <= U32.v sl.len /\ begin if stop then valid_pos q h0 sl pos0 pos else (valid q h0 sl pos0 <==> valid q h0 sl pos) /\ ((valid q h0 sl pos0 /\ valid q h0 sl pos) ==> get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos ) end else stop == true /\ (~ (valid q h0 sl pos0)) end #push-options "--z3rlimit 16" inline_for_extraction let validate_list_up_to_body (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) : HST.Stack bool (requires (fun h -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false )) (ensures (fun h stop h' -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ validate_list_up_to_inv cond prf sl pos0 h0 bpos h' stop )) = let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos); parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos); let pos1 = v sl pos in B.upd bpos 0ul pos1; if is_error pos1 then true else begin valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos1); cond_impl sl (uint64_to_uint32 pos) end #pop-options inline_for_extraction let validate_list_up_to (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) : Tot (validator (parse_list_up_to cond p prf)) = fun #rrel #rel sl pos -> HST.push_frame (); let bpos = B.alloca pos 1ul in let h2 = HST.get () in C.Loops.do_while (validate_list_up_to_inv cond prf sl (uint64_to_uint32 pos) h2 bpos) (fun _ -> validate_list_up_to_body cond prf v cond_impl sl (uint64_to_uint32 pos) h2 bpos) ; let res = B.index bpos 0ul in HST.pop_frame (); res
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.ListUpTo.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ListUpTo", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cond: (_: t -> Prims.bool) -> prf: LowParse.Spec.ListUpTo.consumes_if_not_cond cond p { Mkparser_kind'?.parser_kind_subkind k <> FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserConsumesAll } -> sl: LowParse.Slice.slice rrel rel -> pos0: FStar.UInt32.t -> h0: FStar.Monotonic.HyperStack.mem -> bpos: LowStar.Buffer.pointer FStar.UInt32.t -> h: FStar.Monotonic.HyperStack.mem -> stop: Prims.bool -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "Prims.bool", "LowParse.Spec.ListUpTo.consumes_if_not_cond", "Prims.b2t", "Prims.op_disEquality", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserConsumesAll", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "LowStar.Buffer.pointer", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "LowStar.Buffer.trivial_preorder", "LowParse.Slice.live_slice", "LowStar.Monotonic.Buffer.loc_disjoint", "LowStar.Monotonic.Buffer.loc_buffer", "LowParse.Slice.buffer_srel_of_srel", "LowParse.Slice.__proj__Mkslice__item__base", "LowStar.Monotonic.Buffer.modifies", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "LowParse.Low.Base.Spec.valid", "LowParse.Spec.ListUpTo.parse_list_up_to_kind", "LowParse.Spec.ListUpTo.parse_list_up_to_t", "Prims.eq2", "LowParse.Low.Base.Spec.get_valid_pos", "Prims.logical", "LowParse.Spec.ListUpTo.parse_list_up_to", "LowStar.Monotonic.Buffer.deref" ]
[]
false
false
false
false
true
let jump_list_up_to_inv (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) (h: HS.mem) (stop: bool) : GTot Type0 =
let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U32.v pos /\ valid q h0 sl pos0 /\ (if stop then get_valid_pos q h0 sl pos0 == pos else valid q h0 sl pos /\ get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos)
false
LowParse.Low.ListUpTo.fst
LowParse.Low.ListUpTo.validate_list_up_to_inv
val validate_list_up_to_inv (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0
val validate_list_up_to_inv (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0
let validate_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U64.v pos /\ begin if is_success pos then let pos = uint64_to_uint32 pos in U32.v pos <= U32.v sl.len /\ begin if stop then valid_pos q h0 sl pos0 pos else (valid q h0 sl pos0 <==> valid q h0 sl pos) /\ ((valid q h0 sl pos0 /\ valid q h0 sl pos) ==> get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos ) end else stop == true /\ (~ (valid q h0 sl pos0)) end
{ "file_name": "src/lowparse/LowParse.Low.ListUpTo.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 49, "start_col": 0, "start_line": 12 }
module LowParse.Low.ListUpTo include LowParse.Spec.ListUpTo include LowParse.Low.Base module U32 = FStar.UInt32 module U64 = FStar.UInt64 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.ListUpTo.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ListUpTo", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cond: (_: t -> Prims.bool) -> prf: LowParse.Spec.ListUpTo.consumes_if_not_cond cond p { Mkparser_kind'?.parser_kind_subkind k <> FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserConsumesAll } -> sl: LowParse.Slice.slice rrel rel -> pos0: FStar.UInt32.t -> h0: FStar.Monotonic.HyperStack.mem -> bpos: LowStar.Buffer.pointer FStar.UInt64.t -> h: FStar.Monotonic.HyperStack.mem -> stop: Prims.bool -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "Prims.bool", "LowParse.Spec.ListUpTo.consumes_if_not_cond", "Prims.b2t", "Prims.op_disEquality", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserConsumesAll", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "LowStar.Buffer.pointer", "FStar.UInt64.t", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "LowStar.Buffer.trivial_preorder", "LowParse.Slice.live_slice", "LowStar.Monotonic.Buffer.loc_disjoint", "LowStar.Monotonic.Buffer.loc_buffer", "LowParse.Slice.buffer_srel_of_srel", "LowParse.Slice.__proj__Mkslice__item__base", "LowStar.Monotonic.Buffer.modifies", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.UInt64.v", "LowParse.Low.ErrorCode.is_success", "LowParse.Slice.__proj__Mkslice__item__len", "LowParse.Low.Base.Spec.valid_pos", "LowParse.Spec.ListUpTo.parse_list_up_to_kind", "LowParse.Spec.ListUpTo.parse_list_up_to_t", "Prims.l_iff", "LowParse.Low.Base.Spec.valid", "Prims.l_imp", "Prims.eq2", "LowParse.Low.Base.Spec.get_valid_pos", "Prims.logical", "Prims.int", "Prims.l_or", "FStar.UInt.size", "LowParse.Low.ErrorCode.uint64_to_uint32", "Prims.l_not", "LowParse.Spec.ListUpTo.parse_list_up_to", "LowStar.Monotonic.Buffer.deref" ]
[]
false
false
false
false
true
let validate_list_up_to_inv (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0 =
let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U64.v pos /\ (if is_success pos then let pos = uint64_to_uint32 pos in U32.v pos <= U32.v sl.len /\ (if stop then valid_pos q h0 sl pos0 pos else (valid q h0 sl pos0 <==> valid q h0 sl pos) /\ ((valid q h0 sl pos0 /\ valid q h0 sl pos) ==> get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos)) else stop == true /\ (~(valid q h0 sl pos0)))
false
MerkleTree.New.High.Correct.Insertion.fst
MerkleTree.New.High.Correct.Insertion.insert_inv_preserved_even
val insert_inv_preserved_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (requires (j % 2 <> 1 /\ mt_olds_hs_inv #_ #f lv i j olds hs)) (ensures (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc))) (decreases (32 - lv))
val insert_inv_preserved_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (requires (j % 2 <> 1 /\ mt_olds_hs_inv #_ #f lv i j olds hs)) (ensures (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc))) (decreases (32 - lv))
let insert_inv_preserved_even #_ #f lv i j olds hs acc = let ihs = hashess_insert lv i j hs acc in mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; assert (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)); merge_hs_slice_equal #_ #f olds hs olds ihs (lv + 1) 32; remainder_2_not_1_div j; insert_base #_ #f lv i j hs acc; if lv = 31 then () else begin // Facts assert (S.index (merge_hs #_ #f olds hs) (lv + 1) == S.index (merge_hs #_ #f olds ihs) (lv + 1)); // Head proof of `mt_hashes_inv` mt_hashes_next_rel_insert_even #_ #f j (S.index (merge_hs #_ #f olds hs) lv) acc (S.index (merge_hs #_ #f olds hs) (lv + 1)); assert (mt_hashes_next_rel #_ #f (j + 1) (S.index (merge_hs #_ #f olds ihs) lv) (S.index (merge_hs #_ #f olds ihs) (lv + 1))); // Tail proof of `mt_hashes_inv` mt_hashes_lth_inv_equiv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); mt_hashes_inv_equiv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); assert (mt_hashes_inv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds ihs)) end
{ "file_name": "src/MerkleTree.New.High.Correct.Insertion.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 5, "end_line": 95, "start_col": 0, "start_line": 67 }
module MerkleTree.New.High.Correct.Insertion open EverCrypt open EverCrypt.Helpers open FStar.Classical open FStar.Ghost open FStar.Seq module List = FStar.List.Tot module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 type uint32_t = U32.t type uint8_t = U8.t module EHS = EverCrypt.Hash module MTS = MerkleTree.Spec open MerkleTree.New.High open MerkleTree.New.High.Correct.Base /// Correctness of insertion val mt_hashes_next_rel_insert_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j % 2 = 1} -> hs:hashes #hsz {S.length hs = j} -> v:hash -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires (mt_hashes_next_rel #_ #f j hs nhs)) (ensures (mt_hashes_next_rel #_ #f (j + 1) (S.snoc hs v) (S.snoc nhs (f (S.last hs) v)))) let mt_hashes_next_rel_insert_odd #_ #_ j hs v nhs = () val mt_hashes_next_rel_insert_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j % 2 <> 1} -> hs:hashes #hsz {S.length hs = j} -> v:hash -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires (mt_hashes_next_rel #_ #f j hs nhs)) (ensures (mt_hashes_next_rel #_ #f (j + 1) (S.snoc hs v) nhs)) let mt_hashes_next_rel_insert_even #_ #_ j hs v nhs = () val insert_head: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (S.equal (S.index (insert_ #_ #f lv i j hs acc) lv) (S.snoc (S.index hs lv) acc)) let insert_head #_ #_ lv i j hs acc = () val insert_inv_preserved_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (requires (j % 2 <> 1 /\ mt_olds_hs_inv #_ #f lv i j olds hs)) (ensures (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc))) (decreases (32 - lv))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.Correct.Base.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "EverCrypt.Helpers.fsti.checked", "EverCrypt.Hash.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Insertion.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Base", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "EverCrypt.Hash", "short_module": "EHS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 120, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lv: Prims.nat{lv < 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) - 1} -> olds: MerkleTree.New.High.hashess {FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv lv i olds} -> hs: MerkleTree.New.High.hashess {FStar.Seq.Base.length hs = 32 /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> acc: MerkleTree.New.High.hash -> FStar.Pervasives.Lemma (requires j % 2 <> 1 /\ MerkleTree.New.High.Correct.Base.mt_olds_hs_inv lv i j olds hs) (ensures MerkleTree.New.High.Correct.Base.mt_olds_hs_inv lv i (j + 1) olds (MerkleTree.New.High.insert_ lv i j hs acc)) (decreases 32 - lv)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "MerkleTree.New.High.hs_wf_elts", "MerkleTree.New.High.hash", "Prims.bool", "Prims._assert", "MerkleTree.New.High.Correct.Base.mt_hashes_inv", "Prims.op_Addition", "Prims.op_Division", "MerkleTree.New.High.Correct.Base.merge_hs", "Prims.unit", "MerkleTree.New.High.Correct.Base.mt_hashes_inv_equiv", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_equiv", "MerkleTree.New.High.Correct.Base.mt_hashes_next_rel", "FStar.Seq.Base.index", "MerkleTree.New.High.Correct.Insertion.mt_hashes_next_rel_insert_even", "Prims.eq2", "MerkleTree.New.High.insert_base", "MerkleTree.New.High.remainder_2_not_1_div", "MerkleTree.New.High.Correct.Base.merge_hs_slice_equal", "MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok", "MerkleTree.New.High.hashess_insert" ]
[]
false
false
true
false
false
let insert_inv_preserved_even #_ #f lv i j olds hs acc =
let ihs = hashess_insert lv i j hs acc in mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; assert (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)); merge_hs_slice_equal #_ #f olds hs olds ihs (lv + 1) 32; remainder_2_not_1_div j; insert_base #_ #f lv i j hs acc; if lv = 31 then () else (assert (S.index (merge_hs #_ #f olds hs) (lv + 1) == S.index (merge_hs #_ #f olds ihs) (lv + 1)); mt_hashes_next_rel_insert_even #_ #f j (S.index (merge_hs #_ #f olds hs) lv) acc (S.index (merge_hs #_ #f olds hs) (lv + 1)); assert (mt_hashes_next_rel #_ #f (j + 1) (S.index (merge_hs #_ #f olds ihs) lv) (S.index (merge_hs #_ #f olds ihs) (lv + 1))); mt_hashes_lth_inv_equiv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); mt_hashes_inv_equiv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); assert (mt_hashes_inv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds ihs)))
false
LowParse.Low.ListUpTo.fst
LowParse.Low.ListUpTo.jump_list_up_to
val jump_list_up_to (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (j: jumper p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) : Tot (jumper (parse_list_up_to cond p prf))
val jump_list_up_to (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (j: jumper p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) : Tot (jumper (parse_list_up_to cond p prf))
let jump_list_up_to (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (j: jumper p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) : Tot (jumper (parse_list_up_to cond p prf)) = fun #rrel #rel sl pos -> HST.push_frame (); let bpos = B.alloca pos 1ul in let h2 = HST.get () in C.Loops.do_while (jump_list_up_to_inv cond prf sl pos h2 bpos) (fun _ -> jump_list_up_to_body cond prf j cond_impl sl pos h2 bpos) ; let res = B.index bpos 0ul in HST.pop_frame (); res
{ "file_name": "src/lowparse/LowParse.Low.ListUpTo.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 251, "start_col": 0, "start_line": 220 }
module LowParse.Low.ListUpTo include LowParse.Spec.ListUpTo include LowParse.Low.Base module U32 = FStar.UInt32 module U64 = FStar.UInt64 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer unfold let validate_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U64.v pos /\ begin if is_success pos then let pos = uint64_to_uint32 pos in U32.v pos <= U32.v sl.len /\ begin if stop then valid_pos q h0 sl pos0 pos else (valid q h0 sl pos0 <==> valid q h0 sl pos) /\ ((valid q h0 sl pos0 /\ valid q h0 sl pos) ==> get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos ) end else stop == true /\ (~ (valid q h0 sl pos0)) end #push-options "--z3rlimit 16" inline_for_extraction let validate_list_up_to_body (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) : HST.Stack bool (requires (fun h -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false )) (ensures (fun h stop h' -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ validate_list_up_to_inv cond prf sl pos0 h0 bpos h' stop )) = let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos); parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos); let pos1 = v sl pos in B.upd bpos 0ul pos1; if is_error pos1 then true else begin valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos1); cond_impl sl (uint64_to_uint32 pos) end #pop-options inline_for_extraction let validate_list_up_to (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) : Tot (validator (parse_list_up_to cond p prf)) = fun #rrel #rel sl pos -> HST.push_frame (); let bpos = B.alloca pos 1ul in let h2 = HST.get () in C.Loops.do_while (validate_list_up_to_inv cond prf sl (uint64_to_uint32 pos) h2 bpos) (fun _ -> validate_list_up_to_body cond prf v cond_impl sl (uint64_to_uint32 pos) h2 bpos) ; let res = B.index bpos 0ul in HST.pop_frame (); res unfold let jump_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U32.v pos /\ valid q h0 sl pos0 /\ begin if stop then get_valid_pos q h0 sl pos0 == pos else valid q h0 sl pos /\ get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos end #push-options "--z3rlimit 16" inline_for_extraction let jump_list_up_to_body (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (j: jumper p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) : HST.Stack bool (requires (fun h -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false )) (ensures (fun h stop h' -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ jump_list_up_to_inv cond prf sl pos0 h0 bpos h' stop )) = let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl pos; parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = j sl pos in B.upd bpos 0ul pos1; valid_facts (parse_list_up_to cond p prf) h sl pos1; cond_impl sl pos #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.ListUpTo.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ListUpTo", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cond: (_: t -> Prims.bool) -> prf: LowParse.Spec.ListUpTo.consumes_if_not_cond cond p { Mkparser_kind'?.parser_kind_subkind k <> FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserConsumesAll } -> j: LowParse.Low.Base.jumper p -> cond_impl: (sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.HyperStack.ST.Stack Prims.bool) -> LowParse.Low.Base.jumper (LowParse.Spec.ListUpTo.parse_list_up_to cond p prf)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "Prims.bool", "LowParse.Spec.ListUpTo.consumes_if_not_cond", "Prims.b2t", "Prims.op_disEquality", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserConsumesAll", "LowParse.Low.Base.jumper", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "LowParse.Low.Base.Spec.valid", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_none", "Prims.eq2", "LowParse.Low.Base.Spec.contents", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "LowStar.Monotonic.Buffer.index", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.__uint_to_t", "C.Loops.do_while", "LowParse.Low.ListUpTo.jump_list_up_to_inv", "LowParse.Low.ListUpTo.jump_list_up_to_body", "FStar.HyperStack.ST.get", "LowStar.Monotonic.Buffer.mbuffer", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "FStar.UInt32.uint_to_t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Buffer.alloca", "FStar.HyperStack.ST.push_frame", "LowParse.Spec.ListUpTo.parse_list_up_to_kind", "LowParse.Spec.ListUpTo.parse_list_up_to_t", "LowParse.Spec.ListUpTo.parse_list_up_to" ]
[]
false
false
false
false
false
let jump_list_up_to (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (j: jumper p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) : Tot (jumper (parse_list_up_to cond p prf)) =
fun #rrel #rel sl pos -> HST.push_frame (); let bpos = B.alloca pos 1ul in let h2 = HST.get () in C.Loops.do_while (jump_list_up_to_inv cond prf sl pos h2 bpos) (fun _ -> jump_list_up_to_body cond prf j cond_impl sl pos h2 bpos); let res = B.index bpos 0ul in HST.pop_frame (); res
false
Vale.Wrapper.X64.Poly.fsti
Vale.Wrapper.X64.Poly.math_aux
val math_aux (b: uint8_p) (n: nat) : Lemma (requires B.length b = 8 * n) (ensures DV.length (get_downview b) % 8 = 0)
val math_aux (b: uint8_p) (n: nat) : Lemma (requires B.length b = 8 * n) (ensures DV.length (get_downview b) % 8 = 0)
let math_aux (b:uint8_p) (n:nat) : Lemma (requires B.length b = 8 * n) (ensures DV.length (get_downview b) % 8 = 0) = DV.length_eq (get_downview b)
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Poly.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 30, "start_col": 0, "start_line": 27 }
module Vale.Wrapper.X64.Poly open FStar.HyperStack.ST module B = LowStar.Buffer module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up module HS = FStar.HyperStack open FStar.Mul open Vale.Poly1305.Util open Vale.Poly1305.Math open Vale.Poly1305.Spec_s open Vale.Def.Types_s open Vale.Interop.Base module MH = Vale.AsLowStar.MemoryHelpers unfold let uint8_p = B.buffer UInt8.t unfold let uint64 = UInt64.t noextract let uint64_to_nat_seq (b:Seq.seq UInt64.t) : Seq.lseq nat64 (Seq.length b) = Seq.init (Seq.length b) (fun (i:nat{i < Seq.length b}) -> (UInt64.v (Seq.index b i) <: nat64))
{ "checked_file": "/", "dependencies": [ "Vale.Poly1305.Util.fsti.checked", "Vale.Poly1305.Spec_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Interop.Views.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Wrapper.X64.Poly.fsti" }
[ { "abbrev": true, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": "MH" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Spec_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.Wrapper.X64.Poly.uint8_p -> n: Prims.nat -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.length b = 8 * n) (ensures LowStar.BufferView.Down.length (Vale.Interop.Types.get_downview b) % 8 = 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Wrapper.X64.Poly.uint8_p", "Prims.nat", "LowStar.BufferView.Down.length_eq", "FStar.UInt8.t", "Vale.Interop.Types.get_downview", "Vale.Arch.HeapTypes_s.TUInt8", "LowStar.Buffer.trivial_preorder", "Prims.unit", "Prims.b2t", "Prims.op_Equality", "Prims.int", "LowStar.Monotonic.Buffer.length", "FStar.Mul.op_Star", "Prims.squash", "Prims.op_Modulus", "LowStar.BufferView.Down.length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let math_aux (b: uint8_p) (n: nat) : Lemma (requires B.length b = 8 * n) (ensures DV.length (get_downview b) % 8 = 0) =
DV.length_eq (get_downview b)
false
Vale.Wrapper.X64.Poly.fsti
Vale.Wrapper.X64.Poly.uint64_to_nat_seq
val uint64_to_nat_seq (b: Seq.seq UInt64.t) : Seq.lseq nat64 (Seq.length b)
val uint64_to_nat_seq (b: Seq.seq UInt64.t) : Seq.lseq nat64 (Seq.length b)
let uint64_to_nat_seq (b:Seq.seq UInt64.t) : Seq.lseq nat64 (Seq.length b) = Seq.init (Seq.length b) (fun (i:nat{i < Seq.length b}) -> (UInt64.v (Seq.index b i) <: nat64))
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Poly.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 100, "end_line": 25, "start_col": 0, "start_line": 22 }
module Vale.Wrapper.X64.Poly open FStar.HyperStack.ST module B = LowStar.Buffer module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up module HS = FStar.HyperStack open FStar.Mul open Vale.Poly1305.Util open Vale.Poly1305.Math open Vale.Poly1305.Spec_s open Vale.Def.Types_s open Vale.Interop.Base module MH = Vale.AsLowStar.MemoryHelpers unfold let uint8_p = B.buffer UInt8.t unfold let uint64 = UInt64.t
{ "checked_file": "/", "dependencies": [ "Vale.Poly1305.Util.fsti.checked", "Vale.Poly1305.Spec_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Interop.Views.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Wrapper.X64.Poly.fsti" }
[ { "abbrev": true, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": "MH" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Spec_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Seq.Base.seq FStar.UInt64.t -> FStar.Seq.Properties.lseq Vale.Def.Types_s.nat64 (FStar.Seq.Base.length b)
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.UInt64.t", "FStar.Seq.Base.init", "Vale.Def.Types_s.nat64", "FStar.Seq.Base.length", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt64.v", "FStar.Seq.Base.index", "FStar.Seq.Properties.lseq" ]
[]
false
false
false
false
false
let uint64_to_nat_seq (b: Seq.seq UInt64.t) : Seq.lseq nat64 (Seq.length b) =
Seq.init (Seq.length b) (fun (i: nat{i < Seq.length b}) -> (UInt64.v (Seq.index b i) <: nat64))
false
LowParse.Low.ListUpTo.fst
LowParse.Low.ListUpTo.validate_list_up_to
val validate_list_up_to (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (v: validator p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) : Tot (validator (parse_list_up_to cond p prf))
val validate_list_up_to (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (v: validator p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) : Tot (validator (parse_list_up_to cond p prf))
let validate_list_up_to (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) : Tot (validator (parse_list_up_to cond p prf)) = fun #rrel #rel sl pos -> HST.push_frame (); let bpos = B.alloca pos 1ul in let h2 = HST.get () in C.Loops.do_while (validate_list_up_to_inv cond prf sl (uint64_to_uint32 pos) h2 bpos) (fun _ -> validate_list_up_to_body cond prf v cond_impl sl (uint64_to_uint32 pos) h2 bpos) ; let res = B.index bpos 0ul in HST.pop_frame (); res
{ "file_name": "src/lowparse/LowParse.Low.ListUpTo.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 137, "start_col": 0, "start_line": 106 }
module LowParse.Low.ListUpTo include LowParse.Spec.ListUpTo include LowParse.Low.Base module U32 = FStar.UInt32 module U64 = FStar.UInt64 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer unfold let validate_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U64.v pos /\ begin if is_success pos then let pos = uint64_to_uint32 pos in U32.v pos <= U32.v sl.len /\ begin if stop then valid_pos q h0 sl pos0 pos else (valid q h0 sl pos0 <==> valid q h0 sl pos) /\ ((valid q h0 sl pos0 /\ valid q h0 sl pos) ==> get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos ) end else stop == true /\ (~ (valid q h0 sl pos0)) end #push-options "--z3rlimit 16" inline_for_extraction let validate_list_up_to_body (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) : HST.Stack bool (requires (fun h -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false )) (ensures (fun h stop h' -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ validate_list_up_to_inv cond prf sl pos0 h0 bpos h' stop )) = let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos); parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos); let pos1 = v sl pos in B.upd bpos 0ul pos1; if is_error pos1 then true else begin valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos1); cond_impl sl (uint64_to_uint32 pos) end #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.ListUpTo.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ListUpTo", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cond: (_: t -> Prims.bool) -> prf: LowParse.Spec.ListUpTo.consumes_if_not_cond cond p { Mkparser_kind'?.parser_kind_subkind k <> FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserConsumesAll } -> v: LowParse.Low.Base.validator p -> cond_impl: (sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.HyperStack.ST.Stack Prims.bool) -> LowParse.Low.Base.validator (LowParse.Spec.ListUpTo.parse_list_up_to cond p prf)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "Prims.bool", "LowParse.Spec.ListUpTo.consumes_if_not_cond", "Prims.b2t", "Prims.op_disEquality", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserConsumesAll", "LowParse.Low.Base.validator", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "LowParse.Low.Base.Spec.valid", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_none", "Prims.eq2", "LowParse.Low.Base.Spec.contents", "FStar.UInt64.t", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "LowStar.Monotonic.Buffer.index", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.__uint_to_t", "C.Loops.do_while", "LowParse.Low.ListUpTo.validate_list_up_to_inv", "LowParse.Low.ErrorCode.uint64_to_uint32", "LowParse.Low.ListUpTo.validate_list_up_to_body", "FStar.HyperStack.ST.get", "LowStar.Monotonic.Buffer.mbuffer", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "FStar.UInt32.uint_to_t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Buffer.alloca", "FStar.HyperStack.ST.push_frame", "LowParse.Spec.ListUpTo.parse_list_up_to_kind", "LowParse.Spec.ListUpTo.parse_list_up_to_t", "LowParse.Spec.ListUpTo.parse_list_up_to" ]
[]
false
false
false
false
false
let validate_list_up_to (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (v: validator p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) : Tot (validator (parse_list_up_to cond p prf)) =
fun #rrel #rel sl pos -> HST.push_frame (); let bpos = B.alloca pos 1ul in let h2 = HST.get () in C.Loops.do_while (validate_list_up_to_inv cond prf sl (uint64_to_uint32 pos) h2 bpos) (fun _ -> validate_list_up_to_body cond prf v cond_impl sl (uint64_to_uint32 pos) h2 bpos); let res = B.index bpos 0ul in HST.pop_frame (); res
false
Vale.AES.GCM_helpers_BE.fsti
Vale.AES.GCM_helpers_BE.bytes_to_quad_size
val bytes_to_quad_size : num_bytes: Prims.nat -> Prims.int
let bytes_to_quad_size (num_bytes:nat) = ((num_bytes + 15) / 16)
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 17, "start_col": 0, "start_line": 16 }
module Vale.AES.GCM_helpers_BE open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Two_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_BE_s open Vale.AES.GCTR_BE_s open FStar.Math.Lemmas open Vale.Lib.Seqs
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.GCM_helpers_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
num_bytes: Prims.nat -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.op_Division", "Prims.op_Addition", "Prims.int" ]
[]
false
false
false
true
false
let bytes_to_quad_size (num_bytes: nat) =
((num_bytes + 15) / 16)
false
Spec.P256.Lemmas.fst
Spec.P256.Lemmas.lemma_aff_is_point_at_inf
val lemma_aff_is_point_at_inf: p:proj_point -> Lemma (let px, py, pz = p in is_aff_point_at_inf (to_aff_point p) == (pz = 0 || (px = 0 && py = 0)))
val lemma_aff_is_point_at_inf: p:proj_point -> Lemma (let px, py, pz = p in is_aff_point_at_inf (to_aff_point p) == (pz = 0 || (px = 0 && py = 0)))
let lemma_aff_is_point_at_inf p = prime_lemma (); let (px, py, pz) = p in M.lemma_div_mod_prime_is_zero #prime px pz; M.lemma_div_mod_prime_is_zero #prime py pz
{ "file_name": "specs/lemmas/Spec.P256.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 16, "start_col": 0, "start_line": 12 }
module Spec.P256.Lemmas open FStar.Mul open Spec.P256.PointOps module M = Lib.NatMod #set-options "--z3rlimit 50 --ifuel 0 --fuel 0" let prime_lemma () = admit()
{ "checked_file": "/", "dependencies": [ "Spec.P256.PointOps.fst.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Spec.P256.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Spec.P256.PointOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.P256.PointOps.proj_point -> FStar.Pervasives.Lemma (ensures (let _ = p in (let FStar.Pervasives.Native.Mktuple3 #_ #_ #_ px py pz = _ in Spec.P256.PointOps.is_aff_point_at_inf (Spec.P256.PointOps.to_aff_point p) == (pz = 0 || px = 0 && py = 0)) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.P256.PointOps.proj_point", "Prims.nat", "Lib.NatMod.lemma_div_mod_prime_is_zero", "Spec.P256.PointOps.prime", "Prims.unit", "Spec.P256.Lemmas.prime_lemma" ]
[]
false
false
true
false
false
let lemma_aff_is_point_at_inf p =
prime_lemma (); let px, py, pz = p in M.lemma_div_mod_prime_is_zero #prime px pz; M.lemma_div_mod_prime_is_zero #prime py pz
false
Pulse.C.Types.Fields.fsti
Pulse.C.Types.Fields.field_t
val field_t (#t: Type0) (fd: field_description_t t) : Tot eqtype
val field_t (#t: Type0) (fd: field_description_t t) : Tot eqtype
let field_t (#t: Type0) (fd: field_description_t t) : Tot eqtype = (s: string { fd.fd_def s })
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Fields.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 94, "end_line": 30, "start_col": 0, "start_line": 30 }
module Pulse.C.Types.Fields include Pulse.C.Types.Base open Pulse.C.Typestring open Pulse.Lib.Pervasives [@@noextract_to "krml"] // tactic let norm_fields () : FStar.Tactics.Tac unit = FStar.Tactics.norm [delta_attr [`%norm_field_attr]; iota; zeta; primops]; FStar.Tactics.trefl () [@@noextract_to "krml"] // primitive val field_t_nil: Type0 [@@noextract_to "krml"] // primitive val field_t_cons (fn: Type0) (ft: Type0) (fc: Type0): Type0 inline_for_extraction [@@noextract_to "krml"; norm_field_attr] noeq type field_description_t (t: Type0) : Type u#1 = { fd_def: (string -> GTot bool); fd_empty: (fd_empty: bool { fd_empty == true <==> (forall s . fd_def s == false) }); fd_type: (string -> Type0); fd_typedef: ((s: string) -> Pure (typedef (fd_type s)) (requires (fd_def s)) (ensures (fun _ -> True))); } inline_for_extraction [@@noextract_to "krml"; norm_field_attr] let nonempty_field_description_t (t: Type0) = (fd: field_description_t t { fd.fd_empty == false })
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Fields.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fd: Pulse.C.Types.Fields.field_description_t t -> Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Fields.field_description_t", "Prims.string", "Prims.b2t", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_def", "Prims.eqtype" ]
[]
false
false
false
true
false
let field_t (#t: Type0) (fd: field_description_t t) : Tot eqtype =
(s: string{fd.fd_def s})
false
Pulse.C.Types.Fields.fsti
Pulse.C.Types.Fields.nonempty_field_description_t
val nonempty_field_description_t : t: Type0 -> Type
let nonempty_field_description_t (t: Type0) = (fd: field_description_t t { fd.fd_empty == false })
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Fields.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 54, "end_line": 27, "start_col": 0, "start_line": 26 }
module Pulse.C.Types.Fields include Pulse.C.Types.Base open Pulse.C.Typestring open Pulse.Lib.Pervasives [@@noextract_to "krml"] // tactic let norm_fields () : FStar.Tactics.Tac unit = FStar.Tactics.norm [delta_attr [`%norm_field_attr]; iota; zeta; primops]; FStar.Tactics.trefl () [@@noextract_to "krml"] // primitive val field_t_nil: Type0 [@@noextract_to "krml"] // primitive val field_t_cons (fn: Type0) (ft: Type0) (fc: Type0): Type0 inline_for_extraction [@@noextract_to "krml"; norm_field_attr] noeq type field_description_t (t: Type0) : Type u#1 = { fd_def: (string -> GTot bool); fd_empty: (fd_empty: bool { fd_empty == true <==> (forall s . fd_def s == false) }); fd_type: (string -> Type0); fd_typedef: ((s: string) -> Pure (typedef (fd_type s)) (requires (fd_def s)) (ensures (fun _ -> True))); }
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Fields.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Type0 -> Type
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Fields.field_description_t", "Prims.eq2", "Prims.bool", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_empty" ]
[]
false
false
false
true
true
let nonempty_field_description_t (t: Type0) =
(fd: field_description_t t {fd.fd_empty == false})
false
MerkleTree.New.High.Correct.Insertion.fst
MerkleTree.New.High.Correct.Insertion.insert_inv_preserved
val insert_inv_preserved: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (requires (mt_olds_hs_inv #_ #f lv i j olds hs)) (ensures (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc))) (decreases (32 - lv))
val insert_inv_preserved: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (requires (mt_olds_hs_inv #_ #f lv i j olds hs)) (ensures (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc))) (decreases (32 - lv))
let rec insert_inv_preserved #_ #f lv i j olds hs acc = if j % 2 = 1 then begin let ihs = hashess_insert lv i j hs acc in mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; merge_hs_slice_equal #_ #f olds hs olds ihs (lv + 1) 32; assert (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)); remainder_2_1_div j; insert_rec #_ #f lv i j hs acc; // Recursion mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #_ #f (lv + 1) (i / 2) (j / 2) ihs nacc in insert_inv_preserved #_ #f (lv + 1) (i / 2) (j / 2) olds ihs nacc; // Head proof of `mt_hashes_inv` mt_olds_hs_lth_inv_ok #_ #f lv i (j + 1) olds rihs; mt_hashes_next_rel_insert_odd #_ #f j (S.index (merge_hs #_ #f olds hs) lv) acc (S.index (merge_hs #_ #f olds hs) (lv + 1)); assert (S.equal (S.index rihs lv) (S.index ihs lv)); insert_head #_ #f (lv + 1) (i / 2) (j / 2) ihs nacc; assert (S.equal (S.index ihs (lv + 1)) (S.index hs (lv + 1))); assert (mt_hashes_next_rel #_ #f (j + 1) (S.index (merge_hs #_ #f olds rihs) lv) (S.index (merge_hs #_ #f olds rihs) (lv + 1))); // Tail proof of `mt_hashes_inv` by recursion assert (mt_olds_hs_inv #_ #f (lv + 1) (i / 2) ((j + 1) / 2) olds rihs); assert (mt_hashes_inv #_ #f lv (j + 1) (merge_hs #_ #f olds rihs)); assert (mt_olds_hs_inv #_ #f lv i (j + 1) olds rihs); assert (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc)) end else begin insert_inv_preserved_even #_ #f lv i j olds hs acc; assert (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc)) end
{ "file_name": "src/MerkleTree.New.High.Correct.Insertion.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 5, "end_line": 151, "start_col": 0, "start_line": 109 }
module MerkleTree.New.High.Correct.Insertion open EverCrypt open EverCrypt.Helpers open FStar.Classical open FStar.Ghost open FStar.Seq module List = FStar.List.Tot module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 type uint32_t = U32.t type uint8_t = U8.t module EHS = EverCrypt.Hash module MTS = MerkleTree.Spec open MerkleTree.New.High open MerkleTree.New.High.Correct.Base /// Correctness of insertion val mt_hashes_next_rel_insert_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j % 2 = 1} -> hs:hashes #hsz {S.length hs = j} -> v:hash -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires (mt_hashes_next_rel #_ #f j hs nhs)) (ensures (mt_hashes_next_rel #_ #f (j + 1) (S.snoc hs v) (S.snoc nhs (f (S.last hs) v)))) let mt_hashes_next_rel_insert_odd #_ #_ j hs v nhs = () val mt_hashes_next_rel_insert_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j % 2 <> 1} -> hs:hashes #hsz {S.length hs = j} -> v:hash -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires (mt_hashes_next_rel #_ #f j hs nhs)) (ensures (mt_hashes_next_rel #_ #f (j + 1) (S.snoc hs v) nhs)) let mt_hashes_next_rel_insert_even #_ #_ j hs v nhs = () val insert_head: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (S.equal (S.index (insert_ #_ #f lv i j hs acc) lv) (S.snoc (S.index hs lv) acc)) let insert_head #_ #_ lv i j hs acc = () val insert_inv_preserved_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (requires (j % 2 <> 1 /\ mt_olds_hs_inv #_ #f lv i j olds hs)) (ensures (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc))) (decreases (32 - lv)) #reset-options "--z3rlimit 120 --max_fuel 2" let insert_inv_preserved_even #_ #f lv i j olds hs acc = let ihs = hashess_insert lv i j hs acc in mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; assert (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)); merge_hs_slice_equal #_ #f olds hs olds ihs (lv + 1) 32; remainder_2_not_1_div j; insert_base #_ #f lv i j hs acc; if lv = 31 then () else begin // Facts assert (S.index (merge_hs #_ #f olds hs) (lv + 1) == S.index (merge_hs #_ #f olds ihs) (lv + 1)); // Head proof of `mt_hashes_inv` mt_hashes_next_rel_insert_even #_ #f j (S.index (merge_hs #_ #f olds hs) lv) acc (S.index (merge_hs #_ #f olds hs) (lv + 1)); assert (mt_hashes_next_rel #_ #f (j + 1) (S.index (merge_hs #_ #f olds ihs) lv) (S.index (merge_hs #_ #f olds ihs) (lv + 1))); // Tail proof of `mt_hashes_inv` mt_hashes_lth_inv_equiv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); mt_hashes_inv_equiv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); assert (mt_hashes_inv #_ #f (lv + 1) ((j + 1) / 2) (merge_hs #_ #f olds ihs)) end val insert_inv_preserved: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash -> Lemma (requires (mt_olds_hs_inv #_ #f lv i j olds hs)) (ensures (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc))) (decreases (32 - lv))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.Correct.Base.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "EverCrypt.Helpers.fsti.checked", "EverCrypt.Hash.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Insertion.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Base", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "EverCrypt.Hash", "short_module": "EHS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 240, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lv: Prims.nat{lv < 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) - 1} -> olds: MerkleTree.New.High.hashess {FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv lv i olds} -> hs: MerkleTree.New.High.hashess {FStar.Seq.Base.length hs = 32 /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> acc: MerkleTree.New.High.hash -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.Correct.Base.mt_olds_hs_inv lv i j olds hs) (ensures MerkleTree.New.High.Correct.Base.mt_olds_hs_inv lv i (j + 1) olds (MerkleTree.New.High.insert_ lv i j hs acc)) (decreases 32 - lv)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "MerkleTree.New.High.hs_wf_elts", "MerkleTree.New.High.hash", "Prims.op_Modulus", "Prims._assert", "MerkleTree.New.High.Correct.Base.mt_olds_hs_inv", "Prims.op_Addition", "MerkleTree.New.High.insert_", "Prims.unit", "MerkleTree.New.High.Correct.Base.mt_hashes_inv", "MerkleTree.New.High.Correct.Base.merge_hs", "Prims.op_Division", "MerkleTree.New.High.Correct.Base.mt_hashes_next_rel", "FStar.Seq.Base.index", "FStar.Seq.Base.equal", "MerkleTree.New.High.Correct.Insertion.insert_head", "MerkleTree.New.High.Correct.Insertion.mt_hashes_next_rel_insert_odd", "MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok", "MerkleTree.New.High.Correct.Insertion.insert_inv_preserved", "FStar.Seq.Base.slice", "MerkleTree.Spec.hash", "FStar.Seq.Properties.last", "MerkleTree.New.High.Correct.Base.mt_hashes_inv_equiv", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_equiv", "MerkleTree.New.High.insert_rec", "MerkleTree.New.High.remainder_2_1_div", "MerkleTree.New.High.Correct.Base.merge_hs_slice_equal", "MerkleTree.New.High.hashess_insert", "Prims.bool", "MerkleTree.New.High.Correct.Insertion.insert_inv_preserved_even" ]
[ "recursion" ]
false
false
true
false
false
let rec insert_inv_preserved #_ #f lv i j olds hs acc =
if j % 2 = 1 then let ihs = hashess_insert lv i j hs acc in mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; merge_hs_slice_equal #_ #f olds hs olds ihs (lv + 1) 32; assert (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)); remainder_2_1_div j; insert_rec #_ #f lv i j hs acc; mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) (merge_hs #_ #f olds hs) (merge_hs #_ #f olds ihs); let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #_ #f (lv + 1) (i / 2) (j / 2) ihs nacc in insert_inv_preserved #_ #f (lv + 1) (i / 2) (j / 2) olds ihs nacc; mt_olds_hs_lth_inv_ok #_ #f lv i (j + 1) olds rihs; mt_hashes_next_rel_insert_odd #_ #f j (S.index (merge_hs #_ #f olds hs) lv) acc (S.index (merge_hs #_ #f olds hs) (lv + 1)); assert (S.equal (S.index rihs lv) (S.index ihs lv)); insert_head #_ #f (lv + 1) (i / 2) (j / 2) ihs nacc; assert (S.equal (S.index ihs (lv + 1)) (S.index hs (lv + 1))); assert (mt_hashes_next_rel #_ #f (j + 1) (S.index (merge_hs #_ #f olds rihs) lv) (S.index (merge_hs #_ #f olds rihs) (lv + 1))); assert (mt_olds_hs_inv #_ #f (lv + 1) (i / 2) ((j + 1) / 2) olds rihs); assert (mt_hashes_inv #_ #f lv (j + 1) (merge_hs #_ #f olds rihs)); assert (mt_olds_hs_inv #_ #f lv i (j + 1) olds rihs); assert (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc)) else (insert_inv_preserved_even #_ #f lv i j olds hs acc; assert (mt_olds_hs_inv #_ #f lv i (j + 1) olds (insert_ #_ #f lv i j hs acc)))
false
Pulse.C.Types.Fields.fsti
Pulse.C.Types.Fields.field_description_nil
val field_description_nil:field_description_t field_t_nil
val field_description_nil:field_description_t field_t_nil
let field_description_nil : field_description_t field_t_nil = { fd_def = (fun _ -> false); fd_empty = true; fd_type = (fun _ -> unit); fd_typedef = (fun _ -> false_elim ()); }
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Fields.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 1, "end_line": 38, "start_col": 0, "start_line": 33 }
module Pulse.C.Types.Fields include Pulse.C.Types.Base open Pulse.C.Typestring open Pulse.Lib.Pervasives [@@noextract_to "krml"] // tactic let norm_fields () : FStar.Tactics.Tac unit = FStar.Tactics.norm [delta_attr [`%norm_field_attr]; iota; zeta; primops]; FStar.Tactics.trefl () [@@noextract_to "krml"] // primitive val field_t_nil: Type0 [@@noextract_to "krml"] // primitive val field_t_cons (fn: Type0) (ft: Type0) (fc: Type0): Type0 inline_for_extraction [@@noextract_to "krml"; norm_field_attr] noeq type field_description_t (t: Type0) : Type u#1 = { fd_def: (string -> GTot bool); fd_empty: (fd_empty: bool { fd_empty == true <==> (forall s . fd_def s == false) }); fd_type: (string -> Type0); fd_typedef: ((s: string) -> Pure (typedef (fd_type s)) (requires (fd_def s)) (ensures (fun _ -> True))); } inline_for_extraction [@@noextract_to "krml"; norm_field_attr] let nonempty_field_description_t (t: Type0) = (fd: field_description_t t { fd.fd_empty == false }) [@@noextract_to "krml"] // proof-only let field_t (#t: Type0) (fd: field_description_t t) : Tot eqtype = (s: string { fd.fd_def s })
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Fields.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Pulse.C.Types.Fields.field_description_t Pulse.C.Types.Fields.field_t_nil
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Fields.Mkfield_description_t", "Pulse.C.Types.Fields.field_t_nil", "Prims.string", "Prims.bool", "Prims.unit", "FStar.Pervasives.false_elim", "Pulse.C.Types.Base.typedef" ]
[]
false
false
false
true
false
let field_description_nil:field_description_t field_t_nil =
{ fd_def = (fun _ -> false); fd_empty = true; fd_type = (fun _ -> unit); fd_typedef = (fun _ -> false_elim ()) }
false
LowParse.Low.ListUpTo.fst
LowParse.Low.ListUpTo.jump_list_up_to_body
val jump_list_up_to_body (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (j: jumper p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) : HST.Stack bool (requires (fun h -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false)) (ensures (fun h stop h' -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ jump_list_up_to_inv cond prf sl pos0 h0 bpos h' stop))
val jump_list_up_to_body (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (j: jumper p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) : HST.Stack bool (requires (fun h -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false)) (ensures (fun h stop h' -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ jump_list_up_to_inv cond prf sl pos0 h0 bpos h' stop))
let jump_list_up_to_body (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (j: jumper p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) : HST.Stack bool (requires (fun h -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false )) (ensures (fun h stop h' -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ jump_list_up_to_inv cond prf sl pos0 h0 bpos h' stop )) = let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl pos; parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = j sl pos in B.upd bpos 0ul pos1; valid_facts (parse_list_up_to cond p prf) h sl pos1; cond_impl sl pos
{ "file_name": "src/lowparse/LowParse.Low.ListUpTo.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 18, "end_line": 215, "start_col": 0, "start_line": 173 }
module LowParse.Low.ListUpTo include LowParse.Spec.ListUpTo include LowParse.Low.Base module U32 = FStar.UInt32 module U64 = FStar.UInt64 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer unfold let validate_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U64.v pos /\ begin if is_success pos then let pos = uint64_to_uint32 pos in U32.v pos <= U32.v sl.len /\ begin if stop then valid_pos q h0 sl pos0 pos else (valid q h0 sl pos0 <==> valid q h0 sl pos) /\ ((valid q h0 sl pos0 /\ valid q h0 sl pos) ==> get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos ) end else stop == true /\ (~ (valid q h0 sl pos0)) end #push-options "--z3rlimit 16" inline_for_extraction let validate_list_up_to_body (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) : HST.Stack bool (requires (fun h -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false )) (ensures (fun h stop h' -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ validate_list_up_to_inv cond prf sl pos0 h0 bpos h' stop )) = let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos); parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos); let pos1 = v sl pos in B.upd bpos 0ul pos1; if is_error pos1 then true else begin valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos1); cond_impl sl (uint64_to_uint32 pos) end #pop-options inline_for_extraction let validate_list_up_to (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) : Tot (validator (parse_list_up_to cond p prf)) = fun #rrel #rel sl pos -> HST.push_frame (); let bpos = B.alloca pos 1ul in let h2 = HST.get () in C.Loops.do_while (validate_list_up_to_inv cond prf sl (uint64_to_uint32 pos) h2 bpos) (fun _ -> validate_list_up_to_body cond prf v cond_impl sl (uint64_to_uint32 pos) h2 bpos) ; let res = B.index bpos 0ul in HST.pop_frame (); res unfold let jump_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U32.v pos /\ valid q h0 sl pos0 /\ begin if stop then get_valid_pos q h0 sl pos0 == pos else valid q h0 sl pos /\ get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos end #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.ListUpTo.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ListUpTo", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cond: (_: t -> Prims.bool) -> prf: LowParse.Spec.ListUpTo.consumes_if_not_cond cond p { Mkparser_kind'?.parser_kind_subkind k <> FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserConsumesAll } -> j: LowParse.Low.Base.jumper p -> cond_impl: (sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.HyperStack.ST.Stack Prims.bool) -> sl: LowParse.Slice.slice rrel rel -> pos0: FStar.UInt32.t -> h0: FStar.Monotonic.HyperStack.mem -> bpos: LowStar.Buffer.pointer FStar.UInt32.t -> FStar.HyperStack.ST.Stack Prims.bool
FStar.HyperStack.ST.Stack
[]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "Prims.bool", "LowParse.Spec.ListUpTo.consumes_if_not_cond", "Prims.b2t", "Prims.op_disEquality", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserConsumesAll", "LowParse.Low.Base.jumper", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "LowParse.Low.Base.Spec.valid", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_none", "Prims.eq2", "LowParse.Low.Base.Spec.contents", "LowStar.Buffer.pointer", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.ListUpTo.parse_list_up_to_kind", "LowParse.Spec.ListUpTo.parse_list_up_to_t", "LowParse.Spec.ListUpTo.parse_list_up_to", "LowStar.Monotonic.Buffer.upd", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.__uint_to_t", "LowParse.Spec.ListUpTo.parse_list_up_to_eq", "LowParse.Slice.bytes_of_slice_from", "LowStar.Monotonic.Buffer.index", "FStar.HyperStack.ST.get", "LowParse.Low.ListUpTo.jump_list_up_to_inv" ]
[]
false
true
false
false
false
let jump_list_up_to_body (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (j: jumper p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U32.t) : HST.Stack bool (requires (fun h -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false)) (ensures (fun h stop h' -> jump_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ jump_list_up_to_inv cond prf sl pos0 h0 bpos h' stop)) =
let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl pos; parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = j sl pos in B.upd bpos 0ul pos1; valid_facts (parse_list_up_to cond p prf) h sl pos1; cond_impl sl pos
false
Pulse.C.Types.Fields.fsti
Pulse.C.Types.Fields.norm_fields
val norm_fields: Prims.unit -> FStar.Tactics.Tac unit
val norm_fields: Prims.unit -> FStar.Tactics.Tac unit
let norm_fields () : FStar.Tactics.Tac unit = FStar.Tactics.norm [delta_attr [`%norm_field_attr]; iota; zeta; primops]; FStar.Tactics.trefl ()
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Fields.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 24, "end_line": 9, "start_col": 0, "start_line": 7 }
module Pulse.C.Types.Fields include Pulse.C.Types.Base open Pulse.C.Typestring open Pulse.Lib.Pervasives
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Fields.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.trefl", "FStar.Stubs.Tactics.V1.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.primops" ]
[]
false
true
false
false
false
let norm_fields () : FStar.Tactics.Tac unit =
FStar.Tactics.norm [delta_attr [`%norm_field_attr]; iota; zeta; primops]; FStar.Tactics.trefl ()
false
LowParse.Low.ListUpTo.fst
LowParse.Low.ListUpTo.validate_list_up_to_body
val validate_list_up_to_body (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (v: validator p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) : HST.Stack bool (requires (fun h -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false)) (ensures (fun h stop h' -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ validate_list_up_to_inv cond prf sl pos0 h0 bpos h' stop))
val validate_list_up_to_body (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (v: validator p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) : HST.Stack bool (requires (fun h -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false)) (ensures (fun h stop h' -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ validate_list_up_to_inv cond prf sl pos0 h0 bpos h' stop))
let validate_list_up_to_body (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (v: validator p) (cond_impl: ( (#rrel: _) -> (#rel: _) -> (sl: slice rrel rel) -> (pos: U32.t) -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos) )) )) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) : HST.Stack bool (requires (fun h -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false )) (ensures (fun h stop h' -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ validate_list_up_to_inv cond prf sl pos0 h0 bpos h' stop )) = let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos); parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos); let pos1 = v sl pos in B.upd bpos 0ul pos1; if is_error pos1 then true else begin valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos1); cond_impl sl (uint64_to_uint32 pos) end
{ "file_name": "src/lowparse/LowParse.Low.ListUpTo.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 101, "start_col": 0, "start_line": 54 }
module LowParse.Low.ListUpTo include LowParse.Spec.ListUpTo include LowParse.Low.Base module U32 = FStar.UInt32 module U64 = FStar.UInt64 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer unfold let validate_list_up_to_inv (#k: _) (#t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p { k.parser_kind_subkind <> Some ParserConsumesAll } ) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) (h: HS.mem) (stop: bool) : GTot Type0 = let pos = B.deref h bpos in let q = parse_list_up_to cond p prf in B.live h0 bpos /\ live_slice h0 sl /\ B.loc_disjoint (B.loc_buffer sl.base) (B.loc_buffer bpos) /\ B.modifies (B.loc_buffer bpos) h0 h /\ U32.v pos0 <= U64.v pos /\ begin if is_success pos then let pos = uint64_to_uint32 pos in U32.v pos <= U32.v sl.len /\ begin if stop then valid_pos q h0 sl pos0 pos else (valid q h0 sl pos0 <==> valid q h0 sl pos) /\ ((valid q h0 sl pos0 /\ valid q h0 sl pos) ==> get_valid_pos q h0 sl pos0 == get_valid_pos q h0 sl pos ) end else stop == true /\ (~ (valid q h0 sl pos0)) end #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.ListUpTo.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ListUpTo", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cond: (_: t -> Prims.bool) -> prf: LowParse.Spec.ListUpTo.consumes_if_not_cond cond p { Mkparser_kind'?.parser_kind_subkind k <> FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserConsumesAll } -> v: LowParse.Low.Base.validator p -> cond_impl: (sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.HyperStack.ST.Stack Prims.bool) -> sl: LowParse.Slice.slice rrel rel -> pos0: FStar.UInt32.t -> h0: FStar.Monotonic.HyperStack.mem -> bpos: LowStar.Buffer.pointer FStar.UInt64.t -> FStar.HyperStack.ST.Stack Prims.bool
FStar.HyperStack.ST.Stack
[]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "Prims.bool", "LowParse.Spec.ListUpTo.consumes_if_not_cond", "Prims.b2t", "Prims.op_disEquality", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserConsumesAll", "LowParse.Low.Base.validator", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "LowParse.Low.Base.Spec.valid", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_none", "Prims.eq2", "LowParse.Low.Base.Spec.contents", "LowStar.Buffer.pointer", "FStar.UInt64.t", "LowParse.Low.ErrorCode.is_error", "LowParse.Low.ErrorCode.uint64_to_uint32", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.ListUpTo.parse_list_up_to_kind", "LowParse.Spec.ListUpTo.parse_list_up_to_t", "LowParse.Spec.ListUpTo.parse_list_up_to", "LowStar.Monotonic.Buffer.upd", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.__uint_to_t", "LowParse.Spec.ListUpTo.parse_list_up_to_eq", "LowParse.Slice.bytes_of_slice_from", "LowStar.Monotonic.Buffer.index", "FStar.HyperStack.ST.get", "LowParse.Low.ListUpTo.validate_list_up_to_inv" ]
[]
false
true
false
false
false
let validate_list_up_to_body (#k #t: _) (#p: parser k t) (cond: (t -> Tot bool)) (prf: consumes_if_not_cond cond p {k.parser_kind_subkind <> Some ParserConsumesAll}) (v: validator p) (cond_impl: (#rrel: _ -> #rel: _ -> sl: slice rrel rel -> pos: U32.t -> HST.Stack bool (requires (fun h -> valid p h sl pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ valid p h sl pos /\ res == cond (contents p h sl pos))))) (#rrel #rel: _) (sl: slice rrel rel) (pos0: U32.t) (h0: HS.mem) (bpos: B.pointer U64.t) : HST.Stack bool (requires (fun h -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false)) (ensures (fun h stop h' -> validate_list_up_to_inv cond prf sl pos0 h0 bpos h false /\ validate_list_up_to_inv cond prf sl pos0 h0 bpos h' stop)) =
let h = HST.get () in let pos = B.index bpos 0ul in valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos); parse_list_up_to_eq cond p prf (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos); let pos1 = v sl pos in B.upd bpos 0ul pos1; if is_error pos1 then true else (valid_facts (parse_list_up_to cond p prf) h sl (uint64_to_uint32 pos1); cond_impl sl (uint64_to_uint32 pos))
false
Hacl.Spec.K256.ECSM.Lemmas.fst
Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_modq
val lemma_aff_point_mul_neg_modq (a:int) (p:S.aff_point) : Lemma (aff_point_mul_neg a p == aff_point_mul (a % S.q) p)
val lemma_aff_point_mul_neg_modq (a:int) (p:S.aff_point) : Lemma (aff_point_mul_neg a p == aff_point_mul (a % S.q) p)
let lemma_aff_point_mul_neg_modq a p = calc (==) { aff_point_mul_neg a p; (==) { Math.Lemmas.euclidean_division_definition a S.q } aff_point_mul_neg (a / S.q * S.q + a % S.q) p; (==) { lemma_aff_point_mul_neg_add (a / S.q * S.q) (a % S.q) p } S.aff_point_add (aff_point_mul_neg (a / S.q * S.q) p) (aff_point_mul_neg (a % S.q) p); (==) { lemma_aff_point_mul_neg_mul (a / S.q) S.q p } S.aff_point_add (aff_point_mul S.q (aff_point_mul_neg (a / S.q) p)) (aff_point_mul (a % S.q) p); (==) { lemma_order_of_curve_group (aff_point_mul_neg (a / S.q) p) } S.aff_point_add S.aff_point_at_inf (aff_point_mul (a % S.q) p); (==) { LS.aff_point_add_comm_lemma S.aff_point_at_inf (aff_point_mul (a % S.q) p) } S.aff_point_add (aff_point_mul (a % S.q) p) S.aff_point_at_inf; (==) { LS.aff_point_at_inf_lemma (aff_point_mul (a % S.q) p) } aff_point_mul (a % S.q) p; }
{ "file_name": "code/k256/Hacl.Spec.K256.ECSM.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 78, "start_col": 0, "start_line": 61 }
module Hacl.Spec.K256.ECSM.Lemmas open FStar.Mul module M = Lib.NatMod module LE = Lib.Exponentiation module SE = Spec.Exponentiation module S = Spec.K256 module LS = Spec.K256.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" // [a]P in affine coordinates for a >= 0 let aff_point_mul = S.aff_point_mul // [a]P in affine coordinates for any a let aff_point_mul_neg (a:int) (p:S.aff_point) : S.aff_point = LE.pow_neg S.mk_k256_abelian_group p a assume val lemma_order_of_curve_group (p:S.aff_point) : Lemma (aff_point_mul S.q p == S.aff_point_at_inf) (** Properties for Elliptic Curve Scalar Multiplication in affine coordinates *) // [a + b]P = [a]P + [b]P val lemma_aff_point_mul_neg_add (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a + b) p == S.aff_point_add (aff_point_mul_neg a p) (aff_point_mul_neg b p)) let lemma_aff_point_mul_neg_add a b p = LE.lemma_pow_neg_add S.mk_k256_abelian_group p a b // [a * b]P = [b]([a]P) val lemma_aff_point_mul_neg_mul (a b:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b) p == aff_point_mul_neg b (aff_point_mul_neg a p)) let lemma_aff_point_mul_neg_mul a b p = LE.lemma_pow_neg_mul S.mk_k256_abelian_group p a b // [a * b + c]P = [b]([a]P) + [c]P val lemma_aff_point_mul_neg_mul_add (a b c:int) (p:S.aff_point) : Lemma (aff_point_mul_neg (a * b + c) p == S.aff_point_add (aff_point_mul_neg b (aff_point_mul_neg a p)) (aff_point_mul_neg c p)) let lemma_aff_point_mul_neg_mul_add a b c p = lemma_aff_point_mul_neg_add (a * b) c p; lemma_aff_point_mul_neg_mul a b p // [a]P = [a % S.q]P val lemma_aff_point_mul_neg_modq (a:int) (p:S.aff_point) : Lemma (aff_point_mul_neg a p == aff_point_mul (a % S.q) p)
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.ECSM.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "LS" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.ECSM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> p: Spec.K256.PointOps.aff_point -> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg a p == Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul (a % Spec.K256.PointOps.q) p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Spec.K256.PointOps.aff_point", "FStar.Calc.calc_finish", "Prims.eq2", "Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul_neg", "Hacl.Spec.K256.ECSM.Lemmas.aff_point_mul", "Prims.op_Modulus", "Spec.K256.PointOps.q", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Spec.K256.PointOps.aff_point_add", "Spec.K256.PointOps.aff_point_at_inf", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_add", "Hacl.Spec.K256.ECSM.Lemmas.lemma_aff_point_mul_neg_mul", "Hacl.Spec.K256.ECSM.Lemmas.lemma_order_of_curve_group", "Spec.K256.Lemmas.aff_point_add_comm_lemma", "Spec.K256.Lemmas.aff_point_at_inf_lemma" ]
[]
false
false
true
false
false
let lemma_aff_point_mul_neg_modq a p =
calc ( == ) { aff_point_mul_neg a p; ( == ) { Math.Lemmas.euclidean_division_definition a S.q } aff_point_mul_neg ((a / S.q) * S.q + a % S.q) p; ( == ) { lemma_aff_point_mul_neg_add ((a / S.q) * S.q) (a % S.q) p } S.aff_point_add (aff_point_mul_neg ((a / S.q) * S.q) p) (aff_point_mul_neg (a % S.q) p); ( == ) { lemma_aff_point_mul_neg_mul (a / S.q) S.q p } S.aff_point_add (aff_point_mul S.q (aff_point_mul_neg (a / S.q) p)) (aff_point_mul (a % S.q) p); ( == ) { lemma_order_of_curve_group (aff_point_mul_neg (a / S.q) p) } S.aff_point_add S.aff_point_at_inf (aff_point_mul (a % S.q) p); ( == ) { LS.aff_point_add_comm_lemma S.aff_point_at_inf (aff_point_mul (a % S.q) p) } S.aff_point_add (aff_point_mul (a % S.q) p) S.aff_point_at_inf; ( == ) { LS.aff_point_at_inf_lemma (aff_point_mul (a % S.q) p) } aff_point_mul (a % S.q) p; }
false
Pulse.C.Types.Fields.fsti
Pulse.C.Types.Fields.field_description_cons
val field_description_cons (#ft #fc: Type0) (n: string) (#fn: Type0) (#[solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == fn))) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc))
val field_description_cons (#ft #fc: Type0) (n: string) (#fn: Type0) (#[solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == fn))) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc))
let field_description_cons (#ft: Type0) (#fc: Type0) (n: string) (#fn: Type0) (# [ solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == fn))) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc)) = field_description_cons0 fn #ft #fc n t fd
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Fields.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 43, "end_line": 53, "start_col": 0, "start_line": 52 }
module Pulse.C.Types.Fields include Pulse.C.Types.Base open Pulse.C.Typestring open Pulse.Lib.Pervasives [@@noextract_to "krml"] // tactic let norm_fields () : FStar.Tactics.Tac unit = FStar.Tactics.norm [delta_attr [`%norm_field_attr]; iota; zeta; primops]; FStar.Tactics.trefl () [@@noextract_to "krml"] // primitive val field_t_nil: Type0 [@@noextract_to "krml"] // primitive val field_t_cons (fn: Type0) (ft: Type0) (fc: Type0): Type0 inline_for_extraction [@@noextract_to "krml"; norm_field_attr] noeq type field_description_t (t: Type0) : Type u#1 = { fd_def: (string -> GTot bool); fd_empty: (fd_empty: bool { fd_empty == true <==> (forall s . fd_def s == false) }); fd_type: (string -> Type0); fd_typedef: ((s: string) -> Pure (typedef (fd_type s)) (requires (fd_def s)) (ensures (fun _ -> True))); } inline_for_extraction [@@noextract_to "krml"; norm_field_attr] let nonempty_field_description_t (t: Type0) = (fd: field_description_t t { fd.fd_empty == false }) [@@noextract_to "krml"] // proof-only let field_t (#t: Type0) (fd: field_description_t t) : Tot eqtype = (s: string { fd.fd_def s }) inline_for_extraction [@@noextract_to "krml"] let field_description_nil : field_description_t field_t_nil = { fd_def = (fun _ -> false); fd_empty = true; fd_type = (fun _ -> unit); fd_typedef = (fun _ -> false_elim ()); } inline_for_extraction [@@noextract_to "krml"; norm_field_attr] let field_description_cons0 (fn: Type0) (#ft: Type0) (#fc: Type0) (n: string) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc)) = { fd_def = (fun n' -> n = n' || fd.fd_def n'); fd_empty = false; fd_type = (fun n' -> if n = n' then ft else fd.fd_type n'); fd_typedef = (fun n' -> if n = n' then t else fd.fd_typedef n'); }
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Fields.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.string -> t: Pulse.C.Types.Base.typedef ft -> fd: Pulse.C.Types.Fields.field_description_t fc -> Pulse.C.Types.Fields.nonempty_field_description_t (Pulse.C.Types.Fields.field_t_cons fn ft fc)
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Prims.squash", "FStar.Pervasives.norm", "Pulse.C.Typestring.norm_typestring", "Prims.eq2", "Pulse.C.Typestring.mk_string_t", "Pulse.C.Types.Base.typedef", "Pulse.C.Types.Fields.field_description_t", "Pulse.C.Types.Fields.field_description_cons0", "Pulse.C.Types.Fields.nonempty_field_description_t", "Pulse.C.Types.Fields.field_t_cons" ]
[]
false
false
false
false
false
let field_description_cons (#ft #fc: Type0) (n: string) (#fn: Type0) (#[solve_mk_string_t ()] prf: squash (norm norm_typestring (mk_string_t n == fn))) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc)) =
field_description_cons0 fn #ft #fc n t fd
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.return
val return (a: Type) (x: a) : rand a
val return (a: Type) (x: a) : rand a
let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 26, "start_col": 0, "start_line": 26 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> x: a -> FStar.DM4F.Random.rand a
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "FStar.DM4F.Heap.Random.id", "FStar.DM4F.Heap.Random.tape", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Some", "FStar.DM4F.Random.rand" ]
[]
false
false
false
true
false
let return (a: Type) (x: a) : rand a =
fun (next, _) -> Some x, next
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.get
val get: Prims.unit -> rand store
val get: Prims.unit -> rand store
let get () : rand store = fun s -> Some s, fst s
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 46, "start_col": 0, "start_line": 46 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s) (* // Tm_refine is outside of the definition language: ... let sample () : rand elem = fun store -> let next, t = store in if incrementable next then (Some (index t next), incr next) else (None, next) *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.DM4F.Random.rand FStar.DM4F.Random.store
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.DM4F.Heap.Random.id", "FStar.DM4F.Heap.Random.tape", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.option", "FStar.DM4F.Random.store", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.fst", "FStar.DM4F.Random.rand" ]
[]
false
false
false
true
false
let get () : rand store =
fun s -> Some s, fst s
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.raise
val raise: a: Type -> Prims.unit -> rand a
val raise: a: Type -> Prims.unit -> rand a
let raise (a:Type) () : rand a = fun s -> None, fst s
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 52, "start_col": 0, "start_line": 52 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s) (* // Tm_refine is outside of the definition language: ... let sample () : rand elem = fun store -> let next, t = store in if incrementable next then (Some (index t next), incr next) else (None, next) *) (** Get store *) let get () : rand store = fun s -> Some s, fst s (** Update tape pointer *) let put i : rand unit = fun _ -> Some (), i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> _: Prims.unit -> FStar.DM4F.Random.rand a
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.DM4F.Heap.Random.id", "FStar.DM4F.Heap.Random.tape", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.fst", "FStar.DM4F.Random.rand" ]
[]
false
false
false
true
false
let raise (a: Type) () : rand a =
fun s -> None, fst s
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.bind
val bind (a b: Type) (c: rand a) (f: (a -> rand b)) : rand b
val bind (a b: Type) (c: rand a) (f: (a -> rand b)) : rand b
let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s)
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 33, "start_col": 0, "start_line": 28 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> c: FStar.DM4F.Random.rand a -> f: (_: a -> FStar.DM4F.Random.rand b) -> FStar.DM4F.Random.rand b
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Random.rand", "FStar.Pervasives.Native.tuple2", "FStar.DM4F.Heap.Random.id", "FStar.DM4F.Heap.Random.tape", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.snd" ]
[]
false
false
false
true
false
let bind (a b: Type) (c: rand a) (f: (a -> rand b)) : rand b =
fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s)
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.mass
val mass: #a:Type -> f:(store -> M (a * id)) -> p:(a -> nat) -> nat
val mass: #a:Type -> f:(store -> M (a * id)) -> p:(a -> nat) -> nat
let mass #a f p = sum (fun h -> let r,_ = f (to_id 0,h) in p r)
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 134, "start_col": 0, "start_line": 134 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s) (* // Tm_refine is outside of the definition language: ... let sample () : rand elem = fun store -> let next, t = store in if incrementable next then (Some (index t next), incr next) else (None, next) *) (** Get store *) let get () : rand store = fun s -> Some s, fst s (** Update tape pointer *) let put i : rand unit = fun _ -> Some (), i (** Raise exception *) let raise (a:Type) () : rand a = fun s -> None, fst s total reifiable reflectable new_effect { RAND: a:Type -> Effect with repr = rand ; bind = bind ; return = return ; get = get ; put = put ; raise = raise } effect Rand (a:Type) = RAND a (fun initial_tape post -> forall (x:option a * id). post x) (** If not past the end of the tape, read a value and advance pointer *) reifiable val sample: unit -> RAND elem (fun (next,t) p -> if incrementable next then p (Some (index t next), incr next) else p (None, next)) let sample () = let next, t = RAND?.get () in if incrementable next then begin RAND?.put (incr next); index t next end else RAND?.raise elem () (* GM: This is failing now... I couldn't make it go through even trying to * manually trigger reification. *) let test_sample_some (v:elem) (t:tape{sel t (to_id 0) == v}) = let f = reify (sample ()) in admit (); assert (f (to_id 0,t) == (Some v, to_id 1)) let test_sample_none (v:elem) (t:tape) = let f = reify (sample ()) in admit (); assert (f (to_id 9,t) == (None, to_id 9)) (** Bijection over tapes, the inverse function acts as a witness *) noeq type bijection = | Bijection: f:(tape -> tape) -> finv:(tape -> tape){forall (h:tape). equal (f (finv h)) h /\ equal (finv (f h)) h} -> bijection (** Inverse of a bijection *) let inverse (bij:bijection) : bijection = Bijection bij.finv bij.f (** Assume `sum` over `tape`. Definable as long as tape is finite *) assume val sum: f:(tape -> nat) -> nat (** Reordering terms in a sum doesn't change the result *) assume val sum_bijection: f:(tape -> nat) -> bij:bijection -> Lemma (sum f == sum (fun h -> f (bij.f h))) (** The sum of non-negative function is monotonic *) assume val sum_monotonic: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h <= g h)) (ensures (sum f <= sum g)) (** Corollary *) val sum_extensional: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h == g h)) (ensures (sum f == sum g)) let sum_extensional f g = sum_monotonic f g; sum_monotonic g f (** Unnormalized measure of a function `p` wrt the denotation of a probabilistic computation `f`. Assumes that the initial random tape is uniformly distributed When `p:a -> {0,1}` and `tape` is finite Pr[f : p] == 1/|tape| * sum_{h:tape} p (f h) == 1/|tape| * mass f p *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: FStar.DM4F.Random.store -> Prims.M (a * FStar.DM4F.Heap.Random.id)) -> p: (_: a -> Prims.nat) -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Random.store", "FStar.Pervasives.Native.tuple2", "FStar.DM4F.Heap.Random.id", "Prims.nat", "FStar.DM4F.Random.sum", "FStar.DM4F.Heap.Random.tape", "FStar.Pervasives.Native.Mktuple2", "FStar.DM4F.Heap.Random.to_id" ]
[]
false
false
false
true
false
let mass #a f p =
sum (fun h -> let r, _ = f (to_id 0, h) in p r)
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.inverse
val inverse (bij: bijection) : bijection
val inverse (bij: bijection) : bijection
let inverse (bij:bijection) : bijection = Bijection bij.finv bij.f
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 104, "start_col": 0, "start_line": 103 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s) (* // Tm_refine is outside of the definition language: ... let sample () : rand elem = fun store -> let next, t = store in if incrementable next then (Some (index t next), incr next) else (None, next) *) (** Get store *) let get () : rand store = fun s -> Some s, fst s (** Update tape pointer *) let put i : rand unit = fun _ -> Some (), i (** Raise exception *) let raise (a:Type) () : rand a = fun s -> None, fst s total reifiable reflectable new_effect { RAND: a:Type -> Effect with repr = rand ; bind = bind ; return = return ; get = get ; put = put ; raise = raise } effect Rand (a:Type) = RAND a (fun initial_tape post -> forall (x:option a * id). post x) (** If not past the end of the tape, read a value and advance pointer *) reifiable val sample: unit -> RAND elem (fun (next,t) p -> if incrementable next then p (Some (index t next), incr next) else p (None, next)) let sample () = let next, t = RAND?.get () in if incrementable next then begin RAND?.put (incr next); index t next end else RAND?.raise elem () (* GM: This is failing now... I couldn't make it go through even trying to * manually trigger reification. *) let test_sample_some (v:elem) (t:tape{sel t (to_id 0) == v}) = let f = reify (sample ()) in admit (); assert (f (to_id 0,t) == (Some v, to_id 1)) let test_sample_none (v:elem) (t:tape) = let f = reify (sample ()) in admit (); assert (f (to_id 9,t) == (None, to_id 9)) (** Bijection over tapes, the inverse function acts as a witness *) noeq type bijection = | Bijection: f:(tape -> tape) -> finv:(tape -> tape){forall (h:tape). equal (f (finv h)) h /\ equal (finv (f h)) h} -> bijection
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bij: FStar.DM4F.Random.bijection -> FStar.DM4F.Random.bijection
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Random.bijection", "FStar.DM4F.Random.Bijection", "FStar.DM4F.Random.__proj__Bijection__item__finv", "FStar.DM4F.Random.__proj__Bijection__item__f" ]
[]
false
false
false
true
false
let inverse (bij: bijection) : bijection =
Bijection bij.finv bij.f
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.point
val point: #a:eqtype -> x:a -> y:option a -> nat
val point: #a:eqtype -> x:a -> y:option a -> nat
let point #a x = fun y -> if y = Some x then 1 else 0
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 137, "start_col": 0, "start_line": 137 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s) (* // Tm_refine is outside of the definition language: ... let sample () : rand elem = fun store -> let next, t = store in if incrementable next then (Some (index t next), incr next) else (None, next) *) (** Get store *) let get () : rand store = fun s -> Some s, fst s (** Update tape pointer *) let put i : rand unit = fun _ -> Some (), i (** Raise exception *) let raise (a:Type) () : rand a = fun s -> None, fst s total reifiable reflectable new_effect { RAND: a:Type -> Effect with repr = rand ; bind = bind ; return = return ; get = get ; put = put ; raise = raise } effect Rand (a:Type) = RAND a (fun initial_tape post -> forall (x:option a * id). post x) (** If not past the end of the tape, read a value and advance pointer *) reifiable val sample: unit -> RAND elem (fun (next,t) p -> if incrementable next then p (Some (index t next), incr next) else p (None, next)) let sample () = let next, t = RAND?.get () in if incrementable next then begin RAND?.put (incr next); index t next end else RAND?.raise elem () (* GM: This is failing now... I couldn't make it go through even trying to * manually trigger reification. *) let test_sample_some (v:elem) (t:tape{sel t (to_id 0) == v}) = let f = reify (sample ()) in admit (); assert (f (to_id 0,t) == (Some v, to_id 1)) let test_sample_none (v:elem) (t:tape) = let f = reify (sample ()) in admit (); assert (f (to_id 9,t) == (None, to_id 9)) (** Bijection over tapes, the inverse function acts as a witness *) noeq type bijection = | Bijection: f:(tape -> tape) -> finv:(tape -> tape){forall (h:tape). equal (f (finv h)) h /\ equal (finv (f h)) h} -> bijection (** Inverse of a bijection *) let inverse (bij:bijection) : bijection = Bijection bij.finv bij.f (** Assume `sum` over `tape`. Definable as long as tape is finite *) assume val sum: f:(tape -> nat) -> nat (** Reordering terms in a sum doesn't change the result *) assume val sum_bijection: f:(tape -> nat) -> bij:bijection -> Lemma (sum f == sum (fun h -> f (bij.f h))) (** The sum of non-negative function is monotonic *) assume val sum_monotonic: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h <= g h)) (ensures (sum f <= sum g)) (** Corollary *) val sum_extensional: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h == g h)) (ensures (sum f == sum g)) let sum_extensional f g = sum_monotonic f g; sum_monotonic g f (** Unnormalized measure of a function `p` wrt the denotation of a probabilistic computation `f`. Assumes that the initial random tape is uniformly distributed When `p:a -> {0,1}` and `tape` is finite Pr[f : p] == 1/|tape| * sum_{h:tape} p (f h) == 1/|tape| * mass f p *) val mass: #a:Type -> f:(store -> M (a * id)) -> p:(a -> nat) -> nat let mass #a f p = sum (fun h -> let r,_ = f (to_id 0,h) in p r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> y: FStar.Pervasives.Native.option a -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.Pervasives.Native.option", "Prims.op_Equality", "FStar.Pervasives.Native.Some", "Prims.bool", "Prims.nat" ]
[]
false
false
false
false
false
let point #a x =
fun y -> if y = Some x then 1 else 0
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.sum_extensional
val sum_extensional: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h == g h)) (ensures (sum f == sum g))
val sum_extensional: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h == g h)) (ensures (sum f == sum g))
let sum_extensional f g = sum_monotonic f g; sum_monotonic g f
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 125, "start_col": 0, "start_line": 123 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s) (* // Tm_refine is outside of the definition language: ... let sample () : rand elem = fun store -> let next, t = store in if incrementable next then (Some (index t next), incr next) else (None, next) *) (** Get store *) let get () : rand store = fun s -> Some s, fst s (** Update tape pointer *) let put i : rand unit = fun _ -> Some (), i (** Raise exception *) let raise (a:Type) () : rand a = fun s -> None, fst s total reifiable reflectable new_effect { RAND: a:Type -> Effect with repr = rand ; bind = bind ; return = return ; get = get ; put = put ; raise = raise } effect Rand (a:Type) = RAND a (fun initial_tape post -> forall (x:option a * id). post x) (** If not past the end of the tape, read a value and advance pointer *) reifiable val sample: unit -> RAND elem (fun (next,t) p -> if incrementable next then p (Some (index t next), incr next) else p (None, next)) let sample () = let next, t = RAND?.get () in if incrementable next then begin RAND?.put (incr next); index t next end else RAND?.raise elem () (* GM: This is failing now... I couldn't make it go through even trying to * manually trigger reification. *) let test_sample_some (v:elem) (t:tape{sel t (to_id 0) == v}) = let f = reify (sample ()) in admit (); assert (f (to_id 0,t) == (Some v, to_id 1)) let test_sample_none (v:elem) (t:tape) = let f = reify (sample ()) in admit (); assert (f (to_id 9,t) == (None, to_id 9)) (** Bijection over tapes, the inverse function acts as a witness *) noeq type bijection = | Bijection: f:(tape -> tape) -> finv:(tape -> tape){forall (h:tape). equal (f (finv h)) h /\ equal (finv (f h)) h} -> bijection (** Inverse of a bijection *) let inverse (bij:bijection) : bijection = Bijection bij.finv bij.f (** Assume `sum` over `tape`. Definable as long as tape is finite *) assume val sum: f:(tape -> nat) -> nat (** Reordering terms in a sum doesn't change the result *) assume val sum_bijection: f:(tape -> nat) -> bij:bijection -> Lemma (sum f == sum (fun h -> f (bij.f h))) (** The sum of non-negative function is monotonic *) assume val sum_monotonic: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h <= g h)) (ensures (sum f <= sum g)) (** Corollary *) val sum_extensional: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h == g h))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: FStar.DM4F.Heap.Random.tape -> Prims.nat) -> g: (_: FStar.DM4F.Heap.Random.tape -> Prims.nat) -> FStar.Pervasives.Lemma (requires forall (h: FStar.DM4F.Heap.Random.tape). f h == g h) (ensures FStar.DM4F.Random.sum f == FStar.DM4F.Random.sum g)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.Heap.Random.tape", "Prims.nat", "FStar.DM4F.Random.sum_monotonic", "Prims.unit" ]
[]
true
false
true
false
false
let sum_extensional f g =
sum_monotonic f g; sum_monotonic g f
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.pr_leq
val pr_leq: #a:Type -> #b:Type -> c1:(store -> M (a * id)) -> c2:(store -> M (b * id)) -> p1:(a -> nat) -> p2:(b -> nat) -> bij:bijection -> Lemma (requires (forall t. let r1,_ = c1 (to_id 0,t) in let r2,_ = c2 (to_id 0,bij.f t) in p1 r1 <= p2 r2)) (ensures (mass c1 p1 <= mass c2 p2))
val pr_leq: #a:Type -> #b:Type -> c1:(store -> M (a * id)) -> c2:(store -> M (b * id)) -> p1:(a -> nat) -> p2:(b -> nat) -> bij:bijection -> Lemma (requires (forall t. let r1,_ = c1 (to_id 0,t) in let r2,_ = c2 (to_id 0,bij.f t) in p1 r1 <= p2 r2)) (ensures (mass c1 p1 <= mass c2 p2))
let pr_leq #a #b c1 c2 p1 p2 bij = let bij' = inverse bij in let f1 = (fun h -> let r1,_ = c1 (to_id 0,h) in p1 r1) in let f2 = (fun h -> let r2,_ = c2 (to_id 0,h) in p2 r2) in sum_monotonic f1 (fun h -> let r2,_ = c2 (to_id 0,bij.f h) in p2 r2); sum_bijection (fun h -> let r2,_ = c2 (to_id 0,bij.f h) in p2 r2) bij'; sum_extensional (fun h -> let r2,_ = c2 (to_id 0,bij.f (bij'.f h)) in p2 r2) f2
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 81, "end_line": 162, "start_col": 0, "start_line": 156 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s) (* // Tm_refine is outside of the definition language: ... let sample () : rand elem = fun store -> let next, t = store in if incrementable next then (Some (index t next), incr next) else (None, next) *) (** Get store *) let get () : rand store = fun s -> Some s, fst s (** Update tape pointer *) let put i : rand unit = fun _ -> Some (), i (** Raise exception *) let raise (a:Type) () : rand a = fun s -> None, fst s total reifiable reflectable new_effect { RAND: a:Type -> Effect with repr = rand ; bind = bind ; return = return ; get = get ; put = put ; raise = raise } effect Rand (a:Type) = RAND a (fun initial_tape post -> forall (x:option a * id). post x) (** If not past the end of the tape, read a value and advance pointer *) reifiable val sample: unit -> RAND elem (fun (next,t) p -> if incrementable next then p (Some (index t next), incr next) else p (None, next)) let sample () = let next, t = RAND?.get () in if incrementable next then begin RAND?.put (incr next); index t next end else RAND?.raise elem () (* GM: This is failing now... I couldn't make it go through even trying to * manually trigger reification. *) let test_sample_some (v:elem) (t:tape{sel t (to_id 0) == v}) = let f = reify (sample ()) in admit (); assert (f (to_id 0,t) == (Some v, to_id 1)) let test_sample_none (v:elem) (t:tape) = let f = reify (sample ()) in admit (); assert (f (to_id 9,t) == (None, to_id 9)) (** Bijection over tapes, the inverse function acts as a witness *) noeq type bijection = | Bijection: f:(tape -> tape) -> finv:(tape -> tape){forall (h:tape). equal (f (finv h)) h /\ equal (finv (f h)) h} -> bijection (** Inverse of a bijection *) let inverse (bij:bijection) : bijection = Bijection bij.finv bij.f (** Assume `sum` over `tape`. Definable as long as tape is finite *) assume val sum: f:(tape -> nat) -> nat (** Reordering terms in a sum doesn't change the result *) assume val sum_bijection: f:(tape -> nat) -> bij:bijection -> Lemma (sum f == sum (fun h -> f (bij.f h))) (** The sum of non-negative function is monotonic *) assume val sum_monotonic: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h <= g h)) (ensures (sum f <= sum g)) (** Corollary *) val sum_extensional: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h == g h)) (ensures (sum f == sum g)) let sum_extensional f g = sum_monotonic f g; sum_monotonic g f (** Unnormalized measure of a function `p` wrt the denotation of a probabilistic computation `f`. Assumes that the initial random tape is uniformly distributed When `p:a -> {0,1}` and `tape` is finite Pr[f : p] == 1/|tape| * sum_{h:tape} p (f h) == 1/|tape| * mass f p *) val mass: #a:Type -> f:(store -> M (a * id)) -> p:(a -> nat) -> nat let mass #a f p = sum (fun h -> let r,_ = f (to_id 0,h) in p r) val point: #a:eqtype -> x:a -> y:option a -> nat let point #a x = fun y -> if y = Some x then 1 else 0 (** If there exists a bijection over tapes such that `p1` evaluated on the result of `c1` is less than or equal to `p2` evaluated on the result of `c2`, then the measure of `p1` wrt `c1` is less than or equal to the measure of `p2` wrt `c2` *) val pr_leq: #a:Type -> #b:Type -> c1:(store -> M (a * id)) -> c2:(store -> M (b * id)) -> p1:(a -> nat) -> p2:(b -> nat) -> bij:bijection -> Lemma (requires (forall t. let r1,_ = c1 (to_id 0,t) in let r2,_ = c2 (to_id 0,bij.f t) in p1 r1 <= p2 r2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c1: (_: FStar.DM4F.Random.store -> Prims.M (a * FStar.DM4F.Heap.Random.id)) -> c2: (_: FStar.DM4F.Random.store -> Prims.M (b * FStar.DM4F.Heap.Random.id)) -> p1: (_: a -> Prims.nat) -> p2: (_: b -> Prims.nat) -> bij: FStar.DM4F.Random.bijection -> FStar.Pervasives.Lemma (requires forall (t: FStar.DM4F.Heap.Random.tape). let _ = c1 (FStar.DM4F.Heap.Random.to_id 0, t) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r1 _ = _ in let _ = c2 (FStar.DM4F.Heap.Random.to_id 0, Bijection?.f bij t) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r2 _ = _ in p1 r1 <= p2 r2) <: Type0) <: Type0) (ensures FStar.DM4F.Random.mass c1 p1 <= FStar.DM4F.Random.mass c2 p2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.Random.store", "FStar.Pervasives.Native.tuple2", "FStar.DM4F.Heap.Random.id", "Prims.nat", "FStar.DM4F.Random.bijection", "FStar.DM4F.Random.sum_extensional", "FStar.DM4F.Heap.Random.tape", "FStar.Pervasives.Native.Mktuple2", "FStar.DM4F.Heap.Random.to_id", "FStar.DM4F.Random.__proj__Bijection__item__f", "Prims.unit", "FStar.DM4F.Random.sum_bijection", "FStar.DM4F.Random.sum_monotonic", "FStar.DM4F.Random.inverse" ]
[]
false
false
true
false
false
let pr_leq #a #b c1 c2 p1 p2 bij =
let bij' = inverse bij in let f1 = (fun h -> let r1, _ = c1 (to_id 0, h) in p1 r1) in let f2 = (fun h -> let r2, _ = c2 (to_id 0, h) in p2 r2) in sum_monotonic f1 (fun h -> let r2, _ = c2 (to_id 0, bij.f h) in p2 r2); sum_bijection (fun h -> let r2, _ = c2 (to_id 0, bij.f h) in p2 r2) bij'; sum_extensional (fun h -> let r2, _ = c2 (to_id 0, bij.f (bij'.f h)) in p2 r2) f2
false
FStar.DM4F.Random.fst
FStar.DM4F.Random.pr_eq
val pr_eq: #a:Type -> #b:Type -> c1:(store -> M (a * id)) -> c2:(store -> M (b * id)) -> p1:(a -> nat) -> p2:(b -> nat) -> bij:bijection -> Lemma (requires (forall h. let r1,_ = c1 (to_id 0, h) in let r2,_ = c2 (to_id 0, bij.f h) in p1 r1 == p2 r2)) (ensures (mass c1 p1 == mass c2 p2))
val pr_eq: #a:Type -> #b:Type -> c1:(store -> M (a * id)) -> c2:(store -> M (b * id)) -> p1:(a -> nat) -> p2:(b -> nat) -> bij:bijection -> Lemma (requires (forall h. let r1,_ = c1 (to_id 0, h) in let r2,_ = c2 (to_id 0, bij.f h) in p1 r1 == p2 r2)) (ensures (mass c1 p1 == mass c2 p2))
let pr_eq #a #b c1 c2 p1 p2 bij = pr_leq c1 c2 p1 p2 bij; pr_leq c2 c1 p2 p1 (inverse bij)
{ "file_name": "examples/dm4free/FStar.DM4F.Random.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 178, "start_col": 0, "start_line": 176 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Random open FStar.DM4F.Heap.Random (* for some reason this `unfold` makes everything 25% faster *) unfold type store = id * tape (** Read-only tape with a pointer to the next unread position *) type rand (a:Type) = (id * tape) -> M (option a * id) let return (a:Type) (x:a) : rand a = fun (next,_) -> Some x, next let bind (a b:Type) (c:rand a) (f:a -> rand b) : rand b = fun s -> let r, next' = c s in match r with | None -> None, next' | Some x -> f x (next', snd s) (* // Tm_refine is outside of the definition language: ... let sample () : rand elem = fun store -> let next, t = store in if incrementable next then (Some (index t next), incr next) else (None, next) *) (** Get store *) let get () : rand store = fun s -> Some s, fst s (** Update tape pointer *) let put i : rand unit = fun _ -> Some (), i (** Raise exception *) let raise (a:Type) () : rand a = fun s -> None, fst s total reifiable reflectable new_effect { RAND: a:Type -> Effect with repr = rand ; bind = bind ; return = return ; get = get ; put = put ; raise = raise } effect Rand (a:Type) = RAND a (fun initial_tape post -> forall (x:option a * id). post x) (** If not past the end of the tape, read a value and advance pointer *) reifiable val sample: unit -> RAND elem (fun (next,t) p -> if incrementable next then p (Some (index t next), incr next) else p (None, next)) let sample () = let next, t = RAND?.get () in if incrementable next then begin RAND?.put (incr next); index t next end else RAND?.raise elem () (* GM: This is failing now... I couldn't make it go through even trying to * manually trigger reification. *) let test_sample_some (v:elem) (t:tape{sel t (to_id 0) == v}) = let f = reify (sample ()) in admit (); assert (f (to_id 0,t) == (Some v, to_id 1)) let test_sample_none (v:elem) (t:tape) = let f = reify (sample ()) in admit (); assert (f (to_id 9,t) == (None, to_id 9)) (** Bijection over tapes, the inverse function acts as a witness *) noeq type bijection = | Bijection: f:(tape -> tape) -> finv:(tape -> tape){forall (h:tape). equal (f (finv h)) h /\ equal (finv (f h)) h} -> bijection (** Inverse of a bijection *) let inverse (bij:bijection) : bijection = Bijection bij.finv bij.f (** Assume `sum` over `tape`. Definable as long as tape is finite *) assume val sum: f:(tape -> nat) -> nat (** Reordering terms in a sum doesn't change the result *) assume val sum_bijection: f:(tape -> nat) -> bij:bijection -> Lemma (sum f == sum (fun h -> f (bij.f h))) (** The sum of non-negative function is monotonic *) assume val sum_monotonic: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h <= g h)) (ensures (sum f <= sum g)) (** Corollary *) val sum_extensional: f:(tape -> nat) -> g:(tape -> nat) -> Lemma (requires (forall h. f h == g h)) (ensures (sum f == sum g)) let sum_extensional f g = sum_monotonic f g; sum_monotonic g f (** Unnormalized measure of a function `p` wrt the denotation of a probabilistic computation `f`. Assumes that the initial random tape is uniformly distributed When `p:a -> {0,1}` and `tape` is finite Pr[f : p] == 1/|tape| * sum_{h:tape} p (f h) == 1/|tape| * mass f p *) val mass: #a:Type -> f:(store -> M (a * id)) -> p:(a -> nat) -> nat let mass #a f p = sum (fun h -> let r,_ = f (to_id 0,h) in p r) val point: #a:eqtype -> x:a -> y:option a -> nat let point #a x = fun y -> if y = Some x then 1 else 0 (** If there exists a bijection over tapes such that `p1` evaluated on the result of `c1` is less than or equal to `p2` evaluated on the result of `c2`, then the measure of `p1` wrt `c1` is less than or equal to the measure of `p2` wrt `c2` *) val pr_leq: #a:Type -> #b:Type -> c1:(store -> M (a * id)) -> c2:(store -> M (b * id)) -> p1:(a -> nat) -> p2:(b -> nat) -> bij:bijection -> Lemma (requires (forall t. let r1,_ = c1 (to_id 0,t) in let r2,_ = c2 (to_id 0,bij.f t) in p1 r1 <= p2 r2)) (ensures (mass c1 p1 <= mass c2 p2)) let pr_leq #a #b c1 c2 p1 p2 bij = let bij' = inverse bij in let f1 = (fun h -> let r1,_ = c1 (to_id 0,h) in p1 r1) in let f2 = (fun h -> let r2,_ = c2 (to_id 0,h) in p2 r2) in sum_monotonic f1 (fun h -> let r2,_ = c2 (to_id 0,bij.f h) in p2 r2); sum_bijection (fun h -> let r2,_ = c2 (to_id 0,bij.f h) in p2 r2) bij'; sum_extensional (fun h -> let r2,_ = c2 (to_id 0,bij.f (bij'.f h)) in p2 r2) f2 (** Corollary *) val pr_eq: #a:Type -> #b:Type -> c1:(store -> M (a * id)) -> c2:(store -> M (b * id)) -> p1:(a -> nat) -> p2:(b -> nat) -> bij:bijection -> Lemma (requires (forall h. let r1,_ = c1 (to_id 0, h) in let r2,_ = c2 (to_id 0, bij.f h) in p1 r1 == p2 r2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.Heap.Random.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Random.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.Random", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c1: (_: FStar.DM4F.Random.store -> Prims.M (a * FStar.DM4F.Heap.Random.id)) -> c2: (_: FStar.DM4F.Random.store -> Prims.M (b * FStar.DM4F.Heap.Random.id)) -> p1: (_: a -> Prims.nat) -> p2: (_: b -> Prims.nat) -> bij: FStar.DM4F.Random.bijection -> FStar.Pervasives.Lemma (requires forall (h: FStar.DM4F.Heap.Random.tape). let _ = c1 (FStar.DM4F.Heap.Random.to_id 0, h) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r1 _ = _ in let _ = c2 (FStar.DM4F.Heap.Random.to_id 0, Bijection?.f bij h) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r2 _ = _ in p1 r1 == p2 r2) <: Type0) <: Type0) (ensures FStar.DM4F.Random.mass c1 p1 == FStar.DM4F.Random.mass c2 p2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.Random.store", "FStar.Pervasives.Native.tuple2", "FStar.DM4F.Heap.Random.id", "Prims.nat", "FStar.DM4F.Random.bijection", "FStar.DM4F.Random.pr_leq", "FStar.DM4F.Random.inverse", "Prims.unit" ]
[]
true
false
true
false
false
let pr_eq #a #b c1 c2 p1 p2 bij =
pr_leq c1 c2 p1 p2 bij; pr_leq c2 c1 p2 p1 (inverse bij)
false
Pulse.C.Types.Fields.fsti
Pulse.C.Types.Fields.field_description_cons0
val field_description_cons0 (fn #ft #fc: Type0) (n: string) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc))
val field_description_cons0 (fn #ft #fc: Type0) (n: string) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc))
let field_description_cons0 (fn: Type0) (#ft: Type0) (#fc: Type0) (n: string) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc)) = { fd_def = (fun n' -> n = n' || fd.fd_def n'); fd_empty = false; fd_type = (fun n' -> if n = n' then ft else fd.fd_type n'); fd_typedef = (fun n' -> if n = n' then t else fd.fd_typedef n'); }
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Fields.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 3, "end_line": 49, "start_col": 0, "start_line": 41 }
module Pulse.C.Types.Fields include Pulse.C.Types.Base open Pulse.C.Typestring open Pulse.Lib.Pervasives [@@noextract_to "krml"] // tactic let norm_fields () : FStar.Tactics.Tac unit = FStar.Tactics.norm [delta_attr [`%norm_field_attr]; iota; zeta; primops]; FStar.Tactics.trefl () [@@noextract_to "krml"] // primitive val field_t_nil: Type0 [@@noextract_to "krml"] // primitive val field_t_cons (fn: Type0) (ft: Type0) (fc: Type0): Type0 inline_for_extraction [@@noextract_to "krml"; norm_field_attr] noeq type field_description_t (t: Type0) : Type u#1 = { fd_def: (string -> GTot bool); fd_empty: (fd_empty: bool { fd_empty == true <==> (forall s . fd_def s == false) }); fd_type: (string -> Type0); fd_typedef: ((s: string) -> Pure (typedef (fd_type s)) (requires (fd_def s)) (ensures (fun _ -> True))); } inline_for_extraction [@@noextract_to "krml"; norm_field_attr] let nonempty_field_description_t (t: Type0) = (fd: field_description_t t { fd.fd_empty == false }) [@@noextract_to "krml"] // proof-only let field_t (#t: Type0) (fd: field_description_t t) : Tot eqtype = (s: string { fd.fd_def s }) inline_for_extraction [@@noextract_to "krml"] let field_description_nil : field_description_t field_t_nil = { fd_def = (fun _ -> false); fd_empty = true; fd_type = (fun _ -> unit); fd_typedef = (fun _ -> false_elim ()); }
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "Pulse.C.Typestring.fsti.checked", "Pulse.C.Types.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Fields.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Typestring", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fn: Type0 -> n: Prims.string -> t: Pulse.C.Types.Base.typedef ft -> fd: Pulse.C.Types.Fields.field_description_t fc -> Pulse.C.Types.Fields.nonempty_field_description_t (Pulse.C.Types.Fields.field_t_cons fn ft fc)
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Pulse.C.Types.Base.typedef", "Pulse.C.Types.Fields.field_description_t", "Pulse.C.Types.Fields.Mkfield_description_t", "Pulse.C.Types.Fields.field_t_cons", "Prims.op_BarBar", "Prims.op_Equality", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_def", "Prims.bool", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_type", "Pulse.C.Types.Fields.__proj__Mkfield_description_t__item__fd_typedef", "Pulse.C.Types.Fields.nonempty_field_description_t" ]
[]
false
false
false
true
false
let field_description_cons0 (fn #ft #fc: Type0) (n: string) (t: typedef ft) (fd: field_description_t fc) : Tot (nonempty_field_description_t (field_t_cons fn ft fc)) =
{ fd_def = (fun n' -> n = n' || fd.fd_def n'); fd_empty = false; fd_type = (fun n' -> if n = n' then ft else fd.fd_type n'); fd_typedef = (fun n' -> if n = n' then t else fd.fd_typedef n') }
false
Pulse.Checker.Admit.fst
Pulse.Checker.Admit.check
val check (g:env) (pre:term) (pre_typing:tot_typing g pre tm_vprop) (post_hint:post_hint_opt g) (res_ppname:ppname) (t:st_term { Tm_Admit? t.term }) : T.Tac (checker_result_t g pre post_hint)
val check (g:env) (pre:term) (pre_typing:tot_typing g pre tm_vprop) (post_hint:post_hint_opt g) (res_ppname:ppname) (t:st_term { Tm_Admit? t.term }) : T.Tac (checker_result_t g pre post_hint)
let check (g:env) (pre:term) (pre_typing:tot_typing g pre tm_vprop) (post_hint:post_hint_opt g) (res_ppname:ppname) (t:st_term { Tm_Admit? t.term }) : T.Tac (checker_result_t g pre post_hint) = let Tm_Admit r = t.term in match post_hint with | Some p -> let ct = ctag_of_effect_annot p.effect_annot in check_core g pre pre_typing post_hint res_ppname ({ t with term=Tm_Admit {r with ctag=ct}}) | _ -> check_core g pre pre_typing post_hint res_ppname t
{ "file_name": "lib/steel/pulse/Pulse.Checker.Admit.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 56, "end_line": 111, "start_col": 0, "start_line": 96 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Admit module T = FStar.Tactics.V2 open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Pure open Pulse.Checker.Base open Pulse.Checker.Prover module P = Pulse.Syntax.Printer let post_hint_compatible (p:option post_hint_t) (x:var) (t:term) (u:universe) (post:vprop) = match p with | None -> True | Some p -> p.post== close_term post x /\ p.u == u /\ p.ret_ty == t let check_core (g:env) (pre:term) (pre_typing:tot_typing g pre tm_vprop) (post_hint:post_hint_opt g) (res_ppname:ppname) (t:st_term { Tm_Admit? t.term }) : T.Tac (checker_result_t g pre post_hint) = let g = Pulse.Typing.Env.push_context g "check_admit" t.range in let Tm_Admit { ctag = c; typ=t; post } = t.term in let x = fresh g in let px = v_as_nv x in let res : (t:term & u:universe & universe_of g t u & post:vprop { post_hint_compatible post_hint x t u post } & tot_typing (push_binding g x (fst px) t) post tm_vprop) = match post, post_hint with | None, None -> fail g None "could not find a post annotation on admit, please add one" | Some post1, Some post2 -> fail g None (Printf.sprintf "found two post annotations on admit: %s and %s, please remove one" (P.term_to_string post1) (P.term_to_string post2.post)) | Some post, _ -> let (| u, t_typing |) = check_universe g t in let post_opened = open_term_nv post px in let (| post, post_typing |) = check_tot_term (push_binding g x (fst px) t) post_opened tm_vprop in (| t, u, t_typing, post, post_typing |) | _, Some post -> let post : post_hint_t = post in if x `Set.mem` freevars post.post then fail g None "Impossible: unexpected freevar clash in Tm_Admit, please file a bug-report" else ( let post_typing_rec = post_hint_typing g post x in let post_opened = open_term_nv post.post px in assume (close_term post_opened x == post.post); (| post.ret_ty, post.u, post_typing_rec.ty_typing, post_opened, post_typing_rec.post_typing |) ) in let (| t, u, t_typing, post_opened, post_typing |) = res in let post = close_term post_opened x in let s : st_comp = {u;res=t;pre;post} in assume (open_term (close_term post_opened x) x == post_opened); let d = T_Admit _ _ c (STC _ s x t_typing pre_typing post_typing) in prove_post_hint (try_frame_pre pre_typing (match_comp_res_with_post_hint d post_hint) res_ppname) post_hint t.range
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Admit.fst" }
[ { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> pre: Pulse.Syntax.Base.term -> pre_typing: Pulse.Typing.tot_typing g pre Pulse.Syntax.Base.tm_vprop -> post_hint: Pulse.Typing.post_hint_opt g -> res_ppname: Pulse.Syntax.Base.ppname -> t: Pulse.Syntax.Base.st_term{Tm_Admit? (Mkst_term?.term t)} -> FStar.Tactics.Effect.Tac (Pulse.Checker.Base.checker_result_t g pre post_hint)
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Pulse.Typing.tot_typing", "Pulse.Syntax.Base.tm_vprop", "Pulse.Typing.post_hint_opt", "Pulse.Syntax.Base.ppname", "Pulse.Syntax.Base.st_term", "Prims.b2t", "Pulse.Syntax.Base.uu___is_Tm_Admit", "Pulse.Syntax.Base.__proj__Mkst_term__item__term", "Pulse.Syntax.Base.st_term'__Tm_Admit__payload", "Pulse.Typing.post_hint_t", "Pulse.Checker.Admit.check_core", "Pulse.Syntax.Base.Mkst_term", "Pulse.Syntax.Base.Tm_Admit", "Pulse.Syntax.Base.Mkst_term'__Tm_Admit__payload", "Pulse.Syntax.Base.__proj__Mkst_term'__Tm_Admit__payload__item__u", "Pulse.Syntax.Base.__proj__Mkst_term'__Tm_Admit__payload__item__typ", "Pulse.Syntax.Base.__proj__Mkst_term'__Tm_Admit__payload__item__post", "Pulse.Syntax.Base.__proj__Mkst_term__item__range", "Pulse.Syntax.Base.__proj__Mkst_term__item__effect_tag", "Pulse.Checker.Base.checker_result_t", "Pulse.Syntax.Base.ctag", "Pulse.Syntax.Base.ctag_of_effect_annot", "Pulse.Typing.__proj__Mkpost_hint_t__item__effect_annot", "FStar.Pervasives.Native.option", "Pulse.Syntax.Base.st_term'" ]
[]
false
true
false
false
false
let check (g: env) (pre: term) (pre_typing: tot_typing g pre tm_vprop) (post_hint: post_hint_opt g) (res_ppname: ppname) (t: st_term{Tm_Admit? t.term}) : T.Tac (checker_result_t g pre post_hint) =
let Tm_Admit r = t.term in match post_hint with | Some p -> let ct = ctag_of_effect_annot p.effect_annot in check_core g pre pre_typing post_hint res_ppname ({ t with term = Tm_Admit ({ r with ctag = ct }) }) | _ -> check_core g pre pre_typing post_hint res_ppname t
false
C.Compat.Loops.fst
C.Compat.Loops.for
val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish)))
val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish)))
let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 5, "end_line": 57, "start_col": 0, "start_line": 51 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start)))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
start: FStar.UInt32.t -> finish: FStar.UInt32.t{FStar.UInt32.v finish >= FStar.UInt32.v start} -> inv: (_: FStar.Monotonic.HyperStack.mem -> _: Prims.nat -> Type0) -> f: ( i: FStar.UInt32.t { FStar.UInt32.v start <= FStar.UInt32.v i /\ FStar.UInt32.v i < FStar.UInt32.v finish } -> FStar.HyperStack.ST.Stack Prims.unit) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.unit", "Prims.op_Addition", "Prims.op_Equality", "Prims.bool", "C.Compat.Loops.for", "FStar.UInt32.op_Plus_Hat", "FStar.UInt32.__uint_to_t" ]
[ "recursion" ]
false
true
false
false
false
let rec for start finish inv f =
if start = finish then () else (f start; for (let open UInt32 in start +^ 1ul) finish inv f)
false
Pulse.Checker.Admit.fst
Pulse.Checker.Admit.post_hint_compatible
val post_hint_compatible : p: FStar.Pervasives.Native.option Pulse.Typing.post_hint_t -> x: Pulse.Syntax.Base.var -> t: Pulse.Syntax.Base.term -> u13: Pulse.Syntax.Base.universe -> post: Pulse.Syntax.Base.vprop -> Prims.logical
let post_hint_compatible (p:option post_hint_t) (x:var) (t:term) (u:universe) (post:vprop) = match p with | None -> True | Some p -> p.post== close_term post x /\ p.u == u /\ p.ret_ty == t
{ "file_name": "lib/steel/pulse/Pulse.Checker.Admit.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 17, "end_line": 35, "start_col": 0, "start_line": 29 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Admit module T = FStar.Tactics.V2 open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Pure open Pulse.Checker.Base open Pulse.Checker.Prover module P = Pulse.Syntax.Printer
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Admit.fst" }
[ { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.Pervasives.Native.option Pulse.Typing.post_hint_t -> x: Pulse.Syntax.Base.var -> t: Pulse.Syntax.Base.term -> u13: Pulse.Syntax.Base.universe -> post: Pulse.Syntax.Base.vprop -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.option", "Pulse.Typing.post_hint_t", "Pulse.Syntax.Base.var", "Pulse.Syntax.Base.term", "Pulse.Syntax.Base.universe", "Pulse.Syntax.Base.vprop", "Prims.l_True", "Prims.l_and", "Prims.eq2", "Pulse.Typing.__proj__Mkpost_hint_t__item__post", "Pulse.Syntax.Naming.close_term", "Pulse.Typing.__proj__Mkpost_hint_t__item__u", "Pulse.Typing.__proj__Mkpost_hint_t__item__ret_ty", "Prims.logical" ]
[]
false
false
false
true
true
let post_hint_compatible (p: option post_hint_t) (x: var) (t: term) (u: universe) (post: vprop) =
match p with | None -> True | Some p -> p.post == close_term post x /\ p.u == u /\ p.ret_ty == t
false
C.Compat.Loops.fst
C.Compat.Loops.reverse_for
val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish)))
val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish)))
let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 5, "end_line": 98, "start_col": 0, "start_line": 92 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start)))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
start: FStar.UInt32.t -> finish: FStar.UInt32.t{FStar.UInt32.v finish <= FStar.UInt32.v start} -> inv: (_: FStar.Monotonic.HyperStack.mem -> _: Prims.nat -> Type0) -> f: ( i: FStar.UInt32.t { FStar.UInt32.v start >= FStar.UInt32.v i /\ FStar.UInt32.v i > FStar.UInt32.v finish } -> FStar.HyperStack.ST.Stack Prims.unit) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "Prims.unit", "Prims.op_Subtraction", "Prims.op_Equality", "Prims.bool", "C.Compat.Loops.reverse_for", "FStar.UInt32.op_Subtraction_Hat", "FStar.UInt32.__uint_to_t" ]
[ "recursion" ]
false
true
false
false
false
let rec reverse_for start finish inv f =
if start = finish then () else (f start; reverse_for (let open UInt32 in start -^ 1ul) finish inv f)
false
C.Compat.Loops.fst
C.Compat.Loops.for64
val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish)))
val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish)))
let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 5, "end_line": 75, "start_col": 0, "start_line": 69 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start)))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
start: FStar.UInt64.t -> finish: FStar.UInt64.t{FStar.UInt64.v finish >= FStar.UInt64.v start} -> inv: (_: FStar.Monotonic.HyperStack.mem -> _: Prims.nat -> Type0) -> f: ( i: FStar.UInt64.t { FStar.UInt64.v start <= FStar.UInt64.v i /\ FStar.UInt64.v i < FStar.UInt64.v finish } -> FStar.HyperStack.ST.Stack Prims.unit) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt64.t", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt64.v", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.unit", "Prims.op_Addition", "Prims.op_Equality", "Prims.bool", "C.Compat.Loops.for64", "FStar.UInt64.op_Plus_Hat", "FStar.UInt64.__uint_to_t" ]
[ "recursion" ]
false
true
false
false
false
let rec for64 start finish inv f =
if start = finish then () else (f start; for64 (let open UInt64 in start +^ 1uL) finish inv f)
false
C.Compat.Loops.fst
C.Compat.Loops.while
val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1))
val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1))
let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 5, "end_line": 169, "start_col": 0, "start_line": 165 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
$test: (_: Prims.unit -> FStar.HyperStack.ST.Stack Prims.bool) -> body: (_: Prims.unit -> FStar.HyperStack.ST.Stack Prims.unit) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.Monotonic.HyperStack.mem", "Prims.bool", "Prims.unit", "C.Compat.Loops.while" ]
[ "recursion" ]
false
true
false
false
false
let rec while #test_pre #test_post test body =
if test () then (body (); while #test_pre #test_post test body)
false
C.Compat.Loops.fst
C.Compat.Loops.interruptible_for
val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b)))
val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b)))
let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 46, "end_line": 125, "start_col": 0, "start_line": 118 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
start: FStar.UInt32.t -> finish: FStar.UInt32.t{FStar.UInt32.v finish >= FStar.UInt32.v start} -> inv: (_: FStar.Monotonic.HyperStack.mem -> _: Prims.nat -> _: Prims.bool -> Prims.GTot Type0) -> f: ( i: FStar.UInt32.t { FStar.UInt32.v start <= FStar.UInt32.v i /\ FStar.UInt32.v i < FStar.UInt32.v finish } -> FStar.HyperStack.ST.Stack Prims.bool) -> FStar.HyperStack.ST.Stack (FStar.UInt32.t * Prims.bool)
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Prims.bool", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "Prims.op_Equality", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "C.Compat.Loops.interruptible_for", "FStar.UInt32.op_Plus_Hat", "FStar.UInt32.__uint_to_t" ]
[ "recursion" ]
false
true
false
false
false
let rec interruptible_for start finish inv f =
if start = finish then (finish, false) else let start' = let open UInt32 in start +^ 1ul in if f start then (start', true) else interruptible_for start' finish inv f
false
C.Compat.Loops.fst
C.Compat.Loops.do_while
val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true))
val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true))
let rec do_while inv f = if not (f ()) then do_while inv f
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 18, "end_line": 145, "start_col": 0, "start_line": 143 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
inv: (_: FStar.Monotonic.HyperStack.mem -> _: Prims.bool -> Prims.GTot Type0) -> f: (_: Prims.unit -> FStar.HyperStack.ST.Stack Prims.bool) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.Monotonic.HyperStack.mem", "Prims.bool", "Prims.unit", "Prims.l_and", "C.Compat.Loops.do_while", "Prims.op_Negation" ]
[ "recursion" ]
false
true
false
false
false
let rec do_while inv f =
if not (f ()) then do_while inv f
false
Hacl.Impl.Curve25519.AddAndDouble.fst
Hacl.Impl.Curve25519.AddAndDouble.point_add_and_double
val point_add_and_double: #s:field_spec -> q:point s -> p01_tmp1:lbuffer (limb s) (8ul *! nlimb s) -> tmp2:felem_wide2 s -> Stack unit (requires fun h0 -> let nq = gsub p01_tmp1 0ul (2ul *! nlimb s) in let nq_p1 = gsub p01_tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in live h0 q /\ live h0 p01_tmp1 /\ live h0 tmp2 /\ disjoint q p01_tmp1 /\ disjoint q tmp2 /\ disjoint p01_tmp1 tmp2 /\ state_inv_t h0 (get_x q) /\ state_inv_t h0 (get_z q) /\ state_inv_t h0 (get_x nq) /\ state_inv_t h0 (get_z nq) /\ state_inv_t h0 (get_x nq_p1) /\ state_inv_t h0 (get_z nq_p1)) (ensures fun h0 _ h1 -> ( let nq = gsub p01_tmp1 0ul (2ul *! nlimb s) in let nq_p1 = gsub p01_tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in modifies (loc p01_tmp1 |+| loc tmp2) h0 h1 /\ state_inv_t h1 (get_x nq) /\ state_inv_t h1 (get_z nq) /\ state_inv_t h1 (get_x nq_p1) /\ state_inv_t h1 (get_z nq_p1) /\ (let p2, p3 = P.add_and_double (fget_xz h0 q) (fget_xz h0 nq) (fget_xz h0 nq_p1) in fget_xz h1 nq == p2 /\ fget_xz h1 nq_p1 == p3)))
val point_add_and_double: #s:field_spec -> q:point s -> p01_tmp1:lbuffer (limb s) (8ul *! nlimb s) -> tmp2:felem_wide2 s -> Stack unit (requires fun h0 -> let nq = gsub p01_tmp1 0ul (2ul *! nlimb s) in let nq_p1 = gsub p01_tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in live h0 q /\ live h0 p01_tmp1 /\ live h0 tmp2 /\ disjoint q p01_tmp1 /\ disjoint q tmp2 /\ disjoint p01_tmp1 tmp2 /\ state_inv_t h0 (get_x q) /\ state_inv_t h0 (get_z q) /\ state_inv_t h0 (get_x nq) /\ state_inv_t h0 (get_z nq) /\ state_inv_t h0 (get_x nq_p1) /\ state_inv_t h0 (get_z nq_p1)) (ensures fun h0 _ h1 -> ( let nq = gsub p01_tmp1 0ul (2ul *! nlimb s) in let nq_p1 = gsub p01_tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in modifies (loc p01_tmp1 |+| loc tmp2) h0 h1 /\ state_inv_t h1 (get_x nq) /\ state_inv_t h1 (get_z nq) /\ state_inv_t h1 (get_x nq_p1) /\ state_inv_t h1 (get_z nq_p1) /\ (let p2, p3 = P.add_and_double (fget_xz h0 q) (fget_xz h0 nq) (fget_xz h0 nq_p1) in fget_xz h1 nq == p2 /\ fget_xz h1 nq_p1 == p3)))
let point_add_and_double #s q p01_tmp1 tmp2 = let h0 = ST.get () in let nq : point s = sub p01_tmp1 0ul (2ul *! nlimb s) in let nq_p1 : point s = sub p01_tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in let tmp1 = sub p01_tmp1 (4ul *! nlimb s) (4ul *! nlimb s) in let x1 = sub q 0ul (nlimb s) in let x2 = sub nq 0ul (nlimb s) in let z2 = sub nq (nlimb s) (nlimb s) in let z3 = sub nq_p1 (nlimb s) (nlimb s) in let a : felem s = sub tmp1 0ul (nlimb s) in let b : felem s = sub tmp1 (nlimb s) (nlimb s) in let ab : felem2 s = sub tmp1 0ul (2ul *! nlimb s) in let dc : felem2 s = sub tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in fadd a x2 z2; // a = x2 + z2 fsub b x2 z2; // b = x2 - z2 point_add_and_double0 #s nq_p1 ab dc tmp2; point_add_and_double1 #s nq nq_p1 tmp1 tmp2; fmul z3 z3 x1 tmp2; // z3 = x1 * (da - cb) ^ 2 S.lemma_add_and_double (fget_xz h0 q) (fget_xz h0 nq) (fget_xz h0 nq_p1)
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.AddAndDouble.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 74, "end_line": 192, "start_col": 0, "start_line": 170 }
module Hacl.Impl.Curve25519.AddAndDouble open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Curve25519.Fields module ST = FStar.HyperStack.ST module F51 = Hacl.Impl.Curve25519.Field51 module F64 = Hacl.Impl.Curve25519.Field64 module P = Spec.Curve25519 module S = Hacl.Spec.Curve25519.AddAndDouble #reset-options "--z3rlimit 300 --fuel 0 --ifuel 1 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let point (s:field_spec) = lbuffer (limb s) (nlimb s +! nlimb s) (* NEEDED ONLY FOR WRAPPERS *) inline_for_extraction noextract let point51 = lbuffer uint64 10ul inline_for_extraction noextract let point64 = lbuffer uint64 8ul (* NEEDED ONLY FOR WRAPPERS *) let get_x #s (p:point s) = gsub p 0ul (nlimb s) let get_z #s (p:point s) = gsub p (nlimb s) (nlimb s) let fget_x (#s:field_spec) (h:mem) (p:point s) = feval h (gsub p 0ul (nlimb s)) let fget_z (#s:field_spec) (h:mem) (p:point s) = feval h (gsub p (nlimb s) (nlimb s)) let fget_xz (#s:field_spec) (h:mem) (p:point s) = fget_x h p, fget_z h p val point_post_sub_t:#s:field_spec -> h:mem -> f:felem s -> Type0 let point_post_sub_t #s h f = match s with | M51 -> F51.felem_fits h f (9, 10, 9, 9, 9) | M64 -> True val point_post_add_t:#s:field_spec -> h:mem -> f:felem s -> Type0 let point_post_add_t #s h f = match s with | M51 -> F51.felem_fits h f (2, 4, 2, 2, 2) | M64 -> True val point_add_and_double0: #s:field_spec -> nq_p1:point s -> ab:lbuffer (limb s) (2ul *! nlimb s) -> dc:lbuffer (limb s) (2ul *! nlimb s) -> tmp2:felem_wide2 s -> Stack unit (requires fun h0 -> live h0 nq_p1 /\ live h0 ab /\ live h0 dc /\ live h0 tmp2 /\ disjoint nq_p1 ab /\ disjoint nq_p1 dc /\ disjoint nq_p1 tmp2 /\ disjoint ab dc /\ disjoint ab tmp2 /\ disjoint dc tmp2 /\ state_inv_t h0 (get_x nq_p1) /\ state_inv_t h0 (get_z nq_p1) /\ point_post_add_t h0 (gsub ab 0ul (nlimb s)) /\ point_post_sub_t h0 (gsub ab (nlimb s) (nlimb s))) (ensures fun h0 _ h1 -> modifies (loc nq_p1 |+| loc dc |+| loc tmp2) h0 h1 /\ point_post_add_t h1 (get_x nq_p1) /\ point_post_sub_t h1 (get_z nq_p1) /\ fget_xz h1 nq_p1 == S.add_and_double1_0 (fget_x h0 ab) (fget_z h0 ab) (fget_xz h0 nq_p1)) [@ Meta.Attribute.inline_ ] let point_add_and_double0 #s nq_p1 ab dc tmp2 = let x3 = sub nq_p1 0ul (nlimb s) in let z3 = sub nq_p1 (nlimb s) (nlimb s) in let a : felem s = sub ab 0ul (nlimb s) in let b : felem s = sub ab (nlimb s) (nlimb s) in let d : felem s = sub dc 0ul (nlimb s) in let c : felem s = sub dc (nlimb s) (nlimb s) in fadd c x3 z3; // c = x3 + z3 fsub d x3 z3; // d = x3 - z3 (* CAN RUN IN PARALLEL *) //fmul d d a; // d = da = d * a //fmul c c b; // c = cb = c * b fmul2 dc dc ab tmp2; // d|c = d*a|c*b fadd x3 d c; // x3 = da + cb fsub z3 d c // z3 = da - cb val point_add_and_double1: #s:field_spec -> nq:point s -> nq_p1:point s -> tmp1:lbuffer (limb s) (4ul *! nlimb s) -> tmp2:felem_wide2 s -> Stack unit (requires fun h0 -> live h0 nq /\ live h0 nq_p1 /\ live h0 tmp1 /\ live h0 tmp2 /\ disjoint nq nq_p1 /\ disjoint nq tmp1 /\ disjoint nq tmp2 /\ disjoint nq_p1 tmp1 /\ disjoint nq_p1 tmp2 /\ disjoint tmp1 tmp2 /\ state_inv_t h0 (get_x nq) /\ state_inv_t h0 (get_z nq) /\ point_post_add_t h0 (gsub tmp1 0ul (nlimb s)) /\ point_post_sub_t h0 (gsub tmp1 (nlimb s) (nlimb s)) /\ point_post_add_t h0 (get_x nq_p1) /\ point_post_sub_t h0 (get_z nq_p1)) (ensures fun h0 _ h1 -> modifies (loc nq |+| loc nq_p1 |+| loc tmp1 |+| loc tmp2) h0 h1 /\ state_inv_t h1 (get_x nq) /\ state_inv_t h1 (get_z nq) /\ state_inv_t h1 (get_x nq_p1) /\ state_inv_t h1 (get_z nq_p1) /\ (fget_xz h1 nq, fget_xz h1 nq_p1) == S.add_and_double1_1 (feval h0 (gsub tmp1 0ul (nlimb s))) (feval h0 (gsub tmp1 (nlimb s) (nlimb s))) (fget_xz h0 nq_p1)) [@ Meta.Attribute.inline_ ] let point_add_and_double1 #s nq nq_p1 tmp1 tmp2 = let x2 = sub nq 0ul (nlimb s) in let z2 = sub nq (nlimb s) (nlimb s) in let x3 = sub nq_p1 0ul (nlimb s) in let z3 = sub nq_p1 (nlimb s) (nlimb s) in let a : felem s = sub tmp1 0ul (nlimb s) in let b : felem s = sub tmp1 (nlimb s) (nlimb s) in let d : felem s = sub tmp1 (2ul *! nlimb s) (nlimb s) in let c : felem s = sub tmp1 (3ul *! nlimb s) (nlimb s) in let ab : felem2 s = sub tmp1 0ul (2ul *! nlimb s) in let dc : felem2 s = sub tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in (* CAN RUN IN PARALLEL *) //fsqr d a; // d = aa = a^2 //fsqr c b; // c = bb = b^2 fsqr2 dc ab tmp2; // d|c = aa | bb (* CAN RUN IN PARALLEL *) //fsqr x3 x3; // x3 = (da + cb) ^ 2 //fsqr z3 z3; // z3 = (da - cb) ^ 2 fsqr2 nq_p1 nq_p1 tmp2; // x3|z3 = x3*x3|z3*z3 copy_felem a c; // a = bb fsub c d c; // c = e = aa - bb assert_norm (121665 < pow2 17); fmul1 b c (u64 121665); // b = e * 121665 fadd b b d; // b = (e * 121665) + aa (* CAN RUN IN PARALLEL *) //fmul x2 d a; // x2 = aa * bb //fmul z2 c b; // z2 = e * (aa + (e * 121665)) fmul2 nq dc ab tmp2 // x2|z2 = aa * bb | e * (aa + (e * 121665)) val point_add_and_double: #s:field_spec -> q:point s -> p01_tmp1:lbuffer (limb s) (8ul *! nlimb s) -> tmp2:felem_wide2 s -> Stack unit (requires fun h0 -> let nq = gsub p01_tmp1 0ul (2ul *! nlimb s) in let nq_p1 = gsub p01_tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in live h0 q /\ live h0 p01_tmp1 /\ live h0 tmp2 /\ disjoint q p01_tmp1 /\ disjoint q tmp2 /\ disjoint p01_tmp1 tmp2 /\ state_inv_t h0 (get_x q) /\ state_inv_t h0 (get_z q) /\ state_inv_t h0 (get_x nq) /\ state_inv_t h0 (get_z nq) /\ state_inv_t h0 (get_x nq_p1) /\ state_inv_t h0 (get_z nq_p1)) (ensures fun h0 _ h1 -> ( let nq = gsub p01_tmp1 0ul (2ul *! nlimb s) in let nq_p1 = gsub p01_tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in modifies (loc p01_tmp1 |+| loc tmp2) h0 h1 /\ state_inv_t h1 (get_x nq) /\ state_inv_t h1 (get_z nq) /\ state_inv_t h1 (get_x nq_p1) /\ state_inv_t h1 (get_z nq_p1) /\ (let p2, p3 = P.add_and_double (fget_xz h0 q) (fget_xz h0 nq) (fget_xz h0 nq_p1) in fget_xz h1 nq == p2 /\ fget_xz h1 nq_p1 == p3))) #push-options "--z3rlimit 450"
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.AddAndDouble.fst.checked", "Hacl.Impl.Curve25519.Fields.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.AddAndDouble.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.AddAndDouble", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 450, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Hacl.Impl.Curve25519.AddAndDouble.point s -> p01_tmp1: Lib.Buffer.lbuffer (Hacl.Impl.Curve25519.Fields.Core.limb s) (8ul *! Hacl.Impl.Curve25519.Fields.Core.nlimb s) -> tmp2: Hacl.Impl.Curve25519.Fields.Core.felem_wide2 s -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "Hacl.Impl.Curve25519.AddAndDouble.point", "Lib.Buffer.lbuffer", "Hacl.Impl.Curve25519.Fields.Core.limb", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Curve25519.Fields.Core.nlimb", "Hacl.Impl.Curve25519.Fields.Core.felem_wide2", "Hacl.Spec.Curve25519.AddAndDouble.lemma_add_and_double", "Hacl.Impl.Curve25519.AddAndDouble.fget_xz", "Prims.unit", "Hacl.Impl.Curve25519.Fields.Core.fmul", "Hacl.Impl.Curve25519.AddAndDouble.point_add_and_double1", "Hacl.Impl.Curve25519.AddAndDouble.point_add_and_double0", "Hacl.Impl.Curve25519.Fields.Core.fsub", "Hacl.Impl.Curve25519.Fields.Core.fadd", "Hacl.Impl.Curve25519.Fields.Core.felem2", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Lib.Buffer.lbuffer_t", "Hacl.Impl.Curve25519.Fields.Core.felem", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.mul", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let point_add_and_double #s q p01_tmp1 tmp2 =
let h0 = ST.get () in let nq:point s = sub p01_tmp1 0ul (2ul *! nlimb s) in let nq_p1:point s = sub p01_tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in let tmp1 = sub p01_tmp1 (4ul *! nlimb s) (4ul *! nlimb s) in let x1 = sub q 0ul (nlimb s) in let x2 = sub nq 0ul (nlimb s) in let z2 = sub nq (nlimb s) (nlimb s) in let z3 = sub nq_p1 (nlimb s) (nlimb s) in let a:felem s = sub tmp1 0ul (nlimb s) in let b:felem s = sub tmp1 (nlimb s) (nlimb s) in let ab:felem2 s = sub tmp1 0ul (2ul *! nlimb s) in let dc:felem2 s = sub tmp1 (2ul *! nlimb s) (2ul *! nlimb s) in fadd a x2 z2; fsub b x2 z2; point_add_and_double0 #s nq_p1 ab dc tmp2; point_add_and_double1 #s nq nq_p1 tmp1 tmp2; fmul z3 z3 x1 tmp2; S.lemma_add_and_double (fget_xz h0 q) (fget_xz h0 nq) (fget_xz h0 nq_p1)
false
C.Compat.Loops.fst
C.Compat.Loops.interruptible_reverse_for
val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b)))
val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b)))
let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 54, "end_line": 197, "start_col": 0, "start_line": 190 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
start: FStar.UInt32.t -> finish: FStar.UInt32.t{FStar.UInt32.v finish <= FStar.UInt32.v start} -> inv: (_: FStar.Monotonic.HyperStack.mem -> _: Prims.nat -> _: Prims.bool -> Prims.GTot Type0) -> f: ( i: FStar.UInt32.t { FStar.UInt32.v start >= FStar.UInt32.v i /\ FStar.UInt32.v i > FStar.UInt32.v finish } -> FStar.HyperStack.ST.Stack Prims.bool) -> FStar.HyperStack.ST.Stack (FStar.UInt32.t * Prims.bool)
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Prims.bool", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.op_Equality", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "C.Compat.Loops.interruptible_reverse_for", "FStar.UInt32.op_Subtraction_Hat", "FStar.UInt32.__uint_to_t" ]
[ "recursion" ]
false
true
false
false
false
let rec interruptible_reverse_for start finish inv f =
if start = finish then (finish, false) else let start' = let open UInt32 in start -^ 1ul in if f start then (start', true) else interruptible_reverse_for start' finish inv f
false
C.Compat.Loops.fst
C.Compat.Loops.total_while_gen
val total_while_gen (#t: Type) (#a: (t -> Type)) (tmes: (x: t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ (if tcontinue y then tmes y << tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x))
val total_while_gen (#t: Type) (#a: (t -> Type)) (tmes: (x: t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ (if tcontinue y then tmes y << tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x))
let rec total_while_gen (#t: Type) (#a:t -> Type) (tmes: (x:t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t) -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ ( if tcontinue y then tmes y << tmes x else True) ))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) = let y = body x in let continue = tcontinue y in if continue then total_while_gen tmes tinv tcontinue body y else y
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 8, "end_line": 469, "start_col": 0, "start_line": 446 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies_1 in1 h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) )) inline_for_extraction let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies_1 in1 h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) #reset-options "--initial_fuel 2 --max_fuel 2 --z3rlimit 20" (* Repeating the same operation a number of times over a buffer ***************) #reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** To be extracted as: * for (int i = 0; i < n; ++i) * f(b[i]); *) inline_for_extraction val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_spec (UInt32.v max) f s) )) inline_for_extraction let repeat #a l f b max fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == repeat_spec i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b; lemma_repeat (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_0 0 f (as_seq h0 b); for 0ul max inv f' (** To be extracted as: * for (int i = min; i < max; ++i) * f(b[i], i); *) inline_for_extraction val repeat_range: #a:Type0 -> l: UInt32.t -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> i:nat{i < UInt32.v max} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> fc:(b:buffer a{length b = UInt32.v l} -> i:UInt32.t{UInt32.v i < UInt32.v max} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0 (UInt32.v i))))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_range_spec (UInt32.v min) (UInt32.v max) f s) )) inline_for_extraction let repeat_range #a l min max f b fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ UInt32.v min <= i /\ as_seq h1 b == repeat_range_spec (UInt32.v min) i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b i; lemma_repeat_range_spec (UInt32.v min) (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_range_0 (UInt32.v min) f (as_seq h0 b); for min max inv f'
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmes: (x: t -> Prims.GTot (a x)) -> tinv: (_: Prims.bool -> _: t -> Prims.GTot Type0) -> tcontinue: (_: t -> Prims.bool) -> body: (x: t -> Prims.Pure t) -> x: t -> Prims.Pure t
Prims.Pure
[ "" ]
[]
[ "Prims.bool", "Prims.l_and", "Prims.precedes", "Prims.l_True", "Prims.logical", "C.Compat.Loops.total_while_gen" ]
[ "recursion" ]
false
false
false
false
false
let rec total_while_gen (#t: Type) (#a: (t -> Type)) (tmes: (x: t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ (if tcontinue y then tmes y << tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) =
let y = body x in let continue = tcontinue y in if continue then total_while_gen tmes tinv tcontinue body y else y
false
C.Compat.Loops.fst
C.Compat.Loops.total_while
val total_while (#t: Type) (tmes: (t -> GTot nat)) (tinv: (bool -> t -> GTot Type0)) (body: (x: t -> Pure (bool * t) (requires (tinv true x)) (ensures (fun (continue, y) -> tinv continue y /\ (if continue then tmes y < tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x))
val total_while (#t: Type) (tmes: (t -> GTot nat)) (tinv: (bool -> t -> GTot Type0)) (body: (x: t -> Pure (bool * t) (requires (tinv true x)) (ensures (fun (continue, y) -> tinv continue y /\ (if continue then tmes y < tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x))
let total_while (#t: Type) (tmes: (t -> GTot nat)) (tinv: (bool -> t -> GTot Type0)) (body: (x: t) -> Pure (bool * t) (requires (tinv true x)) (ensures (fun (continue, y) -> tinv continue y /\ ( if continue then tmes y < tmes x else True) ))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) = let (_, res) = total_while_gen (fun (_, x) -> tmes x) (fun b (b_, x) -> b == b_ /\ tinv b x) (fun (x, _) -> x) (fun (_, x) -> body x) (true, x) in res
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 5, "end_line": 497, "start_col": 0, "start_line": 472 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies_1 in1 h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) )) inline_for_extraction let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies_1 in1 h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) #reset-options "--initial_fuel 2 --max_fuel 2 --z3rlimit 20" (* Repeating the same operation a number of times over a buffer ***************) #reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** To be extracted as: * for (int i = 0; i < n; ++i) * f(b[i]); *) inline_for_extraction val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_spec (UInt32.v max) f s) )) inline_for_extraction let repeat #a l f b max fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == repeat_spec i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b; lemma_repeat (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_0 0 f (as_seq h0 b); for 0ul max inv f' (** To be extracted as: * for (int i = min; i < max; ++i) * f(b[i], i); *) inline_for_extraction val repeat_range: #a:Type0 -> l: UInt32.t -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> i:nat{i < UInt32.v max} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> fc:(b:buffer a{length b = UInt32.v l} -> i:UInt32.t{UInt32.v i < UInt32.v max} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0 (UInt32.v i))))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_range_spec (UInt32.v min) (UInt32.v max) f s) )) inline_for_extraction let repeat_range #a l min max f b fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ UInt32.v min <= i /\ as_seq h1 b == repeat_range_spec (UInt32.v min) i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b i; lemma_repeat_range_spec (UInt32.v min) (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_range_0 (UInt32.v min) f (as_seq h0 b); for min max inv f' let rec total_while_gen (#t: Type) (#a:t -> Type) (tmes: (x:t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t) -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ ( if tcontinue y then tmes y << tmes x else True) ))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) = let y = body x in let continue = tcontinue y in if continue then total_while_gen tmes tinv tcontinue body y else y
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmes: (_: t -> Prims.GTot Prims.nat) -> tinv: (_: Prims.bool -> _: t -> Prims.GTot Type0) -> body: (x: t -> Prims.Pure (Prims.bool * t)) -> x: t -> Prims.Pure t
Prims.Pure
[ "" ]
[]
[ "Prims.nat", "Prims.bool", "FStar.Pervasives.Native.tuple2", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.l_True", "Prims.logical", "C.Compat.Loops.total_while_gen", "Prims.eq2", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
false
false
false
false
let total_while (#t: Type) (tmes: (t -> GTot nat)) (tinv: (bool -> t -> GTot Type0)) (body: (x: t -> Pure (bool * t) (requires (tinv true x)) (ensures (fun (continue, y) -> tinv continue y /\ (if continue then tmes y < tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) =
let _, res = total_while_gen (fun (_, x) -> tmes x) (fun b (b_, x) -> b == b_ /\ tinv b x) (fun (x, _) -> x) (fun (_, x) -> body x) (true, x) in res
false
C.Compat.Loops.fst
C.Compat.Loops.in_place_map
val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) ))
val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) ))
let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b))
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 60, "end_line": 314, "start_col": 0, "start_line": 298 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Buffer.buffer a -> l: FStar.UInt32.t{FStar.UInt32.v l = FStar.Buffer.length b} -> f: (_: a -> a) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.Buffer.buffer", "FStar.UInt32.t", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "FStar.Buffer.length", "FStar.Seq.Base.lemma_eq_intro", "FStar.Buffer.as_seq", "Spec.Loops.seq_map", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "C.Compat.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Buffer.op_Array_Assignment", "FStar.Buffer.op_Array_Access", "Prims.nat", "FStar.Buffer.live", "FStar.Buffer.modifies_1", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "FStar.Buffer.get" ]
[]
false
true
false
false
false
let in_place_map #a b l f =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v l /\ (forall (j: nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j: nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v l}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get () in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b))
false
C.Compat.Loops.fst
C.Compat.Loops.repeat
val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_spec (UInt32.v max) f s) ))
val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_spec (UInt32.v max) f s) ))
let repeat #a l f b max fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == repeat_spec i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b; lemma_repeat (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_0 0 f (as_seq h0 b); for 0ul max inv f'
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 20, "end_line": 402, "start_col": 0, "start_line": 388 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies_1 in1 h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) )) inline_for_extraction let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies_1 in1 h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) #reset-options "--initial_fuel 2 --max_fuel 2 --z3rlimit 20" (* Repeating the same operation a number of times over a buffer ***************) #reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** To be extracted as: * for (int i = 0; i < n; ++i) * f(b[i]); *) inline_for_extraction val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_spec (UInt32.v max) f s) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: FStar.UInt32.t -> f: (s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s = FStar.UInt32.v l} -> s': FStar.Seq.Base.seq a {FStar.Seq.Base.length s' = FStar.Seq.Base.length s}) -> b: FStar.Buffer.buffer a {FStar.Buffer.length b = FStar.UInt32.v l} -> max: FStar.UInt32.t -> fc: (b: FStar.Buffer.buffer a {FStar.Buffer.length b = FStar.UInt32.v l} -> FStar.HyperStack.ST.Stack Prims.unit) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt32.t", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "FStar.Seq.Base.length", "FStar.UInt32.v", "Prims.nat", "FStar.Buffer.buffer", "FStar.Buffer.length", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.Buffer.live", "Prims.l_and", "FStar.Buffer.modifies_1", "Prims.eq2", "FStar.Buffer.as_seq", "C.Compat.Loops.for", "FStar.UInt32.__uint_to_t", "Spec.Loops.lemma_repeat_0", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "Spec.Loops.lemma_repeat", "Spec.Loops.repeat_spec", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let repeat #a l f b max fc =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == repeat_spec i f (as_seq h0 b) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v max}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = fc b; lemma_repeat (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_0 0 f (as_seq h0 b); for 0ul max inv f'
false
C.Compat.Loops.fst
C.Compat.Loops.repeat_range
val repeat_range: #a:Type0 -> l: UInt32.t -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> i:nat{i < UInt32.v max} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> fc:(b:buffer a{length b = UInt32.v l} -> i:UInt32.t{UInt32.v i < UInt32.v max} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0 (UInt32.v i))))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_range_spec (UInt32.v min) (UInt32.v max) f s) ))
val repeat_range: #a:Type0 -> l: UInt32.t -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> i:nat{i < UInt32.v max} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> fc:(b:buffer a{length b = UInt32.v l} -> i:UInt32.t{UInt32.v i < UInt32.v max} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0 (UInt32.v i))))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_range_spec (UInt32.v min) (UInt32.v max) f s) ))
let repeat_range #a l min max f b fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ UInt32.v min <= i /\ as_seq h1 b == repeat_range_spec (UInt32.v min) i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b i; lemma_repeat_range_spec (UInt32.v min) (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_range_0 (UInt32.v min) f (as_seq h0 b); for min max inv f'
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 20, "end_line": 444, "start_col": 0, "start_line": 430 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies_1 in1 h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) )) inline_for_extraction let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies_1 in1 h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) #reset-options "--initial_fuel 2 --max_fuel 2 --z3rlimit 20" (* Repeating the same operation a number of times over a buffer ***************) #reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** To be extracted as: * for (int i = 0; i < n; ++i) * f(b[i]); *) inline_for_extraction val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_spec (UInt32.v max) f s) )) inline_for_extraction let repeat #a l f b max fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == repeat_spec i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b; lemma_repeat (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_0 0 f (as_seq h0 b); for 0ul max inv f' (** To be extracted as: * for (int i = min; i < max; ++i) * f(b[i], i); *) inline_for_extraction val repeat_range: #a:Type0 -> l: UInt32.t -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> i:nat{i < UInt32.v max} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> fc:(b:buffer a{length b = UInt32.v l} -> i:UInt32.t{UInt32.v i < UInt32.v max} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ (let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0 (UInt32.v i))))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_1 b /\ live h_2 b /\ (let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == repeat_range_spec (UInt32.v min) (UInt32.v max) f s) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: FStar.UInt32.t -> min: FStar.UInt32.t -> max: FStar.UInt32.t{FStar.UInt32.v min <= FStar.UInt32.v max} -> f: ( s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s = FStar.UInt32.v l} -> i: Prims.nat{i < FStar.UInt32.v max} -> s': FStar.Seq.Base.seq a {FStar.Seq.Base.length s' = FStar.Seq.Base.length s}) -> b: FStar.Buffer.buffer a {FStar.Buffer.length b = FStar.UInt32.v l} -> fc: ( b: FStar.Buffer.buffer a {FStar.Buffer.length b = FStar.UInt32.v l} -> i: FStar.UInt32.t{FStar.UInt32.v i < FStar.UInt32.v max} -> FStar.HyperStack.ST.Stack Prims.unit) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "FStar.Seq.Base.length", "Prims.nat", "Prims.op_LessThan", "FStar.Buffer.buffer", "FStar.Buffer.length", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.Buffer.live", "Prims.l_and", "FStar.Buffer.modifies_1", "Prims.eq2", "FStar.Buffer.as_seq", "C.Compat.Loops.for", "Spec.Loops.lemma_repeat_range_0", "Prims.op_Addition", "Spec.Loops.lemma_repeat_range_spec", "Spec.Loops.repeat_range_spec", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let repeat_range #a l min max f b fc =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v max /\ UInt32.v min <= i /\ as_seq h1 b == repeat_range_spec (UInt32.v min) i f (as_seq h0 b) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v max}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = fc b i; lemma_repeat_range_spec (UInt32.v min) (UInt32.v i + 1) f (as_seq h0 b) in lemma_repeat_range_0 (UInt32.v min) f (as_seq h0 b); for min max inv f'
false
Spec.AES.Test.fst
Spec.AES.Test.test_counter
val test_counter : Prims.int
let test_counter = 0xfcfdfeff
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 29, "start_col": 0, "start_line": 29 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let test_counter =
0xfcfdfeff
false
C.Compat.Loops.fst
C.Compat.Loops.in_place_map2
val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies_1 in1 h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) ))
val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies_1 in1 h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) ))
let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies_1 in1 h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2))
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 81, "end_line": 354, "start_col": 0, "start_line": 337 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies_1 b h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies_1 b h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies_1 in1 h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
in1: FStar.Buffer.buffer a -> in2: FStar.Buffer.buffer b {FStar.Buffer.disjoint in1 in2} -> l: FStar.UInt32.t {FStar.UInt32.v l = FStar.Buffer.length in1 /\ FStar.UInt32.v l = FStar.Buffer.length in2} -> f: (_: a -> _: b -> a) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.Buffer.buffer", "FStar.Buffer.disjoint", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "FStar.Buffer.length", "FStar.Seq.Base.lemma_eq_intro", "FStar.Buffer.as_seq", "Spec.Loops.seq_map2", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "C.Compat.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Buffer.op_Array_Assignment", "FStar.Buffer.op_Array_Access", "Prims.nat", "FStar.Buffer.live", "FStar.Buffer.modifies_1", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "FStar.Buffer.get" ]
[]
false
true
false
false
false
let in_place_map2 #a #b in1 in2 l f =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 in1 /\ live h1 in2 /\ modifies_1 in1 h0 h1 /\ i <= UInt32.v l /\ (forall (j: nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j: nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v l}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get () in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2))
false
C.Compat.Loops.fst
C.Compat.Loops.map
val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) ))
val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) ))
let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input))
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 69, "end_line": 237, "start_col": 0, "start_line": 221 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
output: FStar.Buffer.buffer b -> input: FStar.Buffer.buffer a {FStar.Buffer.disjoint input output} -> l: FStar.UInt32.t { FStar.UInt32.v l = FStar.Buffer.length output /\ FStar.UInt32.v l = FStar.Buffer.length input } -> f: (_: a -> b) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.Buffer.buffer", "FStar.Buffer.disjoint", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "FStar.Buffer.length", "FStar.Seq.Base.lemma_eq_intro", "FStar.Buffer.as_seq", "Spec.Loops.seq_map", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "C.Compat.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Buffer.op_Array_Assignment", "FStar.Buffer.op_Array_Access", "Prims.nat", "FStar.Buffer.live", "FStar.Buffer.modifies_1", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "FStar.Buffer.get" ]
[]
false
true
false
false
false
let map #a #b output input l f =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j: nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j: nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v l}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get () in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input))
false
C.Compat.Loops.fst
C.Compat.Loops.map2
val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) ))
val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) ))
let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2))
{ "file_name": "krmllib/compat/C.Compat.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 84, "end_line": 278, "start_col": 0, "start_line": 261 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Compat.Loops open FStar.HyperStack.ST open FStar.Buffer module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies_1 output h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "C.Compat.Loops.fst" }
[ { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "C.Compat", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
output: FStar.Buffer.buffer c -> in1: FStar.Buffer.buffer a {FStar.Buffer.disjoint output in1} -> in2: FStar.Buffer.buffer b {FStar.Buffer.disjoint output in2} -> l: FStar.UInt32.t { FStar.UInt32.v l = FStar.Buffer.length output /\ FStar.UInt32.v l = FStar.Buffer.length in1 /\ FStar.UInt32.v l = FStar.Buffer.length in2 } -> f: (_: a -> _: b -> c) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.Buffer.buffer", "FStar.Buffer.disjoint", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "FStar.Buffer.length", "FStar.Seq.Base.lemma_eq_intro", "FStar.Buffer.as_seq", "Spec.Loops.seq_map2", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "C.Compat.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Buffer.op_Array_Assignment", "FStar.Buffer.op_Array_Access", "Prims.nat", "FStar.Buffer.live", "FStar.Buffer.modifies_1", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "FStar.Buffer.get" ]
[]
false
true
false
false
false
let map2 #a #b #c output in1 in2 l f =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies_1 output h0 h1 /\ i <= UInt32.v l /\ (forall (j: nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j: nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v l}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get () in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2))
false
Spec.AES.Test.fst
Spec.AES.Test.test_counter1
val test_counter1 : Prims.int
let test_counter1 = 1
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 62, "start_col": 0, "start_line": 62 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l (* From RFC 3686 *) let test_key1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x30uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let test_counter1 =
1
false
Spec.AES.Test.fst
Spec.AES.Test.test_counter2
val test_counter2 : Prims.int
let test_counter2 = 1
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 95, "start_col": 0, "start_line": 95 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l (* From RFC 3686 *) let test_key1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x30uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_counter1 = 1 let test_plaintext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x53uy; 0x69uy; 0x6Euy; 0x67uy; 0x6Cuy; 0x65uy; 0x20uy; 0x62uy; 0x6Cuy; 0x6Fuy; 0x63uy; 0x6Buy; 0x20uy; 0x6Duy; 0x73uy; 0x67uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xE4uy; 0x09uy; 0x5Duy; 0x4Fuy; 0xB7uy; 0xA7uy; 0xB3uy; 0x79uy; 0x2Duy; 0x61uy; 0x75uy; 0xA3uy; 0x26uy; 0x13uy; 0x11uy; 0xB8uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_key2 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x7Euy; 0x24uy; 0x06uy; 0x78uy; 0x17uy; 0xFAuy; 0xE0uy; 0xD7uy; 0x43uy; 0xD6uy; 0xCEuy; 0x1Fuy; 0x32uy; 0x53uy; 0x91uy; 0x63uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce2 : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x6Cuy; 0xB6uy; 0xDBuy; 0xC0uy; 0x54uy; 0x3Buy; 0x59uy; 0xDAuy; 0x48uy; 0xD9uy; 0x0Buy ] in assert_norm (List.Tot.length l == 12); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let test_counter2 =
1
false
Spec.AES.Test.fst
Spec.AES.Test.test_plaintext
val test_plaintext:lbytes 16
val test_plaintext:lbytes 16
let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 36, "start_col": 0, "start_line": 31 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 16
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_plaintext:lbytes 16 =
let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test_nonce
val test_nonce:lbytes 12
val test_nonce:lbytes 12
let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 27, "start_col": 0, "start_line": 22 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 12
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_nonce:lbytes 12 =
let l = List.Tot.map u8_from_UInt8 [0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy] in assert_norm (List.Tot.length l == 12); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test_key
val test_key:lbytes 16
val test_key:lbytes 16
let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 19, "start_col": 0, "start_line": 14 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 16
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_key:lbytes 16 =
let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test_ciphertext
val test_ciphertext:lbytes 16
val test_ciphertext:lbytes 16
let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 44, "start_col": 0, "start_line": 39 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 16
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_ciphertext:lbytes 16 =
let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test_key1
val test_key1:lbytes 16
val test_key1:lbytes 16
let test_key1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 52, "start_col": 0, "start_line": 47 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 16
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_key1:lbytes 16 =
let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test_key2
val test_key2:lbytes 16
val test_key2:lbytes 16
let test_key2 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x7Euy; 0x24uy; 0x06uy; 0x78uy; 0x17uy; 0xFAuy; 0xE0uy; 0xD7uy; 0x43uy; 0xD6uy; 0xCEuy; 0x1Fuy; 0x32uy; 0x53uy; 0x91uy; 0x63uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 85, "start_col": 0, "start_line": 80 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l (* From RFC 3686 *) let test_key1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x30uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_counter1 = 1 let test_plaintext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x53uy; 0x69uy; 0x6Euy; 0x67uy; 0x6Cuy; 0x65uy; 0x20uy; 0x62uy; 0x6Cuy; 0x6Fuy; 0x63uy; 0x6Buy; 0x20uy; 0x6Duy; 0x73uy; 0x67uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xE4uy; 0x09uy; 0x5Duy; 0x4Fuy; 0xB7uy; 0xA7uy; 0xB3uy; 0x79uy; 0x2Duy; 0x61uy; 0x75uy; 0xA3uy; 0x26uy; 0x13uy; 0x11uy; 0xB8uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 16
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_key2:lbytes 16 =
let l = List.Tot.map u8_from_UInt8 [ 0x7Euy; 0x24uy; 0x06uy; 0x78uy; 0x17uy; 0xFAuy; 0xE0uy; 0xD7uy; 0x43uy; 0xD6uy; 0xCEuy; 0x1Fuy; 0x32uy; 0x53uy; 0x91uy; 0x63uy ] in assert_norm (List.Tot.length l == 16); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test_nonce1
val test_nonce1:lbytes 16
val test_nonce1:lbytes 16
let test_nonce1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x30uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 60, "start_col": 0, "start_line": 55 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l (* From RFC 3686 *) let test_key1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 16
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_nonce1:lbytes 16 =
let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x30uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test_nonce2
val test_nonce2:lbytes 12
val test_nonce2:lbytes 12
let test_nonce2 : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x6Cuy; 0xB6uy; 0xDBuy; 0xC0uy; 0x54uy; 0x3Buy; 0x59uy; 0xDAuy; 0x48uy; 0xD9uy; 0x0Buy ] in assert_norm (List.Tot.length l == 12); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 93, "start_col": 0, "start_line": 88 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l (* From RFC 3686 *) let test_key1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x30uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_counter1 = 1 let test_plaintext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x53uy; 0x69uy; 0x6Euy; 0x67uy; 0x6Cuy; 0x65uy; 0x20uy; 0x62uy; 0x6Cuy; 0x6Fuy; 0x63uy; 0x6Buy; 0x20uy; 0x6Duy; 0x73uy; 0x67uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xE4uy; 0x09uy; 0x5Duy; 0x4Fuy; 0xB7uy; 0xA7uy; 0xB3uy; 0x79uy; 0x2Duy; 0x61uy; 0x75uy; 0xA3uy; 0x26uy; 0x13uy; 0x11uy; 0xB8uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_key2 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x7Euy; 0x24uy; 0x06uy; 0x78uy; 0x17uy; 0xFAuy; 0xE0uy; 0xD7uy; 0x43uy; 0xD6uy; 0xCEuy; 0x1Fuy; 0x32uy; 0x53uy; 0x91uy; 0x63uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 12
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_nonce2:lbytes 12 =
let l = List.Tot.map u8_from_UInt8 [0x00uy; 0x6Cuy; 0xB6uy; 0xDBuy; 0xC0uy; 0x54uy; 0x3Buy; 0x59uy; 0xDAuy; 0x48uy; 0xD9uy; 0x0Buy] in assert_norm (List.Tot.length l == 12); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test2_key_block
val test2_key_block:lbytes 16
val test2_key_block:lbytes 16
let test2_key_block : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xf0uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 146, "start_col": 0, "start_line": 141 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l (* From RFC 3686 *) let test_key1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x30uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_counter1 = 1 let test_plaintext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x53uy; 0x69uy; 0x6Euy; 0x67uy; 0x6Cuy; 0x65uy; 0x20uy; 0x62uy; 0x6Cuy; 0x6Fuy; 0x63uy; 0x6Buy; 0x20uy; 0x6Duy; 0x73uy; 0x67uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xE4uy; 0x09uy; 0x5Duy; 0x4Fuy; 0xB7uy; 0xA7uy; 0xB3uy; 0x79uy; 0x2Duy; 0x61uy; 0x75uy; 0xA3uy; 0x26uy; 0x13uy; 0x11uy; 0xB8uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_key2 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x7Euy; 0x24uy; 0x06uy; 0x78uy; 0x17uy; 0xFAuy; 0xE0uy; 0xD7uy; 0x43uy; 0xD6uy; 0xCEuy; 0x1Fuy; 0x32uy; 0x53uy; 0x91uy; 0x63uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce2 : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x6Cuy; 0xB6uy; 0xDBuy; 0xC0uy; 0x54uy; 0x3Buy; 0x59uy; 0xDAuy; 0x48uy; 0xD9uy; 0x0Buy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter2 = 1 let test_plaintext2 : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x0Auy; 0x0Buy; 0x0Cuy; 0x0Duy; 0x0Euy; 0x0Fuy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x1Auy; 0x1Buy; 0x1Cuy; 0x1Duy; 0x1Euy; 0x1Fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test_ciphertext2 : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x51uy; 0x04uy; 0xA1uy; 0x06uy; 0x16uy; 0x8Auy; 0x72uy; 0xD9uy; 0x79uy; 0x0Duy; 0x41uy; 0xEEuy; 0x8Euy; 0xDAuy; 0xD3uy; 0x88uy; 0xEBuy; 0x2Euy; 0x1Euy; 0xFCuy; 0x46uy; 0xDAuy; 0x57uy; 0xC8uy; 0xFCuy; 0xE6uy; 0x30uy; 0xDFuy; 0x91uy; 0x41uy; 0xBEuy; 0x28uy ] in assert_norm (List.Tot.length l == 32); of_list l let test1_key_block : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x80uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l let test1_plaintext_block : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l let test1_ciphertext_block : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x0euy; 0xdduy; 0x33uy; 0xd3uy; 0xc6uy; 0x21uy; 0xe5uy; 0x46uy; 0x45uy; 0x5buy; 0xd8uy; 0xbauy; 0x14uy; 0x18uy; 0xbeuy; 0xc8uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 16
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test2_key_block:lbytes 16 =
let l = List.Tot.map u8_from_UInt8 [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xf0uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l
false
Spec.AES.Test.fst
Spec.AES.Test.test_ciphertext1
val test_ciphertext1:lbytes 16
val test_ciphertext1:lbytes 16
let test_ciphertext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xE4uy; 0x09uy; 0x5Duy; 0x4Fuy; 0xB7uy; 0xA7uy; 0xB3uy; 0x79uy; 0x2Duy; 0x61uy; 0x75uy; 0xA3uy; 0x26uy; 0x13uy; 0x11uy; 0xB8uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "file_name": "specs/tests/Spec.AES.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 77, "start_col": 0, "start_line": 72 }
module Spec.AES.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence module PS = Lib.PrintSequence open Spec.AES #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let test_key : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x2buy; 0x7euy; 0x15uy; 0x16uy; 0x28uy; 0xaeuy; 0xd2uy; 0xa6uy; 0xabuy; 0xf7uy; 0x15uy; 0x88uy; 0x09uy; 0xcfuy; 0x4fuy; 0x3cuy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce : lbytes 12 = let l = List.Tot.map u8_from_UInt8 [ 0xf0uy; 0xf1uy; 0xf2uy; 0xf3uy; 0xf4uy; 0xf5uy; 0xf6uy; 0xf7uy; 0xf8uy; 0xf9uy; 0xfauy; 0xfbuy ] in assert_norm (List.Tot.length l == 12); of_list l let test_counter = 0xfcfdfeff let test_plaintext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x6buy; 0xc1uy; 0xbeuy; 0xe2uy; 0x2euy; 0x40uy; 0x9fuy; 0x96uy; 0xe9uy; 0x3duy; 0x7euy; 0x11uy; 0x73uy; 0x93uy; 0x17uy; 0x2auy ] in assert_norm (List.Tot.length l == 16); of_list l let test_ciphertext : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x87uy; 0x4duy; 0x61uy; 0x91uy; 0xb6uy; 0x20uy; 0xe3uy; 0x26uy; 0x1buy; 0xefuy; 0x68uy; 0x64uy; 0x99uy; 0x0duy; 0xb6uy; 0xceuy ] in assert_norm (List.Tot.length l == 16); of_list l (* From RFC 3686 *) let test_key1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0xAEuy; 0x68uy; 0x52uy; 0xF8uy; 0x12uy; 0x10uy; 0x67uy; 0xCCuy; 0x4Buy; 0xF7uy; 0xA5uy; 0x76uy; 0x55uy; 0x77uy; 0xF3uy; 0x9Euy ] in assert_norm (List.Tot.length l == 16); of_list l let test_nonce1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x00uy; 0x00uy; 0x30uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy ] in assert_norm (List.Tot.length l == 16); of_list l let test_counter1 = 1 let test_plaintext1 : lbytes 16 = let l = List.Tot.map u8_from_UInt8 [ 0x53uy; 0x69uy; 0x6Euy; 0x67uy; 0x6Cuy; 0x65uy; 0x20uy; 0x62uy; 0x6Cuy; 0x6Fuy; 0x63uy; 0x6Buy; 0x20uy; 0x6Duy; 0x73uy; 0x67uy ] in assert_norm (List.Tot.length l == 16); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.PrintSequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": true, "full_module": "Lib.PrintSequence", "short_module": "PS" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "Spec.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 16
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test_ciphertext1:lbytes 16 =
let l = List.Tot.map u8_from_UInt8 [ 0xE4uy; 0x09uy; 0x5Duy; 0x4Fuy; 0xB7uy; 0xA7uy; 0xB3uy; 0x79uy; 0x2Duy; 0x61uy; 0x75uy; 0xA3uy; 0x26uy; 0x13uy; 0x11uy; 0xB8uy ] in assert_norm (List.Tot.length l == 16); of_list l
false